WorldWideScience

Sample records for chemical isotope exchange

  1. Separation of the isotopes of boron by chemical exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  2. Advances in boron-10 isotope separation by chemical exchange distillation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang, E-mail: chengruoyu2@sina.co [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Mu Yujun; Li Xiaofeng; Bai Peng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-15

    Advances in boron-10 isotope separation by chemical exchange distillation are reviewed in this article. With a brief introduction of the principle of the separation, the progress on the research of this method and the problems relating to the separation coefficient are discussed. Several new donors, including nitromethane, acetone, methyl isobutyl ketone (MIBK) and diisobutyl ketone (DIBK), which have large separation factors are introduced. The complexes of these new donors and boron trifluoride (BF{sub 3}) are more stable than those of using the donors examined before. Among these new donors nitromethane could be a promising substitute for donors in present use to develop new technology of separating boron-10.

  3. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    Science.gov (United States)

    Rutherford, W. M.; Jepson, B. E.; Michaels, E. D.

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating S34, CL35, and CL37 in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and BR79 is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid.

  4. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  5. Unusual isotope effects of molybdenum in chemical exchange reaction using dicyclohexano-18-crown-6

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Toshiyuki; Nishizawa, Kazushige [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering; Inagawa, Jun

    1999-06-01

    Molybdenum isotopes were fractionated in a liquid-liquid extraction system using dicyclohexano-18-crown-6 (DC18C6). The enrichment factors showed a breakdown of the conventional mass-dependent rule. Some unusual and larger isotope effects were observed in the even atomic mass isotopes, {sup 92}Mo and {sup 94}Mo. The unusual features in the present study were not responsible for the field shift effect, which was regarded as a primary factor of the anomalous isotope effect in the recent theory, but were due to an anomaly on the vibrational levels. The largest isotope effect was observed in the isotope pair of {sup 94}Mo-{sup 96}Mo, it was {epsilon}{sub 96,94} = 0.0086 {+-} 0.0007, its initial aqueous phase was 0.91 M molybdenum chloride, and its organic phase was 0.2 M DC18C6 in chloroform: this was 0.0043 {+-} 0.0004 in terms of the enrichment factor for unit mass different. (author)

  6. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    Science.gov (United States)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  7. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields

    Science.gov (United States)

    Tomza, Michał

    2015-08-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products.

  8. Wet chemical preparation and isotope exchange process of H/D-terminated Si(111) and Si(110) studied by adsorbate vibrational analysis

    Science.gov (United States)

    Kawamoto, Erina; Kang, Jungmin; Matsuda, Takuya; Yamada, Taro; Suto, Shozo

    2017-02-01

    A convenient procedure for preparing D-terminated Si(111)-(1×1) and Si(110)-(1×1) by wet chemical etching was developed and applied to the vibrational analysis of these surfaces by high-resolution electron-energy loss spectroscopy (HREELS). Fully H-terminated Si(111)/(110) was first prepared in regular 40% NH4F/H2O solution, followed by immersion in saturated KF/D2O solution. HREELS revealed partially D-terminated H:Si(111)/(110) with the amount of deuterium termination depending on the immersion time. A series of various immersion times revealed the H/D exchange reaction kinetics, which are associated with the Si substrate etching processes on Si(111) (step-flow etching) and Si(110) (zipper reaction). The H-Si and D-Si stretching vibration frequencies as functions of the surface D fraction did not appear to change on Si(111), but on Si(110) the H-Si signal red shifted at a high D fraction. This is due to the adsorbate-adsorbate interaction, which is more intense on Si(110) because of the short nearest-neighbor distance of the adsorbates.

  9. Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    HEUNG, LEUNGK.

    2004-08-18

    Porous solids such as activated alumina, silica and molecular sieves generally contain significant amounts of hydrogen atoms in the form of H2O or OH even at high temperature and low humidity environment. A significant amount of this hydrogen is available for reversible isotopic exchange. This exchange reaction is slow under normal conditions and does not render itself to practical applications. But if the exchange kinetics is improved this reaction has the potential to be used for tritium removal from gas streams or for hydrogen isotopic separation.The use of catalysts to improve the exchange kinetics between hydrogen isotope in the gas phase and that in the solid phase was investigated. Granules of alumina, silica and molecular sieve were coated with platinum or palladium as the catalyst. The granules were packed in a 2-cm diameter column for isotope exchange tests. Gas streams containing different concentrations of deuterium in nitrogen or argon were fed through the protium saturated column. Isotope concentration in column effluent was monitored to generate isotope break-through curves. The curves were analyzed to produce information on the kinetics and capacity of the material. The results showed that all materials tested provided some extent of isotope exchange but some were superior both in kinetics and capacity. This paper will present the test results.

  10. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  11. Energetics and control of ultracold isotope-exchange reactions between heteronuclear dimers in external fields

    CERN Document Server

    Tomza, Michał

    2015-01-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000$\\,$MHz thus resulting in cold or ultracold products. For these chemical reactions there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. The exothermic isotope-exchange reactions can be tuned to become endothermic by employing a laser-induced state-selective Stark shift control thus providing a ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over quantum states of both reactants and products.

  12. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  13. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon = 6,1 x 10/sup -4/. This is one of the highest isotope fractionations known in a chloride isotope exchange system. The results show that the electrolyte behaviour of isotopes is comparable to that of a series of homologous elements.

  14. Isotopically exchangeable Al in coastal lowland acid sulfate soils

    Energy Technology Data Exchange (ETDEWEB)

    Yvanes-Giuliani, Yliane A.M. [UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052 (Australia); Centre Européen de Recherche et d' Enseignement des Géosciences de l' Environnement, Aix-Marseille Université, Aix en Provence (France); Fink, D. [Centre Européen de Recherche et d' Enseignement des Géosciences de l' Environnement, Aix-Marseille Université, Aix en Provence (France); Rose, J. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Waite, T. David [UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052 (Australia); Collins, Richard N., E-mail: richard.collins@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052 (Australia)

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability — a metal's ability to readily transfer between the soil solid- and solution-phases — of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl{sub 2}) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg{sup −1}. Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E = 1.68 × Al{sub KCl}, r{sup 2} = 0.66, n = 25). The addition of a 0.2 M CuCl{sub 2} extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial ‘organic-rich’ CLASS having E values < 1000 mg·kg{sup −1}. It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here. - Highlights: • Isotopically exchangeable Al was compared to 1 M KCl or 0.2 M CuCl{sub 2} extractable Al. • 1 M KCl always underestimated isotopically exchangeable Al concentrations. • 0.2 M CuCl{sub 2} mobilised non-isotopically exchangeable Al • 1 M KCl values require correction of ~ 1.7 to reflect exchangeable Al concentrations.

  15. Kinetic isotope effects for fast deuterium and proton exchange rates.

    Science.gov (United States)

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  16. Rate of radiocarbon retention onto calcite by isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, Janne; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2016-11-01

    Radiocarbon ({sup 14}C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO{sub 3}) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of {sup 14}C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  17. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    Energy Technology Data Exchange (ETDEWEB)

    Wauters, T., E-mail: t.wauters@fz-juelich.de [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Douai, D.; Kogut, D. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lyssoivan, A. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Brezinsek, S. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Belonohy, E. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Blackman, T. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Crombé, K. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Drenik, A. [Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Graham, M. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lerche, E. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Loarer, T. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lomas, P.L.; Mayoral, M.-L.; Monakhov, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oberkofler, M. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Philipps, V. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Plyusnin, V. [IST, Instituto de Plasmas e Fusão Nuclear, 1049-001 Lisboa (Portugal); and others

    2015-08-15

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1–7.5 × 10{sup −3} Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H{sub 2}-ICWC at ITER half field conditions on the JET-ILW preloaded by D{sub 2} tokamak operation is estimated to be 7.3 × 10{sup 22} hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  18. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon done on different tantalum parts to determine the amount of dissolved hydrogen.

  19. Nonstatistical behavior of reactive scattering in the (18)O+(32)O(2) isotope exchange reaction.

    Science.gov (United States)

    Wyngarden, Annalise L Van; Mar, Kathleen A; Boering, Kristie A; Lin, Jim J; Lee, Yuan T; Lin, Shi-Ying; Guo, Hua; Lendvay, Gyorgy

    2007-03-14

    The recombination of oxygen atoms with oxygen molecules to form ozone exhibits several strange chemical characteristics, including unusually large differences in formation rate coefficients when different isotopes of oxygen participate. Purely statistical chemical reaction rate theories cannot describe these isotope effects, suggesting that reaction dynamics must play an important role. We investigated the dynamics of the 18O + 32O2 --> O3(*) --> 16O + 34O2 isotope exchange reaction (which proceeds on the same potential energy surface as ozone formation) using crossed atomic and molecular beams at a collision energy of 7.3 kcal mol(-1), providing the first direct experimental evidence that the dissociation of excited ozone exhibits significant nonstatistical behavior. These results are compared with quantum statistical and quasi-classical trajectory calculations in order to gain insight into the potential energy surface and the dynamics of ozone formation.

  20. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  1. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  2. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    Science.gov (United States)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  3. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Xie, Yun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Du, Liang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); School of Radiation Medicine and Protection (SRMP), School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou 215000 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Tan, Zhaoyi, E-mail: zhyitan@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-04-28

    Highlights: • This is the first theoretical investigation about T–H exchange in vacuum oil. • T–H isotope exchange is accomplished through two different change mechanisms. • Isotope exchange is selective, molecules with −OH and −COOH exchange more easily. • The methyl and methylene radicals in waste oil were observed by {sup 1}HNMR. - Abstract: The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium–hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T–H exchange mechanism and the hyrogenation–dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation–dehydrogenation exchange mechanism, the T–H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with −OH and −COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T–H isotope exchange can be determined by the hydrogenation of T{sub 2} or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  4. Concurrent reduction and distillation: an improved technique for the recovery and chemical refinement of the isotopes of cadmium and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Caudill, H.H.; McBride, L.E.; McDaniel, E.W.

    1982-01-01

    The Electromagnetic Isotope Separations Program of the Oak Ridge National Laboratory has been involved in the separation, chemical recovery, and refinement of the stable isotopes of cadmium and zinc since 1946. Traditionally, the chemical refinement procedures for these elements consisted of ion exchange separations using anion exchange resins followed by pH-controlled hydrogen sulfide precipitations. The procedures were quite time-consuming and made it difficult to remove trace quantities of sulfur which interferes in subsequent attempts to prepare rolled metal foils. As demands for /sup 113/Cd and /sup 68/Zn (a precursor for the production of the radiopharmaceutical /sup 67/Ga) increased, it became evident that a quicker, more efficient refinement procedure was needed. Details of an improved method, which employs concurrent hydrogen reduction and distillation in the recovery and refinement of isotopically enriched zinc, are described. Modifications of the procedure suitable for the refinement of cadmium isotopes are also described. 3 figures, 1 table.

  5. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  6. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    Science.gov (United States)

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  7. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  8. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  9. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  10. Observation of Large Enhancement of Charge Exchange Cross Sections with Neutron-Rich Carbon Isotopes

    CERN Document Server

    Tanihata, I; Kanungo, R; Ameil, F; Atkinson, J; Ayyad, Y; Cortina-Gil, D; Dillmann, I; Estradé, A; Evdokimov, A; Farinon, F; Geissel, H; Guastalla, G; Janik, R; Knoebel, R; Kurcewicz, J; Litvinov, Yu A; Marta, M; Mostazo, M; Mukha, I; Nociforo, C; Ong, H J; Pietri, S; Prochazka, A; Scheidenberger, C; Sitar, B; Strmen, P; Takechi, M; Tanaka, J; Toki, H; Vargas, J; Winfield, J S; Weick, H

    2015-01-01

    Production cross sections of nitrogen isotopes from high-energy carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes. The fragment separator FRS at GSI was used to deliver C isotope beams. The cross sections of the production of N isotopes were determined by charge measurements of forward going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge exchange reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and Fermi transition strength at low excitation energies for neutron-rich isotopes. It was also observed that the cross sections were enhanced much more strongly for neutron rich isotopes in the C-target data.

  11. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    Science.gov (United States)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  12. Radium isotopes as a tracer of sediment-water column exchange in the North Sea

    NARCIS (Netherlands)

    Burt, W. J.; Thomas, H.; Paetsch, J.; Omar, A. M.; Schrum, C.; Daewel, U.; Brenner, H.; de Baar, H. J. W.

    2014-01-01

    Sediment-water column exchange plays an important role in coastal biogeochemistry. We utilize short-lived radium isotopes (Ra-224 and Ra-223) to understand and quantify the dominant processes governing sediment-water column exchange throughout the North Sea. Our comprehensive survey, conducted in Se

  13. Isotope and chemical geothermometry and its applications

    Institute of Scientific and Technical Information of China (English)

    庞忠和

    2001-01-01

    The Na-K-Mg Geoindicator created by Giggenbach (1988) is convenient to use but it is still based on the empirical geothermometry equations and discrepancy for different cation geo-thermometers is observed. In fact, the location of the curve of "full equilibrium" is different if a different Na-K geothermometry equation is used. The difference is pronounced for temperatures lower than about 220℃. A case study on the Zhangzhou geothermal field of SE China resulted in a reliable estimate of reservoir temperature of 150℃ by the SO4-H2O pair Oxygen-18 isotope geothermometer. This has provided an example of attained equilibrium of the marine sulphate in the geothermal system in the low-medium temperature range (<150℃). A recent refinement of the theoretical geothermometry was achieved by the FixAl method, which provides the possibility to identify and solve problems such as an erroneous analytical value of Aluminium, and influence of processes such as mixing and degassing, and therefore makes it possible to

  14. EXPERIMENTAL RESULTS FOR THE ISOTOPIC EXCHANGE OF A 1600 LITER TITANIUM HYDRIDE STORAGE VESSEL

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.

    2010-12-14

    Titanium is used as a low pressure tritium storage material. The absorption/desorption rates and temperature rise during air passivation have been reported previously for a 4400 gram prototype titanium hydride storage vessel (HSV). A desorption limit of roughly 0.25 Q/M was obtained when heating to 700 C which represents a significant residual tritium process vessel inventory. To prepare an HSV for disposal, batchwise isotopic exchange has been proposed to reduce the tritium content to acceptable levels. A prototype HSV was loaded with deuterium and exchanged with protium to determine the effectiveness of a batch-wise isotopic exchange process. A total of seven exchange cycles were performed. Gas samples were taken nominally at the beginning, middle, and end of each desorption cycle. Sample analyses showed the isotopic exchange process does not follow the standard dilution model commonly reported. Samples taken at the start of the desorption process were lower in deuterium (the gas to be removed) than those taken later in the desorption cycle. The results are explained in terms of incomplete mixing of the exchange gas in the low pressure hydride.

  15. Iron Isotope Fractionation Reveals Structural Change upon Microbial and Chemical Reduction of Nontronite NAu-1

    Science.gov (United States)

    Liu, K.; Wu, L.; Shi, B.; Smeaton, C. M.; Li, W.; Beard, B. L.; Johnson, C.; Roden, E. E.; Van Cappellen, P.

    2015-12-01

    Iron (Fe) isotope fractionations were determined during reduction of structural Fe(III) in nontronite NAu-1 biologically by Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA and chemically by dithionite. ~10% reduction was achieved in biological reactors, with similar reduction extents obtained by dithionite. We hypothesize that two stages occurred in our reactors. Firstly, reduction started from edge sites of clays and the produced Fe(II) partially remained in situ and partially was released into solution. Next aqueous Fe(II) adsorbed onto basal planes. The basal sorbed Fe(II) then undergoes electron transfer and atom exchange (ETAE) with octahedral Fe(III) in clays, with the most negative fractionation factor Δ56Febasal Fe(II)-structural Fe(III)of -1.7‰ when basal sorption reached a threshold value. Secondly, when the most reactive Fe(III) was exhausted, bioreduction significantly slowed down and chemical reduction was able to achieve 24% due to diffusion of small size dithionite. Importantly, no ETAE occurred between basal Fe(II) and structural Fe(III) due to blockage of pathways by collapsed clay layers. This two-stage process in our reduction experiments is distinctive from abiotic exchange experiments by mixing aqueous Fe(II) and NAu-1, where no structural change of clay would block ETAE between basal Fe(II) and structural Fe(III). The separation of reduction sites (clay edges) and sorption sites (basal planes) is unique to clay minerals with layered structure. In contrast, reduction and sorption occur on the same sites on the surfaces of Fe oxyhydroxides, where reduction does not induce structure change. Thus, the Fe isotope fractionations are the same for reduction and abiotic exchange experiments for Fe oxides. Our study reveals important changes in electron transfer and atom exchange pathways upon reduction of clay minerals by dissimilatory Fe reducing bacteria, which is prevalent in anoxic soils and sediments.

  16. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    Isotope exchange reactions between S-35-labeled sulfur compounds were studied in anoxic estuarine sediment slurries at 21-degrees-C and pH 7.4-7.7. Two experiments labeled with radioactive elemental sulfur (S-35-degrees) and one labeled with radioactive sulfate ((SO42-)-S-35) were performed as time...

  17. Assessing the identifiability in isotope exchange depth profiling measurements

    DEFF Research Database (Denmark)

    Ciucci, Francesco; Panagakos, Grigorios; Chen, Chi;

    2014-01-01

    Accurate identification of the physical parameters describing the surface exchange kinetic coefficient k and oxygen diffusion coefficient D is key in solid state ionics, because the performance of many ionic devices is connected to such quantities. In this work we extend and generalize the concept...

  18. Isotope exchange of indoles with D/sub 2/O over group VIII metals

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, E.A.; Dedov, A.G.; Kurts, A.L.; Luzikov, Yu.N.

    1981-08-01

    Results of H - D exchange between indole and its methyl derivatives and D/sub 2/O over metallic Pt, Rh, and Pd are reported. The composition of the reaction mixture after the isotopic exchange was determined by mass spectrometry. The order of reactivity of the metals was Pt>Pd>Rh. It was determined that it was only the heterocycle ..pi..-electron system that interacts with the surface and mainly the hydrogens at C/sub 2/ and C/sub 3/ that undergo exchange and not those bonded to the N. (BLM)

  19. Microbial, Physical and Chemical Drivers of COS and 18O-CO2 Exchange in Soils

    Science.gov (United States)

    Meredith, L. K.; Boye, K.; Whelan, M.; Pang, E.; von Sperber, C.; Brueggemann, N.; Berry, J. A.; Welander, P. V.

    2015-12-01

    Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint [1]. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Soils have been observed to emit COS by undetermined processes. To account for these soil processes, measurements are needed to identify the key microbial, chemical, and physical factors. In this study, we survey COS and δ18O exchange in twenty different soils spanning a variety of biomes and soil properties. By comparing COS fluxes and δ18O-CO2 values emitted from moist soils we investigate whether the same types of CA catalyze these two processes. Additionally, we seek to identify the potential chemical drivers of COS emissions by measuring COS fluxes in dry soils. These data are compared with soil physical (bulk density, volumetric water content, texture), chemical (pH, elemental analysis, sulfate, sulfur K-edge XANES), and microbial measurements (biomass and phylogeny). Furthermore, we determine the abundance and diversity of CA-encoding genes to directly link CA with measured soil function. This work will define the best predictors for COS fluxes and δ18O-CO2 values from our suite of biogeochemical measurements. The suitability of identified predictor variables can be tested in follow-up studies and applied for modeling

  20. Oxygen isotope variations in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotopic exchange

    Science.gov (United States)

    Sharp, Z.D.; O'Neil, J.R.; Essene, E.J.

    1988-01-01

    The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730??50?? C and 5.5??0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500?? C (??qz - mt=10.0???) within 2-3 meters of the orthogneiss contact to 600?? C (??qz - mt=8.0???) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock ??18Owr value of 8.0??0.6???. The greater ??qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (???800?? C/Ma). In order to preserve the 600?? C isotopic temperature, the diffusion coefficient D (for ??-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5??10-16 cm2/s at 833 K. There are no values for the activation energy (Q) and pre-exponential diffusion coefficient (D0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the diffusion

  1. Fluid flow along North American Cordillera detachments determined from stable isotope and high resolution chemical analyses

    Science.gov (United States)

    Quilichini, A.; Teyssier, C.; Mulch, A.; Nachlas, W.

    2009-12-01

    Fluid flow is likely a major parameter controlling the dynamics of extensional detachment zones. Buoyancy-driven fluid flow is generated by high heat flow beneath the detachment zone, where heat is advected by crustal thinning and magma intrusions. This hydrothermal convective flow is focused in the detachment zone for the duration of activity of the detachment at relatively high temperature (300-500°C), resulting in very significant fluid-rock interaction and isotopic exchange. Quantifying sources and fluid flux in detachments is a challenge because permeability of ductilely deforming rocks is poorly understood. In order to solve these problems, we studied two different Eocene extensional systems in the North American Cordillera: the quartzitic detachment which borders the Kettle dome metamorphic core complex (WA), and the quartzo-feldspathic Bitterroot shear zone along the Idaho batholith (MT). The Kettle Dome detachment provides a continuous section of ~200 m thick quartzite mylonite where high-resolution sampling (~5 m) indicates that Deuterium isotopic ratios that are obtained from synkinematic muscovite grains are consistent with a meteoric fluid source (-130 per mil). In the Bitterroot shear zone, Coyner (2003) reported similar Deuterium isotopic ratios (down to -140 per mil) in muscovite from mylonites and ultramylonites. Microprobe analyses were obtained for white mica porphyroclasts by performing transects perpendicular to the basal (001) cleavage in order to determine intragrain chemical zoning. Preliminary results for the Kettle dome indicate increasing phengite composition with depth, suggesting enhanced activity of the Tschermak exchange. The variations of the phengitic signature in muscovite indicates that temperature diminuish downsection, which is contradictory with the results obtained by the Qz-Ms oxygen isotope thermometer along the Kettle section. Our recent work provides geologic data for numerical models that address the permeability of

  2. Stochastic Simulation of Chemical Exchange in Two Dimensional Infrared Spectroscopy

    CERN Document Server

    Sanda, F; Sanda, Frantisek; Mukamel, Shaul

    2006-01-01

    The stochastic Liouville equations are employed to investigate the combined signatures of chemical exchange (two-state-jump) and spectral diffusion (coupling to an overdamped Brownian oscillator) in the coherent response of an anharmonic vibration to three femtosecond infrared pulses. Simulations reproduce the main features recently observed in the OD stretch of phenol in benzene.

  3. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of the exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.

  4. Retention, isotope exchange, and thermal release of hydrogen in candidate materials for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W. R.; Doyle, B. L.; Brice, D. K.; Picraux, S. T.

    1980-08-01

    The materials studied included TiC, TiB/sub 2/, VB/sub 2/, B/sub 4/C, B, Si, graphite, and the metals Ti, V, and 304L stainless steel. The TiC and TiB/sub 2/ were formed by chemical vapor deposition on a graphite substrate. The C/Ti ratio of the TiC was measured to be 1.0 +- .05 by ion backscattering analysis. The Ti and V were explosively bonded to copper substrates, and the VB/sub 2/ was made by borodizing vanadium. Carbon (compression annealed pyrolytic graphite from Union Carbide and Papyex graphite ribbon from Le Carbone) and single crystal silicon samples were included in the study as reference materials. The hydrogen retention and isotope exchange behavior for these materials were studied by measuring the amount of H or D retained as a function of incident fluence using the D(/sup 3/He,P)/sup 4/He nuclear reaction analysis techniques for D and H(/sup 15/N,..cap alpha gamma..) profiling for H.

  5. A new approach to quantifying internal diffusion resistances and CO2 isotope exchange in leaves

    Science.gov (United States)

    West, Jason; Ogée, Jérôme; Burlett, Régis; Gimeno, Teresa; Genty, Bernard; Jones, Samuel; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the global CO2 budget at a range of scales, offering the potential to partition net CO2 exchanges into their component gross fluxes and provide insights to linkages between C and water cycles. However, there are significant limitations to utilizing the δ18O of CO2 to constrain C budgets because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water in particular represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and its oxygen isotope exchange with this pool. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the δ18O of CO2 and allows us to derive other relevant parameters directly. This new measurement system and modeling

  6. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    MA; Yingjun

    2001-01-01

    Chen, J., Qiu, G., Lu, H. Y. et al., Variation of summer monsoon intensity on the Loess Plateau of central China during the last 130, 000 yrs based on evidence from Rb and Sr distribution, Chinese Science Bulletin, 1997, 42(6): 473.[13]Chen, J., An, Z. S., Wang, Y. J. et al., Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka: Implications for paleomonsoon variations, Science in China, Ser. D, 1999, 42(2): 225.[14]Faure, G., Principles of Isotope Geology, 2nd ed, New York: John Wiley & Son, 1986, 117-199.[15]White, A. F., Blum, A. E., Shultz, M. S. et al., Chemical weathering rates of a soil chronosequence on granitic alluvium:ⅠQuantification of mineralogical and surface area changes and calculation of silicate reaction rates, Geochim. Cosmochim. Acta, 1996, 60(14): 2533.[16]Miller, E. K., Blum, J. D., Friedland, A. J., Determination of soil exchangeable---cation loss and weathering rates using Sr isotopes, Nature, 1993, 362: 438.[17]Liu, C. Q., Zhang, J., Li, C. L., Variation in CaCO3 content and Sr isotopic composition of loess and records of paleocli-matic fluctuation, Chinese Science Bulletin, 1999, 44(16): 1512.

  7. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  8. Hydrogen isotope exchanges between water and methanol in interstellar ices

    CERN Document Server

    Faure, A; Theulé, P; Quirico, E; Schmitt, B

    2015-01-01

    The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuteration of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger (~20) in low-mass hot corinos and significantly lower (~1) in high-mass hot cores. This dichotomy in methanol deuteration between low-mass and massive protostars is currently not understood. In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion~KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorpor...

  9. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M.; Baba, A. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y.; Nishi, M.

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  10. Isotopic and impurity element probes of mesoscale chemical dynamics at mineral fluid interfaces

    Science.gov (United States)

    DePaolo, D. J.

    2012-12-01

    Mesoscale interactions control important Earth processes including the growth of minerals from aqueous solutions and silicate liquids, the diffusion of ions in solids and silicate liquids, and the solid-state deformation and recrystallization that constitutes metamorphism. Most of these processes are typically understood from the classical side in terms of macroscopic physical and thermodynamic properties and classical kinetics, and from the molecular side in terms of single molecule or nearest-neighbor interactions. However, in many cases the controlling processes occur at intermediate scales of both length and time, and involve complex interactions among multiple chemical species. A major limitation has been in characterizing and modeling the dynamic processes that lead to the macroscopic properties and behavior. Advanced microscopy techniques allow phase changes, for example, to be monitored at high resolution, and this capability continues to improve. However, other important information about the phase changes, such as the molecular exchange fluxes between phases and the detailed mechanisms of reaction, are not revealed by microscopy. High-resolution isotopic characterization now allows the molecular exchange fluxes to be quantified, and models suggest that the incorporation of impurity elements is directly tied to these fluxes. One of the main advances is that precise isotopic measurements have recently been extended to include major stoichiometric cations such as Ca, Mg, Fe, and K, as well as key impurity elements such as U, Cd, Mo, and Sr. Isotopic analysis at the nano- to microscale would further clarify the detailed dynamics of mineral chemistry controls but are not yet possible except in a few instances. Impurity element concentrations are more easily measured at these small scales, and they are a key bridge between isotopic measurements and microscopy.Other limitations to advancing our knowledge of the chemical and isotopic effects associated with

  11. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  12. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega......Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...

  13. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions

    Science.gov (United States)

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Sylva, Sean P.

    2012-01-01

    To investigate the extent of hydrogen isotope (2H and 1H) exchange between hydrocarbons and water under hydrothermal conditions, we performed experiments heating C1-C5n-alkanes in aqueous solutions of varying initial 2H/1H ratios in the presence of a pyrite-pyrrhotite-magnetite redox buffer at 323 °C and 35-36 MPa. Extensive and reversible incorporation of water-derived hydrogen into C2-C5n-alkanes was observed on timescales of months. In contrast, comparatively minor exchange was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding n-alkenes with H2 derived from the disproportionation of water. Rates of δ2H variation in C3+n-alkanes decreased with time, a trend that is consistent with an asymptotic approach to steady state isotopic compositions regulated by alkane-water isotopic equilibrium. Substantially slower δ2H variation was observed for ethane relative to C3-C5n-alkanes, suggesting that the greater stability of C3+ alkenes and isomerization reactions may dramatically enhance rates of 2H/1H exchange in C3+n-alkanes. Thus, in reducing aqueous environments, reversible reaction of alkanes and their corresponding alkenes facilitates rapid 2H/1H exchange between water and alkyl-bound hydrogen on relatively short geological timescales at elevated temperatures and pressures. The proximity of some thermogenic and purported abiogenic alkane δ2H values to those predicted for equilibrium 2H/1H fractionation with ambient water suggests that this process may regulate the δ2H signatures of some naturally occurring hydrocarbons.

  14. Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary

    Science.gov (United States)

    Chen, Mengli; Boyle, Edward A.; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo

    2016-11-01

    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  15. Glucans monomer-exchange dynamics as an open chemical network

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Riccardo, E-mail: riccardo.rao@uni.lu; Esposito, Massimiliano, E-mail: massimiliano.esposito@uni.lu [Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg); Lacoste, David [Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI - 10 rue Vauquelin, F-75231 Paris (France)

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  16. Glucans monomer-exchange dynamics as an open chemical network

    CERN Document Server

    Rao, Riccardo; Esposito, Massimiliano

    2015-01-01

    We describe the oligosaccharides-exchange dynamics performed by so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  17. Isotopic and chemical studies of early crustal metasedimentary rocks

    Science.gov (United States)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  18. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    Science.gov (United States)

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  19. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    Science.gov (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  20. Transverse relaxation in the rotating frame induced by chemical exchange

    Science.gov (United States)

    Michaeli, Shalom; Sorce, Dennis J.; Idiyatullin, Djaudat; Ugurbil, Kamil; Garwood, Michael

    2004-08-01

    In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1 ρ. On the other hand, the time constant T2 ρ characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2 ρ can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2 ρ characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2 ρ relaxation in the fast-exchange regime, with time constant defined as T2 ρ,ex . The derived theory predicts the rate constant R 2ρ, ex (=1/T 2ρ, ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2 ρ,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems.

  1. Charge Exchange and Chemical Reactions with Trapped Th$^{3+}$

    CERN Document Server

    Churchill, L R; Chapman, M S

    2010-01-01

    We have measured the reaction rates of trapped, buffer gas cooled Th$^{3+}$ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th$^{3+}$ make them more prone to loss. Our results show that reactions of Th$^{3+}$ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th$^{3+}$ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th$^{3+}$ and carbon dioxide. Loss rates of Th$^{3+}$ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th$^{3+}$ with nitrogen and argon depend on the internal electronic configuration of the Th$^{3+}$.

  2. Upper limit on the rate constant for isotope exchange between molecular oxygen and ozone at 298 K

    Science.gov (United States)

    Anderson, S. M.; Morton, J.; Mauersberger, K.

    1987-01-01

    The gas phase bimolecular isotope exchange reaction between molecular oxygen and ozone has been investigated directly for the first time. Its rate coefficient is found to be less than 2 x 10 to the -25th cu cm/sec at 298 K, over six orders of magnitude below recent estimates. Much faster exchange was observed over condensed ozone at 77 K, suggesting isotopic scrambling is catalyzed under these conditions. The low rate coefficient implies that homogeneous exchange between ground state oxygen and ozone molecules cannot play a significant role in heavy ozone chemistry.

  3. Chemical and isotopic characteristics of hot springs along the along the Neogene Malawi rift.

    Science.gov (United States)

    Atekwana, E. A.; Tsokonombwe, G. W.; Elsenbeck, J.; Wanless, V. D.; Atekwana, E. A.

    2015-12-01

    We measured the concentrations of major ions and dissolved inorganic carbon (DIC) and the stable isotopes of carbon (δ13CDIC), hydrogen (δD) and oxygen (δ18O) of hot springs along the Neogene Malawi rift. We compared the results with those of streams and a cold spring. We aimed to assess the hot springs for evidence of addition of mantle mass, specifically water and carbon and (2) determine the processes that control the chemical and isotopic evolution of the hot springs. Understanding the source(s) of heat for the springs and if the chemical and isotopic characteristics show evidence of mantle processes is an important goal of the Project for Rift Initiation, Development and Evolution (PRIDE). The temperature of the hot springs ranged from 35 to 80 ºC. High temperature anomalies are observed between latitudes 10 to 11, 12 to 13 and 15 to 16 degrees south along the rift axis. The δD and δ18O for the cold spring, hot springs and streams had a similar range, were positively correlated and lie on the trend of the local meteoric water line. We suggest negligible contribution of water from a connate or magmatic source and limited oxygen exchange from water-rock interaction or CO2 exchange from deep sedimentary carbonates. The DIC concentrations of the hot springs are higher (5 to 61 mg C/L) than those of streams (2 to 28 mg C/L) indicating addition of carbon to the DIC pool during the circulation of some springs. The range in the δ13CDIC of the hot springs (-17 to -8‰) is broader and lower compared to streams (-12 to -5‰) due to addition of carbon with a δ13CDIC of -15‰ to the spring water during circulation. Our results indicate that (1) the source of water for the hot springs is meteoric, (2) the hot springs have not experienced extensive water-rock interaction due to fast circulation suggesting highly permeable fault zones, (3) the source of carbon in the DIC of the hot springs is mostly CO2(g) from the soil zone and (4) the springs are heated by normal

  4. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    Science.gov (United States)

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  5. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  6. Stable isotopes. Applications and production; Les isotopes stables. Applications - production

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.; Louvet, P.; Soulie, E. [eds.

    1994-12-31

    This conference presents 46 communications concerning stable isotope production, utilization and application, grouped in 6 sessions and posters. The various themes are: biological applications (pharmacology, medical diagnosis, metabolism and protein studies, toxicity and response studies, labelled compounds), analysis procedures (NMR analysis for macromolecules, tracer studies), nuclear applications (utilization of stable isotopes in nuclear reactors), biological, physical and chemical applications (mass transfer, mobility, crystallography, isotopic exchange), stable isotope production (ion chromatography, ion cyclotron resonance, cryogenic distillation).

  7. Simulataneous analysis of reactivity of anilines in the hydrogen-isotope exchange reaction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dong-Yu; IMAIZUMI Hiroshi; LEI Qing-Quan; ZHAO Dong-Mei

    2005-01-01

    In order to reveal the reactivity of a functional group in an aromatic compound having two substituents in the aromatic ring, the hydrogen-isotope exchange reaction (T-H exchange reaction) between tritiated water vapor (HTO vapor) and 4-amino-2-methylbenzenesulfonic acid (and 5-amino-2-methylphenol) were dynamically observed at 50℃ (and 70℃) in a gas-solid system. Consequently, the fact that the specific activity of the acid increased with time was obtained, and the T-for-H exchange reaction occurred. By applying the A "-McKay plot method to the data observed, the rate constant of each functional group for the reaction was obtained. After the additive property of the Hammett's rule was applied to this work, the new substituent constants were obtained. From the above-mentioned,the following four items have been confirmed: (1) the reactivity of the functional groups can be dynamically analyzed,and the A"-McKay plot method is useful to analyze the reactivity; (2) the additive property of the Hammett's rule is applicable to quantitative comparison of the reactivity of the functional groups; (3) the reactivity of the functional groups can be simultaneously analyzed by using the A"-McKay plot method in the T-H exchange reaction; and (4) the method used in this work is also useful for analyzing the reactivity of a certain material having some kinds of functional groups.

  8. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-11-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons.

  9. Chemical Exchange Saturation Transfer (CEST) Agents: Quantum Chemistry and MRI.

    Science.gov (United States)

    Li, Jikun; Feng, Xinxin; Zhu, Wei; Oskolkov, Nikita; Zhou, Tianhui; Kim, Boo Kyung; Baig, Noman; McMahon, Michael T; Oldfield, Eric

    2016-01-04

    Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd(3+) -based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the (1) H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R(2) =0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4-dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that (1) H NMR shifts for CEST agents-charged species-can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.

  10. Rapid, high-purity chemical separation of molybdenum from iron meteorites for isotopic analysis by using thermal ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Lu; Masuda, Akimasa (Tokyo Univ. (Japan). Dept. of Chemistry)

    1992-05-01

    A chemical procedure has been developed, which combines both solvent extraction and anion exchange, so that microgram amounts of Mo can be cleanly, rapidly and efficiently separated from gram amounts of iron meteorites. Particular attention was directed to the complete separation of Mo from Zr and Ru. The isotopic abundance ratios of Mo can subsequently be determined with high accuracy by using thermal ionization mass spectrometry. The experiments indicate that the behaviour of Mo during solvent extraction and anion exchange is considerably different from that reported previously. In particular, it was found that there is a very narrow range of HCl concentrations within which it is possible to separate Mo from Fe by solvent extraction. The reproducibility and recovery of the method were examined by using inductively coupled plasma atomic emission spectrometry. (Author).

  11. Lactate Chemical Exchange Saturation Transfer (LATEST) Imaging in vivo A Biomarker for LDH Activity.

    Science.gov (United States)

    DeBrosse, Catherine; Nanga, Ravi Prakash Reddy; Bagga, Puneet; Nath, Kavindra; Haris, Mohammad; Marincola, Francesco; Schnall, Mitchell D; Hariharan, Hari; Reddy, Ravinder

    2016-01-22

    Non-invasive imaging of lactate is of enormous significance in cancer and metabolic disorders where glycolysis dominates. Here, for the first time, we describe a chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) method (LATEST), based on the exchange between lactate hydroxyl proton and bulk water protons to image lactate with high spatial resolution. We demonstrate the feasibility of imaging lactate with LATEST in lactate phantoms under physiological conditions, in a mouse model of lymphoma tumors, and in skeletal muscle of healthy human subjects pre- and post-exercise. The method is validated by measuring LATEST changes in lymphoma tumors pre- and post-infusion of pyruvate and correlating them with lactate determined from multiple quantum filtered proton magnetic resonance spectroscopy (SEL-MQC (1)H-MRS). Similarly, dynamic LATEST changes in exercising human skeletal muscle are correlated with lactate determined from SEL-MQC (1)H-MRS. The LATEST method does not involve injection of radioactive isotopes or labeled metabolites. It has over two orders of magnitude higher sensitivity compared to conventional (1)H-MRS. It is anticipated that this technique will have a wide range of applications including diagnosis and evaluation of therapeutic response of cancer, diabetes, cardiac, and musculoskeletal diseases. The advantages of LATEST over existing methods and its potential challenges are discussed.

  12. Identification of dominant hydrogeochemical processes for groundwaters in the Algerian Sahara supported by inverse modeling of chemical and isotopic data

    Science.gov (United States)

    Slimani, Rabia; Guendouz, Abdelhamid; Trolard, Fabienne; Souffi Moulla, Adnane; Hamdi-Aïssa, Belhadj; Bourrié, Guilhem

    2017-03-01

    Unpublished chemical and isotopic data taken in November 1992 from the three major Saharan aquifers, namely the Continental Intercalaire (CI), the Complexe Terminal (CT) and the phreatic aquifer (Phr), were integrated with original samples in order to chemically and isotopically characterize the largest Saharan aquifer system and investigate the processes through which groundwaters acquire their mineralization. Instead of classical Debye-Hückel extended law, a specific interaction theory (SIT) model, recently incorporated in PHREEQC 3.0, was used. Inverse modeling of hydrochemical data constrained by isotopic data was used here to quantitatively assess the influence of geochemical processes: at depth, the dissolution of salts from the geological formations during upward leakage without evaporation explains the transitions from CI to CT and to a first end member, a cluster of Phr (cluster I); near the surface, the dissolution of salts from sabkhas by rainwater explains another cluster of Phr (cluster II). In every case, secondary precipitation of calcite occurs during dissolution. All Phr waters result from the mixing of these two clusters together with calcite precipitation and ion exchange processes. These processes are quantitatively assessed by the PHREEQC model. Globally, gypsum dissolution and calcite precipitation were found to act as a carbon sink.

  13. Two stages of isotopic exchanges experienced by the Ertaibei granite pluton, northern Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    18O/16O and D/H of coexisting feldspar, quartz, and biotite separates of twenty samples collected from the Ertaibei granite pluton, northern Xinjiang, China are determined. It is shown that the Ertaibei pluton experienced two stages of isotopic exchanges. The second stage of 18O/16O and D/H exchanges with meteoric water brought about a marked decrease in the δ18O values of feldspar and biotite from the second group of samples. The D/H of biotite exhibits a higher sensitivity to the meteoric water alteration than its 18O/16O. However, the first stage of 18O/16O exchange with the 18O-rich aqueous fluid derived from the dehydration within the deep crust caused the δ18OQuartz-Feldspar reversal. It is inferred that the dehydration-melting may have been an important mechanism for anatexis. It is shown that the deep fluid encircled the Ertaibei pluton like an envelope which serves as an effective screen to the surface waters.

  14. Two stages of isotopic exchanges experienced by the Ertaibei granite pluton, northern Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    刘伟

    2000-01-01

    18O/16O and D/H of coexisting feldspar, quartz, and biotite separates of twenty samples collected from the Ertaibei granite pluton, northern Xinjiang, China are determined. It is shown that the Ertaibei pluton experienced two stages of isotopic exchanges. The second stage of 18O/16O and D/H exchanges with meteoric water brought about a marked decrease in the δ18O values of feldspar and biotite from the second group of samples. The D/H of biotite exhibits a higher sensitivity to the meteoric water alteration than its 18O/16O. However, the first stage of 18O/16O exchange with the 18O-rich aqueous fluid derived from the dehydration within the deep crust caused the Δ18OQuariz-Feidspar reversal. It is inferred that the dehydration-melting may have been an important mechanism for anatexis. It is shown that the deep fluid encircled the Ertaibei pluton like an envelope which serves as an effective screen to the surface waters.

  15. Chromatographic separation process with pellicular ion exchange resins that can be used for ion or isotope separation and resins used in this process. Procede de separation chromatographique au moyen de resines echangeuses d'ions pelliculaires, utilisable notamment pour la separation des isotopes ou des ions, et resines utilisables dans ce procede

    Energy Technology Data Exchange (ETDEWEB)

    Carles, M.; Neige, R.; Niemann, C.; Michel, A.; Bert, M.; Bodrero, S.; Guyot, A.

    1989-01-06

    For separation of uranium, boron or nitrogen isotopes, an isotopic exchange is carried out betwen an isotope fixed on an ion exchange resin and another isotope of the same element in the liquid phase contacting the resin. Pellicular resins are used comprising composite particulates with an inert polymeric core and a surface layer with ion exchange groups.

  16. Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues

    Science.gov (United States)

    Chopra, Rahul; Richter, Frank M.; Bruce Watson, E.; Scullard, Christian R.

    2012-07-01

    Laboratory experiments are used to document isotopic fractionation of magnesium by chemical diffusion in a silicate melt and the results compared to the magnesium isotopic composition across contacts between igneous rocks of different composition in natural settings. The natural samples are from transects from felsic to mafic rocks at Vinal Cove in the Vinalhaven Intrusive Complex, Maine and from the Aztec Wash pluton in Nevada. Two laboratory diffusion couples made by juxtaposing melts made from powders of the felsic and mafic compositions sampled at Vinal Cove were annealed at about 1500 °C for 22.5 and 10 h, respectively. The transport of magnesium in the diffusion couples resulted in easily measured magnesium isotopic fractionations at the interface (δ26Mg∼1.5‰). These isotopic fractionations provide a distinctive isotopic “fingerprint” that we use to determine whether chemical gradients in natural settings where melts of different composition were juxtaposed were due to chemical diffusion. The magnesium isotopic fractionation along one profile at Vinal Cove is exactly what one would expect based on the fractionations found in the laboratory experiments. This is an important result in that it shows that the isotope fractionation by chemical diffusion found in highly controlled laboratory experiments can be found in a natural setting. This correspondence implies that chemical diffusion was the dominant process responsible for the transport of magnesium across this particular contact at Vinal Cove. A second Vinal Cove profile has a very similar gradient in magnesium concentration but with significantly less magnesium isotopic fractionation than expected. This suggests that mass transport at this location was only partly by diffusion and that some other mass transport mechanism such as mechanical mixing must have also played a role. The magnesium isotopic composition of samples from Aztec Wash shows no resolvable isotopic fractionation across the contact

  17. Hydrogen isotope exchange and conditioning in graphite limiters used in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    LaMarche, P.H.; Dylla, H.F.; McCarthy, P.J.; Ulrickson, M.

    1986-02-01

    Isotopic exchange experiments performed in TFTR are used to examine the outgassing and diffusive properties of graphite used as the plasma limiter. Changeover from hydrogen to deuterium for different periods ranges from approx.600 to 60 plasma discharges, which appears to be correlated to the limiter temperature. We present a simple analytical model that predicts a fast transient (approx.10 plasma discharges) changeover where the deuterium fueling dilutes the adsorbed and near-surface hydrogen, and a slowly changing term where bulk hydrogen diffuses to the surface. Using this model we can extract an activation energy for diffusion of 0.15 +- 0.02 eV. We hypothesize that interpore diffusion for this porous (approx.15%) material is consistent with our observations. 19 refs.

  18. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    Science.gov (United States)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  19. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    Science.gov (United States)

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  20. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  1. Tailoring exchange bias through chemical order in epitaxial FePt3 films

    Science.gov (United States)

    Saerbeck, T.; Zhu, H.; Lott, D.; Lee, H.; LeClair, P. R.; Mankey, G. J.; Stampfl, A. P. J.; Klose, F.

    2013-07-01

    Intentional introduction of chemical disorder into mono-stoichiometric epitaxial FePt3 films allows to create a ferro-/antiferromagnetic two-phase system, which shows a pronounced and controllable exchange bias effect. In contrast to conventional exchange bias systems, granular magnetic interfaces are created within the same crystallographic structure by local variation of chemical order. The amount of the exchange bias can be controlled by the relative amount and size of ferromagnetic and antiferromagnetic volume fractions and the interface between them. The tailoring of the magnetic composition alone, without affecting the chemical and structural compositions, opens the way to study granular magnetic exchange bias concepts separated from structural artifacts.

  2. Novel Hydrophobic Pt/Inorganic Catalyst Used in Hydrogen Isotope Exchange Reaction

    Directory of Open Access Journals (Sweden)

    JIA Qing-qing1;HU Shi-lin1;FENG Xiao-yan2;LIU Ya-ming1

    2016-11-01

    Full Text Available To improve the performance of hydrophobic catalyst and extend its using range, this research adopted the porous columnar inorganic carriers (ø=5 mm to prepare the hydrophobic catalyst used in hydrogen isotopes exchange reaction, the hydrophilic carriers became hydrophobic with the nanostructured CeO2 coating and the catalyst were then fabricated by convenient impregnation method. The samples were characterized by XRD、SEM、EDX、XPS and CO adsorption. The catalytic activity were tested through catalytic exchange reaction between hydrogen and saturated water vapor to investigate the effect of micro structured CeO2 on the catalyst properties. It turned out that the nano-CeO2 coating could build favorable hydrophobic environment for the catalysts and had almost no influence on the pore structure properties of carriers. Although the hydrophobic coating would lead to the decrease of Pt particle dispersion and metallic Pt content, it could make the Pt particles mostly deposit on the surface layer of the catalysts, which would make more Pt particle participate in the reaction at the same time. The catalytic activity of the novel Pt/inorganic catalyst could reach to 80% of the mature Pt/organic catalyst. After being flushed by water for 12 weeks, the catalytic activity of Pt/inorganic catalyst decreased less than 5%. The novel hydrophobic catalyst with good activity and stability was practical and had great application prospects.

  3. Isotope exchange between natural and anthropogenic Pb in the coastal waters of Singapore: exchange experiment, Kd model, and implications for the interpretation of coastal 210Pb data

    Science.gov (United States)

    Boyle, E. A.; Chen, M.; Zurbrick, C.; Carrasco, G. G.

    2015-12-01

    Observations from annually-banded corals and seawater samples show that marine lead (Pb) in the coastal waters of Singapore has an isotopic composition that does not match that of the anthropogenic aerosols in this region, unlike what is seen in most parts of the open ocean. The 206Pb/207Pb composition of Singaporean marine Pb is 1.18-1.20 whereas the local aerosols are 1.14-1.16. In order to explore this discrepancy further, we collected a large volume water from the Johor River estuary (flowing from Malaysia to the northern border of Singapore), added a distinct isotope spike (NBS981, 206Pb/207Pb =1.093) to an unfiltered sample, and followed the dissolved isotope composition of the mixture during the following two months. The initial dissolved Pb concentration was 18.3 pmol/kg with 206Pb/207Pb of 1.200. "Total dissolvable" Pb released after acidification of the in the unfiltered sample was 373 pmol/kg with 206Pb/207Pb of 1.199, indicating that there is a large particulate Pb reservoir with an isotopic composition comparable to regional crustal natural Pb. The isotope spike should have brought the dissolved 206Pb/207Pb to 1.162, but less than a day after isotope spiking, the dissolved Pb had risen to 1.181 and continued a slow increase to 1.197 over the next two months. This experiment demonstrates that Johor estuary particulate matter contains a large reservoir of exchangeable Pb that will modify the isotopic composition of deposited aeolian aerosol anthropogenic Pb. We have modeled the evolution of Pb and Pb isotopes in this experiment with a single Kd -type model that assumes that there are two or three different Pb reservoirs with different exchange time constants. This observation has implications for isotope equilibrium between high Pb/210Pb continental particles and low Pb/210Pb ocean waters - what is merely isotope equilibration may appear to be 210Pb scavenging.

  4. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    Science.gov (United States)

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  5. Probing isotope effects in chemical reactions using single ions

    CERN Document Server

    Staanum, Peter F; Wester, Roland; Drewsen, Michael

    2008-01-01

    Isotope effects in reactions between Mg+ in the 3p 2P3/2 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only ~250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From additional 65 reactions with H2 and D2 we find that the overall decay probability of the intermediate MgH2+, MgHD+ or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well-suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  6. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    Science.gov (United States)

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  7. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu.

    Science.gov (United States)

    Humston, R; Doss, S S; Wass, C; Hollenbeck, C; Thorrold, S R; Smith, S; Bataille, C P

    2017-02-01

    Radiogenic strontium isotope ratios ((87) Sr:(86) Sr) in otoliths were compared with isotope ratios predicted from models and observed in water sampling to reconstruct the movement histories of smallmouth bass Micropterus dolomieu between main-river and adjacent tributary habitats. A mechanistic model incorporating isotope geochemistry, weathering processes and basin accumulation reasonably predicted observed river (87) Sr:(86) Sr across the study area and provided the foundations for experimental design and inferring fish provenance. Exchange between rivers occurred frequently, with nearly half (48%) of the 209 individuals displaying changes in otolith (87) Sr:(86) Sr reflecting movement between isotopically distinct rivers. The majority of between-river movements occurred in the first year and often within the first few months of life. Although more individuals were observed moving from the main river into tributaries, this pattern did not necessarily reflect asymmetry in exchange. Several individuals made multiple movements between rivers over their lifetimes; no patterns were found, however, that suggest seasonal or migratory movement. The main-river sport fishery is strongly supported by recruitment from tributary spawning, as 26% of stock size individuals in the main river were spawned in tributaries. The prevailing pattern of early juvenile dispersal documented in this study has not been observed previously for this species and suggests that the process of establishing seasonal home-range areas occurs up to 2 years earlier than originally hypothesized. Extensive exchange between rivers would have substantial implications for management of M. dolomieu populations in river-tributary networks.

  8. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  9. Topology in isotopic multispace and origin of mantle chemical heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Allegre, C.J.; Hamelin, B.; Provost, A.; Dupre, B.

    1987-02-01

    In this paper we present a simple technique for multidimensional treatment of isotopic data, which allows a global and rigorous correlation between the various radiogenic tracers. This technique is based on the determination of eigenvectors of the data matrix, allowing a geometric description of the inertia ellipsoid corresponding to the cluster of experimental data points. The relationships between the various sets of samples can be analyzed using the projections on the main elongation planes. When processing the Pb-Sr-Nd data for the oceanic mantle (OIB+MORB) with this technique we find that at least four different end-members are needed to define the 'mantle array' which thus cannot be a plane surface. Samples from island arcs (IAB) show the contribution of a component clearly out of the oceanic domain and very similar to terrigenous sediments. Continental tholeiites (CFB) also show some sort of contamination (but distinct from that of IAB) by the continental crust. They also show a domain overlapping with that of the oceanic islands corresponding to the compositions of the 'Dupal anomaly'. Multispace analysis also permits a rigorous comparison of relationships between the various isotopic tracers. In particular, we demonstrate that a U-Pb fractionation independent from the correlated Sr-Nd, Th-U and Th-Sr ones does exist. Consequently, a three-dimensional analysis performed only with lead isotopes yields by itself the main information that can be inferred from the five Pb-Sr-Nd dimensions. Helium also yields independent information decoupled with respect to the other tracers, adding one fifth end-member (Loihi, Hawaii islands) to the OIB+MORB array.

  10. Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange

    Science.gov (United States)

    Chanton, J. P.; Whiting, G. J.; Blair, N. E.; Lindau, C. W.; Bollich, P. K.

    1997-03-01

    The importance of vegetation in supporting methane production and emission within flooded rice fields was demonstrated. Methane emission from Lousiana, United States, rice fields was correlated to the quantity of live aboveground biomass and the rate of CO2 exchange. The quantity of belowground methane was greater in vegetated plots relative to plots maintained free of vegetation. The diurnal maximum in the rate of methane emission was coincident with the release of the most 13C-enriched methane and a maximum in transpiration rate rather than stomatal conductance, suggesting that diurnal variations in methane emission rate are linked with transpiration, in addition to temperature. Results of isotopic measurements of belowground, lacunal, and emitted methane indicate that methane is transported from rice predominantly via molecular diffusion with a small component due to transpiration-induced bulk flow. Samples of methane collected from air-filled internal spaces within the rice culm were 13C-enriched (-53.1 ± 0.3‰) relative to emitted (-64.5 ± 1.0‰) and belowground methane (-59 ± 1.0‰) . Reproduction of these observed 13C values with a numerical model required isotopic fractionation effects associated with transport of methane into and from rice plants. The model could not conclusively confirm rhizospheric methane oxidation. However, 13C-enriched methane was observed in the floodwater overlying the flooded soil (-44.4 ± 2.2‰), consistent with the oxidation of substantial quantities of methane as it diffused across the soil-water interface.

  11. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Science.gov (United States)

    Williams, A. E.; Elders, W. A.

    1981-12-01

    Paleotemperatures different from the present thermal regime were studied by examining coexisting mineral systems which exchanged their oxygen with the geothermal brines at different rates. Oxygen isotopic compositions were measured in drill cuttings and core and core samples from more than 40 wells. Oxygen isotopic profiles of pore filling calcites in sandstones are a measure of the recent equilibrium temperature distribution. A three dimensional map was developed, showing the equilibrium temperatures in the geothermal field. A mass balance calculation was performed using measured 18O enrichment of the geothermal brine. This calculation implies an overall water; rock volume ratio of approximately 3:1 during the history of the Cerro Prieto system.

  12. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Science.gov (United States)

    2010-01-01

    ... purification and electrolytic cells for reducing the uranium U+6 or U+4 to U+3. These systems produce uranium... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with...

  13. Assessing chromate availability in tropical ultramafic soils using isotopic exchange kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, Jeremie; Quantin, Cecile [Univ. Paris Sud CNRS, Orsay (France); Echevarria, Guillaume [ENSAIA-INPL-INRA, Vandoeuvre-les-Nancy (France); Becquer, Thierry [IRD - Univ. Paris VI and XII, Montpellier (France)

    2009-10-15

    Background, aim, and scope The presence of labile chromate in the soils is an environmental problem because of its high toxicity. The isotopic exchange kinetics (IEK) methods have been shown to be a useful tool to measure the phytoavailability of major (P, K) and trace elements (Cd, Zn, Ni, Pb) in soils. This study focused on the potential of applying IEK for chromate to characterize its availability in two tropical ultramafic Ferralsols. Materials and methods Two Ferralsols (NIQ II and NIQ III) of the ultramafic complex of Niquelandia (Goias, Brazil), known to have a high content of extractable chromate, were investigated. We adapted IEK for chromate in order to distinguish different pools of available chromate according to their rate of exchange kinetic. Results The extractable Cr(III) ranged from 9 to 132 mg kg{sup -1}, whereas extractable Cr(VI) ranged from 64 to 1,014 mg kg{sup -1}. The intensity factor, i.e., concentration of soluble Cr, ranged from 78 to 231 {mu}g L{sup -1} in profile NIQ II and from 6 to 141 {mu}g L{sup -1} in profile NIQ III. The highest concentrations were found in both topsoils and in the NIQ II-5 horizon. Most of the Cr(VI) was labile in short (E{sub 0-1} {sub min}) or medium-term (E{sub 1} {sub min-24} {sub h}) in both soils. The E{sub 0-1} {sub min} and E{sub 1} {sub min-24} {sub h} represented 39 to 83% of labile Cr (VI) in NIQ II and 69 to 80% in NIQ III. A high quantity of Cr(VI) was thus extremely labile and highly available, particularly in NIQ II. Moreover, both soils had a high buffering capacity of soluble Cr(VI) by labile pools. (orig.)

  14. The separation of stable isotopes of carbon

    Science.gov (United States)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  15. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  16. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  17. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static” ...

  18. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  19. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    Science.gov (United States)

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  20. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Wielandt, Daniel Kim Peel; Schiller, Martin;

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of ...

  1. Staff exchange with Chemical Waste Management. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Barak, D.W.

    1993-12-01

    Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry, but a proposal for transfer and application of PST to Wheelabrator was made.

  2. Stable isotope and chemical compositions of European and Australasian ciders as a guide to authenticity.

    Science.gov (United States)

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-01-28

    This paper presents a data set derived from the analysis of bottled and canned ciders that may be used for comparison with suspected counterfeit or substitute products. Isotopic analysis of the solid residues from ciders (predominantly sugar) provided a means to determine the addition of C4 plant sugars. The added sugars were found to comprise cane sugar, high-fructose corn syrup, glucose, or combinations. The majority of ciders from Australia and New Zealand were found to contain significant amounts of added sugar, which provided a limited means to distinguish these ciders from European ciders. The hydrogen and oxygen isotopic compositions of the whole ciders (predominantly water) were shown to be controlled by two factors, the water available to the parent plant and evaporation. Analysis of data derived from both isotopic and chemical analysis of ciders provided a means to discriminate between regions and countries of manufacture.

  3. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  4. Calculation of two-dimensional infrared spectra of ultrafast chemical exchange with numerical Langevin simulations

    NARCIS (Netherlands)

    Jansen, Thomas la Cour; Knoester, Jasper

    2007-01-01

    We combine numerical Langevin simulations with numerical integration of the Schrodinger equation to calculate two-dimensional infrared spectra of ultrafast chemical exchange. This provides a tool to model and interpret such spectra of molecules undergoing chemical processes, such as isomerization an

  5. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    CERN Document Server

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  6. The evolution of 13C and 18O isotope composition of DIC in a calcite depositing film of water with isotope exchange between the DIC and a CO2 containing atmosphere, and simultaneous evaporation of the water. Implication to climate proxies from stalagmites: A theoretical model

    Science.gov (United States)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-12-01

    The most widely applied climate proxies in speleothems are the isotope compositions of carbon and oxygen expressed by δ13C and δ18O values. However, mechanisms, which are not related to climate changes, overlay the climate signal. One is the temporal increase of both, δ13C and δ18O values by kinetic processes during precipitation of calcite. Isotope exchange between DIC in the water and the CO2 in the surrounding cave atmosphere can also change isotope composition. Here we present a theoretical model of the temporal isotope evolution of DIC in a thin water layer during precipitation of calcite and simultaneous isotope exchange with the cave atmosphere, and simultaneous evaporation of water. The exchange of oxygen isotopes in the DIC with those in the water is also considered. For drip times for Tdrip calcite, the second stems from isotope exchange with the CO2 of the cave atmosphere, and the third results from isotope exchange between oxygen in the DIC and the oxygen in the water. λ, ε are kinetic parameters, τ is the time scale of precipitation, (δeqatm -δ0) and (δeqwater -δ0) are the differences between the corresponding initial δ-value δ0 and the value δeqatm,water if DIC were in isotope equilibrium with the atmosphere or in the case of oxygen with the water, respectively. τinatm and τwater are the time scales of approach to isotope equilibrium by the exchange reactions. Ceq is the concentration of DIC in chemical equilibrium with the CO2 in the cave atmosphere and C0 is the initial concentration, when the water drips to the stalagmite. Tev is the time needed for complete evaporation of the water layer. εW is the fractionation between water vapor and fluid water. For times Tdrip > 0.2τ we find a further increase of ΔDIC(Tdrip) until a maximum is passed and a final value is reached. If (δeqatm -δ0) and (δeqwater -δ0) are both zero, exchange has no influence on the isotope composition for drip times Tdrip < 0.2τB. For carbon it is likely

  7. Where Did the Ureilite Parent Body Accrete? Constraints from Chemical and Isotopic Compositions

    Science.gov (United States)

    Goodrich, Cyrena; O'Brien, David P.

    2014-11-01

    Almahata Sitta and other polymict ureilites contain a remarkable diversity of materials, including EH, EL, OC, R- and CB chondrites, in addition to the dominant ureilitic material [1]. These materials represent at least 6 different parent asteroids and a wide range of chemical and isotopic environments in the early Solar System. To understand the origin of this diversity it is critical to know where (heliocentric distance) the ureilite parent body (UPB) accreted. The chemical and isotopic compositions of ureilite precursors (inferred from the compositions of ureilites) can provide clues. Lithophile element ratios such as Si/Mg and Mn/Mg [2,3], and deficits in neutron-rich Cr, Ti and Ni isotopes [3], indicate that ureilite precursors were similar to ordinary or enstatite chondrites (OC or EC), not carbonaceous chondrites (CC). In contrast, high carbon contents, carbon isotopes and oxygen isotopes suggest a genetic link to CC. This poses a conundrum considering the variation of asteroid types, which suggests that EC and OC dominate the inner asteroid belt and CC the outer belt. However, the CC-like oxygen isotopes of ureilites strongly suggest the effects of parent-body aqueous alteration [4,5], which clearly implies that the UPB accreted beyond the ice line. Lithophile element properties of ureilites compared with chondrites may not be a reliable indicator of location of accretion, because lithophile elements in chondrites are sited mainly in chondrules and the UPB accreted before most chondrules formed [6]. Ureilite Cr, Ti and Ni isotopes may indicate late introduction of the neutron rich isotopes of these elements to the CC-formation region [7]. We conclude that the UPB accreted in the outer belt, like CC. The UPB or one of its offspring must have migrated to the inner belt to acquire OC, EC and R-chondrite materials.[1] Horstmann M. & Bischoff A. [2014] Chemie der Erde 74, 149.[2] Goodrich C. [1999] MAPS 34, 109.[3] Warren P. [2011] GCA 46, 53.[4] Young E. [1999

  8. Stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants

    Institute of Scientific and Technical Information of China (English)

    Zhai Hong-Sheng; Yin Shu-Hui

    2012-01-01

    The quasi-classical trajectory (QCT) method is used to calculate the stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections (PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j' is not only aligned,but also oriented along the direction perpendicular to the scattering plane.The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.

  9. Preliminary Assessment of Mercury Atmosphere-Surface Exchange Parameterizations for Incorporation into Chemical Transport Models

    Science.gov (United States)

    Khan, T.; Agnan, Y.; Obrist, D.; Selin, N. E.; Urban, N. R.; Wu, S.; Perlinger, J. A.

    2015-12-01

    Inadequate representation of process-based mechanisms of exchange behavior of elemental mercury (Hg0) and decoupled treatment of deposition and emission are two major limitations of parameterizations of atmosphere-surface exchange flux commonly incorporated into chemical transport models (CTMs). Of nineteen CTMs for Hg0 exchange we reviewed (ten global, nine regional), eight global and seven regional models have decoupled treatment of Hg0 deposition and emission, two global models include no parameterization to account for emission, and the remaining two regional models include coupled deposition and emission parameterizations (i.e., net atmosphere-surface exchange). The performance of atmosphere-surface exchange parameterizations in CTMs depends on parameterization uncertainty (in terms of both accuracy and precision) and feasibility of implementation. We provide a comparison of the performance of three available parameterizations of net atmosphere-surface exchange. To evaluate parameterization accuracy, we compare predicted exchange fluxes to field measurements conducted over a variety of surfaces compiled in a recently developed global database of terrestrial Hg0 surface-atmosphere exchange flux measurements. To assess precision, we estimate the sensitivity of predicted fluxes to the imprecision in parameter input values, and compare this sensitivity to that derived from analysis of the global Hg0 flux database. Feasibility of implementation is evaluated according to the availability of input parameters, computational requirements, and the adequacy of uncertainty representation. Based on this assessment, we provide suggestions for improved treatment of Hg0 net exchange processes in CTMs.

  10. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Glugla, M.; Shu, W.; Willms, S. [ITER Organization, Saint-Paul-lez-Durance (France)

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  11. Oxygen-isotope exchange and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Fehlhaber, K.; Bird, D.K. (Stanford Univ., CA (United States))

    1991-08-01

    Multiple intrusions of gabbros, mafic dikes, and syenites in the Kap Edvard Holm Complex gave rise to prolonged circulation of meteoric hydrothermal solutions and extreme isotope exchange and mineral alteration in the 3,600-m-thick Lower Layered Series gabbros. In the Lower Layered Series, {delta}{sup 18}O of plagioclase varies from +0.3{per thousand} to {minus}5.8{per thousand}, and it decreases with an increase in the volume of secondary talc, chlorite, and actinolite. In the same gabbros, pyroxenes have a more restricted range in {delta}{sup 18}O, from 5.0{per thousand} to 3.8{per thousand}, and values of {delta}{sup 18}O{sub pyroxene} are independent of the abundance of secondary minerals, which ranges from 14% to 30%. These relations indicate that large amounts of water continued to flow through the rocks at temperatures of < 500-600C, altering the gabbros to assemblages of talc + chlorite + actinolite {plus minus}epidote {plus minus}albite and causing significant oxygen-isotope exchange in plagioclase, but not in pyroxene. The extensive low-temperature secondary mineralization and {sup 18}O depletion of plagioclase in the Lower Layered Series are associated with the later emplacement of dikes and gabbros and syenites, which created new fracture systems and provided heat sources for hydrothermal fluid circulation. This produced subsolidus mineral alteration and isotope exchange in the Lower Layered Series that are distinct from those in the Skaergaard and Cuillin gabbros of the North Atlantic Tertiary province, but are similar to those observed in some oceanic gabbros.

  12. Can Galactic chemical evolution explain the oxygen isotopic variations in the Solar System?

    CERN Document Server

    Lugaro, Maria; Ireland, Trevor R; Maddison, Sarah T

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16O-rich CO and 16O-poor H2O, where the H2O subsequently combined with interstellar dust to form relatively 16O-poor solids within the Solar Nebula. Another model for creating the different reservoirs of 16O-rich gas and 16O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the Solar System dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the Solar System. The GCE scenario is in contradiction with observations of the 18O/17O ratios in nearby molecular clouds and young stellar objects. ...

  13. Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time

    Science.gov (United States)

    Lippold, Holger; Eidner, Sascha; Kumke, Michael U.; Lippmann-Pipke, Johanna

    2017-01-01

    Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of 160Tb as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable 159Tb or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of 160Tb was introduced prior to saturation with 159Tb, the expected partial desorption of 160Tb occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive

  14. Assessing the authenticity of commercial deep-sea drinking water by chemical and isotopic approaches.

    Science.gov (United States)

    Peng, Tsung-Ren; Liang, Wen-Jui; Liu, Tsang-Sen; Lin, Yu-Wen; Zhan, Wen-Jun

    2015-01-01

    This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0 ‰ for both δ(2)H and δ(18)O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ(2)H and δ(18)O values of around -51 ‰ and -8 ‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.

  15. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  16. Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Caliro, S. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy)]. E-mail: caliro@ov.ingv.it; Chiodini, G. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Avino, R. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Cardellini, C. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy); Frondini, F. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy)

    2005-06-15

    A geochemical model is proposed for water evolution at Somma-Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological-volcanological setting of the volcano forces the waters infiltrating at Somma-Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO{sub 2} groundwaters. Reaction path modelling applied to this conceptual model, involving gas-water-rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO{sub 2} transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO{sub 2} emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO{sub 2} diffusely degassed from the crater area.

  17. Protein Structure-Function Correlation in Living Human Red Blood Cells Probed by Isotope Exchange-based Mass Spectrometry.

    Science.gov (United States)

    Narayanan, Sreekala; Mitra, Gopa; Muralidharan, Monita; Mathew, Boby; Mandal, Amit K

    2015-12-01

    To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo. However, due to cellular complexity, in vivo and in vitro environments are radically different. Here, we show a novel way to monitor the structural transition of human hemoglobin upon oxygen binding in living red blood cells (RBCs), using hydrogen/deuterium exchange-based mass spectrometry (H/DX-MS). Exploiting permeability of D2O across cell membrane, the isotope exchange of polypeptide backbone amide hydrogens of hemoglobin was carried out inside RBCs and monitored using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To explore the conformational transition associated with oxygenation of hemoglobin in vivo, the isotope exchange kinetics was simplified using the method of initial rates. RBC might be considered as an in vivo system of pure hemoglobin. Thus, as a proof-of-concept, the observed results were correlated with structural transition of hemoglobin associated with its function established in vitro. This is the first report on structural changes of a protein upon ligand binding in its endogenous environment. The proposed method might be applicable to proteins in their native state, irrespective of location, concentration, and size. The present in-cell approach opens a new avenue to unravel a plethora of biological processes like ligand binding, folding, and post-translational modification of proteins in living cells.

  18. Measuring the Effect of Fuel Chemical Structure on Particulate and Gaseous Emissions using Isotope Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Mueller, C J; Martin, G C; Upatnicks, A; Dibble, R W; Cheng, S

    2003-09-11

    Using accelerator mass spectrometry (AMS), a technique initially developed for radiocarbon dating and recently applied to internal combustion engines, carbon atoms within specific fuel molecules can be labeled and followed in particulate or gaseous emissions. In addition to examining the effect of fuel chemical structure on emissions, the specific source of carbon for PM can be identified if an isotope label exists in the appropriate fuel source. Existing work has focused on diesel engines, but the samples (soot collected on quartz filters or combustion gases captured in bombs or bags) are readily collected from large industrial combustors as well.

  19. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    Energy Technology Data Exchange (ETDEWEB)

    Lugaro, Maria [Monash Centre for Astrophysics (MoCA), Building 28, Monash University, Clayton, VIC 3800 (Australia); Liffman, Kurt [CSIRO/MSE, P.O. Box 56, Highett, VIC 3190 (Australia); Ireland, Trevor R. [Planetary Science Institute and Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Maddison, Sarah T., E-mail: maria.lugaro@monash.edu [Centre for Astrophysics and Supercomputing, Swinburne University, H39, P.O. Box 218, Hawthorn, VIC 3122 (Australia)

    2012-11-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced {sup 16}O-rich CO and {sup 16}O-poor H{sub 2}O, where the H{sub 2}O subsequently combined with interstellar dust to form relatively {sup 16}O-poor solids within the solar nebula. Another model for creating the different reservoirs of {sup 16}O-rich gas and {sup 16}O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the {sup 18}O/{sup 17}O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  20. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    Science.gov (United States)

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  1. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  2. Studies on Separation Process and Production Technology of Boron Isotope

    Directory of Open Access Journals (Sweden)

    LI Jian-ping

    2014-02-01

    Full Text Available The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material distillation purification is solved, boron isotopes feasibility with PTFE packing enrichment is verified in an exchange column. Also, effect of operating pressure, flow and other parameters on boron -10 isotopic enrichment experiments and the effect and properties of the PTFE packing have been investigated in the existing system. All the results are very useful for the industrialization of the boron isotopes separation system.

  3. Li isotopes reflect chemical weathering intensity in streams and ground waters draining basalts

    Science.gov (United States)

    Liu, X.; Rudnick, R. L.; McDonough, W. F.

    2013-12-01

    Chemical weathering has an important influence on continental crust evolution, as weathering of basalt preferentially removes soluble elements, such as Mg, and can shift the crust composition towards more andesitic compositions, thus helping to solve the crustal composition paradox [1]. The isotopic compositions of soluble elements (e.g., Li and Mg) provide a monitor of chemical weathering of the continents. Along with large isotopic fractionations [2], these elements are preferentially transferred to rivers during weathering, and are useful tracers of weathering processes. The chemical and isotopic compositions of streams and ground waters that reside entirely within the Columbia River Basalts (CRBs) reflect the processes associated with basalt weathering. In addition, stream samples from both west and east of the Cascades were collected during summer and late winter to evaluate seasonal changes in Li isotopic compositions. The Li concentrations ([Li]) vary from 0.2 to 4.7 μg/l in dissolved loads of streams for both sampling seasons; in ground waters, [Li] varies from 2 to 21 μg/l. δ7Li varies by up to 20‰ in streams and ground waters, demonstrating that lithology is not the only influence on water chemistry in the catchments. Calculated mineral saturation suggests that most streams and some ground waters were saturated with respect to most secondary minerals, implying that Li isotopic fractionation was influenced by the development of secondary minerals, such as kaolinite and hematite. The δ7Li and Li/Na in dissolved loads of streams are not sensitive to distance from the coast or climate, but likely reflect the local weathering intensity. The correlated variation in δ7Li and Li/Na ratios seem to have global significance, at least in streams that only drain basalts [3, 4, 5], suggesting that the streams within the CRBs cover a wide range of weathering intensity, with low δ7Li and high Li/Na corresponding to higher weathering intensity. In addition

  4. Vibrational spectra of chemical and isotopic variants of oxyluciferin, the light emitter of firefly bioluminescence.

    Science.gov (United States)

    Maltsev, Oleg V; Yue, Ling; Rebarz, Mateusz; Hintermann, Lukas; Sliwa, Michel; Ruckebusch, Cyril; Pejov, Ljupčo; Liu, Ya-Jun; Naumov, Panče

    2014-08-18

    The chemical complexity of oxyluciferin (OxyLH2), the light-emitting molecule in the bioluminescence of fireflies, originates from the possibility of keto/enol tautomerism and single or double deprotonation. Herein, we present detailed infrared spectroscopic analysis of OxyLH2 and several of its chemical isomers and isotopomers. To facilitate the future characterization of its biogenic forms, we provide accurate assignments of the solid-state and solution FTIR spectra of OxyLH2 based on comparison to six isotopically labeled variants ([2-(13)C]-OxyLH2, [3-(15)N]-OxyLH2, [4-(13)C]-OxyLH2, [5-(13)C]-OxyLH2, [2'-(13)C]-OxyLH2, [3'-(15)N]-OxyLH2), five closely related structural analogues, and theoretically computed spectra. The computed DFT harmonic vibrational force fields (B3LYP and M06 functionals with basis sets of varying flexibility up to 6-311++G**) reproduce well the observed shifts in the IR spectra of both isotopically labeled and structurally related analogues.

  5. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.

  6. EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, J.C. (ed.)

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  7. Pyrolysis of oil at high temperatures: Gas potentials, chemical and carbon isotopic signatures

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui; XIAO XianMing; YANG LiGuo; XIAO ZhongYao; GUO LiGuo; SHEN JiaGui; LU YuHong

    2009-01-01

    Although the gas cracked from oil has been believed to be one of the important sources in highly ma-tured marine basins, there are still some debates on its resource potentials and chemical and isotopic compositions. In this study a Cambrian-sourced marine oil sample from the Silurian reservoir of well TZ62 in the central Tarim basin was pyrolyzed using sealed gold tubes with two different pyrolysis schemes: continuous pyrolysis in a closed system and stepwise semi-open pyrolysis. The results show that the maximum weight yield of C1-5 gases occurs at EasyRo=2.3% and the residual gas poten-tial after this maturity is only 43.4 mL/g, about 12% of the yield of 361 mL/g at EasyRo=2.3%. Combined with the results of kinetic modeling, the main stage of gas generation from oil cracking is believed within the EasyRo=1.6%-2.3%. The increase in the volume yield of C1-5 gases at EasyRo2.3% in a closed system is mainly related to the re-cracking of previously formed C2-5 wet gases, not the direct cracking of oil. The stepwise pyrolysis experiments show that the gas from the cracking of residual oil at EasyRo2.3% is characterized by very high dryness index (higher than 92%) and heavy methane carbon isotopes ranging from -28.7‰ to -26.7‰, which is quite different from the gases from the con-tinuous pyrolysis in a closed system. The kinetic modeling of methane carbon isotope fractionation shows that the carbon isotopes of methane within the main stage of gas generation (EasyRo<2.3%) are far lighter than the carbon isotopes of the precursor oils under a geological heating rate of 2℃/Ma. The above observations and results provide some new clues to the accurate recognition and objective re-source evaluation of oil cracking gas in highly mature marine basins.

  8. Oxygen isotope exchange kinetics between coexistent minerals and water in the Ertaibei granite pluton, northern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘伟; 李志安; 赵志忠

    1996-01-01

    Coexistent minerals quartz, feldspar and biotite vary widely in δ18O value and display remarkable 18O/16O disequilibrium relations in the Ertaibei granite pluton, northern Xinjiang. The 18O/16O exchange reaction definitely occurred between granite and water. Initial δ18O values of the granite and exotic water are evaluated by the mass balance consideration. The results show that the 18O/16O exchange reaction is not necessarily accompanied by what geologists describe as petrological and mineralogiesl alteration effects, indicating that the exchange reaction occurs at a comparatively high temperature during subsolidus cooling of magmas. Exchange mechanism is mainly controlled by diffusion. It is demonstrated through quantitative modelling that the hydrothermal system associated with the Ertaibei pluton lived for 0.8-3 Ma, with a fluid flow rate of 3 × 10-14 mol · s-1 and water/rock (W/R) ratio of 0.79 - 3.08. Flow path and initial heterogeneity of the exotic metamorphic fluid are modelled with the δ1

  9. Chemical and Isotope Compositions of Neogene Hippopotamidae Teeth From Lake Albert (Uganda): Implications for Environmental Change

    Science.gov (United States)

    Brugmann, G. E.; Brachert, T. C.; Ssemmanda, I.; Mertz, D. F.

    2008-12-01

    -Achaean terrains of the rift flanks have high 87Sr/86Sr (>0.718). Thus, the increasing 87Sr/86Sr from 5.2 to 2.3 Ma, suggests that water supply from volcanic terrains ceases and the local, Achaean run-off dominated the lake water chemistry. Consistent with the concurrent increase of ?18O, this suggests that increasing aridity and evaporation of lake water on a regional scale, interrupts the axial river network and local river discharge becomes dominant. The decrease of 87Sr/86Sr starting at about 2 Ma indicates new water supply from volcanic rock dominated terrains, which could reflect a tectonic restructuring of the rift valley or the initiation of the young Toro-Ankole igneous province. Palaeoclimate records from rift systems are governed by global climate forcing mechanisms and interacting geodynamics. Our study of the chemical and isotope record of tooth enamel from mammals permits the identification of these local and global environmental changes, in the western EARS on geological time scales. investigation.

  10. Coordination of Cd 2+ ions in the internal pore system of zeolite-X: A combined EXAFS and isotopic exchange study

    Science.gov (United States)

    Ahmed, I. A. M.; Young, S. D.; Mosselmans, J. F. W.; Crout, N. M. J.; Bailey, E. H.

    2009-03-01

    The effect of prolonged contact time (up to 130 days) on the immobilization of Cd by sorption to calcium exchanged zeolite-X (CaX), under environmentally relevant conditions, was studied using both isotopic exchange and extended X-ray absorption fine structure spectroscopy (EXAFS). Sorption and isotopic exchange measurements revealed time-dependent Cd sorption and indicated the movement of Cd 2+ ions into less accessible sites due to ageing. EXAFS suggested progressive fixation of Cd in the double six-ring ( D6R) unit of the CaX structure. Proportional allocation of the apparent Cd-Si bond distance to two 'end-members', across all contact times, indicated that the bond distance for labile Cd was 3.41 Å and for non-labile (or fixed) Cd was 3.47 Å.

  11. Combining chemical and isotopic measurements to estimate pesticide degradation rates in a fractured-rock aquifer

    Science.gov (United States)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; El-Khabbaz, Hassanya; Schreglmann, Kathrin; Höche, Martina; Elsner, Martin

    2013-04-01

    Encouraged by new regulatory requirements for pesticide registration and authorization, the transport and environmental fate of these compounds in the different environmental compartments has been studied extensively. Degradation rates vary widely depending on hydraulic and chemical characteristics, with the strongest degradation usually occuring in the topsoil. Nonetheless, significant pesticide attenuation may still take place during transport in the aquifer, since residence times are generally much longer than in the soil. Ideally, pesticide transformation in the aquifer needs to be determined under real field conditions. Mass balance calculations however are complicated by the fact that the initial pesticide mass leached from the soil is often not known precisely enough. In this study, isotopic and classical pesticide concentration measurements were combined with groundwater dating techniques to assess the degradation rate of atrazine and its metabolite desethylatrazine in a fractured sandstone. The mass balance problem was solved by introducing the desethylatrazine to atrazine ratio, a relative measure which was used to quantify the advancement of atrazine degradation with increasing transport time in the subsurface. The extent of transformation of the parent compound was finally estimated from the shift in the isotopic signal between soil application and the outlet of the groundwater system.

  12. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    Science.gov (United States)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  13. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  14. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  15. Isotopic fractionation of carbon, deuterium and nitrogen : a full chemical study

    CERN Document Server

    Roueff, E; Hickson, K M

    2015-01-01

    Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly for carbon containing molecules. Aims. We want to check the underlying hypothesis that the 13C/ 12C ratio of nitriles and isonitriles is equal to the elemental value via a chemical time dependent gas phase chemical model. Methods. We have built a chemical network containing D, 13C and 15N molecular species after a careful check of the possible fractionation reactions at work in the gas phase. Results. Model results obtained for 2 different physical conditions corresponding respectively to a moderately dense cloud in an early evolutionary stage and a dense depleted pre-stellar core tend to show that ammonia and its singly deuterated form are somewhat enriched in 15N, in agreement with observations. The 14N/ 15N ratio in N2H+ is found to be close to the elemental v...

  16. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Giggenbach, W.F.; Minissale, A.A.; Scandiffio, G.

    The chemical and isotopic compositions of low-temperature mineral waters discharged over the Colli Albani region (south of Rome, Italy) are those of highly immature waters of essentially meteoric origin formed through absorption of gases emanating from greater depth, followed by cation leaching of country rock at shallow levels. The composition of the gases discharged points to the presence, at depth, of a CO/sub 2/-producing high temperature system in its waning stage. Low H/sub 2/ and unsaturated hydrocarbon contents, as well as relative He, Ar and N/sub 2/ contents indicate long residence time for the rising gas phase of the order of 1 Ma. On the basis of these findings, temperatures higher than 120/sup 0/C appear unlikely to exist at shallow depth.

  17. SirX: a selective inversion recovery experiment on X-nuclei for the determination of the exchange rate of slow chemical exchanges between two sites.

    Science.gov (United States)

    Xie, Xiulan; Bönisch, Friedrich

    2015-10-01

    Nuclear magnetic resonance spectroscopy has proven to be powerful for the study of dynamic processes. A new pulse sequence, SirX, is designed to provide boundary conditions that simplify the McConnell equations. Both an initial rate approximation and a whole curve fitting to the time course of magnetization can be used to calculate the exchange rate. These methods were used to study the exchange kinetics of N,N-dimethylacetamide. As compared with the well-established exchange spectroscopy suitable to studies of slow exchange, SirX has the advantage of being less time consuming and capable of providing more reliable kinetic data. Furthermore, by setting the observation on X-nuclei with larger chemical shift dispersion as compared with an observation on (1)H resonance, SirX extends the upper limit of a reliable determination of exchange rates.

  18. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  19. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p exchange rate (p = 0.32). In summary, our study extends the conventional omega plot for quantitative analysis of DIACEST MRI.

  20. Chemical and strontium isotope characterization of rainwater in Beijing during the 2008 Olympic year

    Science.gov (United States)

    Xu, Zhifang; Tang, Yang; Ji, Jianpeng

    2012-04-01

    To improve the air quality during the 2008 Beijing Olympic Games, the Beijing Municipal Government enforced a series of emission control measures. This provided a valuable case study to evaluate the effectiveness of these aggressive measures on mitigating air pollution and improving the atmospheric environment. In this paper, we report the first results of the chemical and Sr isotopic compositions of the rainwater in Beijing during the 2008 Olympic year. The ionic composition of samples show that Ca2 + and NH4+ were the dominant cations, accounting for about 76-97% of the total cations, and that SO42 - and NO3- were the major anions, accounting for 61-91% of the total anions measured. Using Na as the indicator of marine origin and Al as that of terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. The calculated results indicate that the major chemical components were mainly of non-sea-salt origin. Good correlation between Ca2 + and Sr2 + (R2 = 0.85) in rainwater samples indicates the potential of Sr as a provenance tracer for Ca. Sr2 + concentrations in rainwater samples ranged from 0.01 to 2.87 μmol l- 1, with 87Sr/86Sr ratios from 0.7092 to 0.7109. All of the samples had a 87Sr/86Sr ratio higher than that of seawater. The 87Sr/86Sr isotopic and elemental ratio systems show that the data set of rainwater was mainly distributed between the seawater end-member (~ 0.70917) and the soil dust end-member (0.7111-0.7115), and the analysis indicate that the effect of anthropogenic inputs could decrease in 2008. Comparisons of the chemical composition of the rainwater in different periods show that all chemical components, except NH4+, had the lowest concentration levels during the Olympic Game period. The VWM concentrations of major ions in the rainwater decreased significantly during the Olympic period by up to 29% for SO42 -, 39% for NO3-, 38% for Ca2 +, 51% for Mg2 +, 57% for K+, and 44% for Na+, compared with

  1. An isotopic exchange method applied to the study of surface mobility in catalysis; Methode d`echange isotopique appliquee a l`etude de la mobilite de surface en catalyse

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Duprez, D. [LACCO, 86 - Poitiers (France)

    1994-12-31

    A method for isotopic exchange of oxygen and hydrogen on the surface of supported metal catalysts (Rh, Pt), is presented. This method allows to determine various properties of oxides used as supports (rate of exchange, quantity of exchanges species, surface and bulk diffusion coefficients) which can be correlated to some specific properties of the oxides (dehydroxylation, acidity and basicity). 5 figs., 9 refs.

  2. Ceramic Heat Exchangers and Chemical Reactors with Micro-Scale Features for In-Situ Resource Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop compact and lightweight ceramic heat exchangers and chemical reactors suitable for high temperature processes. These devices will have...

  3. Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws) ) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Sun, Phillip Zhe

    2012-04-01

    Chemical exchange saturation transfer MRI is an emerging imaging technique capable of detecting dilute proteins/peptides and microenvironmental properties, with promising in vivo applications. However, chemical exchange saturation transfer MRI contrast is complex, varying not only with the labile proton concentration and exchange rate, but also with experimental conditions such as field strength and radiofrequency (RF) irradiation scheme. Furthermore, the optimal RF irradiation power depends on the exchange rate, which must be estimated in order to optimize the chemical exchange saturation transfer MRI experiments. Although methods including numerical fitting with modified Bloch-McConnell equations, quantification of exchange rate with RF saturation time and power (QUEST and QUESP), have been proposed to address this relationship, they require multiple-parameter non-linear fitting and accurate relaxation measurement. Our work extended the QUEST algorithm with ratiometric analysis (QUESTRA) that normalizes the magnetization transfer ratio at labile and reference frequencies, which effectively eliminates the confounding relaxation and RF spillover effects. Specifically, the QUESTRA contrast approaches its steady state mono-exponentially at a rate determined by the reverse exchange rate (k(ws) ), with little dependence on bulk water T(1) , T(2) , RF power and chemical shift. The proposed algorithm was confirmed numerically, and validated experimentally using a tissue-like phantom of serially titrated pH compartments.

  4. Chemically selective polymer substrate based direct isotope dilution alpha spectrometry of Pu.

    Science.gov (United States)

    Paul, Sumana; Pandey, Ashok K; Shah, R V; Aggarwal, S K

    2015-06-01

    Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate-sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM-EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3-4M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using (238)Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 86±3% below Pu(IV) loading capacity (1.08 μg in 2×1 cm(2)) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to significant extent (7%) but U(VI) sorbed with 78±3% efficiency from the solutions having 3M HNO3 concentration. However, Pu(IV) chemical recovery in the membrane remained unaffected from the solution containing 1:1000 wt. proportion of Pu(IV) to U(VI). Pu concentrations in the (U, Pu)C samples and in the irradiated fuel dissolver solutions were determined. The results thus obtained

  5. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    Science.gov (United States)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  6. Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA

    Directory of Open Access Journals (Sweden)

    I. R. van der Velde

    2014-01-01

    Full Text Available We present an enhanced version of the SiBCASA photosynthetic/biogeochemical model for a future integration with a multi-tracer data-assimilation system. We extended the model with (a biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from Global Fire Emissions Database (GFED version 3.1, (b a new set of 13C pools that cycle consistently through the biosphere, and (c, a modified isotopic discrimination scheme to estimate variations in 13C exchange as a~response to stomatal conductance. Previous studies suggest that the observed variations of atmospheric 13C/12C are driven by processes specifically in the terrestrial biosphere rather than in the oceans. Therefore, we quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. Based on an assessment of observed respiration signatures we conclude that SiBCASA does well in simulating global to regional plant discrimination. The global mean discrimination value is 15.2‰, and ranges between 4 and 20‰ depending on the regional plant phenology. The biomass burning emissions (annually and seasonally compare favorably to other published values. However, the observed short-term changes in discrimination and the respiration 13C signature are more difficult to capture. We see a too weak drought response in SiBCASA and too slow return of anomalies in respiration. We demonstrate possible ways to improve this, and discuss the implications for our current capacity to interpret atmospheric 13C observations.

  7. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    Science.gov (United States)

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  8. Isotopic separation by ion chromatography; La separation isotopique par chromatographie ionique

    Energy Technology Data Exchange (ETDEWEB)

    Albert, M.G.; Barre, Y.; Neige, R. [CEA Centre d`Etudes de la Vallee du Rhone, 26 - Pierrelatte (France). Dept. de Technologie de l`Enrichissement

    1994-12-31

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs.

  9. Chemical and Isotopic Constraints on the Origin of Cenozoic Pacific Northwest Volcanism

    Science.gov (United States)

    Carlson, R. W.; Hart, W. K.; Grove, T. L.; Donnelly-Nolan, J. M.; Barr, J. A.; Till, C. B.

    2009-12-01

    same location, however, 4He/3He shifts to low values in Snake River Plain basalts (Graham et al., JVGR, 2009), which is the only chemical and isotopic characteristic of Snake River Plain basalts that suggests input from the deep mantle.

  10. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    Science.gov (United States)

    Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan

    2016-02-01

    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7-9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5-1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.

  11. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang

    2012-01-01

    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  12. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics

    Science.gov (United States)

    Labidi, J.; Cartigny, P.; Jackson, M. G.

    2015-05-01

    To better address how subducted protoliths drive the Earth's mantle sulfur isotope heterogeneity, we report new data for sulfur (S) and copper (Cu) abundances, S speciation and multiple S isotopic compositions (32S, 33S, 34S, 36S) in 15 fresh submarine basaltic glasses from the Samoan archipelago, which defines the enriched-mantle-2 (EM2) endmember. Bulk S abundances vary between 835 and 2279 ppm. About 17 ± 11% of sulfur is oxidized (S6+) but displays no consistent trend with bulk S abundance or any other geochemical tracer. The S isotope composition of both dissolved sulfide and sulfate yield homogeneous Δ33S and Δ36S values, within error of Canyon Diablo Troilite (CDT). In contrast, δ34S values are variable, ranging between +0.11 and +2.79‰ (±0.12‰ 1σ) for reduced sulfur, whereas oxidized sulfur values vary between +4.19 and +9.71‰ (±0.80‰, 1σ). Importantly, δ34S of the reduced S pool correlates with the 87Sr/86Sr ratios of the glasses, in a manner similar to that previously reported for South-Atlantic MORB, extending the trend to δ34S values up to + 2.79 ± 0.04 ‰, the highest value reported for undegassed oceanic basalts. As for EM-1 basalts from the South Atlantic ridge, the linear δ34S-87Sr/86Sr trend requires the EM-2 endmember to be relatively S-rich, and only sediments can account for these isotopic characteristics. While many authors argue that both the EM-1 and EM-2 mantle components record subduction of various protoliths (e.g. upper or lower continental crust, lithospheric mantle versus intra-metasomatized mantle, or others), it is proposed here that they primarily reflect sediment recycling. Their distinct Pb isotope variation can be accounted for by varying the proportion of S-poor recycled oceanic crust in the source of mantle plumes.

  13. Short and long term chemical and isotopic variations of Lake Trasimeno (Italy)

    Science.gov (United States)

    Frondini, Francesco; Dragoni, Walter; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Donnini, Marco; Morgantini, Nicola

    2016-04-01

    Lake Trasimeno, located in Umbria (central Italy), is a shallow lake of a remarkable naturalistic interest and a significant resource for the economy of the region (Ludovisi and Gaino, 2010; Dragoni, 2004). The Lake Trasimeno has an average area of about 124 km2 with a maximum depth of approximately 5.5 m, has no natural outlet and the volume of water stored is strictly linked to rainfall. In order to limit water level variations in 1898 an efficient outlet was built. At present the water exits from the Lake only when the level reaches a fixed threshold above the outlet channel, so during periods with low precipitation the evaporation becomes the most relevant output from the lake. For instance, between 1989 and 2013 the outlet did not work, and the maximum depth of the lake was reduced to little more than three meters. In the framework of climate change, it is important to understand the changes that could affect Lake Trasimeno in the near future. To this aim it is necessary to individuate the long term trends of the hydrologic, chemical and physical characteristics of the Trasimeno water and distinguish them from the short term variations. At the present it is available a long record of hydrologic data allowing reliable studies on quantitative variations at Lake Trasimeno (Dragoni et al., 2015; Dragoni et al., 2012; Ludovisi and Gaino, 2010), but the definition of the chemical and isotopic trends of lake water it is still a problematic task. On the basis of new chemical and isotopic data, collected from 2006 to 2015, it is possible to observe (i) short term and/or very short (seasonal) variations in temperature, salinity and saturation state with respect to carbonate minerals and a long term trends in isotopic composition of water and total load of mobile species (Cl, Na). The short term variations readily respond to the precipitation regime and are strongly related to lake level; the long term trend is probably related to the progressive increase of near

  14. Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides

    Science.gov (United States)

    Charkin, Dmitri O.; Kayukov, Roman A.; Zagidullin, Karim A.; Siidra, Oleg I.

    2017-02-01

    A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.

  15. Effect of chemical exchange on radiation damping in aqueous solutions of the osmolyte glycine.

    Science.gov (United States)

    Rodríguez, Juan Carlos; Jennings, Patricia A; Melacini, Giuseppe

    2002-06-05

    Radiation damping is of central relevance in NMR spectroscopy especially with the advent of ultrahigh-field magnets and of supersensitive probes. Furthermore, the recent realization that the combined effect of the distant dipole field and of radiation damping causes the resurrection of undesired crushed water magnetization emphasizes the need for a thorough understanding of all the factors affecting radiation damping. While the effects of pulsed-field gradients and of active feedback have been extensively investigated, the consequences on radiation damping of chemical exchange between water and co-solutes is not as well understood. Here it is demonstrated that the rate of water radiation damping is significantly affected by free glycine (Gly), a representative of an important class of biocompatible osmolytes often used at molar concentrations as protein stabilizers. The pH and temperature dependencies of this effect were investigated and rationalized in terms of radiation damping attenuation caused by incoherent dephasing occurring in the intermediate exchange regime. For instance, at pH 6.0 and at a temperature of 313 K the Gly NH3+/water exchange has the same dramatic effect on radiation damping as a series of repeated weak PFGs, increasing the water inversion-recovery zero-crossing delay from approximately 30 ms to approximately 2.3 s. In addition, under these conditions, the Gly NH3+/water exchange suppresses the resurrection of unwanted crushed water magnetization. When used in combination with PFGs and water flip-back schemes, glycine is therefore expected to tame chaotic dynamics and improve the reproducibility of the NMR experiments affected by it.

  16. Study of multi-site chemical exchange in solution state by NMR: 1D experiments with multiply selective excitation

    Indian Academy of Sciences (India)

    Samanwita Pal

    2010-07-01

    Chemical exchange in solution state has been investigated traditionally by both 1D and 2D NMR, permitting the extraction of kinetic parameters (e.g. the spin-lattice relaxation time 1, the exchange rate constant and the activation parameters). This work demonstrates a simple 1D NMR approach employing multiply selective excitation to study multi-site exchange processes in solution, applying it to systems that exhibit three-site exchange. This approach involves simultaneous excitation of all - or a chosen subset of - the exchanging sites by using an appropriately modulated shaped radiofrequency pulse. The pulse sequence, as well as analysis is summarized. Significant features of the experiment, which relies on sign labelling of the exchanging sites, include considerably shorter experiment time compared to standard 2D exchange work, clear definition of the exchange time window and uniform pulse non-ideality effects for all the exchanging sites. Complete kinetic information is reported in the study of dynamic processes in superacid solutions of two weak bases, studied by 1H NMR. An analytical solution, leading to the determination of four rate parameters, is presented for proton exchange studies on these systems, which involve a mixture of two weak bases in arbitrary concentration ratio, and stoichiometric excess of the superacid.

  17. Chemical and isotope characteristics of a tufa-precipitating stream in Karwów (south-central Poland)

    Science.gov (United States)

    Duliński, Marek; Gradziński, Michał; Motyka, Jacek; Czop, Mariusz

    2016-04-01

    Chemical and isotope composition of a tufa-precipitating spring located in Karwów (south-central Poland) is described with the emphasis on the CO2-H2O-CaCO3 system. Carbonate solution is formed with participation of biogenic carbon dioxide and appears at the surface close to saturation state with respect to calcite. At the outflow of the spring the water is characterized by long-term stability of physical and chemical parameters. Along the course of the spring the tufa bed is formed as a result of CO2 outgassing. The carbon and oxygen isotope investigations were performed both on water solutions and the tufa calcite precipitated on CaCO3 plates exposed in water for different periods of time. In general, results of the 13C analyses and numerical modeling using NETPATH code suggest that calcite is precipitated close to carbon isotope equilibrium conditions except for the situations when the extreme outgassing of CO2 takes place. Several measured precipitate samples have shown distinctly lower δ18O values than expected for tufa formation under equilibrium conditions. This cannot be explained by kinetic effects known from karstic caves or lake studies as they lead to higher δ18O values of precipitated carbonates than at isotope equilibrium. Also, short-term fluctuations of water temperature cannot be responsible for the observed deviations in oxygen isotope composition of measured tufa samples from equilibrium values. Further work is needed to better understand the factors controlling 18O isotope composition of tufa deposits.

  18. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    CERN Document Server

    Thygesen, A O; Ludwig, H -G; Ventura, P; Yong, D; Collet, R; Christlieb, N; Melendez, J; Zaggia, S

    2016-01-01

    The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135{\\AA} in 13 giants near the tip of the RGB, using high signal-to-noise, high-resolution spectra. We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, ...

  19. Conceptual hydrogeological model of volcanic Easter Island (Chile) after chemical and isotopic surveys

    Science.gov (United States)

    Herrera, Christian; Custodio, Emilio

    2008-11-01

    Most human activities and hydrogeological information on small young volcanic islands are near the coastal area. There are almost no hydrological data from inland areas, where permanent springs and/or boreholes may be rare or nonexistent. A major concern is the excessive salinity of near-the-coast wells. Obtaining a conceptual hydrogeological model is crucial for groundwater resources development and management. Surveys of water seepages and rain for chemical and environmental isotope contents may provide information on the whole island groundwater flow conditions, in spite of remaining geological and hydrogeological uncertainties. New data from Easter Island (Isla de Pascua), in the Pacific Ocean, are considered. Whether Easter Island has a central low permeability volcanic “core” sustaining an elevated water table remains unknown. Average recharge is estimated at 300-400 mm/year, with a low salinity of 15-50 mg/L Cl. There is an apron of highly permeable volcanics that extends to the coast. The salinity of near-the-coast wells, >1,000 mg/L Cl, is marine in origin. This is the result of a thick mixing zone of island groundwater and encroached seawater, locally enhanced by upconings below pumping wells. This conceptual model explains what is observed, in the absence of inland boreholes and springs.

  20. Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups.

    Science.gov (United States)

    Park, Jihye; Feng, Dawei; Zhou, Hong-Cai

    2015-09-16

    A facile preparation of a mesoporous Cr-MOF, PCN-333(Cr) with functional group, has been demonstrated through a dual exchange strategy, involving a sequential ligand exchange and metal metathesis process. After optimization of the exchange system, the functionalized PCN-333(Cr), N3-PCN-333(Cr) shows well maintained crystallinity, porosity, as well as much improved chemical stability. Because of the exceptionally large pores (∼5.5 nm) in PCN-333(Cr), a secondary functional moiety, Zn-TEPP with a size of 18 Å × 18 Å, has been successfully clicked into the framework. In this article, we have also analyzed kinetics and thermodynamics during dual exchange process, showing our attempts to interpret the exchange event in the PCN-333. Our findings not only provide a highly stable mesoporous Cr-MOF platform for expanding MOF-based applications, but also suggest a route to functionalized Cr-MOF which may have not been achievable through conventional approaches.

  1. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    Science.gov (United States)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  2. Ultrasensitive anion detection by NMR spectroscopy: a supramolecular strategy based on modulation of chemical exchange rate.

    Science.gov (United States)

    Perruchoud, Loïse H; Hadzovic, Alen; Zhang, Xiao-An

    2015-06-08

    NMR spectroscopy is a powerful tool for monitoring molecular interactions and is widely used to characterize supramolecular systems at the atomic level. NMR is limited for sensing purposes, however, due to low sensitivity. Dynamic processes such as conformational changes or binding events can induce drastic effects on NMR spectra in response to variations in chemical exchange (CE) rate, which can lead to new strategies in the design of supramolecular sensors through the control and monitoring of CE rate. Here, we present an indirect NMR anion sensing technique in which increased CE rate, due to anion-induced conformational flexibility of a relatively rigid structure of a novel sensor, allows ultrasensitive anion detection as low as 120 nM.

  3. Kinetic bottlenecks to chemical exchange rates for deep-sea animals – Part 1: Oxygen

    Directory of Open Access Journals (Sweden)

    E. T. Peltzer

    2012-10-01

    Full Text Available Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the

  4. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    Science.gov (United States)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  5. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  6. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    Science.gov (United States)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  7. U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Kate; DePaolo, Donald J.; Christensen, John N.

    2005-12-27

    Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

  8. Tree-Ring Carbon Isotopic Constraints on Carbon-Water Exchanges between Atmosphere and Biosphere in Drought Regions in Northwestern China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised d 13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency.

  9. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.

    Science.gov (United States)

    Rivest, Jessy B; Jain, Prashant K

    2013-01-01

    Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II-VI, IV-VI, and III-V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes

  10. SIMS chemical and isotopic analysis of impact features from LDEF experiments AO187-1 and AO187-2

    Science.gov (United States)

    Stadermann, Frank J.; Amari, Sachiko; Foote, John; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1995-01-01

    Previous secondary ion mass spectrometry (SIMS) studies of extended impact features from LDEF capture cell experiment AO187-2 showed that it is possible to distinguish natural and man-made particle impacts based on the chemical composition of projectile residues. The same measurement technique has now been applied to specially prepared gold target impacts from experiment AO187-1 in order to identify the origins of projectiles that left deposits too thin to be analyzed by conventional energy-dispersive x-ray (EDX) spectroscopy. The results indicate that SIMS may be the method of choice for the analysis of impact deposits on a variety of sample surfaces. SIMS was also used to determine the isotopic compositions of impact residues from several natural projectiles. Within the precision of the measurements all analyzed residues show isotopically normal compositions.

  11. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS

    DEFF Research Database (Denmark)

    Schiller, Martin; Paton, C.; Bizzarro, Martin

    2012-01-01

    We report a novel approach for the chemical purification of Ca from silicate rocks by ion-exchange chromatography, and a highly-precise method for the isotopic analysis of Ca - including the smallest isotope Ca (0.003%) - by high-resolution multiple collector inductively coupled plasma source mass...

  12. Chemical and isotopical characterisation of atmospheric pollution from urban and rural environments of the Rhine Valley (PCBs, trace elements and Sr-, Nd- and Pb- isotope determinations)

    Science.gov (United States)

    Guéguen, F.; Stille, P.; Millet, M.; Dietze, V.; Gieré, R.

    2010-05-01

    Atmosheric samples (gas and particulate matter (PM)) have been collected in the urban environment of the cities of Strasbourg and Kehl and in the rural environment of the Vosges mountains. For sampling of gas phase pollutants and particles two different passive sampler devices have been applied (PAS and Sigma-2, respectively). The PAS has been used for gas phase Polychlorinated Biphenyls (PCBs) sampling and is based on the passive adsorption of gas phase pollutants onto XAD-2 resin. The Sigma-2 sampler is based on the sedimentation principle (Stoke's law), collects particles in the size range 2.5-100 μm and allows the calculation of ambient air concentration. The sampler is mainly used for routine air quality measurements in German health and recreation resorts and in this field study the first time for collection of samples for subsequent trace element and isotope analysis. The collection time for the Sigma-2 and PAS are four and two weeks, respectively. Major and trace elements have been analyzed by ICP-MS and the Sr, Nd and Pb isotope ratios by a sector field MC-ICP-MS (Neptune) while PCBs were ASE extracted and analysed by GC-ECD. The aerosol data are compared with those from tree barks which have previously been used successfully as biomonitors of atmospheric pollution (Lahd Geagea et al. 2008)1. The outer 1 mm thick part of the bark has been analyzed corresponding to about 2 to 8 years of accumulation. Some of the trace elements (Cr, Ni and Mo) of the aerosol samples are strongly (up to 1000 times) enriched compared to average 'upper continental crust (UCC)'. Normalization to a « natural » sample with an atmospheric baseline composition allows to identify industrial contributions: transition metals (Cr, Mn, Fe, Co, Ni, Zn, Mo, Cd), Ba and Pb appear to be important elements in steel plant and incinerator (chemical waste) emissions. Similarly enrichment in light rare earth elements (La, Pr, Nd) is observable. The enrichments increase with decreasing distance

  13. Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon

    Science.gov (United States)

    Mariner, R.H.; Young, H.W.; Evans, William C.; Nielson, Dennis L.

    1994-01-01

    Hot springs along the Owyhee River in southeastern Oregon between Three Forks and Lake Owyhee could be part of a north flowing regional system or a series of small separate geothermal systems Heat for the waters could be from a very young (Holocene) volcanic activity (basalt flows) of the Owyhee Uplands or the regional heat flow. The springs discharge warm to hot, dilute, slightly alkaline, sodium bicarbonate water. Chemically they are similar to the dilute thermal water at Bruneau Grand View and Twin Falls, Idaho. Maximum aquifer temperatures in the Owyhee Uplands, estimated from chemical geothermometry, are about 100°C. Dissolved helium concentrations, carbon 14 activity, and chemical and isotope data are examined fro systematic trends which would indicate a geothermal system of regional extent.

  14. Radiosynthesis of [{sup 18}F]fluorophenyl-L-amino acids by isotopic exchange on carbonyl-activated precursors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Melean, Johnny

    2011-02-01

    Aromatic [{sup 18}F]fluoroamino acids have earlier been developed as promising probes for diagnostics using PET. However, a wider use of these radiofluorinated compounds has been limited due to radiosynthetic constraints. The work here presents an amenable three-step radiosynthesis pathway for the preparation of 2-[{sup 18}F]fluoro-L-phenylalanine (2-[{sup 18}F]Fphe), 2-[{sup 18}F]fluoro-L-tyrosine (2-[{sup 18}F]Ftyr), 6-[{sup 18}F]fuoro-L-m-tyrosine (6-[{sup 18}F]Fmtyr) and 6-[{sup 18}F]fluoro-L-DOPA (6-[{sup 18}F]FDOPA). For this, corresponding precursors were {sup 18}F-fluorinated by nucleophilic isotopic exchange, followed by either removal of an activating formyl group with Rh(PPh{sub 3}){sub 3}Cl or its conversion by Baeyer-Villiger oxidation, respectively, and subsequent hydrolysis of protecting groups in acidic medium. Two efficient synthetic approaches were developed for the preparation of highly functionalized fluoro-benzaldehydes and -ketones which were used as labeling precursors. The compounds (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carboxylate (1a), (2S,5S)-tert-butyl 5-(5-acetyl-2-fluorobenzyl)-2-tert-butyl-3-methyl-4-oxoimidazolidine-1 -carboxylate (1c), (2S,5S)-benzyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carbo-xylate (1d), 4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thyl)b enzal-dehyde (1e) and 1-(4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thy l)phenyl)ethanone (1f), could be prepared in six steps and overall yields of 41%, 48%, 37%, 27%, and 32%, respectively. (2S,5S)-tert-Butyl 5-(4-(benzyloxy)-2-fluoro-5-formylbenzyl)-2-tert-butyl-3-methyl-4 -oxoimidazolidi ne-1-carboxylate (1b) was prepared in ten steps with an overall yield of 19% while compounds (2S,5S)-tert-butyl 5-(5-(3,5-bis(trifluoromethyl)-benzoyl)-2-fluorobenzyl)-2-tert-butyl-3 -methyl-4-oxoimidazolidine-1-carboxylate (1g) and (2S,5S

  15. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Hung-Chun [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); You, Chen-Feng, E-mail: cfy20@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); Sun, Chih-Hsien [Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan (China)

    2010-03-15

    Mud volcanoes are important pathways for CH{sub 4} emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH{sub 4} were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH{sub 4} (>90%), 'air' (i.e. N{sub 2} + O{sub 2} + Ar, 1-5%) and CO{sub 2} (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH{sub 4} concentration (CH{sub 4} > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO{sub 2} up to 85%, and much lower CH{sub 4} content (<37%). High CH{sub 4} content (>90%) with low CO{sub 2} (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C{sub 1} (methane)/C{sub 2} (ethane) + C{sub 3} (propane) and {delta}{sup 13}C{sub CH4} results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH{sub 4} concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH{sub 4} emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH{sub 4} could contribute up to 10% of total natural CH{sub 4} emissions in Taiwan.

  16. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  17. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.

    Science.gov (United States)

    Jiskra, Martin; Saile, Damian; Wiederhold, Jan G; Bourdon, Bernard; Björn, Erik; Kretzschmar, Ruben

    2014-11-18

    The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.

  18. Ageing and structural effects on the sorption characteristics of Cd2+ by clinoptilolite and Y-type zeolite studied using isotope exchange technique.

    Science.gov (United States)

    Ahmed, I A M; Young, S D; Crout, N M J

    2010-12-15

    This research investigates the long-term kinetics of Cd(2+) sorption and desorption by calcium-exchanged clinoptilolite (CaCpt) and Y-type (CaY) zeolite using isotopic exchange with (109)Cd while maintaining pH at circumneutral values. The effects of Si/Al ratio and crystal structure of these zeolitic materials on intracrystalline transport of Cd are discussed. A first-order kinetic model was developed to describe the progressive transfer of Cd(2+) to a less reactive form within the zeolite structure, following initial sorption and subsequent desorption of Cd subject to different initial contact times. The kinetic model differentiates between two forms of sorbed Cd(2+) designated 'labile' and 'non-labile' in which the labile form is in immediate equilibrium with the free Cd(2+) ion activity in solution. A model combining diffusion and first-order kinetics for cation exchange was also employed to determine Cd(2+) diffusivity and intracrystalline exchange rates in CaY and CaCpt. The efficiency of Permeable Reactive Barriers (PRBs) containing zeolitic materials in protecting water systems against lateral flow of metal-contaminated leachate was simulated for three contrasting zeolites. The slow transfer of Cd between labile and non-labile forms was particularly important in moderating high concentration pulses of Cd traversing the PRB. In addition, the reversibility of Cd fixation effectively restored the sorption capability of the zeolite through slow leakage to drainage water.

  19. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunmei; Peng, Shuai; Wang, Rui; Chen, Min [Beijing Hospital, Department of Radiology, Beijing (China); Chen, Haibo; Su, Wen [Beijing Hospital, Department of Neurology, Beijing (China); Zhao, Xuna [Peking University, Center for MRI Research and Beijing City Key Lab for Medical Physics and Engineering, Beijing (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States)

    2014-10-15

    To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. (orig.)

  20. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    Science.gov (United States)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  1. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.

    Science.gov (United States)

    Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong

    2016-08-01

    The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded.

  2. Synthesis and radioiodination of di-iodo-Evan's blue via isotopic exchange reaction in the molten state and evaluation of the kinetics

    Energy Technology Data Exchange (ETDEWEB)

    El-Azony, K.M. [Research Center Juelich (Germany). Inst. of Nuclear Chemistry]|[Hot Lab. Center, Cairo (Egypt). Radioactive Isotopes and Generators Dept.; Bier, D.; Coenen, H.H. [Research Center Juelich (Germany). Inst. of Nuclear Chemistry

    2004-07-01

    Many aryl halides were synthesized from aryl amines such as iodo-trypan, iodo-methylene blue and iodo-toluidine. Methylene blue and toludine blue are phenothiazinium dyes and were used to localize parathyroid glands visually during surgery. Radioiodination of these compounds by using iodine-123 analogues for scintgraphic localization of parathyroids was reported. Radiolabelled dyes administered may also localize in tumor tissues. Evan's blue dye was used to study altered sarcolemmal permeability in dystrophic muscle fibers, and in animals to study muscular dystrophy. In this work Diiodo-Evan's blue was synthesized via Sandmeyer reaction and characterized by mass spectrum analysis. A procedure for labelling DIEB with Na{sup 131}I via isotopic exchange in molten medium was developed. The labelling conditions studied for the isotopic exchange of {sup 131}I-for-I in DIEB included the effect of temperature and solvents (melt of acetamide, benzoic and pivalic acid). Kinetic studies were performed to obtain [{sup 131}I] DIEB with more reliable reaction conditions. Quality control for the final product ([{sup 131}I] DIEB) was performed by HPLC. (orig.)

  3. Effective elimination of organic matter interference in boron isotopic analysis by thermal ionization mass spectrometry of coral/foraminifera: micro-sublimation technology combined with ion exchange.

    Science.gov (United States)

    He, Maoyong; Xiao, Yingkai; Ma, Yunqi; Jin, Zhangdong; Xiao, Jun

    2011-03-30

    In order to better estimate the effectiveness of micro-sublimation technology on the elimination of organic matter interference during boron isotopic analysis, a series of improved experiments was carried out using simple apparatus. Recovery rates after micro-sublimation were measured for boric acid solutions with different B contents or different B/organic matter ratios. The improved micro-sublimation procedure combined with ion-exchange technology was then used to test natural samples (coral and foraminifera) for the separation of boron. Our results show that the time taken for 100% recovery of different amounts of B differed and that the proportions of B/organic matter within the natural organic matter have little effect on the relationship between the recovery rates of B and the micro-sublimation times. The experiments further confirm that the organic matter does indeed have an effect on boron isotope analyses by positive thermal ionization mass spectrometry and that the use of micro-sublimation can effectively remove interferences from the organic matter during boron isotopic analysis.

  4. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Daniel Paech

    Full Text Available BACKGROUND AND PURPOSE: Nuclear Overhauser Enhancement (NOE mediated chemical exchange saturation transfer (CEST is a novel magnetic resonance imaging (MRI technique on the basis of saturation transfer between exchanging protons of tissue proteins and bulk water. The purpose of this study was to evaluate and compare the information provided by three dimensional NOE mediated CEST at 7 Tesla (7T and standard MRI in glioblastoma patients. PATIENTS AND METHODS: Twelve patients with newly diagnosed histologically proven glioblastoma were enrolled in this prospective ethics committee-approved study. NOE mediated CEST contrast was acquired with a modified three-dimensional gradient-echo sequence and asymmetry analysis was conducted at 3.3 ppm (B1 = 0.7 µT to calculate the magnetization transfer ratio asymmetry (MTR(asym. Contrast enhanced T1 (CE-T1 and T2-weighted images were acquired at 3T and used for data co-registration and comparison. RESULTS: Mean NOE mediated CEST signal based on MTR(asym values over all patients was significantly increased (p<0.001 in CE-T1 tumor (-1.99 ± 1.22%, tumor necrosis (-1.36 ± 1.30% and peritumoral CEST hyperintensities (PTCH within T2 edema margins (-3.56 ± 1.24% compared to contralateral normal appearing white matter (-8.38 ± 1.19%. In CE-T1 tumor (p = 0.015 and tumor necrosis (p<0.001 mean MTR(asym values were significantly higher than in PTCH. Extent of the surrounding tumor hyperintensity was smaller in eight out of 12 patients on CEST than on T2-weighted images, while four displayed at equal size. In all patients, isolated high intensity regions (0.40 ± 2.21% displayed on CEST within the CE-T1 tumor that were not discernible on CE-T1 or T2-weighted images. CONCLUSION: NOE mediated CEST Imaging at 7 T provides additional information on the structure of peritumoral hyperintensities in glioblastoma and displays isolated high intensity regions within the CE-T1 tumor that cannot be acquired on CE-T1 or T2

  5. Calculation of individual isotope equilibrium constants for geochemical reactions

    Science.gov (United States)

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  6. Chemical and isotopic study of thermal springs and gas discharges from Sierra de Chiapas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nencetti, A; Tassi, F; Vaselli, O [Department of Earth Sciences, Florence (Italy); Macias, J. L [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Magro, G [CNR-Institute of Geosciences and Earth Resources, Pisa (Italy); Capaccioni, B [Institute of Volcanology and Geochemistry, Urbino (Italy); Minissale, A [CNR-Institute of Geosciences and Earth Resources, Florence (Italy); Mora, J. C [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico)

    2005-01-15

    Thermal water and gas discharges south-east of El Chichon volcano, Mexico are associated mainly with NW-SE oriented fault systems. Spring discharges include i) waters with Na-Cl composition and TDS>3000 mg/L; ii) waters with Ca-SO{sub 4} composition and TDS values between 1400 and 2300 mg/L; iii) waters with Na-Cl composition and TDS of 800 to 2400 mg/L and sulphate content up to 650 mg/L and iv) waters with Ca-HCO{sub 3} composition and low salinity (TDS <250mg/L). Most of these waters are associated with free-gas discharges of N{sub 2} (up to 93 % by vol.), CO{sub 2} (2.4 to 31.2 % by vol.) and Ar (up to 1.25 % by vol.) with a predominant meteoric origin. H{sub 2}S is present only in gas samplers collected at El Azufre (up to 1.1 % by vol.). The {delta}13C CO{sub 2} values are always below -9.7% (PDB) and suggest a partially biogenic origin for CO{sub 2}. Chemical and isotopic features of spring discharges indicate that fluid circulation in the Sierra de Chiapas is mainly regulated by meteoric waters that tend to infiltrate the upper and middle-Cretaceous carbonate units up to the lower Cretaceous-upper Jurassic evaporitic formations (by Lopez-Ramos, 1982). The latter provide the main source of the species in solution. No evidence for high-to-medium enthalpy systems at depth beneath the Sierra de Chiapas has been found. [Spanish] La Sierra de Chiapas localizada en el Sureste de Mexico, se caracteriza por la presencia de descargas de gas y agua. La mayoria de los manantiales termales se asocian a rocas volcanicas Terciarias a lo largo de fallas regionales con orientacion NOSE. Las descargas termales se dividen en cuatro grupos: i) aguas con composicion Na-Cl y Solidos Disueltos Totales (SDT) >3000 mg/L; ii) aguas con composicion Ca-SO{sub 4} y valores de SDT entre 1400 y 2300 mg/L; iii) aguas con composicion Na-Cl, bajos contenidos de SDT (800 2400 mg/L) y un contenido de sulfato alto (hasta 650 mg/L) y iv) aguas con una composicion Ca-HCO{sub 3} y salinidad baja

  7. Stable isotope and hydro chemical variability along the Calueque-Oshakati Canal in the Cuvelai-Etosha Basin, Namibia

    Science.gov (United States)

    Koeniger, Paul; Beyer, Matthias; Gaj, Marcel; Hamutoko, Josefina; Uugulu, Shoopi; Wanke, Heike; Huber, Markus; Lohe, Christoph; Quinger, Martin; Himmelsbach, Thomas

    2014-05-01

    Since 1973 Kunene River water (currently between 47 and 63 Million m3 per year [1]) is carried from the Calueque Dam in Angola along a 150 km concrete canal to Oshakati in the Cuvelai-Etosha Basin which supplies the most densely populated area of Namibia with drinking water. Backup storage is held in the Olushandja Dam and in water towers at Ogongo, Oshakati and Ondangwa and about 4,000 km of pipelines radiate out from purification schemes and supply most of the people and the livestock [2, 3]. The canal is open along most of its course to Oshakati, allowing livestock and people living nearby to make free use of the water. During the rainy season, flood water from the vast Oshana drainage system swashes into the canal bearing a potential health risk when consumed untreated. Within the SASSCAL project (Southern African Science Service Centre for Climate Change and Adaptive Land Management - www.sasscal.org) water samples were collected during a field campaign from 18th to 20th November 2013 right before the onset of the rainy season 2013/14, to gain information on water evolution, evaporation and mixing influences as well as to characterize input concentrations for indirect recharge in this area. Water samples were collected at 14 sites along the canal (about every 10 km) and the Kunene River for stable water isotopes (deuterium and oxygen-18) and hydro chemical analyzes. Coordinates and altitude, temperature, conductivity, pH-value, and oxygen content were measured in the field. Hydro chemical and stable isotope analyzes were conducted later on in the laboratory. For stable isotopes a Picarro L2120-i water vapor analyzer was used with accuracies of 0.2o and 0.8o for δ18O and δ2H, respectively. Further campaigns within and after the rainy season are planned. A discussion of isotope and hydro chemical evolution of canal water in comparison to local rain and available groundwater composition will be presented. [1] Directorate of Rural Water Supply (2004

  8. Chemical and isotopic characteristics of a glacier-derived naled in front of Austre Grønfjordbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    Jacob C. Yde

    2012-03-01

    Full Text Available The chemical and stable isotope composition of a glacier-derived naled in front of the glacier Austre Grønfjordbreen, Svalbard, is examined to elucidate how secondary processes such as preferential retention and leaching affect naled chemistry. Internal candle ice layers have a chemical composition almost similar to that of the lower stratified granular ice layer, whereas the upper granular ice layer has a significantly different composition, which resembles the composition found in glacier meltwater. Grey, platy cryogenic calcite precipitates are found in clusters on the surface of the naled assemblage, indicating preferential retention of Ca2 +  and HCO3 −. This process is particular pronounced in the distal part of the naled. The isotopic composition in the naled is in accordance with the local meteoric water line and without indications of kinetic fractionation during freezing. The ability to form ice-marginal naled indicates that Austre Grønfjordbreen has the high meltwater storage potential required for triggering a glacier surge event.

  9. Novel Chemically Stable Er3+-Yb3+ Codopded Phosphate Glass for Ion-Exchanged Active Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 赵士龙; 胡丽丽

    2003-01-01

    A novel Er3+-Yb3+ codoped phosphate glass,which combines good chemical durability with good spectroscopic properties,is developed for the ion-exchange process.The relevant properties of this glass are presented for reference in the design and modelling of ion-exchanged active waveguide devices.The weight-loss rate of this glass is 1.45 × 10-5 g.cm-2.h-1 in boiling water,which is comparable to that of Kigre's Q-246 silicate glass.The emission cross section of Er3+ in this glass is calculated to be 0.72 × 10-20 cm2 using the McCumber theory.It is found that a planar waveguide with three modes at 632.8 nm is readily realized in this glass from our primary ion-exchange experiments.

  10. Isotopic and Chemical Analysis of Nitrate Source and Cycling in the San Joaquin River, California

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Bemis, B.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2001-12-01

    The sources and cycling of nitrate was investigated during a pilot study at four sites along the San Joaquin River using carbon and nitrogen isotopes of total dissolved and particulate organic matter along with hydrological measurements and various concentration data including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. Samples were collected between July and October 2000 at (1) Crow's Landing, (2) Laird Park, (3) Vernalis, and (4) upstream of the Merced River. Particulate organic matter samples (POM) were collected on pre-combusted glass fiber filters. Combined dissolved organic and inorganic samples were prepared by roto-evaporating filtered waters (RV samples). Both the RV and the POM samples were acidified to eliminate inorganic carbon. Stable carbon and nitrogen isotopes and C:N ratios of POM in addition to chlorophyll-a concentrations were consistent with POM derived primarily from plankton at all sites and sampling times except in late October during a dam release event. The late October samples showed a shift toward isotopically heavier carbon and lighter nitrogen isotopes and higher C:N ratios reflecting a significant input from non-planktonic (probably terrestrial) sources. About 90 percent of the nitrogen in the RV samples was inorganic, 97 percent of which was in the form of nitrate. Assuming that the nitrogen isotopic composition of the minor organic fraction fell within the range of common organic samples (0 to 25 per mil), the delta 15N value of the RV samples was a close representation of the nitrogen isotopic composition of the nitrate. The POM and RV samples therefore appear to be reasonable proxies for the nitrogen isotopic compositions of plankton and nitrate, respectively. By comparison with other dissolved species, most of the variation in nitrate

  11. Ion Exchange Processed CdS Nanorods in Powder Form Using Cadmium Hydroxide Nanowires By Wet Chemical Route

    Directory of Open Access Journals (Sweden)

    Savita L. Patil

    2010-06-01

    Full Text Available Simple, inexpensive and soft chemical route (wet chemical method was employed for the synthesis of bulk forms of cadmium hydroxide [Cd(OH2] nanowires bundles and their conversion to cadmium sulphide [CdS] nanorods at room temperature by simple anion exchange route. Due to difference in solubility product and diffusion rates of the Cd(OH2 and CdS, the anion exchange reaction was taken place and CdS nanorods were formed. CdS nanorods were characterized by X-ray diffraction (XRD, and scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis. Since CdS is semi-conducting material, it has variety of potential applications, this work demonstrates a cost effective method for the synthesis of CdS nanorods in bulk form like CNT.

  12. Chemical and isotopic fingerprinting of small ungauged watershed: How far the hydrological functioning can be understood?

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Luck, Jean-Marc; Ben Othman, Dalila; Joseph, Christian; Négrel, Philippe

    2016-05-01

    This study presents the ability of major/trace elements together with strontium isotopes to trace water origins at small scale at the outlet of a small watershed (Peyne, Hérault, France). Two small sub-basins draining distinct lithologies in their headwater (Plio-Villafranchian conglomerate versus Triassic gypsum-rich marls and dolomites) and the Miocene formations downstream are investigated. The Ca/Na vs. Mg/Na ratios and Ca/Sr vs. 87Sr/86Sr ratios allow the different facies that imprint the water signature to be identified, according to the hydrological conditions (low/high flows). Moreover, Sr isotopes evidence the two distinct Miocene facies, the sandy marls and the marine carbonates. The variation of the signature at the outlet of the basin allows identifying the main contributing compartments according to the hydrological conditions. This approach, based on a limited number of samples, highlights the potential of geochemical and isotopic tracers to define the contributing compartments to the runoff at the outlet of a basin. It thus could be considered as a potential alternative way to classical hydrological monitoring to delineate the main contributing areas during floods, especially in small ungauged river basins, where most of the devastating flash floods are recorded.

  13. Chemical assessment of ballast water exchange compliance: Implementation in North America and New Zealand

    Directory of Open Access Journals (Sweden)

    Monaca eNoble

    2016-05-01

    Full Text Available Fluorescence by naturally occurring dissolved organic matter (FDOM is a sensitive indicator of ballast water source, with high FDOM in coastal ballast water decreasing typically dramatically when replaced by oceanic seawater during ballast water exchange. In this study, FDOM was measured in 92 ships arriving at Pacific ports on the US west coast and in New Zealand, and used to assess their compliance with ballast water regulations that required 95% replacement of port water to minimize invasive species risks. Fluorescence in many ships that reported ballast water exchange was significantly higher than is usual for oceanic seawater, and in several cases, significantly higher than in other ships with similar provenance and ballast water management. Pre-exchange source port conditions represented the largest source of uncertainty in the analysis, because residual coastal FDOM when highly fluorescent can significantly influence the fluorescence signature of exchanged ballast water. A meta-analysis comparing the intensities of FDOM in un-exchanged ballast tanks with calculated pre-exchange intensities assuming that ships all correctly implemented and reported ballast water exchange revealed notable discrepancies. Thus, the incidence of high-FDOM port waters was seven times lower in reality than would be expected on the basis of these calculations. The results suggest that a significant rate of reporting errors occur due to a combination of factors that may include inadequate ballast water exchange and unintentional or deliberate misreporting of ballast water management.

  14. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.

    Directory of Open Access Journals (Sweden)

    Janarthanan Krishnamoorthy

    Full Text Available BACKGROUND: Nuclear Magnetic Resonance (NMR spectroscopy offers a variety of experiments to study protein-ligand interactions at atomic resolution. Among these experiments, 15N Heteronuclear Single Quantum Correlation (HSQCexperiment is simple, less time consuming and highly informative in mapping the binding site of the ligand. The interpretation of 15N HSQC becomes ambiguous when the chemical shift perturbations are caused by non-specific interactions like allosteric changes and local structural rearrangement. Under such cases, detailed chemical exchange analysis based on chemical shift perturbation will assist in locating the binding site accurately. METHODOLOGY/PRINCIPAL FINDINGS: We have automated the mapping of binding sites for fast chemical exchange systems using information obtained from 15N HSQC spectra of protein serially titrated with ligand of increasing concentrations. The automated program Auto-FACE (Auto-FAst Chemical Exchange analyzer determines the parameters, e.g. rate of change of perturbation, binding equilibrium constant and magnitude of chemical shift perturbation to map the binding site residues.Interestingly, the rate of change of perturbation at lower ligand concentration is highly sensitive in differentiating the binding site residues from the non-binding site residues. To validate this program, the interaction between the protein hBcl(XL and the ligand BH3I-1 was studied. Residues in the hydrophobic BH3 binding groove of hBcl(XL were easily identified to be crucial for interaction with BH3I-1 from other residues that also exhibited perturbation. The geometrically averaged equilibrium constant (3.0 x 10(4 calculated for the residues present at the identified binding site is consistent with the values obtained by other techniques like isothermal calorimetry and fluorescence polarization assays (12.8 x 10(4. Adjacent to the primary site, an additional binding site was identified which had an affinity of 3.8 times weaker

  15. A gas chromatograph/mass spectrometry method for determining isotopic distributions in organic compounds used in the chemical approach to stable isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, A.M.; Spall, W.D.; Smith, B.F.

    1990-01-01

    A variety of gas chromatograph/mass spectrometry (GC/MS) methods have been developed to resolve benzene, benzophenone, anthracene, fluorenone, and their respective stable isotope analogs from other components by gas chromatography. The ratio of stable isotope-labeled material to natural isotopic abundance compounds is determined from the mass spectra averaged across the chromatographic peak. Both total ion and selective ion chromatographic approaches were used for relative data and comparison. 9 refs., 11 tabs.

  16. Chemical and U-Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France)

    Science.gov (United States)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-10-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca / Na, Mg / Na, and Sr / Na ratios, but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals, and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system, and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured bedrock depleted in 234U), implying (234U/238U) AR below 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the - over time - homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs, depending on the hydrological

  17. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  18. Ageing and structural effects on the sorption characteristics of Cd{sup 2+} by clinoptilolite and Y-type zeolite studied using isotope exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, I.A.M., E-mail: i.ahmed@lancaster.ac.uk [School of Biosciences, Division of Agriculture and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Young, S.D.; Crout, N.M.J. [School of Biosciences, Division of Agriculture and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-12-15

    This research investigates the long-term kinetics of Cd{sup 2+} sorption and desorption by calcium-exchanged clinoptilolite (CaCpt) and Y-type (CaY) zeolite using isotopic exchange with {sup 109}Cd while maintaining pH at circumneutral values. The effects of Si/Al ratio and crystal structure of these zeolitic materials on intracrystalline transport of Cd are discussed. A first-order kinetic model was developed to describe the progressive transfer of Cd{sup 2+} to a less reactive form within the zeolite structure, following initial sorption and subsequent desorption of Cd subject to different initial contact times. The kinetic model differentiates between two forms of sorbed Cd{sup 2+} designated 'labile' and 'non-labile' in which the labile form is in immediate equilibrium with the free Cd{sup 2+} ion activity in solution. A model combining diffusion and first-order kinetics for cation exchange was also employed to determine Cd{sup 2+} diffusivity and intracrystalline exchange rates in CaY and CaCpt. The efficiency of Permeable Reactive Barriers (PRBs) containing zeolitic materials in protecting water systems against lateral flow of metal-contaminated leachate was simulated for three contrasting zeolites. The slow transfer of Cd between labile and non-labile forms was particularly important in moderating high concentration pulses of Cd traversing the PRB. In addition, the reversibility of Cd fixation effectively restored the sorption capability of the zeolite through slow leakage to drainage water.

  19. Determination of wine authenticity and geographical origin by measuring non-exchangeable hydrogen stable isotopes in wine ethanol with EIM-IRMS® methodology in combination with δ18O values obtained from wine water.

    Science.gov (United States)

    Smajlovic, Ivan; Glavanovic, Mirko; Sparks, Kimberlee L.; Sparks, Jed P.; Jovic, Slobodan

    2014-05-01

    Wine consumption has grown significantly in the last two decades, with the United States being the leading consumer of wine in the world. It is also the second largest wine producer and importer after the European Union, which consists of 27 European countries. The world has seen a significant increase in production from new world countries, especially the United States, Australia and Chile, and wine imports have grown significantly with this globalization. The quality and authenticity of products have become critical concerns. With the amount of wine being imported the need for verifying wine authenticity and understanding procedures used in wine making has become more important than ever. Understanding the origin of consumed wine in rapidly expanding global economy has become fundamental in order to control quality and protect consumers. In our previous scientific work we have shown that EIM-IRMS®, Ethanol Isotope Measurement - Isotope Ratio Mass Spectrometry (EIM-IRMS®), is capable of providing unique molecular fingerprint that cannot be reproduced or counterfeited. Today we know that δ18O value from the wine water is one of the most important parameters which can give information about wine geographical origin. Earlier we have suggested that grape juice or grape pulp is a closed biochemical system in which all chemical compounds stand in dynamic equilibrium and are in direct connection with each other. Taking that into consideration we have concluded that if system is genuine and if no water, or no sugar has been added to the grape must or grape juice prior to alcoholic fermentation, then ethanol which is made in process of alcoholic fermentation will have specific δD value of non-exchangeable hydrogen stable isotopes which will be in range from -205 to -215 ‰ vs. V-SMOW. In this work we will show that this value, which we named δDn (non-exchangeable hydrogen stable isotopes in ethanol), is very important because it can support or refute conclusions

  20. Improved measurement of labile proton concentration-weighted chemical exchange rate (k(ws)) with experimental factor-compensated and T(1) -normalized quantitative chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Wu, Renhua; Liu, Charng-Ming; Liu, Philip K; Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI enables measurement of dilute CEST agents and microenvironment properties such as pH and temperature, holding great promise for in vivo applications. However, because of confounding concomitant radio frequency (RF) irradiation and relaxation effects, the CEST-weighted MRI contrast may not fully characterize the underlying CEST phenomenon. We postulated that the accuracy of quantitative CEST MRI could be improved if the experimental factors (labeling efficiency and RF spillover effect) were estimated and taken into account. Specifically, the experimental factor was evaluated as a function of exchange rate and CEST agent concentration ratio, which remained relatively constant for intermediate RF irradiation power levels. Hence, the experimental factors can be calculated based on the reasonably estimated exchange rate and labile proton concentration ratio, which significantly improved quantification. The simulation was confirmed with creatine phantoms of serially varied concentration titrated to the same pH, whose reverse exchange rate (k(ws)) was found to be linearly correlated with the concentration. In summary, the proposed solution provides simplified yet reasonably accurate quantification of the underlying CEST system, which may help guide the ongoing development of quantitative CEST MRI.

  1. Assessment of chemical exchange in tryptophan–albumin solution through {sup 19}F multicomponent transverse relaxation dispersion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping-Chang, E-mail: pingchang.lin@howard.edu [Howard University, Department of Radiology, College of Medicine (United States)

    2015-06-15

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T{sub 2} relaxation into Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of {sup 19}F T{sub 2} relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T{sub 2} relaxation curve acquired, for example, at the CPMG frequency υ{sub CPMG} = 125, the nature of two distinct peaks in the associated T{sub 2} distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T{sub 2} peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan–albumin complex in the chemical-exchanging, two-compartment system.

  2. Direct High-Precision Measurements of the (87)Sr/(86)Sr Isotope Ratio in Natural Water without Chemical Separation Using Thermal Ionization Mass Spectrometry Equipped with 10(12) Ω Resistors.

    Science.gov (United States)

    Li, Chao-Feng; Guo, Jing-Hui; Chu, Zhu-Yin; Feng, Lian-Jun; Wang, Xuan-Ce

    2015-07-21

    Thermal ionization mass spectrometry (TIMS) allows excellent precision for determining Sr isotope ratios in natural water samples. Traditionally, a chemical separation procedure using cation exchange resin has been employed to obtain a high purity Sr fraction from natural water, which makes sample preparation time-consuming. In this study, we present a rapid and precise method for the direct determination of the Sr isotope ratio of natural water using TIMS equipped with amplifiers with two 10(12) Ω resistors. To eliminate the (87)Rb isobaric interference, Re ribbons are used as filaments, providing a significant advantage over W ribbons in the inhibition of Rb(+) emission, based on systematically examining a series of NIST SRM987 standard doping with various amounts of Rb using Re and W ribbons. To validate the applicability of our method, twenty-two natural water samples, including different water types (rain, snow, river, lake and drinking water), that show a large range in Sr content variations (2.54-922.8 ppb), were collected and analyzed from North and South China. Analytical results show good precision (0.003-0.005%, 2 RSE) and the method was further validated by comparative analysis of the same water with and without chemical separation. The method is simple and rapid, eliminates sample preparation time, and prevents potential contamination during complicated sample-preparation procedures. Therefore, a high sample throughput inherent to the TIMS can be fully utilized.

  3. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    Science.gov (United States)

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C. Y.; Silva, Steven R.; Campbell, D. H.

    2001-05-01

    An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1129-1130.Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (15N and 18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the 15N and Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months. Published in 2001 by John Wiley & Sons, Ltd.

  4. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    Science.gov (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  5. Nonuniform isotope patterns produced by collision-induced dissociation of homogeneously labeled ubiquitin: implications for spatially resolved hydrogen/deuterium exchange ESI-MS studies.

    Science.gov (United States)

    Ferguson, Peter L; Konermann, Lars

    2008-06-01

    There is an ongoing debate whether collision-induced dissociation (CID) of electrosprayed proteins after solution-phase hydrogen/deuterium exchange (HDX) is a viable approach for determining spatially resolved deuteration patterns. This work explores the use of two methods, source-CID and hexapole tandem mass spectrometry (MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer, for measuring the fragment deuteration levels of regioselectively labeled ubiquitin. Both methods reveal that b-ions exhibit HDX levels significantly below that of the intact protein, whereas several y'' fragments are labeled to a much greater extent. These results are consistent with earlier source-CID data (Akashi, S.; Naito, Y.; Takio, K. Anal. Chem. 1999, 71, 4974-4980). However, the measured b-ion deuteration levels are in disagreement with the known solution-phase behavior of ubiquitin. Partial agreement is observed for y''-ions. Control experiments on homogeneously labeled ubiquitin (having the same average deuteration level at every exchangeable site) result in highly nonuniform fragment HDX levels. In particular, b-ions exhibit deuteration levels significantly below that of intact ubiquitin, thereby mimicking the behavior seen for the regioselectively labeled protein. This effect is likely caused by isotope fractionation during collisional activation, facilitated by the high mobility of charge carriers (scrambling) in the gas phase. The observation that the b-ion labeling behavior is largely independent of the spatial isotope distribution within solution-phase ubiquitin invalidates these ions as reporters of the protein deuteration pattern. This work questions the common practice of interpreting any nonuniformities in fragment deuteration as being indicative of regioselective solution-phase labeling. Artifactual deuterium enrichment or depletion during collisional activation may have contributed to the current lack of consensus as to whether HDX/CID represents a potentially

  6. Radiogenic p-isotopes from SNIa, nuclear physics uncertainties and Galactic chemical evolution compared with values in primitive meteorites

    CERN Document Server

    Travaglio, C; Rauscher, T; Dauphas, N; Roepke, F K R; Hillebrandt, W

    2014-01-01

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae with different metallicities. The predicted abundances of the short-lived radioactive isotopes 92Nb, 97Tc, 98Tc and 146Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and 13C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SNIa to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNeIa in the production of 92Nb and 146Sm. We find that, if standard Chandrasekhar-mass SNeIa are at least 50% of all SNIa, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  7. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  8. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  9. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  10. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    Science.gov (United States)

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of Search Engine and details performance testing with over 50 model compounds.

  11. Stable isotope, chemical, and mineral compositions of the Middle Proterozoic Lijiaying Mn deposit, Shaanxi Province, China

    Science.gov (United States)

    Yeh, Hsueh-Wen; Hein, James R.; Ye, Jie; Fan, Delian

    1999-01-01

    The Lijiaying Mn deposit, located about 250 km southwest of Xian, is a high-quality ore characterized by low P and Fe contents and a mean Mn content of about 23%. The ore deposit occurs in shallow-water marine sedimentary rocks of probable Middle Proterozoic age. Carbonate minerals in the ore deposit include kutnahorite, calcite, Mn calcite, and Mg calcite. Carbon (−0.4 to −4.0‰) and oxygen (−3.7 to −12.9‰) isotopes show that, with a few exceptions, those carbonate minerals are not pristine low-temperature marine precipitates. All samples are depleted in rare earth elements (REEs) relative to shale and have negative Eu and positive Ce anomalies on chondrite-normalized plots. The Fe/Mn ratios of representative ore samples range from about 0.034 to atmospheric oxygen content during the Middle Proterozoic may have been lower than it has been during the Cenozoic.

  12. Chemical and isotopic evolution of the coastal batholith of southern Peru

    Science.gov (United States)

    Boily, M.; Brooks, C.; Ludden, J. N.; James, D. E.

    1989-09-01

    Southeast of Arequipa, the Coastal Batholith of southern Peru is composed of two segments (Arequipa and Toquepala) including five superunits which were emplaced in discrete magmatic pulses from the Jurassic to the Paleocene eras (190-61 Ma). Most superunits intruded a Precambrian basement dominated by granulitic and amphibolitic rocks showing a strong enrichment in large ion lithophile elements, low ɛNd p (-21 to -29) and 206Pb/204Pbp (16.11-17.03 (Tilton and Barreiro, 1980)), and high ɛSr p (+396 to +999) values. Major and trace element analyses reveal that each superunit is formed by distinct suites of calc-alkaline plutons (i.e., "I" type) that range in composition from quartz gabbro to monzogranite. For the whole plutonic suite located in southern Peru, the evolution toward negative ɛNd i and positive ɛSr i values is followed by a significant decrease in 206Pb/204Pbi ratios but is also related to the density of Precambrian outcrops. This led us to classify the intrusives into three groups. Group 1 consists of intrusives carrying positive ɛNd i (+2.4 to +0.4) and generally negative ɛSr i values (-7.4 to +0.7). They are located in the Ilo-Moquegua transect (17°22'-17°80'S), an area where Precambrian exposure is scarce. Group 2 consists of plutons with intermediate ɛ values (i.e., ɛNd i = +0.5 to -2.2 and ɛSr i = +7.1 to +55.7), which are found in the vicinity of Arequipa and Tarata where numerous Precambrian outcrops are present. Finally, group 3 is composed of intrusives showing negative ɛNd i (-4.4 to -8.0) and positive ɛSr i values (+27.1 to +56.1), including one anomalous granodiorite exposed near Tarata and two samples collected in the Arequipa quadrangle near the contact with the Charcani gneiss. There are several petrogenetic models which can explain the trace element, isotopic, and geographic correlations observed within the Coastal Batholith of southern Peru. One simple model advocates that the parental mafic magma(s) of the plutonic suites

  13. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    Science.gov (United States)

    Degnan, James R.; Bohlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  14. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    Science.gov (United States)

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  15. Nondestructive radio isotopic technique for performance evaluation of industrial grade anion exchange resins Amberlite IRN78 and Indion NSSR

    Energy Technology Data Exchange (ETDEWEB)

    Singare, Pravin U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2016-01-15

    The present study deals with the application of radiotracers 131I and 82Br as a non-destructive tool to evaluate the performance of Amberlite IRN78 (nuclear grade) and Indion NSSR (non-nuclear grade) anion exchange resins. In general based on radiotracer applications it was observed that Amberlite IRN78 resins show superior performance over Indion NSSR resins under identical operational parameters.

  16. Mixed IR/Vis two-dimensional spectroscopy: chemical exchange beyond the vibrational lifetime and sub-ensemble selective photochemistry.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Messmer, Andreas T; Bredenbeck, Jens

    2014-03-03

    Two-dimensional exchange spectroscopy (2D EXSY) is a powerful method to study the interconversion (chemical exchange) of molecular species in equilibrium. This method has recently been realized in femtosecond 2D-IR spectroscopy, dramatically increasing the time resolution. However, current implementations allow the EXSY signal (and therefore the chemical process of interest) only to be tracked during the lifetime (T1 ) of the observed spectroscopic transition. This is a severe limitation, as typical vibrational T1 are only a few ps. An IR/Vis pulse sequence is presented that overcomes this limit and makes the EXSY signal independent of T1 . The same pulse sequence allows to collect time-resolved IR spectra after electronic excitation of a particular chemical species in a mixture of species with strongly overlapping UV/Vis spectra. Different photoreaction pathways and dynamics of coexisting isomers or of species involved in different intermolecular interactions can thus be revealed, even if the species cannot be isolated because they are in rapid equilibrium.

  17. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    Science.gov (United States)

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions

  18. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses.

    Science.gov (United States)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ(13)C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m(2) and 20-40 cm = 1770.6 gC m(2)) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  19. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    Science.gov (United States)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  20. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: Example from Long Valley, CA, USA

    Science.gov (United States)

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.

    2013-12-01

    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150-180 °C is fractionated by ca. -0.3‰ to -0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  1. Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix

    Science.gov (United States)

    Clemett, S. J.; Messenger, S.; Naklamura-Messenger, K.; Thomas-Keprta, K. L.

    2014-01-01

    Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds.

  2. Deuterium Isotope Effects During HMX Combustion: Chemical Kinetic Burn Rate Control Mechanism Verified

    Science.gov (United States)

    1989-01-01

    propellant contain- controls the I-IMX burn rate in the pressure range cited. The ing a chemically modified double base ( CMDB ) high oxygen 1.41 KDIE...controlling the observed overall or global burn rate of the could expect from the deuterium labeled HMX methylene HMX/ CMDB composite propellant. It is...measured in the HMX/ CMDB system. A graphic representa- densed phase KDIE investigation of thermochemical decom- non of one cornposic HMX binder

  3. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  4. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas water interaction between magmatic component and shallow fluids

    Science.gov (United States)

    Inguaggiato, S.; Martin-Del Pozzo, A. L.; Aguayo, A.; Capasso, G.; Favara, R.

    2005-03-01

    Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas-water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80-100° C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO 2 in the springs was also detected and associated with high CO 2 degassing.

  5. Applying clumped isotopes of O2 to atmospheric and biogeochemical problems

    Science.gov (United States)

    Yeung, Laurence

    2016-04-01

    I will describe recent measurements of isotopic "clumps" in diatomic molecules, e.g., 18O18O in O2, which are being utilized to constrain atmospheric circulation on glacial-interglacial timescales and biogeochemical cycling in the oceans. While our understanding of these tracers is still evolving, several features of their geochemistry are apparent: (1) the proportional abundance of these isotopic "clumps" is governed by traditional chemical effects as well as combinatorial effects unique to clumped isotopes, and (2) when isotopic exchange reactions are disfavoured, chemical-kinetic and/or reservoir effects, rather than thermodynamic equilibrium, determine their clumped-isotope composition. Combinatorial clumped-isotope signatures imparted during photosynthesis are being developed as endmember signatures of gross primary productivity in the oceans. In addition, clumped-isotope measurements of O2 in the atmosphere (i.e., Δ36 values) suggest that isotopic clumping in O2 is continuously being altered by ozone photochemistry in the troposphere and stratosphere. Yet, the contrast in isotope-exchange rates between the stratosphere (where exchange is fast) and the troposphere (where exchange is slow) results in a gradient in Δ36 values with altitude, wherein stratospheric intrusions are detectable as elevated Δ36 values. Moreover, global chemical-transport model simulations suggest that ozone photochemistry in the troposphere re-orders the O2 reservoir in the troposphere on annual timescales. The Δ36 value at the surface is therefore sensitive to the tropospheric residence time of O2 with respect to stratosphere-troposphere exchange. Consequently, Δ36 values at the surface likely respond to changes in the strength of the global overturning circulation.

  6. Controls of Net Ecosystem Exchange at an Old Field, a Pine Plantation, and a Hardwood Forest under Identical Climatic and Edaphic Conditions-Isotopic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chanton, J. P.; Mortazavi, B.

    2004-11-04

    During the past year we have submitted two manuscripts. 1. Mortazavi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren and G. Katul. Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions (in Press). Oecologia 2. Mortazavi, B. and J. P. Chanton. Use of Keeling plots for determining sources of dissolved organic carbon in nearshore and open ocean systems (Published in Limnology and Oceanography (2004) Vol 49 pages 102-108). 3. Mortazavi, B., J. L. Prater, and J. P. Chanton (2004). A field-based method for simultaneous measurements of the 18O and 13C of soil CO2 efflux. Biogeosciences Vol 1:1-16 Most recent products delivered: Mortazavi, B. and J. P. Chanton. Abiotic and biotic controls on the 13C of respired CO2 in the southeastern US forest mosaics and a new technique for measuring the of soil CO2 efflux. Joint Biosphere Stable Isotope Network (US) and Stable Isotopes in Biosphere Atmosphere Exchange (EU) 2004 Meeting, Interlaken, Switzerland, March 31-April 4, 2004. Mortazavi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren and G. Katul. Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. American Geophysical Union Fall Meeting, San Francisco, USA, December 8-12, 2003. Prater, J., Mortazavi, B. and J. P. Chanton. Measurement of discrimination against 13C during photosynthesis and quantification of the short-term variability of 13C over a diurnal cycle. American Geophysical Union Fall Meeting, San Francisco, USA, December 8-12, 2003.

  7. Conceptualization of groundwater flow of a coastal arid aquifer using isotopic and chemical tools: La Paz, Baja California Sur, Mexico

    Science.gov (United States)

    Tamez-Melendez, Carol; Hernández-Antonio, Arturo; Mahlknecht, Jürgen

    2016-04-01

    Groundwater from the La Paz coastal aquifer in Baja California Sur, Mexico, is the main source of drinking water for the local population. Due to its proximity to the coast, sea water intrusion is the main factor of salinization of groundwater. Other geochemical processes also affect the quality of the aquifer threating its vulnerability. Forty-seven samples were analyzed for ion chemistry and isotopes. A hierarchical cluster analysis was performed for a better interpretation resulting in three main groups and proved for geographical correspondence. Deuterium and d18O ranged from -82 to -52.1 and from -11.6 to -7 permil, respectively, showing that the main recharge originates in the Sierra el Novillo, flowing toward SE-NW direction and in accordance to deuterium excess (d) high evaporation effects (d>10‰) are mostly in the middle portion of the study area and in El Centenario due to high kinetic isotope fractioning related to elevated temperatures. Hydrogeochemistry analyses demonstrated salinization mainly due to sea water intrusion and in second instance due water-rock interaction, where enrichment of Na+ (ranges from 35.7 to 1089 mg/L-1) was present in some samples probably due to weathering of silicates and/or cation exchange in soils with Ca2+ (27.7 to 658 mg/L-1) at clay-surfaces. High concentrations of NO3-2 (ranges from 1.4 to 48.8 mg/L-1), Cl- (ranges from 54.4 to 2960 mg/L-1) and Na+ show that anthropogenic input is mainly coming from an agricultural area (El Centenario-Chametla) where heavy groundwater extractions are made for irrigational purposes, lowering the groundwater table up to 10 m and consequently promoting upconing and salinity concentrations (NaCl). Carbon-13 and radiocarbon ranged from -12.3 to -9.1‰ and from 29.5 to 100.4 pmC, respectively. Distribution of ages (up to ~5000 years) indicates two flow trends (E-W and SE-NW).

  8. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data

    Science.gov (United States)

    Ciȩżkowski, W.; Gröning, M.; Leśniak, P. M.; Weise, S. M.; Zuber, A.

    1992-12-01

    Isotope and hydrochemical data of the thermal water system in Cieplice Ṡlaskie Zdrój (Spa) indicate the existence of two subsystems that greatly differ in volume and which meet at the fault zones of a granitic horst, where they discharge at an altitude of about 340m. One of the subsystems is very small (about 4 × 10 3 m 3) as indicated by the tritium age of the order of 10 years and a low outflow rate. Its recharge area found from the δ18O and δD values, is about 200m above the springs, most probably on the slopes of the foothills of the Karkonosze Mountains south-southwest of the spa. The large subsystem contains water which is free of tritium and whose 14C content is from 1 to 8 pmc with δ13C = -8.0 to -9.2‰. The isotopic composition of this water reflects either the climatic effect (low-altitude recharge during a cooler pre-Holocene climate) or the altitude effect (recharge in the early Holocene period at about 1000m at the heights of the Karkonosze assuming that the 14C concentration is strongly reduced by exchange with calcite in veins). For the former hypothesis, the recharge area of this water is probably either at the foot of the southeastern slopes of the Kaczawa Mountains or/and at the foot of the Rudawy Janowickie Mountains, to the east of Cieplice. The noble gas temperatures are more consistent with the pre-Holocene recharge. Similarly, the 4He excess and {40Ar}/{36Ar} ratio support the hypothesis of a pre-Holecene age. The constant {3He}/{4He} ratio of 26 × 10 -8 for highly different helium contents indicates crustal origin of helium. For the pre-Holocene age of water its volume is calculated at >- 10 9m 3 (stagnant water in micropores and mobile water in fractures) and the hydraulic conductivity of the host granite massif is estimated at about 7 × 10 -8 ms -1. Two outflows from this subsystem have different and variable fractions of a modern water component (bomb age), most probably originating from the bank infiltration of a nearby stream.

  9. General expressions for R1ρ relaxation for N-site chemical exchange and the special case of linear chains

    Science.gov (United States)

    Koss, Hans; Rance, Mark; Palmer, Arthur G.

    2017-01-01

    Exploration of dynamic processes in proteins and nucleic acids by spin-locking NMR experiments has been facilitated by the development of theoretical expressions for the R1ρ relaxation rate constant covering a variety of kinetic situations. Herein, we present a generalized approximation to the chemical exchange, Rex, component of R1ρ for arbitrary kinetic schemes, assuming the presence of a dominant major site population, derived from the negative reciprocal trace of the inverse Bloch-McConnell evolution matrix. This approximation is equivalent to first-order truncation of the characteristic polynomial derived from the Bloch-McConnell evolution matrix. For three- and four-site chemical exchange, the first-order approximations are sufficient to distinguish different kinetic schemes. We also introduce an approach to calculate R1ρ for linear N-site schemes, using the matrix determinant lemma to reduce the corresponding 3N × 3N Bloch-McConnell evolution matrix to a 3 × 3 matrix. The first- and second order-expansions of the determinant of this 3 × 3 matrix are closely related to previously derived equations for two-site exchange. The second-order approximations for linear N-site schemes can be used to obtain more accurate approximations for non-linear N-site schemes, such as triangular three-site or star four-site topologies. The expressions presented herein provide powerful means for the estimation of Rex contributions for both low (CEST-limit) and high (R1ρ-limit) radiofrequency field strengths, provided that the population of one state is dominant. The general nature of the new expressions allows for consideration of complex kinetic situations in the analysis of NMR spin relaxation data.

  10. Source detection by chemical and isotopic means - the Lower Jordan River

    Science.gov (United States)

    Hillel, Noa; Geyer, Stefan; Khayat, Saed; Licha, Tobias; Laronne, Jonathan B.; Siebert, Christian

    2016-04-01

    During the past several decades the volume of freshwater carried by the Lower Jordan River (LJR) has been reduced by 90% due to damming of its main tributaries, leaving a mixed flow of polluted and brackish to saline water from anthropogenic and partly known geogenic sources. Since the river represents the highly secured border between Jordan, Israel and the West Bank, neither systematic nor long-term measurements were conducted in it. Only vague knowledge exists about the amount and composition of natural contributors and no knowledge concerning their temporal dynamics. However, since the river water is intensely used for irrigation along its course and represents the major source of water to the Dead Sea, the spatio-temporal variation of water discharge and chemistry are required for water resource assessment in the Lower Jordan Valley and the Dead Sea. To monitor the temporal variations of water discharge and hydrochemistry, an automatic sampler, including water level and EC sensors with real time transmission were installed at the Baptism site, a few kilometers upstream of the delta. Major ions are analyzed on a daily basis, while stable isotopes of sulfate (δ34S, δ18O), nitrate (δ15N, δ18O) and water (δ2H, δ18O) are analyzed on an event basis. A general inverse correlation between EC and water level was found although extreme high conductivity values relate to flood events during the wet period. Due to the high-resolution monitoring, a series of flood events could be observed, some having unusually high saline water. Results from Cl/Br, Na/Cl, Mg/Ca, δ34S allow separation and identification of sources: (i) the dissolution of evaporite minerals, abundant in the surrounding geological strata, (ii) sewage and (iii) brine springs. The continuous monitoring is an essential tool for understanding long-term processes and changes in such a dynamic system, and is crucial for identifying rarely occurring extreme flow events. However, a single sampling location is

  11. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy

    Science.gov (United States)

    Valentino, G. M.; Cortecci, G.; Franco, E.; Stanzione, D.

    1999-08-01

    Based on their δ 34S signature, sulfate minerals and native sulfur around fumaroles and hot water pools from the Campi Flegrei volcanic area derive from supergenic oxidation of volcanic H 2S. Their mean δ 34S value (-0.2±1.7‰) matches with that of fumarolic H 2S at Solfatara (-0.3±0.3‰), as well as with the δ 34S of +1.4‰ obtained for total sulfur in fresh trachyte from the area. All δ 34S values indicate a mostly deep-seated origin for sulfur. Thermal waters were analysed for major and minor chemistry and for oxygen, hydrogen and sulfur isotope compositions. Pools at Pisciarelli are filled with evaporated meteoric water heated by rising (magmatic) gases. The water δ 18O (+3.8±1.3‰) and δ 2H (+6.5±2.2‰) values in these steam-heated waters are controlled by mixing and evaporation effects, and the δ 34S value of dissolved sulfate (-1.3±0.3‰) basically agrees with supergenic oxidation of deep-seated H 2S as the major source of sulfur. Instead, water from thermal springs and wells elsewhere in the Campi Flegrei appears to be a mixture between dilute meteoric and saline marine components. The latter may be local seawater from the bay of Pozzuoli. The δ 18O and δ 2H values of waters sampled during 1993-1994 range from -5.6 to +0.3‰ and from -33 to -3.4‰, respectively. The δ 34S values of dissolved sulfate range between -0.1 and +19.5‰. In general, sulfate is probably derived essentially from two sources, both within the volcanic cover, i.e., oxidation/dissolution of pyrite and anhydrite, and marine water. An occasional source of water and sulfate is represented by (magmatic) gases, which directly interact with shallow meteoric water as in the case of the Hotel Tennis well yielding steam-heated water with δ 18O=-1.5±0.2‰, δ 2H=-17±1‰ and δ 34S=-0.1‰.

  12. Estimating evolution of δ13CH4 during methanization of cellulosic waste based on stoichiometric chemical reactions, microbial dynamics and stable carbon isotope fractionation.

    Science.gov (United States)

    Vavilin, V A

    2012-04-01

    A change in δ(13)CH(4) during mesophilic methanization of cellulosic waste (paper and cardboard) was described using a mathematical model based on stoichiometric chemical reactions, microbial dynamics and the equation for the (13)C isotope accumulation in products including isotope fractionation. In this study, experimental data, previously obtained by Qu et al. (2009), was used to model metabolic pathways of cellulose transformation. A significant change in δ(13)CH(4) occurred in time during cellulosic waste methanization which was in accordance with the model. It was explained by the change in input of acetoclastic and hydrogenotrophic methanogenesis as well as by fractionation of stable carbon isotopes (13)C and (12)C which was much higher for hydrogenotrophic methanogenesis when compared to acetoclastic methanogenesis.

  13. Chemical and Isotopic Heterogeneities in the Deep Earth:Importance of Lower Mantle Carbonate-rich Melts

    Science.gov (United States)

    Collerson, K. D.; Williams, Q.; Murphy, D.

    2007-12-01

    Evolution of mantle chemical heterogeneity reflects a spectrum of processes. Nature of reservoirs has been inferred from radiogenic isotope and trace element systematics of mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) [1]. Carbonatites, kimberlites and lamproites [2-4] also sample depleted and enriched reservoirs, however, their origin remains equivocal. Secular decrease in Th/U ratio in MORB mantle (DMM), homogeneity of Th/U inferred from Pb-isotopic data, and systematic variation in Nb/Th and Nb/U ratios in MORBs [5], show that recycled components in DMM are well mixed. Thus isotopically hererogeneous domains in DMM must be transient features and are unlikely to yield HIMU and EM chemistries. Explanations for HIMU and EM OIB chemistries include involvement of: (1) subcontinental lithospheric mantle; (2) subducted oceanic lithosphere; (3) subducted sediment; or (4) an enigmatic lower mantle (LM) "plume component". Elevated 3He/4He in OIBs and kimberlites [6] and excess 129Xe and high 40Ar/39Ar [e.g., 7-8] and solar 20Ne/22Ne [9] in carbonatites indicate that they were derived from a primitive, isolated, and less degassed source than MORB. Primordial compositions show that this reservoir escaped atmospheric contamination by Ar, Xe, and Ne and pollution by 4He-rich material (from recycled 238U) during subduction. This primitive reservoir likely exists below the depth subducted slabs obviously penetrate (ca. 1700 km) e.g., [10]. That kimberlites are deeply sourced is also shown by lower mantle inclusions in diamond, e.g., [11]. Importantly, Gp. 1 and 2 kimberlites are isotopically similar to HIMU and EM-1 OIBs [4]. We interpret Gp 1 kimberlites as mixtures of HIMU and EM sources, while Gp. 2 kimberlites (close to EM-1) are interpreted as melts of a Ca perovskite-rich reservoir, possibly from slabs in the LM. We model melting of LM phases to simulate evolution of EM1 and HIMU 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 207Pb/204Pb, 206Pb/204Pb and 208Pb/204

  14. The isotopic and chemical evolution of planets: Mars as a missing link

    Science.gov (United States)

    Depaolo, D. J.

    1988-01-01

    The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites.

  15. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  16. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara, E-mail: Chiara.Perazzolo@epfl.ch; Verde, Mariachiara [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Homans, Steve W. [University of Leeds, Institute of Molecular and Cellular Biology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)

    2007-05-15

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k{sub ex} = 500-2000 s{sup -1} were typically observed in APO-rMUP for residues located adjacent to a {beta}-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change.

  17. Radiochemical separation of gold by amalgam exchange

    Science.gov (United States)

    Ruch, R.R.

    1970-01-01

    A rapid and simple method for the radiochemical separation of gold after neutron activation. The technique is based on treatment with a dilute indium-gold amalgam, both chemical reduction and isotopic exchange being involved. The counting efficiency for 198Au in small volumes of the amalgam is good. Few interferences occur and the method is applicable to clays, rocks, salts and metals. The possibility of determining silver, platinum and palladium by a similar method is mentioned. ?? 1970.

  18. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  19. Chemical and isotopic data for water from thermal springs and wells of Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  20. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    Science.gov (United States)

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    environment was unusually slow, which provided sufficient time for the uptake of groundwater and partial to complete SO42--H2S isotopic exchange. The slow steam velocities were likely related to the dispersal of the steam column as it entered the tuffs and possibly to intermediate exsolution rates from magmatic brine. The low ??D values may also partly reflect continuous degassing of the mineralizing magma. Similarly, data for steam-heated alunite (??34S=12.3??? to 27.2???; ??18OSO4=11.7??? to 13.0???; ??18OOH=6.6??? to 9.4???; ??D=-59??? to -42???) are unusual and indicate a strong magmatic influence, relatively high temperatures (140 to 180 ??C, based on ??18 OSO4-OH fractionations), and partial to complete sulfur isotopic exchange between steam-heated sulfate and H2S. Restricted lithologically controlled fluid flow in the host tuffs allowed magmatic condensate to supplant meteoric groundwater at the water table and create the high-temperature low-pH conditions that permitted unusually rapid SO42--H2S isotopic equilibration (50-300 days) and (or) long sulfate residence times for this environment. Late void-filling barite (??34S=7.4??? to 29.7???; ??18OSO4=-0.4??? to 15.1???) and later void-filling goethite (??18O=-11.8??? to 0.2???) document a transition from magmatic condensate to dominantly meteoric water in steam-heated fluids during cooling and collapse of the hydrothermal system. These steam-heated fluids oxidized the top ???300 m of the deposit by leaching sulfides, redistributing metals, and precipitating barite??acanthite??gold and goethite-hematite ??gold. Steam-heated oxidation, rather than weathering, was critical to forming the orebody in that it not only released encapsulated gold but likely enriched the deposit to ore-grade Au concentrations. ?? 2004 Elsevier B.V. All rights reserved.

  1. Mound activities in chemical and physical research, July-December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, L.R. (ed.)

    1988-07-29

    The following three research areas are presented: Work focusing on the enrichment of calcium isotopes by chemical exchange continued, with emphasis on calcium exchange with resin-bound cryptands. Bromine isotopic thermal diffusion factors were measured for methyl bromide, ethyl bromide, and 1-bromopropane; and a method for determining equilibrium fractions of plutonium oxidation states, as well as the final acidity associated with the distribution, is illustrated and discussed. Individual projects are processed separately for the data bases.

  2. New avenues to efficient chemical synthesis of exchange coupled hard/soft nanocomposite magnet.

    Science.gov (United States)

    Lee, Don Keun; Cha, Hyun Gil; Kim, Young Hwan; Kim, Chang Woo; Ji, Eun Sun; Kang, Young Soo

    2009-07-01

    Nd-Fe-B ultrafine amorphous alloy particles were prepared by reaction of metal ions with borohydride in aqueous solution. Monodispersed Fe nanoparticles were synthesized under an argon atmosphere via thermal decomposition of Fe(2+)-oleate2. Exchange coupled Nd2Fe14B/Fe nanocomposite magnets have been prepared by self-assembly using surfactant. The crystal structure of the synthesized nanoparticles was identified by using X-ray powder diffraction (XRD). The size and shape of nanoparticles were obtained by transmission electron microscope (TEM). Thermogravimetry using a microbalance with magnetic field gradient positioned below the sample was used for the measurement of a thermomagnetic analysis (TMA) curve showing the downward magnetic force versus temperature.

  3. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  4. Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description

    Science.gov (United States)

    Ceraolo, M.; Miulli, C.; Pozio, A.

    A simplified dynamical model of a fuel cell of the proton exchange membrane (PEM) type, based on physical-chemical knowledge of the phenomena occurring inside the cell has been developed by the authors. The model has been implemented in the MATLAB/SIMULINK environment. Lab tests have been carried out at ENEA's laboratories; and a good agreement has been found between tests and simulations, both in static and dynamic conditions. In a previous study [M. Ceraolo, R. Giglioli, C. Miulli, A. Pozio, in: Proceedings of the 18th International Electric Fuel Cell and Hybrid Vehicle Symposium (EVS18), Berlin, 20-24 October 2001, p. 306] the basic ideas of the model, as well as its experimental validation have been published. In the present paper, the full implementation of the model is reported in detail. Moreover, a procedure for evaluating all the needed numerical parameters is presented.

  5. Bacterial spore detection and analysis using hyperpolarized (129)Xe chemical exchange saturation transfer (Hyper-CEST) NMR.

    Science.gov (United States)

    Bai, Yubin; Wang, Yanfei; Goulian, Mark; Driks, Adam; Dmochowski, Ivan J

    2014-08-01

    Previously, we reported hyperpolarized (129)Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST (129)Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. (129)Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized (129)Xe returned to aqueous solution and depleted the (129)Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced (129)Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized (129)Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures.

  6. Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater.

    Science.gov (United States)

    Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G

    2016-01-01

    Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.

  7. Evaluating the use of a continuous approximation for model-based quantification of pulsed chemical exchange saturation transfer (CEST)

    Science.gov (United States)

    Tee, Y. K.; Khrapitchev, A. A.; Sibson, N. R.; Payne, S. J.; Chappell, M. A.

    2012-09-01

    Many potential clinical applications of chemical exchange saturation transfer (CEST) have been studied in recent years. However, due to various limitations such as specific absorption rate guidelines and scanner hardware constraints, most of the proposed applications have yet to be translated into routine diagnostic tools. Currently, pulsed CEST which uses multiple short pulses to perform the saturation is the only viable irradiation scheme for clinical translation. However, performing quantitative model-based analysis on pulsed CEST is time consuming because it is necessary to account for the time dependent amplitude of the saturation pulses. As a result, pulsed CEST is generally treated as continuous CEST by finding its equivalent average field or power. Nevertheless, theoretical analysis and simulations reveal that the resulting magnetization is different when the different irradiation schemes are applied. In this study, the quantification of important model parameters such as the amine proton exchange rate from a pulsed CEST experiment using quantitative model-based analyses were examined. Two model-based approaches were considered - discretized and continuous approximation to the time dependent RF irradiation pulses. The results showed that the discretized method was able to fit the experimental data substantially better than its continuous counterpart, but the smaller fitted error of the former did not translate to significantly better fit for the important model parameters. For quantification of the endogenous CEST effect, such as in amide proton transfer imaging, a model-based approach using the average power equivalent saturation can thus be used in place of the discretized approximation.

  8. Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-11-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3--CO32- acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas exchange with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life

  9. Iceland Deep Drilling Project: (V) Isotopic Evidence of Hydrothermal Exchange and Seawater Ingress from Alteration Minerals in the Reykjanes Geothermal System

    Science.gov (United States)

    Marks, N. E.; Zierenberg, R. A.; Schiffman, P.

    2009-12-01

    has been able to exchange with secondary phases throughout the system. Epidote samples from the Reykjanes system have significantly higher Sr isotopic ratios than analogous freshwater-dominated geothermal systems at Nesjavellir and Krafla.

  10. Chemical and Pb isotope composition of phenocrysts from bentonites constrains the chronostratigraphy around the Cretaceous-Paleogene boundary in the Hell Creek region, Montana

    Science.gov (United States)

    Ickert, Ryan B.; Mulcahy, Sean R.; Sprain, Courtney J.; Banaszak, Jessica F.; Renne, Paul R.

    2015-09-01

    An excellent record of environmental and paleobiological change around the Cretaceous-Paleogene boundary is preserved in the Hell Creek and Fort Union Formations in the western Williston Basin of northeastern Montana. These records are present in fluvial deposits whose lateral discontinuity hampers long-distance correlation. Geochronology has been focused on bentonite beds that are often present in lignites. To better identify unique bentonites for correlation across the region, the chemical and Pb isotopic composition of feldspar and titanite has been measured on 46 samples. Many of these samples have been dated by 40Ar/39Ar. The combination of chemical and isotopic compositions of phenocrysts has enabled the identification of several unique bentonite beds. In particular, three horizons located at and above the Cretaceous-Paleogene boundary can now be traced—based on their unique compositions—across the region, clarifying previously ambiguous stratigraphic relationships. Other bentonites show unusual features, such as Pb isotope variations consistent with magma mixing or assimilation, that will make them easy to recognize in future studies. This technique is limited in some cases by more than one bentonite having compositions that cannot be distinguished, or bentonites with abundant xenocrysts. The Pb isotopes are consistent with a derivation from the Bitterroot Batholith, whose age range overlaps that of the tephra. These data provide an improved stratigraphic framework for the Hell Creek region and provide a basis for more focused tephrostratigraphic work, and more generally demonstrate that the combination of mineral chemistry and Pb isotope compositions is an effective technique for tephra correlation.

  11. Assessing Soil Available Potassium by Cation Exchange Membrane and COnventional Chemical Extractions

    Institute of Scientific and Technical Information of China (English)

    LIUZHAOHUI; J.SCHOENAU; 等

    1999-01-01

    Four testing methods using cation exchange membrane (CEM),ammonium acetate,ASI(0.25mol L-1 NaHCO3+0.01mol L-1 EDTA +0.01 molL-1 NH4F) and 1.0molL-1 boiling nitric acid,respectively,were used to evaluate soil available K.The soil K tested by CEM was significantly correlated with that by the other (conventional)methods(r2=0.43**-0.95***).The soil K tested by CEM saturated with NH4HCO3(15min extraction)was most closely correlated with that by the other methods(r2=0.60**-0.95***),Potassium availability,as predicted by soil test,was comparable to actual K uptake by canola and wheat grown on the soils in growth chamber.Regression analyses showed that plant K uptake was more closely correlated wiht K extracted by CEM(r2=0.56**-0.81***)than that by the conventional methods(r2=0.46***-0.81***),most colsely correlated with that by NH4HCO3-saturated CEM for 15 min (r2=0.81***).and worst correlated with that by HNO3(r2=0.45**-0.72***)

  12. Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide

    Directory of Open Access Journals (Sweden)

    A. F. Hofmann

    2012-11-01

    Full Text Available Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc. as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3-CO32– acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around

  13. Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes

    Science.gov (United States)

    Bouchez, Camille; Goncalves, Julio; Deschamps, Pierre; Vallet-Coulomb, Christine; Hamelin, Bruno; Doumnang, Jean-Claude; Sylvestre, Florence

    2016-04-01

    In the Sahelian belt, Lake Chad is a key water body for 13 million people, who live on its resources. It experiences, however, substantial and frequent surface changes. Located at the centre of one of the largest endorheic basins in the world, its waters remain surprisingly fresh. Its low salinity has been attributed to a low infiltration flow whose value remains poorly constrained. Understanding the lake's hydrological behaviour in response to climate variability requires a better constraint of the factors that control its water and chemical balance. Based on the three-pool conceptualization of Lake Chad proposed by Bader et al. (2011), this study aims to quantify the total water outflow from the lake, the respective proportions of evaporation (E), transpiration (T), and infiltration (I), and the associated uncertainties. A Bayesian inversion method based on lake-level data was used, leading to total water loss estimates in each pool (E + T + I = ETI). Sodium and stable isotope mass balances were then used to separate total water losses into E, T, and I components. Despite the scarcity of representative data available on the lake, the combination of these two geochemical tracers is relevant to assess the relative contribution of these three outflows involved in the control of the hydrological budget. Mean evapotranspiration rates were estimated at 2070 ± 100 and 2270 ± 100 mm yr-1 for the southern and northern pools, respectively. Infiltration represents between 100 and 300 mm yr-1 but most of the water is evapotranspirated in the first few kilometres from the shorelines and does not efficiently recharge the Quaternary aquifer. Transpiration is shown to be significant, around 300 mm yr-1 and reaches 500 mm yr-1 in the vegetated zone of the archipelagos. Hydrological and chemical simulations reproduce the marked hydrological change between the normal lake state that occurred before 1972 and the small lake state after 1972 when the lake surface shrunk to a one

  14. Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.-C. [INRA, Departement Environnement et Agronomie, Versailles (France)]. E-mail: fardeau@versailles.inra.fr; Zapata, F. [IAEA, Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Programme, Vienna (Austria)

    2002-05-15

    A 'soil P fertility recapitalization' initiative utilizing large rates of phosphate rocks (PRs) was proposed to improve the soil P status and increase the sustainable food production in acid and P-deficient tropical soils. Two series of experiments were carried out using five tropical acid soils treated with heavy applications of Gafsa phosphate rock (GPR). In the first series, the soils were mixed with GPR at the following application rates: 0, 500, 1000 and 2000 mg P{center_dot}kg{sup -1}, and incubated for one month in moist conditions. In another series, 1000 mg P kg{sup -1} applied as GPR was added to three soils and incubated for 1.5 month; thereafter 50 mg P kg{sup -1} as triple superphosphate (TSP) were added. The {sup 32}P isotopic exchange method was utilized to assess the contribution of GPR to the available soil P. Changes in amounts, E, of P transferred with time as phosphate ions from the soil particles to the soil solution as well as changes in pH, calcium and phosphate concentrations in soil suspensions were determined. It was found that: (i) the contribution of P from GPR to recapitalization of soil P fertility was mainly assessed by E pool size, pH, calcium and phosphate concentrations; other variables were not significant at the 0.1 level; (ii) heavy applications of GPR did not saturate all the P sorption sites, P freshly applied as water-soluble P was still sorbed; (iii) recapitalization of soil P fertility using GPR was partly obtained in some acid tropical soils; (iv) Upon dissolution, GPR provided calcium ions to crops and to soils, thus reducing Al toxicity, but its liming effect was limited. To explain these effects with heavy application rates of GPR, it was postulated that a coating of Al and Fe compounds is formed around PR particles with time, thus reducing further dissolution. (author)

  15. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  16. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C.; Costa e Silva, Filipe; Pereira, Joao S.; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought. PMID

  17. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  18. Quaternary climate modulation of Pb isotopes in the deep Indian Ocean linked to the Himalayan chemical weathering

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A.; Piotrowski, A.M.; Banakar, V.K.

    We use reductive sediment leaching to extract lead (Pb) from the authigenic fraction of marine sediments and reconstruct the Pb isotope evolution of the deep central Indian Ocean over the past 250 thousand years at ~3 kyr resolution. Temporal...

  19. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P exchange rate followed a dominantly base-catalyzed exchange relationship (P exchange rate in a relatively complex in vitro CEST system.

  20. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  1. Chemical characterization and stable carbon isotopic composition of particulate polycyclic aromatic hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2012-08-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography coupled with a mass spectrometer (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the different species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion from others origins of particulate matter (vehicular exhaust using isotopic measurements (with δ13CPAH = −28.7 to −26.6‰ but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach of source tracking.

  2. Chemical and boron isotope microanalysis of tourmalines as a guide to fluid-rock interaction in the Habachtal emerald deposit, Tauern Window, Austria

    Science.gov (United States)

    Trumbull, R. B.; Krienitz, M.-S.; Grundmann, G.; Wiedenbeck, M.

    2009-04-01

    Tourmalines from the Habachtal emerald deposit in the Eastern Alps formed together with emerald in a ductile shear zone during blackwall metasomatism between pelitic country rocks and a serpentinite body. Electron microprobe and secondary ion mass spectrometric (SIMS) analyses provide a record of chemical and B-isotope variations in tourmalines which represent an idealized profile from metapelites into the blackwall sequence of biotite and chlorite schists. Tourmaline is intermediate schorl-dravite in the country rock and become increasingly dravitic in the blackwall zones, while F and Cr contents increase and Al drops. Metasomatic tourmaline from blackwall zones is typically zoned optically and chemically, with rim compositions rich in Mg, Ti, Ca and F compared with the cores. The total range in delta-11B values is -13.8 to -5.1 permil and the within-sample variations are typically 3 to 5 permil. Both of these ranges are beyond the reach of closed-system fractionation at the estimated 500-550C conditions of formation, and at least two boron components with contrasting isotopic composition are indicated. A key observation from tourmaline core analyses is a systematic shift in delta-11B from the country rock (-14 to -10 permil) to the inner blackwall zones (-9 to -5 permil). We suggest that two separate fluids were channeled and partially mixed in the Habachtal shear zone during blackwall alteration and tourmaline-emerald mineralization. A regional metamorphic fluid carried isotopically light boron as observed in the metapelite country rocks. The other fluid is derived from the serpentinite association and has isotopically heavier boron typical for MORB or altered oceanic crust.

  3. Palaeoclimatic and deforestation effect on the coastal fresh groundwater resources of SE Ivory Coast from isotopic and chemical evidence

    Science.gov (United States)

    Adiaffi, Bernard; Marlin, Christelle; Oga, Yéï Marie Solange; Massault, Marc; Noret, Aurelie; Biemi, Jean

    2009-05-01

    SummaryIn the South-east of the Ivory Coast, two aquifer systems have been studied in the sedimentary deposits at the South and in the fractured bedrock at the North of the study area (5-6°N, 2.40-4.40°W) : (1) the Continental Terminal (CT) and (2) the Paleoproterozoïc Bedrock (PB). In the studied area, the vegetation cover has undergone significant changes since 1955 in addition to climate change. Rainforests have gradually disappeared due to natural and anthropological deforestation. The impact of deforestation on groundwater of the PB and on the CT has been studied by a geochemical approach. Stable isotopes ( 18O, 2H and 13C) contents, radiocarbon ( 14C) contents and chemical data (major ions) have been measured on a set of 25 groundwater samples. The residence time of the groundwaters is estimated with the 14C using two models: (i) the model of well-mixed reservoir (WMR model) and (ii) the piston flow model (PF model). The range of the PB groundwater residence time (15,200-8300 to ˜300-100 a BP) for both models shows that the recharge has started at the beginning of the post-glacial period whereas the CT aquifer recharge is much more recent (from 300 a BP to today). The PB groundwater provides information about paleoclimatic conditions that occurred over the studied area during the late Pleistocene. The low contents indicate cold and/or more humid conditions of recharge. During that period, the low content of 13C is consistent with a vegetation cover dominated by rainforest (C 3 plants). After the 20th century, the progressive evolution of vegetation cover from forest to cultivated plants and grasses is shown by the enrichment of groundwater in 13C (C 3 plants to C 4 plants). The relatively high mineralization level (mean of 143.7 mg L -1) and high δ18O- δ2H values of modern PB groundwater reflect of a recharge process that is slowed by a thick layer (16.3-72.5 m) of weathered formations above the PB formations. Groundwaters of the CT aquifer are

  4. Chemical and isotopic composition of the Monfortinho thermal water (Portugal): contribution to the aquifer conceptual model and resource evaluation

    Science.gov (United States)

    do Rosário Carvalho, Maria; Martins Carvalho, José

    2015-04-01

    Groundwaters from quartzite aquifers are usually cold waters with very low mineralization as consequence of circulation in fractured aquifers and rocks with very low solubility. In the Monfortinho, Beira Baixa region in Portugal, a thermal water occurs associated to a Ordovician quartzite syncline, the Penha Garcia syncline (Sequeira et al., 1999). The thermal water is used for balneology and supplies a thermal Spa trough boreholes discharging about 36 l/s. The syncline of Penha Garcia has NW-SE axis and is fractured by a NE-SW fault, where the valley of Ponsul river is developed. The natural discharge of the thermal aquifer occur at the SE edge of the syncline. The Monfortinho thermal water has temperature around 30 °C, pH of 5.45, very low mineralization, with electric conductivity about 35 uS/cm; the main dissolved specie is the SiO2 that reaches 24 mg/L, corresponding to 53% of the total dissolved solids. The chemical facies is of Na-HCO3 type. The d18O and d2H diagram indicates that Monfortinho water is derived from the local meteoric waters. The δ18O and δ2H content also pointed out a recharge area of the thermal aquifer above 400 m of elevation, with a isotopic gradient value of -0.15‰ d18O/100m. This elevation corresponds to the top of the eastern block of the syncline, suggesting that Ponsul fault is a negative barrier to groundwater flow and the thermal aquifer is developed only in eastern block of the syncline. The groundwater flows at about 600-700 m depth along the syncline base toward SE. The average rainfall in the region is 790 mm/year and the estimated recharge is about 17% (Carvalho, 2001) of the precipitation, corresponding to 134 mm/year and 4x105 m3/ano of hydrothermal resource. References: Carvalho, JM (2001). A Hidrogeologia das águas minerais naturais de Monfortinho. Geonovas, Rev. Assoc. Portg. Geólogos, Lisboa, v15, pp. 61-70 (in portuguese). Sequeira, AF, Cunha, PP, Ribeiro, ML (1999). Notícia Explicativa da Folha 25-B Salvaterra

  5. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders

    Science.gov (United States)

    DeBrosse, Catherine; Nanga, Ravi Prakash Reddy; Wilson, Neil; D’Aquilla, Kevin; Elliott, Mark; Yan, Felicia; Wade, Kristin; Nguyen, Sara; Worsley, Diana; Parris-Skeete, Chevonne; McCormick, Elizabeth; Xiao, Rui; Cunningham, Zuela Zolkipli; Fishbein, Lauren; Nathanson, Katherine L.; Lynch, David R.; Stallings, Virginia A.; Yudkoff, Marc; Falk, Marni J.; Reddy, Ravinder; McCormack, Shana E.

    2016-01-01

    Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group–specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group–specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (P = 0.026) prolonged postexercise τCr in the medial gastrocnemius muscle, suggestive of less OXPHOS capacity. Additionally, we observed that lower resting CrCEST was associated with prolonged τPCr, with a Pearson’s correlation coefficient of –0.42 (P = 0.046), consistent with previous hypotheses predicting that resting creatine levels may correlate with 31P magnetic resonance spectroscopy–based estimates of OXPHOS capacity. We conclude that CrCEST can noninvasively detect changes in muscle creatine content and OXPHOS capacity, with high anatomic resolution, in individuals with mitochondrial disorders. PMID:27812541

  6. Selected bibliography on heavy water, tritiated water and hydrogen isotopes (1981-1992)

    Science.gov (United States)

    Gopalakrishnan, V. T.; Sutawane, U. B.; Rathi, B. N.

    A selected bibliography on heavy water, tritiated water and hydrogen isotopes is presented. This bibliography covers the period 1981-1992 and is in continuation to Division's earlier report BARC-1192 (1983). The sources of information for this compilation are Chemical Abstracts, INIS Atom Index and also some scattered search through journals and reports available in our library. No claim is made towards exhaustiveness of this bibliography even though sincere attempts have been made for a wide coverage. The bibliography is arranged under the headings: (1) production, purification, recovery, reprocessing and storage; (2) isotope exchange; (3) isotope analysis; (4) properties; and (5) miscellaneous. Total number of references in the bibliography are 1762.

  7. Chemical and isotopic diversity in basalts dredged from the East Pacific Rise at 10°S, the fossil Galapagos Rise and the Nazca plate

    Science.gov (United States)

    Batiza, Rodey; Oestrike, Richard; Futa, Kiyoto

    1982-01-01

    We present petrographic, chemical and isotopic data for fresh lava samples dredged from three regions: (1) the fossil Galapagos Rise; (2) an elongate volcano near this extinct spreading center; and (3) the East Pacific Rise at 10°S. The samples from the Galapagos Rise are among the first samples from any fossil spreading center to be analyzed. Alkalic picrites from the elongate seamount and transitional basalts from the East Pacific Rise are both somewhat unusual rock types considering their respective tectonic environments.

  8. Estimating evolution of δ(13)CH(4) during methanization of municipal solid waste based on chemical reactions, isotope accumulation in products and microbial ecology.

    Science.gov (United States)

    Vavilin, V A

    2012-01-01

    Natural isotopic composition in substrate may be used to reveal the metabolic pathways of substrate transformation by microbial community. In this paper, a change in δ(13)CH(4) during methanization of reconstituted municipal solid waste was described using a mathematical model based on stoichiometric chemical reactions, equation for the (13)C isotope accumulation in products at the low natural C(13)/C(12) ratio and microbial ecology. A set of experimental data used in the model was taken from Qu et al. (2009a). According to the model, during mesophilic municipal solid waste methanization initially hydrogenotrophic and further aceticlastic methanogenesis dominated. At the final stage hydrogenotrophic methanogenesis followed by acetate oxidation dominated again. In spite of rather high measured values of δ(13)C for CO(2) above -21‰, a sharp decrease in δ(13)CH(4) from -20‰ to -60‰ at the final stage was explained by a larger fractionation against (13)C during methanogenesis from H(2)/H(2)CO(3) due to a kinetic isotope effect when hydrogenotrophic methanogens preferentially take down light (12)C. The model also confirmed that in thermophilic conditions a comparatively stable value of δ(13)CH(4) about -60‰ measured earlier (Qu et al. 2009b) was due to a dominance of hydrogenotrophic methanogenesis during all methanization process of cardboard waste.

  9. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 Al, I, HCO3, SiO2 Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  10. Eu(III) complexes as anion-responsive luminescent sensors and paramagnetic chemical exchange saturation transfer agents.

    Science.gov (United States)

    Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R

    2011-06-06

    The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the (1)H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate, and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate, and carbonate. These anions have weak dissociation constants that range from 19 to 38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate, and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at p

  11. Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts

    DEFF Research Database (Denmark)

    Gagnevin, D.; Waight, Tod Earle; Daly, J.S.

    2007-01-01

    Plagioclase phenocrysts in dacites from the high-K calc-alkaline CapraiaVolcano were investigated for major, trace element and Sr isotope variations in order to gain better insight into the proposed open-system behaviour of the volcano. Repeated dissolution zone in plagioclases from the early-eru...

  12. Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2006-01-01

    The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C-12-PSV:C-60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 1802 isotopic labelling was emplo...

  13. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France)

    Science.gov (United States)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-03-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions

  14. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: Chemical, microbial and isotope assessment of a 1D flow-through experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Gavilan, G., E-mail: georginavidal@biorem.cat [D D' ENGINY BIOREM S.L., Madrazo 68, bxs., 08006 Barcelona (Spain); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain); Carrey, R., E-mail: rcarrey@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain); Solanas, A., E-mail: asolanas@ub.edu [Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona (Spain); Soler, A., E-mail: albertsolergil@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain)

    2014-10-01

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100 mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in {sup 13}C-ethanol compared to the value of the injected ethanol (− 30.6‰), to a later depletion, achieving δ{sup 13}C values well below the initial isotope composition (to a minimum of − 46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled

  15. Depositional conditions for the Kuna Formation, Red Dog Zn-PB-Ag-Barite District, Alaska, inferred from isotopic and chemical proxies

    Science.gov (United States)

    Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.

    2015-01-01

    Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of

  16. Coordinated analysis of Comet 81P/Wild-2 dust samples: Nanoscale measurements of its organic/ inorganic chemical and isotopic composition and optical properties

    Science.gov (United States)

    Messenger, K. N.; Messenger, S. R.; Clemett, S. J.; Keller, L. P. Class='hr'>; Zolensky, M. E.

    2006-12-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. This is the first sample of extraterrestrial materials returned from beyond the moon. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected (cells and 25 cometary grains were fully studied by an international collaboration among 150 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. This scientific consortium was made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments. Coordinated and replicate analyses of the samples were made possible by subdividing individual particles into 50 nm-thick sections by ultramicrotomy, providing up to 100 sections from a 20 um particle. We present results of a coordinated study of comet Wild 2 dust samples in which individual particles were analyzed by FTIR microspectroscopy, field emission scanning-transmission electron microscopy (STEM), and isotopic measurements with a NanoSIMS 50L ion microprobe. The STEM is equipped with a thin window energy- dispersive X-ray (EDX) spectrometer that was used to acquire spectrum images that contained a high count- rate EDX spectrum in each pixel, enabling the determination of the nm-scale spatial distribution of quantitative element abundances. These samples were later analyzed by the JSC NanoSIMS 50L ion microprobe, which acquired 100 nm spatial resolution C, N, and O isotopic images. This analytical protocol enables direct comparison of the submicrometer chemical and isotopic compositions of the cometary materials.

  17. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl).

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen A; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-07-02

    Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.

  18. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)

    Science.gov (United States)

    Gastmans, Didier; Hutcheon, Ian; Menegário, Amauri Antônio; Chang, Hung Kiang

    2016-04-01

    Groundwater from the fractured basalt Serra Geral Aquifer (SGA) represents an important source for water supply in Northeastern São Paulo state (Brazil). Groundwater flow conditions in fractured aquifers hosted in basaltic rocks are difficult to define because flow occurs through rock discontinuities. The evaluation of hydrodynamic information associated with hydrochemical data has identified geochemical processes related to groundwater evolution, observed in regional flowpaths. SGA groundwaters are characterized by low TDS with pH varying from neutral to alkaline. Two main hydrochemical facies are recognized: Ca-Mg-HCO3, and Na-HCO3 types. Primarily, the geochemical evolution of SGA groundwater occurs under CO2 open conditions, and the continuous uptake of CO2 is responsible for mineral dissolution, producing bicarbonate as the main anion, and calcium and magnesium in groundwater. Ion exchange between smectites (Na and Ca-beidelites) seems to be responsible for the occurrence of Na-HCO3 groundwater. Toward the Rio Grande, in the northern portion of the study area, there is mixing between SGA groundwater and water from the sandstones of the Guarani Aquifer System, as evidenced by the chemical and isotopic composition of the groundwater. Inverse mass balance modeling performed using NETPATH XL produces results in agreement with the dissolution of minerals in basalt (feldspars and pyroxenes) associated with the uptake of atmospheric CO2, as well as the dissolution of clay minerals present in the soil. Kaolinite precipitation occurs due to the incongruent dissolution of feldspars, while Si remains almost constant due to the precipitation of silica. The continuous uptake of CO2 under open conditions leads to calcite precipitation, which in addition to ion exchange are responsible by Ca removal from groundwater and an increase in Na concentrations. Down the flow gradientCO2 is subject to closed conditions where the basalts are covered by the sediments of Bauru Group or

  19. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation.

    Science.gov (United States)

    Conaway, Christopher H; Thomas, Burt; Saad, Nabil; Thordsen, James J; Kharaka, Yousif K

    2015-01-01

    This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ(13)C of dissolved organic carbon (δ(13)C-DOC) in natural water samples. Low-chloride matrix (oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.

  20. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    Science.gov (United States)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  1. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    Science.gov (United States)

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  2. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging

    Science.gov (United States)

    Yan, Gen; Zhang, Tao; Dai, Zhuozhi; Yi, Meizhi; Jia, Yanlong; Nie, Tingting; Zhang, Handi; Xiao, Gang; Wu, Renhua

    2016-01-01

    Purpose We developed a novel magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer (CEST) for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood—brain barrier (BBB) disruption. Materials and Methods All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0) and other metabolites (glutamine, myoinositol, creatinine, and choline) were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution. Results The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm) downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz). The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection. Conclusion The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA. PMID:27711138

  3. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Mueller-Lutz, Anja; Zimmermann, Lisa; Boos, Johannes; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf (Germany); Schmitt, Benjamin [Siemens Ltd. Australia, Healthcare Sector, Macquarie Park, NSW (Australia)

    2016-01-15

    To evaluate glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging at 3T in the assessment of the GAG content of cervical IVDs in healthy volunteers. Forty-two cervical intervertebral discs of seven healthy volunteers (four females, three males; mean age: 21.4 ± 1.4 years; range: 19-24 years) were examined at a 3T MRI scanner in this prospective study. The MRI protocol comprised standard morphological, sagittal T2 weighted (T2w) images to assess the magnetic resonance imaging (MRI) based grading system for cervical intervertebral disc degeneration (IVD) and biochemical imaging with gagCEST to calculate a region-of-interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF). GagCEST of cervical IVDs was technically successful at 3T with significant higher gagCEST values in NP compared to AF (1.17 % ± 1.03 % vs. 0.79 % ± 1.75 %; p = 0.005). We found topological differences of gagCEST values of the cervical spine with significant higher gagCEST effects in lower IVDs (r = 1; p = 0). We could demonstrate a significant, negative correlation between gagCEST values and cervical disc degeneration of NP (r = -0.360; p = 0.019). Non-degenerated IVDs had significantly higher gagCEST effects compared to degenerated IVDs in NP (1.76 % ± 0.92 % vs. 0.52 % ± 1.17 %; p < 0.001). Biochemical imaging of cervical IVDs is feasible at 3T. GagCEST analysis demonstrated a topological GAG distribution of the cervical spine. The depletion of GAG in the NP with increasing level of morphological degeneration can be assessed using gagCEST imaging. (orig.)

  4. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu-Zhong; Deng, Min; Wang, Yi-Xiang J. [Chinese University of Hong Kong, Prince of Wales Hospital, Department of Imaging and Interventional Radiology, Faculty of Medicine (China); Yuan, Jing [Hong Kong Sanatorium and Hospital, Medical Physics and Research Department, Happy Valley, Hong Kong (China); Wei, Juan [Philips Healthcare Asia, Shanghai (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States); Kennedy Krieger Institute, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, MD (United States)

    2016-06-15

    To evaluate Chemical Exchange Saturation Transfer (CEST) MRI for liver imaging at 3.0-T. Images were acquired at offsets (n = 41, increment = 0.25 ppm) from -5 to 5 ppm using a TSE sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified as the asymmetric magnetization transfer ratio (MTR{sub asym}) at 3.5 ppm and the total MTR{sub asym} integrated from 0.5 to 1.5 ppm, respectively, from the corrected Z-spectrum. Reproducibility was assessed for rats and humans. Eight rats were devoid of chow for 24 hours and scanned before and after fasting. Eleven rats were scanned before and after one-time CCl4 intoxication. For reproducibility, rat liver APTw and GlycoCEST measurements had 95 % limits of agreement of -1.49 % to 1.28 % and -0.317 % to 0.345 %. Human liver APTw and GlycoCEST measurements had 95 % limits of agreement of -0.842 % to 0.899 % and -0.344 % to 0.164 %. After 24 hours, fasting rat liver APTw and GlycoCEST signals decreased from 2.38 ± 0.86 % to 0.67 ± 1.12 % and from 0.34 ± 0.26 % to -0.18 ± 0.37 % respectively (p < 0.05). After CCl4 intoxication rat liver APTw and GlycoCEST signals decreased from 2.46 ± 0.48 % to 1.10 ± 0.77 %, and from 0.34 ± 0.23 % to -0.16 ± 0.51 % respectively (p < 0.05). CEST liver imaging at 3.0-T showed high sensitivity for fasting as well as CCl4 intoxication. (orig.)

  5. Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching.

    Science.gov (United States)

    Pluskal, Tomáš; Uehara, Taisuke; Yanagida, Mitsuhiro

    2012-05-15

    Mass spectrometry is commonly applied to qualitatively and quantitatively profile small molecules, such as peptides, metabolites, or lipids. Modern mass spectrometers provide accurate measurements of mass-to-charge ratios of ions, with errors as low as 1 ppm. Even such high mass accuracy, however, is not sufficient to determine the unique chemical formula of each ion, and additional algorithms are necessary. Here we present a universal software tool for predicting chemical formulas from high-resolution mass spectrometry data, developed within the MZmine 2 framework. The tool is based on the use of a combination of heuristic techniques, including MS/MS fragmentation analysis and isotope pattern matching. The performance of the tool was evaluated using a real metabolomic data set obtained with the Orbitrap MS detector. The true formula was correctly determined as the highest-ranking candidate for 79% of the tested compounds. The novel isotope pattern-scoring algorithm outperformed a previously published method in 64% of the tested Orbitrap spectra. The software described in this manuscript is freely available and its source code can be accessed within the MZmine 2 source code repository.

  6. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  7. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  8. Balanced Steady-State Free Precession (bSSFP) from an effective field perspective: Application to the detection of chemical exchange (bSSFPX)

    Science.gov (United States)

    Zhang, Shu; Liu, Zheng; Grant, Aaron; Keupp, Jochen; Lenkinski, Robert E.; Vinogradov, Elena

    2017-02-01

    Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition.

  9. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X...... by the electrical conductivity relaxation technique, from which the surface exchange coefficient was determined. (C) 2008 The Electrochemical Society....

  10. Chemical Synthesis of Deoxynivalenol-3-β-d-[13C6]-glucoside and Application in Stable Isotope Dilution Assays

    Directory of Open Access Journals (Sweden)

    Katharina Habler

    2016-06-01

    Full Text Available Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first 13C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[13C6]-glucoside originated from unlabeled deoxynivalenol and [13C6]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[13C6]-glucoside and the purchased labeled standard [13C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.

  11. Evidence from sup 18 O exchange measurements for steps involving a weak acid and a slow chemical transformation in the mechanism of phosphorylation of the gastric H sup + ,K sup + -ATPase by inorganic phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Faller, L.D.; Diaz, R.A. (Univ. of California School of Medicine and Veterans Administration Hospital Center, Los Angeles (USA))

    1989-08-22

    Phosphorylation of the gastric H,K-ATPase by P{sub i} has been studied by measuring the P{sup 18}O{sub j}{sup 16}O{sub 4-j} distribution as a function of time at different H{sup +}, K{sup +}, and ({sup 18}O)P{sub i} concentrations. The advantage of isotope exchange measurements is that the P{sup 18}O{sub j}{sup 16}O{sub 4-j} distribution depends on the relative rates of HOH loss to form the phosphoenzyme intermediate and P{sub i} dissociation from the enzyme. Therefore, {sup 18}O exchange is a sensitive probe of mechanism. K{sup +} increases the exchange rate ({nu}{sub ex}) but does not affect the partition coefficient (P{sub c}) that determines the P{sup 18}O{sub j}{sup 16}O{sub 4-j} distribution. Conversely, H{sup +} inhibits exchange. A single P{sub c} describes the data at every pH, but the value increases from 0.04 to pH 8 to 0.64 at pH 5.5. {nu}{sub ex} depends hyperbolically on (P{sub i}){sub 0}. K{sub m} for P{sub i} does not depend on pH, and P{sub c} does not depend on (P{sub i}){sub 0}. Individual rate constants in the phosphorylation mechanism are estimated. Formation of the E{center dot}P{sub i} complex that looses HOH is 1-2 orders of magnitude slower at pH 5.5 than at pH 8 and is not diffusion controlled. The observed change in P{sub c} with pH is compatible with catalysis occurring by a different mechanism when a group with pK{sub a} = 7.2 is protonated. Slower than diffusion-controlled formation of the E{center dot}P{sub i} complex that splits out HOH is evidence for a relatively slow, unimolecular chemical transformation involving an additional intermediate in the phosphorylation mechanism, such as a protein conformational change.

  12. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    Science.gov (United States)

    Seewald, Jeffrey S.; Seyfried, William E., Jr.; Shanks, Wayne C., III

    1994-11-01

    Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400°C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H 2S, CO 2, CH 4, and C organic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The δ 34S cdt values of dissolved H 2S varied from -10.9 to +4.3‰ during seawater-sediment interaction at 325 and 400°C and from -16.5 to -9.0‰ during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375°C. In the absence of seawater SO 4, H 2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO 4, reduction of SO 4 contributes directly to H 2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO 4 reduction. Requisite acidity for the reduction of SO 4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH 4 was characterized by δ 13C pdb values ranging between -20.8 and -23.1‰, whereas δ 13C pdb values for dissolved C organic ranged between -14.8 and -17.7%. Mass balance calculations indicate that δ13C values for organically derived CO 2 were ≥ - 14.8%. Residual solid sedimentary organic C showed small (≤ 0.7‰) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor

  13. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    Science.gov (United States)

    Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.

    1994-01-01

    Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400??C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H2S, CO2, CH4, and Corganic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The ??34Scdt values of dissolved H2S varied from -10.9 to +4.3??? during seawater-sediment interaction at 325 and 400??C and from -16.5 to -9.0??? during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375??C. In the absence of seawater SO4, H2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO4, reduction of SO4 contributes directly to H2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO4 reduction. Requisite acidity for the reduction of SO4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH4 was characterized by ??13Cpdb values ranging between -20.8 and -23.1???, whereas ??13Cpdb values for dissolved Corganic ranged between -14.8 and -17.7%. Mass balance calculations indicate that ??13C values for organically derived CO2 were ??? - 14.8%. Residual solid sedimentary organic C showed small (??? 0.7???) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor hydrothermal systems

  14. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France

    Directory of Open Access Journals (Sweden)

    M. C. Pierret

    2014-03-01

    Full Text Available This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U activity ratios (AR determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U implying (234U/238U AR It appears that the (234U/238U AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating

  15. Migrating Ignimbrite Flares in the Central Andes, Implications for Crustal Evolution Based on Chemical, Isotopic, Geochronological, and GIS-Based Volumetric Data

    Science.gov (United States)

    Worner, G.; Brandmeier, M.; Freymuth, H.; Heistek, R. M.

    2014-12-01

    Temporal and compositional patterns of Neogene ignimbrites in the Central Andes were analysed using GIS and geostatistical modelling based on 203 digitized ignimbrite sheets for which geochronological, geochemical, and Sr-Nd-Pb-isotopic data on pumices as well as Sr-O isotopes on minerals from selected samples were compiled and compared to compositional and isotopic data from andesite lavas. Composition, timing, volumes and sources of erupted ignimbrite deposits are thus constrained and magma volumes through space and time are calculated. The total erupted ignimbrite magma volume of 31,000 km3 (minimum value) in the past 30 Ma indicate an average magmatic addition of 20-30 km3*Ma/km, similar to the basaltic "base"-flux for arc magmatism. Ignimbrite flare-ups are, however, rather punctuated, short-lived events well separated in space and time. There is a clear N-S "younging" of ignimbrite pulses from N to S at 19-24 Ma, 13-14 Ma, 6-10 Ma and 3-6 Ma. Ignimbrite eruptions occurred in the wake of subduction of the Juan-Fernandez ridge on the Nazca Plate passing below the Central Andes from N to S. Low angle subduction caused compression and fluid release is followed by massive inflow and melting of asthenospheric mantle when the slab steepened again after the passing of the ridge. This in turn caused massive melting within the crust aided by advective heat transport. Differences in chemical and isotopic composition of the large-volume ignimbrites are related to changes in crustal thickness, and different "preconditioning" during the Andean orogeny at a given space in time. Isotope data and whole rock compositional data suggest a higher degree of crustal assimilation for the younger Altiplano ignimbrites in the S (c. 50%) compared to the older (22-19 Ma) ignimbrites in the N were the crustal component is significantly less (20%). REE compositions reflect changes in crustal thickness with a "transition" at c. 13-9 Ma that can be related to accelerated crustal shortening

  16. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit

    Science.gov (United States)

    Yan, Xue-long; Chen, Bin

    2014-11-01

    The Houxianyu borate deposit in northeastern China is one of the largest boron sources of China, hosted mainly in the Paleoproterozoic meta-volcanic and sedimentary rocks (known as the Liaohe Group) that are characterized by high boron concentrations. The borate ore-body has intimate spatial relationship with the Mg-rich carbonates/silicates of the Group, with fine-grained gneisses (meta-felsic volcanic rocks) as main country rocks. The presence of abundant tourmalinites and tourmaline-rich quartz veins in the borate orebody provides an opportunity to study the origin of boron, the nature of ore-forming fluids, and possible mineralization mechanism. We report the chemical and boron isotopic compositions of tourmalines from the tourmaline-rich rocks in the borate deposit and from the tourmaline-bearing fine-grained gneisses. Tourmalines from the fine-grained gneisses are chemically homogeneous, showing relatively high Fe and Na and low Mg, with δ11B values in a narrow range from +1.22‰ to +2.63‰. Tourmalines from the tourmaline-rich rocks, however, commonly show compositional zoning, with an irregular detrital core and a euhedral overgrowth, and have significantly higher Mg, REE (and more pronounced positive Eu anomalies), V (229-1852 ppm) and Sr (208-1191 ppm) than those from the fine-grained gneisses. They show varied B isotope values ranging from +4.51‰ to +12.43‰, which plot intermediate between those of the terrigenous sediments and arc rocks with low boron isotope values (as represented by the δ11B = +1.22‰ to +2.63‰ of the fine-grained gneisses of this study) and those of marine carbonates and evaporates with high boron isotope values. In addition, the rim of the zoned tourmaline shows notably higher Mg, Ti, V, Sn, and Pb, and REE (particularly LREEs), but lower Fe, Co, Cr, Ni, Zn, Mn, and lower δ11B values than the core. These data suggest that (1) the sources of boron of the borate ore-body are mainly the Paleoproterozoic meta-volcanic and

  17. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Tietze, Anna; Blicher, Jakob; Mikkelsen, Irene Klaerke; Østergaard, Leif; Strother, Megan K; Smith, Seth A; Donahue, Manus J

    2014-02-01

    Chemical exchange saturation transfer (CEST)-derived, pH-weighted, amide proton transfer (APT) MRI has shown promise in animal studies for the prediction of infarction risk in ischemic tissue. Here, APT MRI was translated to patients with acute stroke (1-24 h post-symptom onset), and assessments of APT contrast, perfusion, diffusion, disability and final infarct volume (23-92 days post-stroke) are reported. Healthy volunteers (n = 5) and patients (n = 10) with acute onset of symptoms (0-4 h, n = 7; uncertain onset diffusion- and perfusion-weighted MRI, fluid-attenuated inversion recovery (FLAIR) and CEST. Traditional asymmetry and a Lorentzian-based APT index were calculated in the infarct core, at-risk tissue (time-to-peak, TTP; lengthening) and final infarct volume. On average (mean ± standard deviation), control white matter APT values (asymmetry, 0.019 ± 0.005; Lorentzian, 0.045 ± 0.006) were not significantly different (p > 0.05) from APT values in normal-appearing white matter (NAWM) of patients (asymmetry, 0.022 ± 0.003; Lorentzian, 0.048 ± 0.003); however, ischemic regions in patients showed reduced (p = 0.03) APT effects compared with NAWM. Representative cases are presented, whereby the APT contrast is compared quantitatively with contrast from other imaging modalities. The findings vary between patients; in some patients, a trend for a reduction in the APT signal in the final infarct region compared with at-risk tissue was observed, consistent with tissue acidosis. However, in other patients, no relationship was observed in the infarct core and final infarct volume. Larger clinical studies, in combination with focused efforts on sequence development at clinically available field strengths (e.g. 3.0 T), are necessary to fully understand the potential of APT imaging for guiding the hyperacute management of patients.

  18. Carbon dioxide and helium dissolved gases in groundwater at central Tenerife Island, Canary Islands: chemical and isotopic characterization

    Science.gov (United States)

    Marrero-Diaz, Rayco; López, Dina; Perez, Nemesio M.; Custodio, Emilio; Sumino, Hirochika; Melián, Gladys V.; Padrón, Eleazar; Hernandez, Pedro A.; Calvo, David; Barrancos, José; Padilla, Germán; Sortino, Francesco

    2015-10-01

    Seismic-volcanic unrest was detected between 2004 and 2005 in the central and northwest zones of Tenerife Island (Canary Islands, Spain). With the aim of strengthening the program of geochemical and seismic-volcanic surveillance, a study of the origin, characteristics, and spatial distribution of dissolved carbon dioxide (CO2) and helium (He) gases in the volcanic aquifer of central Tenerife Island and around Teide volcano was carried out. This work also improves the hydrogeological and hydrogeochemical conceptual model of groundwater flow. Dissolved CO2 concentrations in sampled groundwater are several orders of magnitude higher than that of air-saturated water (ASW) suggesting a significant contribution of non-atmospheric CO2, mainly magmatic, confirmed through measurement of isotopic compositions (δ13CTDIC) and total dissolved inorganic carbon (TDIC) concentrations. A vertical stratification of dissolved CO2 and δ13CTDIC values was observed in the volcanic aquifer at the eastern region of Las Cañadas Caldera. Stratification seems to be controlled by both degree of magmatic CO2-water interaction and CO2 degassing and the original δ13Cco2(g) isotopic composition. The highest dissolved helium (4He) concentrations in groundwater seem to be related to radiogenic contributions resulting from water-rock interactions, and increase with residence time, instead of with endogenous magmatic inputs. Isotopic systematics show that the dissolved gases in groundwater of central Tenerife are variable mixtures of CO2-3He-rich fluids of volcanic-hydrothermal origin with both organic and atmospheric components. The results suggest that the eastern area of Las Cañadas Caldera, the South Volcanic Ridge, and the Teide summit cone are the areas most affected by degassing of the volcanic-hydrothermal system, and they are therefore the most suitable zones for future geochemical monitoring.

  19. Isotopic and chemical analyses of a temperate firn core from a Chinese alpine glacier and its regional climatic significance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mt. Yulong is the southernmost currently glacier-covered area in Eurasia, including China. There are 19 sub-tropical temperate glaciers on the mountain, controlled by the south-western monsoon climate. In the summer of 1999, a firn core, 10. 10 m long, extending down to glacier ice, was recovered in the accumulation area of the largest glacier, Baishui No. 1. Periodic variations of climatic signals above 7. 8 m depth were apparent, and net accumulation of four years was identified by the annual oscillations of isotopic and ionic composition. The boundaries of annual accumulation were confirmed by higher values of electrical conductivity and pH, and by dirty refreezing ice layers at the levels of summer surfaces. Calculated mean annual net accumulation from 1994/1995 to 1997/1998 was about 900 mm water equivalent. The amplitude of isotopic variations in the profile decreased with increasing depth, and isotopic homogenization occurred below 7. 8 m as a result of meltwater percolation. Variations of δ18O above 7. 8 m showed an approximate correlation with the winter climatic trend at Li Jiang Station, 25 km away. Concentrations of Ca2+ and Mg2+ were much higher than those of Na+ and K+ , indicating that the air masses for precipitation were mainly from a continental source, and that the core material accumulated during the winter period. The close correspondence of C1- and Na+ indicated their common origin. Very low concentrations of SO2-4 and NO3- suggest that pollution caused by human activities is quite low in the area. The mean annual net accumulation in the core and the estimated ablation indicate that the average annual precipitation above the glacier's equilibrium line is 2400 - 3150 mm, but this needs to be confirmed by long term observation of mass balance.

  20. Chemical and Isotopic Composition of Waters and Dissolved Gases in Some Thermal Springs of Sicily and Adjacent Volcanic Islands, Italy

    Science.gov (United States)

    Grassa, Fausto; Capasso, Giorgio; Favara, Rocco; Inguaggiato, Salvatore

    2006-04-01

    Hydrochemical (major and some minor constituents), stable isotope ([InlineMediaObject not available: see fulltext.] and [InlineMediaObject not available: see fulltext.], δ13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg > Na-SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, δ 18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and δ 13C TDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from 10.0‰ and 2.8‰, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios ([InlineMediaObject not available: see fulltext.] value from -3 to 0‰ vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.

  1. Identifying sources of stream water sulfate after a summer drought in the Sleepers River watershed (Vermont, USA) using hydrological, chemical, and isotopic techniques

    Science.gov (United States)

    Mayer, B.; Shanley, J.B.; Bailey, S.W.; Mitchell, M.J.

    2010-01-01

    In many forested headwater catchments, peak SO42 - concentrations in stream water occur in the late summer or fall following drought potentially resulting in episodic stream acidification. The sources of highly elevated stream water SO42 - concentrations were investigated in a first order stream at the Sleepers River watershed (Vermont, USA) after the particularly dry summer of 2001 using a combination of hydrological, chemical and isotopic approaches. Throughout the summer of 2001 SO42 - concentrations in stream water doubled from ???130 to 270 ??eq/L while flows decreased. Simultaneously increasing Na+ and Ca2+ concentrations and ??34S values increasing from +7??? towards those of bedrock S (???+10.5???) indicated that chemical weathering involving hydrolysis of silicates and oxidation of sulfide minerals in schists and phyllites was the cause for the initial increase in SO42 - concentrations. During re-wetting of the watershed in late September and early October of 2001, increasing stream flows were accompanied by decreasing Na+ and Ca2+ concentrations, but SO42 - concentrations continued to increase up to 568 ??eq/L, indicating that a major source of SO42 - in addition to bedrock weathering contributed to peak SO42 - concentrations. The further increase in SO42 - concentrations coincided with an abrupt decrease of ??34S values in stream water SO42 - from maximum values near +10??? to minimum values near -3???. Soil investigations revealed that some C-horizons in the Spodsols of the watershed contained secondary sulfide minerals with ??34S values near -22???. The shift to negative ??34S values of stream water SO42 - indicates that secondary sulfides in C-horizons were oxidized to SO42 - during the particularly dry summer of 2001. The newly formed SO42 - was transported to the streams during re-wetting of the watershed contributing ???60% of the SO42 - during peak concentrations in the stream water. Thereafter, the contribution of SO42 - from oxidation of

  2. The effect of steam-heating processes on the chemical and isotopic composition of the shallow thermal aquifer in Vulcano Island (Aeolian Arc, Sicily).

    Science.gov (United States)

    Capasso, G.; Federico, C.; Madonia, P.; Paonita, A.

    2012-04-01

    We report on a comprehensive study of major-ion chemistry, dissolved gases, and stable isotopes measured in water wells at Vulcano Island since 1988. Particularly, we focus on chemical and hydrological modifications of groundwaters observed in the last two decades, interpreted according to a quantitative model describing steam condensation and boiling phenomena in shallow water bodies (Federico et al., 2010). According to this model, we infer that (i) strong isotope enrichment observed in some shallow thermal waters can result from an increasing mass rate of condensing deep vapor, even in water being meteoric in origin; (ii) the high pCO2 measured in the coldest and peripheral waters are explained by the progressive CO2 enrichment in the vapor phase during multistep boiling; and (iii) the high Cl- and SO4-- contents in the hottest waters can be attributed to the direct condensation (single-step) of volcanic vapor. The model also takes into account both the mass fluxes and the compositions of the involved endmembers (steam and shallow groundwater), which provides important inferences on the modifications observed during the periods of increasing mass and heat input from depth occurred at Vulcano Island. The volcanic crisis that occurred in 1988-1993 profoundly affected the composition of some thermal wells that were more-directly affected by ascending vapour. In particular, higher Cl-, SO4--, and HCO3- contents, temperature, and pCO2 values were measured. These variations are all explained by a different composition of the vapor entering the aquifer paralleled by a higher mass rate relative to the shallow meteoric endmember. Minor effects on the shallow thermal aquifer are observed during the following periods of increasing heat and mass flux from depth, mostly recorded in the crater area. This implies that the shallow thermal aquifer is affected by magmatic fluids ascending along central conduits only when there is a significant increase in the heat and mass fluxes

  3. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Travaglio, C. [INAF—Astrophysical Observatory Turin, Strada Osservatorio 20, I-10025 Pino Torinese (Turin) (Italy); Gallino, R. [B2FH Association, I-10025 Pino Torinese (Turin) (Italy); Rauscher, T. [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dauphas, N. [Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Röpke, F. K. [Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Hillebrandt, W., E-mail: travaglio@oato.inaf.it, E-mail: claudia.travaglio@b2fh.org [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching bei München (Germany)

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  4. Use of isotopic spike from Tropical Storm to understand water exchange on large scale: study case of Rafael Storm in the Lesser Antilles archipelago, October 2012.

    Science.gov (United States)

    Lambs, Luc

    2014-05-01

    Aim The tracking of the rainfall from Tropical Storm Raphael of mid October 2012 was used to better understand how the eco-hydrology and the water cycle function in wet areas, such as mangrove growing in salty ponds on a number of tropical islands. Location Guadeloupe and Saint Martin Islands in the Leeward Islands archipelago, Lesser Antilles. Methods Compared to normal tropical rainfall, tropical storms display distinct depleted heavy stable water isotopes which can be used as isotopic spikes to understand these special rainfall inflows. Rainfall, groundwater, river and pond water were sampled before, during and after the storm. Results In Guadeloupe where the tropical storm started, the rainfall isotopic signal reached values of d18O= -9 to -8 o on October 12-14th 2012, whereas the normal range is d18O= -4 to -2 o as measured from 2009 to 2012. It was possible to detect such a depleted signal in the groundwater and in the mangrove forest during the days after the storm event. Main conclusions The use of such natural isotopic spikes provides an opportunity to obtain a dynamic and time reference on a large scale for the study of the hydro-ecosystems and the effects on the impacted tropical islands. A few days after the cyclone, the isotopic spikes were found in river, groundwater and mangrove water pools with values up to d18O= -8.6 o . For the water basins on the windward side, the downhill salty pond water was almost completely renewed. By contrast, only 20 to 50 % of the water in the ponds located on the leeward side was renewed. No specific elevation in the d-excess values was noted, certainly due to the relatively long distance from the eye of the storm (180 to 300 km), which meant that there was no spray water evaporative process.

  5. Boundary processes traced by neodymium isotopes

    Science.gov (United States)

    Jeandel, C.; Lacan, F.

    2003-04-01

    Continental margins have been identified as preferential sites for removing of reactive elements from the ocean, on the base of U-series measurements (more specifically 231Pa/230Th). This process is called boundary scavenging (Bacon, 1988). Five years of neodymium isotopes data in water masses along the ocean margins (Indonesia, Papua New Guinea, Greenland-Scotland ridge and Labrador Sea) suggests that Nd is transferred from the sediments to the ocean but the reverse also occurs via the so-called boundary scavenging. These processes are only detectable by isotopic ratio measurements because they affect the isotopic signature of the water mass coming in contact with the margin, without changing its concentration. They can involve much higher fluxes than net input processes: for example, the modification of the AAIW signature along the Papua New Guinea slope involves exchange processes only (Lacan and Jeandel, 2001). Since we suspect that such processes not only affect the Nd oceanic chemistry but also the chemical fate of other reactive elements in the ocean, we suggest that the concept of boundary scavenging should be extended to "boundary exchange".

  6. Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and δ{sup 65}Cu isotopic composition

    Energy Technology Data Exchange (ETDEWEB)

    El Azzi, D. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Viers, J. [Université de Toulouse (France); UPS, Géosciences Environnement Toulouse (GET), 14, avenue Édouard Belin, Toulouse31400 (France); CNRS, IRD, CNES (France); GET, 14, avenue Édouard Belin, Toulouse 31400 (France); Guiresse, M.; Probst, A. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Aubert, D. [Université de Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditérranéens (CEFREM), UMR 5110, F-66860, Perpignan (France); CNRS, CEFREM, UMR 5110, F-66860, Perpignan (France); Caparros, J.; Charles, F.; Guizien, K. [CNRS, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); UPMC Université Paris 6, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); Probst, J.L., E-mail: jean-luc.probst@ensat.fr [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France)

    2013-10-01

    For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ{sup 65}Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (> 60%) whereas in cultivated soil, BS and SPM, Cu was mostly (> 25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ{sup 65}Cu in bulk samples were similar to bedrock therefore; δ{sup 65}Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ{sup 65}Cu close to local bedrock, + 0.07‰). Copper in water soluble fraction of SPM (δ{sup 65}Cu = + 0.26‰) was similar to dissolved river Cu (δ{sup 65}Cu = + 0.31‰). Copper from fungicide treatment (δ{sup 65}Cu = − 0.35‰) was bound to organic matter (δ{sup 65}Cu = − 0.20‰) without or with slight isotopic fractioning. A preferential

  7. Accurate fast method with high chemical yield for determination of uranium isotopes ({sup 234}U, {sup 235}U, {sup 238}U) in granitic samples using alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, Laila A., E-mail: lailagurgus@yahoo.com; Farag, Nagdy M.; Salim, Adham K.

    2015-03-21

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St{sub 4} (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO{sub 4}+H{sub 2}SO{sub 4}+NH{sub 4}OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6. - Highlights: • Radiochemical technique for analysis uranium isotopes. • Alpha-particle spectrometry is performed after a radiochemical procedure. • Electrodeposition conditions for preparation of alpha uranium source. • Using {sup 232}U (t{sub 1/2}=70.6a, E{sub α}=5320.24 keV, intensity=69.1%) as an internal tracer makes it a highly reliable technique.

  8. Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation

    Science.gov (United States)

    Huang, F.; Lundstrom, C. C.; Glessner, J.; Ianno, A.; Boudreau, A.; Li, J.; Ferré, E. C.; Marshak, S.; DeFrates, J.

    2009-02-01

    offsets are 2.8‰ and 9.9‰, respectively, much greater than the range of Fe-Mg isotope variation in high-temperature terrestrial samples. In contrast, no obvious chemical differentiation was observed in a similar experiment (of 33 days duration) where the temperature ranged from 550 to 350 °C, indicating the critical role of the melt in causing the differentiation observed in the 950-350 °C experiment. If temperature gradients can be sustained for the multi-million-year time scales implied by geochronology in some plutonic systems, thermal migration could play a heretofore unrecognized role in the development of differentiated plutons. Elemental distributions, dominated by phase equilibria, cannot be used to discriminate thermal migration from conventional magma differentiation processes such as fractional crystallization. However, the observation of Fe-Mg isotopic variations in partially molten portions of the experiment indicates that these isotopic systems could provide a unique fingerprint to this process. This result could also provide a possible explanation for the Fe-Mg isotope variations observed in high-temperature silicate rocks and minerals.

  9. Stable isotope-labeled vitamin D, metabolites and chemical analogs: Synthesis and use in mass spectrometric studies

    Energy Technology Data Exchange (ETDEWEB)

    Coldwell, R.D.; Trafford, D.J.; Varley, M.J.; Kirk, D.N.; Makin, H.L. (London Hospital Medical College (England))

    1990-10-01

    Methods for the measurement of vitamin D and its metabolites using stable isotope-labeled internal standards and mass spectrometry are reviewed. The synthesis of both labeled and unlabeled standards is illustrated, and details of the synthesis of (26,26,27,27,27(-2)H5)-25,26-dihydroxyvitamin D3 and (28,28,28(-2)H3)-24,25-dihydroxyvitamin D2 are given. The use of in vitro biologic systems for the production of further metabolites of deuterated 25-hydroxyvitamin D3 is discussed. Use of deuterated 25-hydroxydihydrotachysterol3 as a substrate in the isolated perfused rat kidney has provided valuable data for the assignment of structure to a number of metabolites of 25-hydroxydihydrotachysterol3 formed in this system. 51 refs.

  10. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in th...

  11. Chemical and isotopic provenance tracers in ancient copper and bronze artifacts: a geochemical database of copper mines

    Science.gov (United States)

    Giunti, I.; Artioli, G.; Giussani, B.; Marelli, M.; Recchia, S.; Angelini, I.; Baumgarten, B.; Omenetto, P.; Villa, I. M.

    2009-04-01

    The provenance of ore minerals used in prehistoric and historic times for copper smelting and extraction is one of the basic questions that archaeologists pose to modern analytical archaeometry [1]. To aid metal provenancing studies, a database of fully characterized Alpine copper mineralisations is being developed as the fundamental reference frame for metal extraction and diffusion in the past. In the early stages of the project, some of the most well known copper deposits in the Western Alps were selected and compared with very different minerogenetic deposits from the French Queyras (Saint Veran) and the Ligurian Apennines (Libiola, Monte Loreto). The fully characterized samples were then analysed by ICP-QMS (inductively coupled plasma-quadrupolar mass spectrometry). The abundances of about 60 minor and trace elements, including most transition metals and chalcophile elements, and the rare earths were measured in all samples. Furthermore, the feasibility of the routine reliable measurement of the 65Cu/63Cu isotope ratio [2] and its eventual use as a possible ore tracer was tested. Multicollector ICP-Mass Spectrometry was used to determine precise Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) and is being used for 65Cu/63Cu ratios as well. Advanced strategies based on multivariate analysis were then used to discriminate the ore mineral provenance. Data were treated with the chemometric software "The Unscrambler Version 9.5" (CAMO AS, Trondheim, Norway). Data pre-treatment, PCA [3] and PLS-DA [4,5] models were performed as implemented in the software. The availability of such unprecedented and complete amount of data of Alpine copper deposits also yields information relevant for the geochemical and minerogenetic intepretation of the deposits themselves. Application of PCA and PLS-DA to the geochemical and isotopic database proved to be a very powerful tool to discriminate the ore source areas with very little ambiguity. The applications to

  12. Cr stable isotope fractionation and reaction kinetics in aqueous milieu

    Science.gov (United States)

    Zink, S.; Schoenberg, R.; Staubwasser, M.

    2009-12-01

    using H2O2 as reducing agent. The observed, small Cr isotope fractionation can not be explained by one, unidirectional oxidation process. The high energy needed to oxidise Cr(III) to Cr(VI), potential Cr(III) oligomerisation and the formation of Cr(IV) and/or Cr(V) intermediates make the oxidation of Cr(III) to Cr(VI) a very complex fractionation mechanism. Our best-fit modelling points to an overall isotope fractionation Δ(53,52Cr)Cr(VI)-Cr(III) of +0.15 ‰ during the different oxidation steps, which is overprinted by a much larger isotope fractionation Δ(53,52Cr)Cr(III)-Cr(VI) of -3.4 ‰ during the back reduction of approximately 15 % of the chromium. No isotope exchange between soluble Cr(VI) and Cr(III) species at pH values of 5.5 and 7 was revealed by our experiments over a timescale of 120 hours. This observation is in good agreement with the lack of isotope exchange between oxygen bound in dissolved chromate CrO42- and that of the surrounding water [3]. [1] Schoenberg, R. et al. (2008) Chemical Geology, 249, 294ff. [2] Ellis, A. et al. (2002) Science, 295, 2060ff. [3] Bullen, T. et al. (2009) Geochim. Cosmochim. Acta, 73 (13), Suppl. 1, A173

  13. Stable Isotope Constraints on the Ocean from Hydrothermally-altered Igneous Rocks

    Science.gov (United States)

    Gregory, R. T.

    2007-12-01

    The 18O/16O ratio of the ocean provides an important constraint on the global geochemical cycles in the Precambrian Earth. The oxygen isotope ratio of the ocean is most likely buffered near its present day value as long as plate tectonics is operative. A quasi-steady state value for oxygen isotopes is reached on a 100 Myr timescale after the onset of plate tectonics. Hydrothermally-altered igneous rocks constrain the oxygen and hydrogen isotope value of the hydrosphere back through time. Whereas, the oxygen isotope composition of seawater owes its value to the competition between low temperature chemical weathering and mid-ocean ridge hydrothermal exchange, there is no such process for hydrogen isotopes. Changes in the oxygen isotope ratio of seawater should be reflected in hydrothermally altered rocks by the presence of low or high 18O exchanged igneous rocks with normal δD values. The distribution of D and 18O in hydrothermally rocks is used to infer the position of the meteoric water line back through time. Results from the Phanerozoic, the Proterozoic, and the Archean fail to confirm the hypothesis that the global oceans were ever strongly 18O-depleted. The meteoric water line is anchored to the isotopic composition of seawater, the isotope standard for both oxygen and hydrogen isotopes. The ability to use sedimentary rocks or other proxies for climate depend upon the variation in the stable isotopic composition of seawater. Thus far, the hydrothermal record does not support the existence of low 18O oceans. This suggests that low 18O values observed in carbonates and cherts result from either precipitation from oceans with higher temperature or from bodies of water isolated from the open ocean.

  14. A Mn-54 Radiotracer Study of Mn Isotope Solid-Liquid Exchange during Reductive Transformation of Vernadite (δ-MnO₂) by Aqueous Mn(II)

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, Evert J.; Kustka, Adam B. [Rutgers

    2015-04-09

    We employed Mn-54 radiotracers to characterize the extent and dynamics of Mn atom exchange between aqueous Mn(II) and vernadite (δ-Mn(IV)O2) at pH 7.5 under anoxic conditions. Exchange of Mn atoms between the solid and liquid phase is rapid, reaching dynamic equilibrium in 2–4 days. We propose that during the initial stages of reaction, Mn atom exchange occurs through consecutive comproportionation-disproportionation reactions where interfacial electron transfer from adsorbed Mn(II) to lattice Mn(IV) generates labile Mn(III) cations that rapidly disproportionate to reform aqueous Mn(II) and solid-phase Mn(IV). Following nucleation of Mn(III)OOH phases, additional exchange likely occurs through electron transfer from aqueous Mn(II) to solid-phase Mn(III). Our results provide evidence for the fast and extensive production of transient Mn(III) species at the vernadite surface upon contact of this substrate with dissolved Mn(II). We further show that HEPES buffer is a reductant of lattice Mn(IV) in the vernadite structure in our experiments. The methods and results presented here introduce application of Mn-54 tracers as a facile tool to further investigate the formation kinetics of labile Mn(III) surface species and their impacts on Mn-oxide structure and reactivity over a range of environmentally relevant geochemical conditions.

  15. Evaluating Sources of Chemical Pathways of Aerosol Production on the Southern Ute Indian Reservation and Navajo Nation using Isotopic and Geochemical Analysis

    Science.gov (United States)

    King, M. Z.; Michalski, G. M.

    2012-12-01

    Increase emissions of nitrogen oxides (NOx) as a result of the development of oil, gas and coal resources in the Four Corners region of the United States have caused concern for area American Indian tribes that levels of ozone, acid rain, and aerosols or particulate matter (PM) may increase on reservation lands. NOx in the atmosphere plays an important role in the formation of these pollutants and high levels are indicators of poor air quality and exposure to them has been linked to a host of human health effects and environmental problems facing today's society. Nitrogen oxides are eventually oxidized in the atmosphere to form nitric acid and particulate nitrate which falls to earth's surface by way of dry or wet deposition. In the end, it is the removal of NOx from the atmosphere by chemical conversion to nitrate that halts this production of oxidants, acid, and aerosols. Despite the importance of understanding atmospheric nitrate production there remains major deficiencies in estimating the significant key reactions that transform atmospheric NOx. This project will examine the chemical composition (Cl-, NO3-, SO42-) and stable isotope composition (N15, O17, O18, Δ17O) of aerosols (PM2.5-PM10) collected on the Southern Ute Indian Reservation and Navajo Nation to provide insight into the sources of NOx and the oxidation pathways that convert NOx into nitrate on these reservation lands.

  16. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy

    Science.gov (United States)

    Guirguis, Laila A.; Farag, Nagdy M.; Salim, Adham K.

    2015-03-01

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St4 (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO4+H2SO4+NH4OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6.

  17. The Stanford-U.S. Geological Survey SHRIMP ion microprobe--a tool for micro-scale chemical and isotopic analysis

    Science.gov (United States)

    Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.

    2012-01-01

    Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.

  18. Fe isotope fractionation between chalcopyrite and dissolved Fe during hydrothermal recrystallization: An experimental study at 350 °C and 500 bars

    Science.gov (United States)

    Syverson, Drew D.; Luhmann, Andrew J.; Tan, Chunyang; Borrok, David M.; Ding, Kang; Seyfried, William E.

    2017-03-01

    Equilibrium Fe isotope fractionation between chalcopyrite and dissolved Fe was determined in acidic chloride-bearing fluid at 350 °C and 500 bars. The study utilized deformable gold-cell technology, which allowed time-series sampling of solution during chalcopyrite recrystallization and isotope exchange. A key element of the experimental design involved the addition of anomalous dissolved 57Fe to an on-going experiment as a means of determining the degree and rate of isotope exchange. Taking explicit account of imposed chemical and isotopic mass balance constraints of Fe in fluid and mineral (chalcopyrite) reservoirs, these data indicate that no more than 1000 h is required for the isotopically anomalous dissolved Fe reservoir to exchange completely with the coexisting chalcopyrite. The experimental calibration of the rate of Fe isotope exchange for the δ57Fe-spiked experiment provides critical insight for the time necessary to achieve Fe isotope exchange in two non-spiked, but otherwise identical experiments. The Fe isotope data indicate that the equilibrium fractionation between chalcopyrite and dissolved Fe, Δ56FeCpy-Fe (aq), at 350 °C is small, 0.09 ± 0.17‰ (2σ), and is in good agreement with recent theoretical equilibrium predictions. Owing to the apparent rate of Fe isotope exchange at 350 °C, it is likely that chalcopyrite formed at high temperature deep-sea vents (black smoker systems) achieves isotopic equilibrium, and effectively records the Fe isotopic composition of the coexisting end-member hydrothermal fluid. Comparison of the experimental mineral-fluid equilibrium fractionation factors with conjugate chalcopyrite and dissolved Fe pairs sampled from high temperature hydrothermal vent systems at Axial Caldera and Main Endeavour Field (Juan de Fuca Ridge) are in agreement with this inference. The experimental data were further used to determine the mineral-mineral equilibrium Fe isotope fractionation between pyrite-chalcopyrite, Δ56Fe

  19. $\\beta$-decay study of very neutron-rich Cd isotopes with a chemically selective laser ion source

    CERN Multimedia

    2002-01-01

    Following our test measurements of N=82-84 Cd isotopes with a specifically developed laser ion source (CERN/ISC 97-16, ISC/I 22), we now propose detailed spectroscopic studies of the decay of $^{130}$Cd to $\\,^{132}\\!$Cd, and at least the determination of some gross properties of the new N=85-86 nuclides $^{133}\\!$Cd and $\\,^{134}\\!$Cd. The main nuclear-structure objective of this experiment is the identification of the energies of the single-hole (SH) proton states in $^{131}$In. Nearly all of the other single-nucleon shell-model basis energies around doubly magic $^{132}$Sn are known by now, except those $\\pi$SH in Z=49 $\\,^{131}$In. Theoretical agreement on these values has not been achieved so far. Of particular interest is the depth of the $\\pi$f$_{5/3}$ hole and the p$_{3/2}$ - p$_{1/2}$ spin-orbit splitting. A second important goal is the determination of the position of the lowest-energy 1$^+\\,$ level in $^{130}$In predominantly populated in the Gamow-Teller (GT) decay of N=82 $^{130}\\!$Cd. Apart from...

  20. Chemical and Isotopic Characterization of Waters in Rio Tinto, Spain, Shows Possible Origin of the Blueberry Haematite Nodules in Meridiani Planum, Mars

    Science.gov (United States)

    Coleman, M. L.; Hubbard, C. G.; Mielke, R. E.; Black, S.

    2005-12-01

    at low pH. Ground water migration could produce evaporitic ponds where various bedded sulfate mineral sediments could form. The intergranular pore-spaces would be water filled. Most terrestrial spheroidal nodular concretions form by radial diffusion in pore-water of a chemical component of a very different oxidation state from that of the surrounding water. A nodular concretion is most usually formed by the reaction of the diffusive component with others in the pore-water. There are two main possible reaction sets for formation of the Blueberries that are consistent with all current data. 1. Local concentrations of organic matter (pre-biotic or biotic) formed reduction spots in which a small amount of Fe3+ either in solution or from evaporite mineral salts, was reduced to Fe2+ and then diffused radially to form an iron oxide nodule by reaction with inwardly diffusing dissolved oxygen. 2. Similar local concentrations of organic matter could also have engendered sulfate reduction and consequent outward diffusion of dissolved sulfide reacted with iron in solution to produce an iron sulfide nodule, subsequently oxidized in situ to hematite (maybe via goethite). Our current work is successfully identifying chemical and stable isotopic characteristics for both microbial and abiotic modes of all relevant reactions.

  1. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood.

    Science.gov (United States)

    Gessler, Arthur; Ferrio, Juan Pedro; Hommel, Robert; Treydte, Kerstin; Werner, Roland A; Monson, Russell K

    2014-08-01

    The mechanistic understanding of isotope fractionation processes is increasing but we still lack detailed knowledge of the processes that determine the isotopic composition of the tree-ring archive over the long term. Especially with regard to the path from leaf photosynthate production to wood formation, post-assimilation fractionations/processes might cause at least a partial decoupling between the leaf isotope signals that record processes such as stomatal conductance, transpiration and photosynthesis, and the wood or cellulose signals that are stored in the paleophysiological record. In this review, we start from the rather well understood processes at the leaf level such as photosynthetic carbon isotope fractionation, leaf water evaporative isotope enrichment and the issue of the isotopic composition of inorganic sources (CO2 and H2O), though we focus on the less explored 'downstream' processes related to metabolism and transport. We further summarize the roles of cellulose and lignin as important chemical constituents of wood, and the processes that determine the transfer of photosynthate (sucrose) and associated isotopic signals to wood production. We cover the broad topics of post-carboxylation carbon isotope fractionation and of the exchange of organic oxygen with water within the tree. In two case studies, we assess the transfer of carbon and oxygen isotopic signals from leaves to tree rings. Finally we address the issue of different temporal scales and link isotope fractionation at the shorter time scale for processes in the leaf to the isotopic ratio as recorded across longer time scales of the tree-ring archive.

  2. Methods of isotopic geochronology

    Science.gov (United States)

    Gorokhov, I. M.; Levchenkov, O. A.

    Papers are presented on such topics as the age of the chemical elements; the age of meteorites, the moon, and the earth; isotopic ages of the most ancient terrestrial formations; and the Archean evolution of Enderby Land in the Antarctic as evidenced by isotopic dating. Consideration is also given to a uranium-lead geochronology technique for investigating Precambrian ore deposits, a Pb-Pb technique of zircon dating, and the potentials and limitations of Sm-Nd geochronology.

  3. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Lin, Karen; Sequeira, Carita [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Borchers, Christoph H., E-mail: christoph@proteincentre.com [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada)

    2015-01-07

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • {sup 13}C{sub 6} analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C{sub 2}–C{sub 6} SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C{sub 18} column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from {sup 13}C{sub 6}-3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a

  4. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy

    Directory of Open Access Journals (Sweden)

    S. Dai

    2014-11-01

    Full Text Available Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC, organic carbon (OC, water-soluble organic carbon (WSOC, water-soluble inorganic ions (WSII, metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle−1 km−1 respectively. Emission factors of WSII were 0.016 (F- ~4.17 (Cl- mg vehicle−1 km−1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle−1 km−1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle−1 km−1, respectively. Stable carbon isotopic composition δ13C value was measured and it was −25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0–93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A

  5. Chemical and Isotopic Variations with Depth: a Detailed Saturated Zone Profile of a 140m Thick Coastal Aquifer

    Science.gov (United States)

    Raanan, H.; Ronen, D.; Weisbrod, N.; Dahan, O.; Seiler, K.; Vengosh, A.

    2005-12-01

    A percussion borehole was constructed through the saturated zone of the Mediterranean coastal aquifer in Tel Aviv, Israel, penetrating its three subaquifers and the upper part of the underlying Saqiye aquitard. The research site was previously subjected to direct industrial contamination and is currently exposed to the industrial contaminants in the outskirts of the densely populated Tel Aviv metropolis. Here we report the results of a large variety of analysis conducted on the 140m saturated profile that included field measurements (e.g. dissolved oxygen, pH, temperature, conductivity), major elements (e.g. Cl-, SO42-, HCO3-, NO3-, Ca2+, K+, Na+), trace elements (e.g. Pb, Fe, Cu) and radium isotopic measurements (223Ra, 224Ra, 226Ra). A clear distinction between the units becomes evident along the vertical profile; the upper phreatic unit (A) appears to be more saline relative to the central unit (B) (TDS of 734 and 670 mg/L, respectively). The deep unit (C) is significantly more saline in its lower part (up to 860 mg/L). We observed two nitrate peaks in the central zones of subaquifers B and C. The high nitrate peaks are associated with low Na/Cl and high Ca/Cl ratios. The 224Ra/223Ra ratio also changes with depth; in the upper and the lower subaquifers the relatively low 224Ra/223Ra ratios (50) indicates a larger fraction of a uranium source whereas in the central zone of the aquifer high 224Ra/223Ra ratios reflect rather a predominant thorium source for the dissolved radium. The data obtained through this borehole allows a rare investigation of the heterogeneity of water quality and composition in a coastal aquifer. The data provides characterization of different end-members along the saturated zone and also indicates the different proportions of lateral versus vertical flows of groundwater in a porous media.

  6. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  7. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    Science.gov (United States)

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism.

  8. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2016-09-01

    Full Text Available Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs. Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  9. Cleaning chemical and mechanical of heat exchangers in french nuclear plants; Limpieza mecanica y quimica de intercambiadores de calor en centrales nucleares francesas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J. t.; Guerra, P.; Carreres, C.

    2013-03-01

    This project was carried out under the frame of the approval of LAINSA as a supplier of EDF in France. The inspection performed on systems called the moisture separator reheaters (GSS) of CPO series reactor of EDF nuclear power plants has shown evidence of significant clogging due to deposits of magnetite inside the tubes of tube bundle. The pressure drop between inlet and outlet of the heating was close to maximum design criterion. This effect could result in equipment damage and loss of plant productivity. The aim of the work was the design, development, approval and implementation of a procedure for un blocking the tubes of the GSS respecting the integrity of materials and ensuring the harmlessness of cleaning procedures. The procedure used was to completely remove magnetite deposits in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. The achieve these objectives we have developed a procedure that is basically a mechanical pre-cleaning of all tubes of the GSS in order to unblock tem, followed by a chemical cleaning where magnetite is dissolved and crawled out of the tube bundle. The main results were: -Corrosion less than 10 microns. 100-110 Kg of magnetite removed by heat exchanger. -Final pressure drop similar to that of new equipment. -Waste water: 70 m{sup 3} per exchanger, which were managed by an authorized waste management company. This procedure has been applied successfully in 14 GSS type heat exchangers in Fessenheim and Bugey nuclear power plants in France between 2009 and 2011. This project demonstrates that the long experience of LAINSA in the Spanish nuclear industry along with the knowledge and experience in chemical cleaning of SOLARCA, have served to successfully work demanding and mature markets such as the French nuclear market, solving the problem of deposits of magnetite with an effective and safe method for the treated

  10. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    Science.gov (United States)

    Pomin, Vitor H

    2016-09-07

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  11. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  12. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... variabilis (A.v. PCu) (Ma, L.; Hass, M. A. S.; Vierick, N.; Kristensen, S. M.; Ulstrup, J.; Led, J. J. Biochemistry 2003, 42, 320-330). The R-1 and R-2 relaxation rates of the backbone N-15 nuclei were measured at a series of pH and temperatures on an 15N labeled sample of A.v. PCu, and the 15 N chemical...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  13. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic

  14. Transendothelial lipoprotein exchange and microalbuminuria

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Jensen, Kurt Svarre

    2004-01-01

    . METHODS: Using an in vivo isotope technique, transendothelial exchange of low density lipoprotein (LDL) was measured in 77 non-diabetic individuals. Autologous 131-iodinated LDL was reinjected intravenously, and the 1-h fractional escape rate was calculated as index of transendothelial exchange. RESULTS...... transformed) plasma insulin: beta=0.6 (95% CI: 0.1-1.1); R=0.22; P

  15. Perfect softening of the ferroelectric mode in the isotope-exchanged strontium titanate of SrTi18O3 studied by light scattering.

    Science.gov (United States)

    Takesada, M; Itoh, M; Yagi, T

    2006-06-09

    The mode of the isotope-induced ferroelectric strontium titanate shows a perfect softening at the ferroelectric phase transition temperature , where the frequency of the underdamped mode approaches completely to zero within the instrumental resolution. The spectra of the Raman inactive soft mode have been successfully observed owing to local symmetry breaking and by long-term accumulation of the spectral intensity with a high resolution technique. The mechanism of the phase transition is concluded to be an ideal displacive-type accompanied with perfect softening of the Slater-type polar mode. The difference between the soft mode behavior of and indicates that the origin of the quantum paraelectric state of lies in the quantum fluctuation of the oxide octahedron in the perovskite structure.

  16. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale. At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.

  17. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  18. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  19. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    Science.gov (United States)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  20. Deciphering the "chemical" nature of the exotic isotopes of Hydrogen by the MC-QTAIM analysis: Positive Muon and Muonic Helium as new members of The Periodic Table

    CERN Document Server

    Goli, Mohammad

    2013-01-01

    This report is a primarily survey on the chemical nature of the positively charged muon and muonic Helium (negatively charged muon plus Helium nucleus), as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis. To perform the analysis, the non-Born-Oppenhiemer (non-BO) ab initio methodology termed the fully variational multi-component molecular orbital method (FV-MC_MO) is used to deduce non-BO wavefunctions of various three and four-component molecular systems, as isotopomers of the orthodox hydrogen molecule, replacing proton(s) with muon, deuterium, tritium and muonic Helium. The derived three-component non-BO wavefunctions then are used for the "atoms in molecules" analysis within the context of the MC-QTAIM framework. Using various asymmetric isotopomers of hydrogen molecule, it is demonstrated that both the positively charged muon and muonic Helium are capable to form atoms in molecules in the considered molecules; thus, they reta...

  1. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model

    Science.gov (United States)

    Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan

    2017-01-01

    We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.

  2. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T.; Doi, T.; Tanaka, T.; Ando, Y. [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R.; Kamoshida, J. [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  3. Chemical and isotopic characteristics of the coso east flankhydrothermal fluids: implications for the location and nature of the heatsource

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, B.W.; Kennedy, B.M.; Adams, M.C.; Bjornstad, S.C.; Buck, C.

    2007-01-08

    Fluids have been sampled from 9 wells and 2 fumaroles fromthe East Flank of the Coso hydrothermal system with a view toidentifying, if possible, the location and characteristics of the heatsource inflows into this portion of the geothermal field. Preliminaryresults show that there has been extensive vapor loss in the system, mostprobably in response to production. Wells 38A-9, 51-16 and 83A-16 showthe highest CO2-CO-CH4-H2 chemical equilibration temperatures, rangingbetween 300-340oC, and apart from 38A-9, the values are generally inaccordance with the measured temperatures in the wells. Calculatedtemperatures for the fractionation of 13C between CO2 and CH4 are inexcess of 400oC in fluids from wells 38A-9, 64-16-RD2 and 51A-16,obviously pointing to equilibrium conditions from deeper portions of thereservoir. Given that the predominant reservoir rock lithologies in theCoso system are relatively silicic (granitic to dioritic), the isotopicsignatures appear to reflect convective circulation and equilibrationwithin rocks close to the plastic-brittle transition. 3He/4He signatures,in conjunction with relative volatile abundances in the Coso fluids,point to a possibly altered mantle source for the heat sourcefluids.

  4. Perchlorate isotope forensics

    Science.gov (United States)

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  5. Hydrologic connections and dynamics of water movement in the classical Karst (Kras) Aquifer: evidence from frequent chemical and stable isotope sampling

    Science.gov (United States)

    Doctor, Daniel H.

    2008-01-01

    A review of past research on the hydrogeology of the Classical Karst (Kras) region and new information obtained from a two- year study using environmental tracers are presented in this paper. The main problems addressed are 1) the sources of water to the Kras aquifer resurgence zone-including the famous Timavo springs-under changing flow regimes; 2) a quantification of the storage volumes of the karst massif corresponding to flow regimes defined by hydrograph recessions of the Timavo springs; and 3) changing dynamics between deep phreatic conduit flow and shallow phreatic and epiphreatic storage within the aquifer resurgence zone as determined through changes in chemical and isotopic composition at springs and wells. Particular focus was placed on addressing the long-standing question of the influence of the Soca River on the ground waters of the aquifer resurgence zone. The results indicate that the alluvial aquifer supplied by the sinking of the Soca River on the northwestern edge of the massif contributes approximately 75% of the mean annual outflow to the smaller springs of the aquifer resurgence zone, and as much as 53% to the mean annual outflow of the Timavo springs. As a whole, the Soca River is estimated to contribute 56% of the average outflow of the Kras aquifer resurgence. The proportions of Soca River water increase under drier conditions, and decrease under wetter conditions. Time series analysis of oxygen stable isotope records indicate that the transit time of Soca River water to the Timavo springs, Sardos spring, and well B-4 is on the order of 1-2 months, depending on hydrological conditions. The total baseflow storage of the Timavo springs is estimated to be 518 million m3, and represents 88.5% of the storage capacity estimated for all flow regimes of the springs. The ratio of baseflow storage volume to the average annual volume discharged at the Timavo springs is 0.54. The Reka River sinking in Slovenia supplies substantial allogenic recharge to

  6. Identification of N–H related acceptor defects in GaAsN grown by chemical beam epitaxy using hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-11-15

    The N–H related acceptor defects in GaAsN grown by chemical beam epitaxy (CBE) are studied by hydrogen isotopes, H and D. When the films are grown by a conventional arsenic source, deep level transient spectroscopy (DLTS) reveals two energy levels at 0.11 and 0.19 eV above the valence band. These levels were considered to act as a double acceptor in the literature. When the films are grown by a deuterated arsenic source, new signals appear in DLTS spectra at 0.15 and 0.23 eV. This indicates that the new signals are originated from D-related defects. The energy differences between 0.15 and 0.11 eV, and that between 0.23 and 0.19 eV are same (0.04 eV). Although these energy levels become deeper with increasing the growth temperature, the energy differences are almost constant independent of the growth condition. In addition, the intensity ratios of the peaks at 0.15 (0.23) eV to that at 0.11 (0.19) eV have a good correlation with the isotopic concentration ratio of D to H in the grown films. Therefore, we conclude that the energy differences and intensity ratios of the DLTS peaks occur due to the structural change from N–H to N−D in the same type of defect, and that this acceptor is an N–H related defect. - Highlights: • The DLTS signals at 0.11 and 0.19 eV originate from a double acceptor. • Growth by D-TDMAAs: new defects that contain D are generated at 0.15 and 0.23 eV. • Energy differences between 0.15 (0.23) eV and 0.11 (0.19) eV: same, independent of T{sub G}. • Intensity ratios of peaks at 0.15 (0.23) eV to that at 0.11 (0.19) eV ≈ [D]/{[H]+[D]}. • Therefore, this acceptor is related to H.

  7. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T.

    Science.gov (United States)

    Longo, Dario Livio; Dastrù, Walter; Digilio, Giuseppe; Keupp, Jochen; Langereis, Sander; Lanzardo, Stefania; Prestigio, Simone; Steinbach, Oliver; Terreno, Enzo; Uggeri, Fulvio; Aime, Silvio

    2011-01-01

    Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition.

  8. Chemical and radiation stability of a proprietary cesium ion exchange material manufactured from WWL membrane and SuperLig{reg_sign} 644

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Berry, P.K.

    1996-09-01

    Pretreatment of nuclear process wastes for ion exchange removal of Cs and other radionuclides is one way to minimize amount of high-level radioactive waste at Hanford. This study evaluated Cs-selective SuperLig{reg_sign}644 (IBC Advanced Technologies, American Fork UT) entrapped in a proprietary WWL web membrane (3M) for chemical/radiation stability in simulated caustic neutralized current acid waste (NCAW), 0.5M HNO{sub 3}, water, and air. After exposure up to 2.0E+09 rad, the material was evaluated for Cs uptake in 5M sodium NCAW simulants with varying Cs contents. Radiolytic stability appears to be sufficient for ion exchange pretreatment of radioactive Cs: essentially no decrease in Cs selectivity or loading (Kd) was observed during {sup 60}Cs gamma irradiation in water or 0.5M HNO{sub 3} up to 1.0E+09 rad. Cs Kd decreased by a factor of 2 after 2.0E+09 rad exposure. Cs Kd did not change during irradiation in 5M NCAW or ambient air up to 1.0E+08 rad, but decreased by more than an order of magnitude between 1.0E+08 and 2.0E+09 rad (not typical of process conditions). Chemical stability under caustic conditions is lower than in air or under neutral/acidic conditions. Results indicate that this material is less stable in caustic solution irrespective of radiation exposure. Samples of the membrane retained their physical form throughout the entire experiment and were only slightly brittle after exposure to 2.0E+09 rad. (The material evaluated was a finely ground (400 mesh) particulate engineered to form a polymeric fiber (WWL), not the macroscopic form of SuperLig{reg_sign} 644 resin (20 to 50 mesh).)

  9. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  10. Physico-chemical study of the degradation of membrane-electrode assemblies in a proton exchange membrane fuel cell stack

    Science.gov (United States)

    Ferreira-Aparicio, P.; Gallardo-López, B.; Chaparro, A. M.; Daza, L.

    A proton exchange membrane fuel cell stack integrated by 8-elements has been evaluated in an accelerated stress test. The application of techniques such as TEM analyses of ultramicrotome-sliced sections of some samples and XRD, XPS and TGA of spent electrodes reveal the effects of several degradation processes contributing to reduce the cells performance. The reduction of the Pt surface area at the cathode is favored by the oxidation of carbon black agglomerates in the catalytic layer, the agglomeration of Pt particles and by the partial dissolution of Pt, which migrates towards the anode and precipitates within the membrane. In the light of the TEM, EDAX and XPS results, two combined effects are probably responsible of the increase of the internal resistance of the stack cells: (i) a lower proton conductivity of the membranes due to the high affinity of the sulfonic acid groups for ions originated from Pt crystallites and other peripherical elements such as the silicone elastomeric gaskets and (ii) the increment of electrically isolated islands in the cathode gas diffusion electrodes resulting from carbon corrosion and the degradation of the perfluorinated polymers. Water accumulation and inhomogeneous gas distribution throughout the stack cells originate different degradation rates in them.

  11. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    Science.gov (United States)

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that

  12. Enzymatic synthesis and RNA interference of nucleosides incorporating stable isotopes into a base moiety.

    Science.gov (United States)

    Hatano, Akihiko; Shiraishi, Mitsuya; Terado, Nanae; Tanabe, Atsuhiro; Fukuda, Kenji

    2015-10-15

    Thymidine phosphorylase was used to catalyze the conversion of thymidine (or methyluridine) and uracil incorporating stable isotopes to deoxyuridine (or uridine) with the uracil base incorporating the stable isotope. These base-exchange reactions proceeded with high conversion rates (75-96%), and the isolated yields were also good (64-87%). The masses of all synthetic compounds incorporating stable isotopes were identical to the theoretical molecular weights via EIMS. (13)C NMR spectra showed spin-spin coupling between (13)C and (15)N in the synthetic compounds, and the signals were split, further proving incorporation of the isotopes into the compounds. The RNA interference effects of this siRNA with uridine incorporating stable isotopes were also investigated. A 25mer siRNA had a strong knockdown effect on the MARCKS protein. The insertion position and number of uridine moieties incorporating stable isotopes introduced into the siRNA had no influence on the silencing of the target protein. This incorporation of stable isotopes into RNA and DNA has the potential to function as a chemically benign tracer in cells.

  13. Chemical and stable isotopic composition of water and gas in the Fort Union Formation of the Powder River Basin, Wyoming and Montana: Evidence for water/rock interaction and the biogenic origin of coalbed natural gas

    Science.gov (United States)

    Rice, Cynthia A.; Flores, Romeo M.; Stricker, Gary D.; Ellis, Margaret S.

    2008-01-01

    Significant amounts (> 36 million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, δDH2O and δ18OH2O were measured for 199 of the samples, and δDCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na–HCO3-type water with low dissolved SO4 content (median < 1 mg/L) and little or no dissolved oxygen (< 0.15 mg/L), whereas shallow groundwater (depth generally < 120 m) is a mixed Ca–Mg–Na–SO4–HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation–reduction reactions account for high HCO3 (270–3310 mg/L) and low SO4 (median < 0.15 mg/L) values; (4) fractionation between δDCH4 (− 283 to − 328 per mil) and δDH2O (− 121 to − 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of δDH2O and δ18OH2O (− 16 to − 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  14. Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A

    Science.gov (United States)

    Rice, C.A.; Flores, R.M.; Stricker, G.D.; Ellis, M.S.

    2008-01-01

    Significant amounts (> 36??million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, ??DH2O and ??18OH2O were measured for 199 of the samples, and ??DCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na-HCO3-type water with low dissolved SO4 content (median < 1??mg/L) and little or no dissolved oxygen (< 0.15??mg/L), whereas shallow groundwater (depth generally < 120??m) is a mixed Ca-Mg-Na-SO4-HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation-reduction reactions account for high HCO3 (270-3310??mg/L) and low SO4 (median < 0.15??mg/L) values; (4) fractionation between ??DCH4 (- 283 to - 328 per mil) and ??DH2O (- 121 to - 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of ??DH2O and ??18OH2O (- 16 to - 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  15. Theoretical Modelling of Water—Rock δD—δ18O Isotopic Exchange System and Source of OreForming Fluid:A Case Study on Jinduicheng Superlarge—Scale Molybdenum Deposti,Central China

    Institute of Scientific and Technical Information of China (English)

    孙晓明; 任启江; 等

    1998-01-01

    Based on the theoretical modelling of water-rock δD-δ18 O isotopic exchange process,the evolution and sources of ore-forming fluid in four metallogenic epochs of the Jinduicheng superlarge-scale porphyry-type molybdenum deposit were investigated.It was revealed that in the pre-metallogenic and early-metallogenic epochs,the ore-forming fluid was a residual fluid derived from magmatic water-wall rock interaction at middle to high temperatures(T=250-500℃) and lower W/R ratios(0.1>=W/R>0.001),while in the metallogenic and postmetallogenic epochs,the ore-forming fluid was a residual fluid derived from meteoric water-wall rock interaction at middle to lower temperatures(T=150-310℃)and relatively high W/R ratios(0.5>W/R≥0.1),The meteoric water played an important role in molybdenum mineralization,and at the main metallogenic epoch the W/R ratio reached its maximum value.

  16. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  17. A theoretical analysis of the extraction of heterocyclic organic compounds from an organic phase using chemically mediated electrochemically modulated complexation in ion exchange polymer beads

    Energy Technology Data Exchange (ETDEWEB)

    Ozekin, K.; Noble, R.D.; Koval, C.A.

    1991-01-01

    A cyclical electrochemical process for the removal of heterocyclic organic compounds (pollutants) from an organic solvent using an ion-exchange polymer is analyzed. In this analysis, there are three main steps: In the first step, the polymer beads containing the active form of the complexing agent are contacted with the contaminated (feed) hydrocarbon phase. The pollutant diffuses into the beads and binds with the complexing agent which is in the reduced state. It is a fast reversible reaction. For the second step, the beads which contain a pollutant are contacted with a waste (receiving) phase and a chemical mediator is then used to oxidize the complexing agent and to reduce its affinity towards the pollutant so that it can be released. The oxidation of the complexing agent is an irreversible reaction. This is a moving boundary problem with countercurrent diffusion. For each mole of mediator that goes into the bead, one mole of pollutant exits since each complexing agent binds one pollutant. In the third step, the waste hydrocarbon phase is removed and a second chemical mediator is then used to reduce the complexing agent. The reduction of the complexing agent is also an irreversible reaction. Partial differential equations are used to analyze this process. 26 refs., 9 figs.

  18. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin

    2014-01-01

    This paper reports an analytical method for the determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation...

  19. Studies on fractionation of ytterbium isotopes in Yb(III)-acetate/Yb-amalgam system. Even-odd effect

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, W.; Poninski, M.; Fiedler, R.

    1997-12-31

    The fractionation of ytterbium isotopes with the even and odd numbers of neutrons was investigated in a Yb(III)-acetate/Yb-amalgam exchange systems. The light isotope was preferentially fractionated to the amalgam phase. The values of the unit separation gain per mass difference,{epsilon}, were found to be -0.00054 for {sup 176/171}Yb and -0.00069 for {sup 176/174}Yb The difference which amounted to 0.00015 is an evidence for the occurrence of the so called `even-odd` effect. It was also found that the chemical isotope shift of ytterbium was monitored by optical isotope shift its atomic spectra. (author). 23 refs, 7 figs, 4 tabs.

  20. Mixed ion-exchanger chemically modified carbon paste ion-selective electrodes for determination of triprolidine hydrochloride

    Directory of Open Access Journals (Sweden)

    Yousry M. Issa

    2010-01-01

    Full Text Available Triprolidine hydrochloride (TpCl ion-selective carbon paste electrodes were constructed using Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA as ion-exchangers. The two electrodes revealed Nernstian responses with slopes of 58.4 and 58.1 mV decade−1 at 25 °C in the ranges 6 × 10−6–1 × 10−2 and 2 × 10−5–1 × 10−2 M for Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA, respectively. The potentials of these electrodes were independent of pH in the ranges of 2.5–7.0 and 4.5–7.0, and detection limits were 6 × 10−6 and 1 × 10−5 M for Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA, respectively. The electrodes showed a very good selectivity for TpCl with respect to a large number of inorganic cations and compounds. The standard addition, potentiometric titration methods and FIA were applied to the determination of TpCl in pure solutions and pharmaceutical preparations. The results obtained were in close agreement with those found by the official method. The mean recovery values were 100.91% and 97.92% with low coefficient of variation values of 0.94%, and 0.56% in pure solutions, 99.82% and 98.53% with coefficient of variation values of 2.20%, and 0.73% for Actifed tablet and Actifed syrup, respectively, using the Tp-TPB/Tp-CoN electrode, and 98.85%, and 99.18% with coefficient of variation values of 0.48% and 0.85% for Actifed tablet and Actifed syrup, respectively, using the Tp-TPB/Tp-PTA electrode.

  1. Targeting of chemical mutagens to differentiating B-lymphocytes in vivo: detection by direct DNA labeling and sister chromatid exchange induction

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, S.E.; Nanna, U.C.; Dietert, R.R.

    1987-01-01

    In vivo systems for analyzing mutagen interactions with a specific differentiating cell population are rare. Taking advantage of the unique anatomical features of the bursa of Fabricius in the chicken, the authors explored the possibility of targeting chemical mutagens to a defined differentiating cell population in the animal, namely, the B-lymphocytes series. Such cells are known to be the targets for the oncogene-activating avian leukosis virus. Targeting of chemicals to cells of the bursa was demonstrated by application of the DNA-specific fluorochrome 4'-6-diamidino-2-phenylindole (DAPI) to the anal lips of neonatal chicks. Bright nuclear fluorescence of cells in the bursa demonstrated to occur within minutes after the application of 500..mu..l of DAPI. DAPI labeling of nuclei was detected up to several days after a single application. No nuclear labeling was exhibited in cells of neighboring tissues. Methyl methanesulfonate (MMS)(10..mu..l) was applied to the anal lips of day-old chicks to study dose-response kinetics for mutagen targeting to DNA of dividing B-lymphocytes in the bursa. Since the mitotic index was found to be quite high (25-30%) in the bursa, chromosome analysis was used to assay for genome damage. Sister chromatid exchange frequencies of 3.9, 7.3, and 9.0 (baseline 2.5) per cell were obtained at MMS dosages per animal of 50 ..mu..g, 100..mu..g, and 200..mu..g, respectively. These results indicate the rapid and quantitative localization of DNA-binding chemicals to cells of the bursa, particularly the resident B-lymphocytes. The bursa should be a useful system for studying mutagen-DNA interactions in the differentiating B-lymphocyte and subsequent influences on the development of immunity and lymphoproliferative disease.

  2. Investigation into the Cause of Spontaneous Emulsification of a Free Steel Droplet; Validation of the Chemical Exchange Pathway

    Science.gov (United States)

    Spooner, Stephen; Assis, Andre N.; Warnett, Jason; Fruehan, Richard; Williams, Mark A.; Sridhar, Seetharaman

    2016-08-01

    Small Fe-based droplets have been heated to a molten phase suspended within a slag medium to replicate a partial environment within the basic oxygen furnace (BOF). The confocal scanning laser microscope (CSLM) has been used as a heating platform to interrogate the effect of impurities and their transfer across the metal/slag interface, on the emulsification of the droplet into the slag medium. The samples were then examined through X-ray computer tomography (XCT) giving the mapping of emulsion dispersion in 3D space, calculating the changing of interfacial area between the two materials, and changes of material volume due to material transfer between metal and slag. Null experiments to rule out thermal gradients being the cause of emulsification have been conducted as well as replication of the previously reported study by Assis et al.[1] which has given insights into the mechanism of emulsification. Finally chemical analysis was conducted to discover the transfer of oxygen to be the cause of emulsification, leading to a new study of a system with undergoing oxygen equilibration.

  3. Theoretical investigation of the magnetic exchange interactions in copper(II) oxides under chemical and physical pressures.

    Science.gov (United States)

    Rocquefelte, Xavier; Schwarz, Karlheinz; Blaha, Peter

    2012-01-01

    It remains a challenge to understand the unconventional mechanisms that cause high-T(C) superconductivity in cuprate superconductors, high-T(C) multiferroicity in CuO, or low-dimensional magnetism in the spin-Peierls transition compounds such as CuGeO(3). A common feature of all these copper oxide compounds (containing Cu(2+) ions) is the presence of large magnetic superexchange interactions J. It is a general strategy to apply chemical and/or physical pressure in order to tune these exotic properties. Here we show theoretically, for the first time, the impact of physical pressure on J on CuO, for which we predict a strong enhancement of the low-dimensionality of the magnetic interactions and the spin-frustration at high-pressures. Such modifications are expected to strongly influence the multiferroic properties of CuO. We finally demonstrate that PBE0 hybrid DFT calculations provide reliable J values for a wide range of copper(II) oxides compounds, i.e. CuGeO(3), BaCu(2)Si(2)O(7), BaCu(2)Ge(2)O(7), and La(2)CuO(4).

  4. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    . This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale.At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.

  5. Deciphering the "chemical" nature of the exotic isotopes of hydrogen by the MC-QTAIM analysis: the positively charged muon and the muonic helium as new members of the periodic table.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2014-04-14

    This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.

  6. Chemical Pre-treatment Methods for Measurement of Ge Isotopic Ratio on Sphalerite in Lead-Zinc Deposits%铅锌矿床地质样品的Ge同位素预处理方法研究

    Institute of Scientific and Technical Information of China (English)

    朱传威; 温汉捷; 樊海峰; 张羽旭; 刘洁; 杨涛; 王光辉

    2014-01-01

    Up to the present,main research of Ge isotopes has been carried out on organic,magmatic and meteoritic samples. Pb-Zn deposits are one of the most important reservoirs of Ge;however,there are few studies on Ge isotopes for these samples. Ge separation and purification for samples collected from Pb-Zn deposits are the basis of Ge isotope research. Therefore,the suitability for Pb-Zn ores of the Ge isotopic purification method established for meteoritic samples in details has been investigated. The results demonstrate that anion exchange resins single-column method for Pb-Zn ores can eliminate the potential interferences efficiently( including Fe,Se and other interfering matrix elements),but does not work for Zn as Zn/Ge﹥3,indicating that further separation and purification by ion-exchange column are needed to eliminate Zn. Conditional experiments of standard samples ( ores and sphalerite)and three sphalerite samples from the Fule deposits showed that adjusting the volume of anion exchange resin elution acid(1. 4 mol/L,HNO3 )from 6 mL to 10 mL and maintaining the method of cation exchange resin is suitable for Ge isotope purification. The results of anion/cation exchange resin two-column procedure indicate that the recovery of Ge was better than 99%,and the potential interferences on Ge isotopes ( including Fe,Se,Zn and other interfering matrix elements)were almost 100% eliminated. Although the previous method has a good recovery of Ge(97. 3%)and the potential interferences on Ge isotopes(including Fe,Se,Zn and other interfering matrix elements ) were reduced to the negligible levels,the recovery is lower than the recommended method in this paper. Furthermore,the Ge isotopic composition of three sphalerite samples from the Fule deposit show that there are no signals coming from interfering elements and matrix elements,and the mass fractionation of Ge isotope followed the rule of mass-dependent fractionation. Overall,this modified method for Ge isotope measurement

  7. Gas exchange measurements in natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  8. The evolution of the Waiotapu geothermal system, New Zealand, based on the chemical and isotopic composition of its fluids, minerals and rocks

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Browne, Patrick R. L.

    1989-09-01

    shallow waters is also supported by the oxygen and hydrogen isotopic composition of the mixture, with the deep fluid being enriched in δ 18O and δD from local meteoric by ~7 and 10%., respectively. The patterns in whole rock δ 18O indicate that they were largely shifted in isotopic composition prior to incursion of steam-heated waters (possibly induced by a series of hydrothermal eruptions ~900 years ago). In contrast, the δ 18O composition of late vug calcite indicates its formation is related to the initial incursion of steam-heated groundwater and subsequent cooling; this is supported by fluid inclusion evidence. The δD shift from local groundwater composition, and the δ 13C composition of CO 2 determined from calcite (-4 to -6%.), may be evidence for a magmatic input to the meteoric convection cell. The shallow portion of the Waiotapu geothermal system has recently evolved, both chemically and physically, by incursion of fluids from a steam-heated carapace. Continued refluxing of these relatively cool, hybrid fluids progressively deeper (with their 'recycled' CO 2 content) will hasten hydrolytic leaching (in contrast to a single pass of adiabatically cooling deep fluids). This action, accompanied by argillic alteration, may eventually seal the deeper portions of the system, hastening its demise. There is evidence for similar events occurring in the fossil environment at epithermal depths

  9. The three-isotope method for equilibrium isotope fractionation factor determination: Unfounded optimism

    Science.gov (United States)

    Cao, X.; Hayles, J. A.; Bao, H.

    2015-12-01

    The equilibrium isotope fractionation factor α is a fundamental parameter in stable isotope geochemistry. Although equilibrium α can be determined by theoretical calculation or by measurement of natural samples, direct laboratory experiments are ultimately required to verify those results. The attainment of a true exchange equilibrium in experiments is often difficult, but three methods have been devised and used to ensure that an equilibrium α has been obtained in an isotope exchange experiment. These are the two-directional method, partial-exchange method, and three-isotope method. Of these, the three-isotope method is thought to be the most rigorous. Using water-water exchange as a basic unit, we have developed a set of complex exchange models to study when and why the three-isotope method may work well or not. We found that the method cannot promise to lead to an equilibrium α before the kinetic complexity of the specific exchange experiment is known. An equilibrium point in δ17O-δ18O space can be reached only when all of the isotope exchange pathways are fully reversible, i.e. there is no mass loss at any instant, and the forward and backward reactions share the same pathway. If the exchange pathways are not fully reversible, steady state may be reached, but a steady state α can be very different from the equilibrium α. Our results validated the earlier warning that the trajectory for three-isotope evolution in δ17O-δ18O space may be a distinctly curved line or contain more than one straight line due to the non-fully reversible isotope exchange reactions. The three-isotope method for equilibrium α determination is not as rigorous or as promising as it may seem. Instead, the trajectory of three-isotope evolution provides detailed insights into the kinetics of isotope exchange between compounds. If multiple components exist in the exchange system, the δ17O-δ18O evolving trajectory would be more complex.

  10. Paleoclimatic and deforestation effect on the chemical and isotopic composition of the coastal fresh groundwater resources of South-east Ivory Coast

    Science.gov (United States)

    Adiaffi, B.; Marlin, C.; Yei, O. M.-S.; Massault, M.; Noret, A.; Biemi, J.

    2009-04-01

    Since a half of century, the forest surface area of the South Ivory Coast has been decreased for the benefit of agriculture (15 000 km2 in 1993 versus 83 000 km2 in 1955-1958). This area also undergoes climate change. Vegetation cover has gradually changed from rainforests (C3 plants) to savanna (C4 plants) and agricultural plants. In the Abidjan area (5.00-6.00°N, 2.40-4.40°W), the mean rainfall amount and temperature value evolve during the 20th century (1912 mm/year and 26.3°C/year during the first decennial to 1613 mm/year and 26.9°C/year during the last ten years). The Paleoproterozoïc fractured bedrock (PB) and the Continental Terminal (CT) deposits groundwater are studied to show the climate change and deforestation effect on the area groundwater resources using stable isotopes (18O, 2H and 13C) contents, radiocarbon (14C) contents and chemical data on a set of 25 groundwater samples. The residence time of the groundwaters is estimated by the 14C using two models: (i) the model of well-mixed reservoir (WMR model) and (ii) the piston flow model (PF model). The range of the PB groundwater residence time (15 000 - 8 000 to ~ 300 - 100 a BP) for both models shows that the recharge has started at the beginning of the post-glacial period whereas the CT aquifer recharge is much more recent (from 300 a BP to today). The PB groundwater provides information about paleoclimatic conditions that occurred over the studied area during the late Pleistocene. It is demonstrated, through this study, that the evolution of vegetation cover (from forests to savanna and agriculture plants) is shown in groundwater by the trend in 13C content from old groundwater (confined bedrock groundwater: residence time of ~ 15 000 a BP) to the recent groundwater (unconfined bedrock groundwater and CT groundwater: residence times: ~ 300 a BP and lower than 100 a BP, respectively). The δ18O and δ2H values also increase with time from the beginning of the post-glacial period (~ 15 000 a BP

  11. Evolution of Ore Deposits and Technology Transfer Project: Isotope and Chemical Methods in Support of the U.S. Geological Survey Science Strategy, 2003-2008

    Science.gov (United States)

    Rye, Robert O.; Johnson, Craig A.; Landis, Gary P.; Hofstra, Albert H.; Emsbo, Poul; Stricker, Craig A.; Hunt, Andrew G.; Rusk, Brian G.

    2010-01-01

    its natural-resources and natural-science needs. This circular presents an overview of the Project. Descriptions of the Project laboratories are given first including descriptions of the types of chemical or isotopic analyses that are made and the utility of the measurements. This is followed by summaries of select measurements that were carried out by the Project scientists. The studies are grouped by science direction. Virtually all of them were collaborations with USGS colleagues or with scientists from other governmental agencies, academia, or the private sector.

  12. Vertical exchange and chemical conversion of trace elements over topographically complex terrain; Vertikaler Austausch und chemische Umwandlung von Spurenstoffen ueber topographisch gegliedertem Gelaende

    Energy Technology Data Exchange (ETDEWEB)

    Kuntze, K.

    2001-10-01

    The influence of topography on the vertical exchange of trace elements was investigated with the aid of a numeric simulation model. It is a couopled 3D model consisting of the mesoscale model KAMM and the dispersion model DRAIS, extended by the gaseous phase mechanism of the RADM model. This way, both meteorological and chemical processes can be analyzed in a preselected time and spatial resolution. The simulations were validated by a comparison with measurements made during the TRACT campaign. Satisfactory agreement between the two was established. [German] In der vorliegenden Arbeit wurde der Einfluss der Topographie auf den vertikalen Austausch von Spurenstoffen mit Hilfe eines numerischen Simulationsmodells untersucht. Bei dem Simulationsmodell handelt es sich um ein dreidimensionales gekoppeltes Modell, welches aus dem mesoskaligen Modell KAMM und dem um den Gasphasenmechanismus des RADM-Modells erweiterten Ausbreitungsmodell DRAIS besteht. Mit diesem Modellsystem war es moeglich, sowohl meterologische als auch chemische Prozesse in einer vorher gewaehlten zeitlichen und raeumlichen Aufloesung zu betrachten. Um die Qualitaet der Simulation und damit deren Verwendbarkeit fuer die Untersuchungen festzustellen, wurde ein Vergleich mit Messungen durchgefuehrt. Dazu wurden berechnete meterologische und chemische Groessen mit den waehrend der Feldmesskampagne TRACT gemessenen Groessen verglichen. Der Vergleich der simulierten Groessen sowohl mit Radiosondenaufstiegen als auch mit Zeitreihen und Flugzeugmessungen lieferte eine gute Uebereinstimmung. (orig.)

  13. Long repetition time experiments for measurement of concentrations in systems with chemical exchange and undergoing temporal variation-comparison of methods with and without correction for saturation

    Science.gov (United States)

    Galbán, Craig J.; Spencer, Richard G. S.

    2003-02-01

    The purpose of this paper is to compare two methods for quantifying metabolite concentrations using the one-pulse experiment for a sample undergoing chemical exchange and subject to an intervention or other temporal variation. The methods, LATR-C (Long Acquisition TR (interpulse delay); Corrected for partial saturation) and LATR-NC (Long Acquisition TR; Not Corrected), are compared in terms of signal-to-noise ratio, SNR, per unit time and quantitation errors. Parameters relevant to the isolated perfused rat heart are used as a specific application, although the results are general. We assume throughout that spin-lattice relaxation times, T1, do not change. For a given flip angle, θ, TR's are calculated which result in maximal SNR per unit time under 10%, 5%, and 1% constraints on quantitation errors. Additional simulations were performed to demonstrate explicitly the dependence of the quantitation errors on TR for a fixed θ. We find (i) if the allowed error is large, and when both metabolite concentrations and rate constants vary, LATR-C permits use of shorter TR, and hence yields greater SNR per unit time, than LATR-NC; (ii) for small allowed error, the two methods give similar TR's and SNR per unit time, so that the simpler LATR-NC experiment may be preferred; (iii) large values of θ result in similar constrained TR's and hence SNR per unit time for the two methods; (iv) the ratio of concentrations of metabolites with similar T1 exhibit similar errors for the two methods.

  14. Oxygen Isotopes in Meteorites

    Science.gov (United States)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (shielding in the UV photodissociation of CO (van Dishoeck and Black, 1988). This process results from the large differences in abundance between C16O, on the one hand, and C17O and C18O on the other. Photolysis of CO occurs by absorption of stellar UV radiation in the

  15. Mg Isotope Fractionation Between E. coli and Growth Medium

    Science.gov (United States)

    Basset, R.; Lemelle, L.; Albalat, E.; Telouk, P.; Albarède, F.

    2008-12-01

    Magnesium is a major element in both microbial cells and minerals, immune to redox conditions and atmospheric interactions. In organic cells, Mg can be associated with membranes, with cytoplasm (either as an isolated ion or bound to proteins). Its isotope composition can be used to constrain the contribution of organic material to carbonate fluxes and the overall cycle of this element in the exogenous environment [1, 2]. Cells of DH5α E. coli strain were grown in Luria Broth medium and the Mg isotope fractionation between the cells and their growth medium determined after calcination in Pt crucibles, chemical purification by cation exchange chemistry in HCl medium [3] and isotopic analysis on a Nu HR MC-ICPMS. The yield is better than 96%. The Mg contents of 2.19 ± 0.08 mg per g DW in cells and 0.117 ± 0.001 mg per g DW in Luria Broth medium are consistent with literature data [4]. About half of the Mg initially present in the LB medium is taken up by the growing cells. At high cellular concentrations (OD600 = 3.5), cells are enriched in 26Mg by 0.97 ± 0.14 ‰ with respect to the culture medium. Although E. coli may not be a good proxy for oceanic plankton, such a substantial fractionation of Mg isotopes suggests that incorporation of even a few percent organic matter into oceanic oozes depletes oceanic Mg in its heavy isotopes and therefore accounts for the isotopic difference between riverine and marine Mg. [1] Drever, The Sea 5 (1974) 337-357 [2] Tipper et al., EPSL 250 (2006) 241-253 [3] Chang et al., JAAS 18 (2003) 296-301 [4] Outten et al., Science 292 (2001), 2488-2492

  16. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    Science.gov (United States)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  17. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  18. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  19. The precise measurement of Tl isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Rehkaemper, M. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences]|[Univ. Muenster (Germany). Zentrallabor fuer Geochronologie; Halliday, A.N. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences]|[ETH Zuerich (Switzerland). Inst. for Isotope Geology and Mineral Resources

    1999-03-01

    The precision of Tl isotopic measurements by thermal ionization mass spectrometry (TIMS) is severely limited by the fact that Tl possesses only two naturally occurring isotopes, such that there is no invariant isotope ratio that can be used to correct for instrumental mass discrimination. In this paper the authors describe new chemical and mass spectrometric techniques for the determination of Tl isotopic compositions at a level of precision hitherto unattained. Thallium is first separated from the geological matrix using a two-stage anion-exchange procedure. Thallium isotopic compositions are then determined by multiple-collector inductively coupled plasma-mass spectrometry with correction for mass discrimination using the known isotopic composition of Pb that is admixed to the sample solutions. With these procedures they achieve a precision of 0.01--0.02% for Tl isotope ratio measurements in geological samples and this is a factor of {ge}3--4 better than the best published results by TIMS. Results are discussed for five terrestrial samples and for the C3V chondrite Allende.

  20. Orbital forcing of glacial/interglacial variations in chemical weathering and silicon cycling within the upper White Nile basin, East Africa: Stable-isotope and biomarker evidence from Lakes Victoria and Edward

    Science.gov (United States)

    Cockerton, Helen E.; Street-Perrott, F. Alayne; Barker, Philip A.; Leng, Melanie J.; Sloane, Hilary J.; Ficken, Katherine J.

    2015-12-01

    On Quaternary time scales, the global biogeochemical cycle of silicon is interlocked with the carbon cycle through biotic enhancement of silicate weathering and uptake of dissolved silica by vascular plants and aquatic microalgae (notably diatoms, for which Si is an essential nutrient). Large tropical river systems dominate the export of Si from the continents to the oceans. Here, we investigate variations in Si cycling in the upper White Nile basin over the last 15 ka, using sediment cores from Lakes Victoria and Edward. Coupled measurements of stable O and Si isotopes on diatom separates were used to reconstruct past changes in lake hydrology and Si cycling, while the abundances of lipid biomarkers characteristic of terrestrial/emergent higher plants, submerged/floating aquatic macrophytes and freshwater algae document past ecosystem changes. During the late-glacial to mid-Holocene, 15-5.5 ka BP, orbital forcing greatly enhanced monsoon rainfall, forest cover and chemical weathering. Riverine inputs of dissolved silica from the lake catchments exceeded aquatic demand and may also have had lower Si-isotope values. Since 5.5 ka BP, increasingly dry climates and more open vegetation, reinforced by the spread of agricultural cropland over the last 3-4 ka, have reduced dissolved silica inputs into the lakes. Centennial-to millennial-scale dry episodes are also evident in the isotopic records and merit further investigation.

  1. Isotope Effects in ESR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Werner Herrmann

    2013-06-01

    Full Text Available In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii the main characteristics of the generalized isotope effects are worked out, and finally (iii the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  2. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  3. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    Science.gov (United States)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during

  4. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  5. Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS

    DEFF Research Database (Denmark)

    Creech, John Benjamin; Baker, J. A.; Handler, M. R.

    2014-01-01

    We report a method for the chemical purification of Pt from geological materials by ion-exchange chromatography for subsequent Pt stable isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using a Pt-Pt double-spike to correct for instrumental mass bias...... (Creech et al., 2013, J. Anal. At. Spectrom. 28, 853-865). The reproducibility in natural samples is evaluated by processing multiple replicates of four standard reference materials, and is conservatively taken to be ca. ±0.088 (2sd). Pt stable isotope data for the full set of reference materials have....... Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily...

  6. Isotope-edited infrared spectroscopy.

    Science.gov (United States)

    Buchner, Ginka S; Kubelka, Jan

    2012-01-01

    Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.

  7. Isotopic Paleoclimatology

    Science.gov (United States)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  8. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  9. The oxygen isotope composition of dissolved chromate: a new tool for determining sources of chromium contamination in groundwater

    Science.gov (United States)

    Bullen, T.; Widory, D.

    2009-05-01

    Hexavalent chromium (Cr(VI)) is a widespread carcinogen in groundwater, derived from both anthropogenic and natural sources. A large range of chromium isotope composition has been demonstrated for dissolved Cr(VI) in groundwater, resulting from the large isotope fractionation accompanying reduction of Cr(VI) to trivalent chromium (Cr(III)). As a result, the isotopic composition of chromium in dissolved chromate is beginning to prove useful for determining the sources of chromium in contaminated groundwater, but considered alone can likewise be non-diagnostic due to overlapping compositional ranges of potential anthropogenic and natural sources. Based on the strong Cr-O bond in the chromate molecule implied by the large chromium isotope fractionation accompanying Cr(VI) reduction, we have proposed that oxygen will remain closely linked to chromium in the chromate molecule and thus can be used to better constrain chromate sources through a Cr-O "multi-tracer" approach. In a series of laboratory experiments using isotopically "enriched" water and "normal" chromate, we have demonstrated that there is insignificant isotopic exchange between oxygen in chromate and water for residence times as long as one year, and thus chromate will retain the oxygen isotope composition of its source during extended transport in groundwater. We have likewise demonstrated that sufficient chromate for oxygen isotope analysis can be successfully isolated from a chemically complex groundwater sample through a series of precipitation, ion exchange and heating procedures. Although our current approach of measuring 100 micromolar samples of chromate using TCEA- gas mass spectrometry is straightforward and robust, we are also developing a negative-ion thermal ionization mass spectrometry technique in order to greatly reduce the sample size requirement. We are currently applying this novel technique at an electric power facility in California and a metal plating facility in France in order to

  10. Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B0 Field Inhomogeneity corrections with gradient echo method.

    Science.gov (United States)

    Wei, Wenbo; Jia, Guang; Flanigan, David; Zhou, Jinyuan; Knopp, Michael V

    2014-01-01

    Glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) is an important molecular MRI methodology developed to assess changes in cartilage GAG concentrations. The correction for B0 field inhomogeneity is technically crucial in gagCEST imaging. This study evaluates the accuracy of the B0 estimation determined by the dual gradient echo method and the effect on gagCEST measurements. The results were compared with those from the commonly used z-spectrum method. Eleven knee patients and three healthy volunteers were scanned. Dual gradient echo B0 maps with different ∆TE values (1, 2, 4, 8, and 10 ms) were acquired. The asymmetry of the magnetization transfer ratio at 1 ppm offset referred to the bulk water frequency, MTRasym(1 ppm), was used to quantify cartilage GAG levels. The B0 shifts for all knee patients using the z-spectrum and dual gradient echo methods are strongly correlated for all ∆TE values used (r = 0.997 to 0.786, corresponding to ∆TE = 10 to 1 ms). The corrected MTRasym(1 ppm) values using the z-spectrum method (1.34% ± 0.74%) highly agree only with those using the dual gradient echo methods with ∆TE = 10 ms (1.72% ± 0.80%; r = 0.924) and 8 ms (1.50% ± 0.82%; r = 0.712). The dual gradient echo method with longer ∆TE values (more than 8 ms) has an excellent correlation with the z-spectrum method for gagCEST imaging at 3T.

  11. Chemical Exchange Saturation Transfer MR Imaging Is Superior to Diffusion Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson's Disease: a Study on Substantia Nigra and Striatum

    Directory of Open Access Journals (Sweden)

    Chunmei eLi

    2015-10-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder characterized by nigrostriatal cell loss. To date the diagnosis of PD is still based primarily on the clinical manifestations which may be typical and obvious only in advanced-stage PD. Thus, it is crucial to find a reliable marker for the diagnosis of PD. We conducted this study to assess the diagnostic efficiency of chemical-exchange-saturation-transfer (CEST imaging and diffusion-tensor imaging (DTI in PD at 3 Tesla by evaluating changes on substantia nigra and striatum. Twenty-three PD patients and twenty-three age-matched normal controls were recruited. All patients and controls were imaged on a 3 Tesla MR system, using an 8-channel head coil. CEST imaging was acquired in two transverse slices of the head, including substantia nigra and striatum. The magnetization-transfer-ratio asymmetry at 3.5 ppm, MTRasym(3.5ppm, and the total CEST signal intensity between 0 and 4 ppm were calculated. Multi-slice DTI was acquired for all the patients and normal controls. Quantitative analysis was performed on the substantia nigra, globus pallidus, putamen and caudate. The MTRasym(3.5ppm value, the total CEST signal intensity and fractional anisotropy (FA value of the substantia nigra were all significantly lower in PD patients than in normal controls (P = 0.003, P = 0.004 and P < 0.001, respectively. The MTRasym(3.5ppm values of the putamen and the caudate were significantly higher in PD patients than in normal controls (P = 0.010 and P = 0.009, respectively. There were no significant differences for the mean diffusivity (MD in these four regions between PD patients and normal controls. In conclusion, CEST MR imaging provided multiple CEST image contrasts in the substantia nigra and the striatum in PD and may be superior to DTI in the diagnosis of PD.

  12. Modeling the Nd isotopic composition in the North Atlantic basin using an eddy-permitting model

    Science.gov (United States)

    Arsouze, T.; Treguier, A. M.; Peronne, S.; Dutay, J.-C.; Lacan, F.; Jeandel, C.

    2010-09-01

    Boundary Exchange (BE - exchange of elements between continental margins and the open ocean) has been emphasized as a key process in the oceanic cycle of neodymium (Nd) (Lacan and Jeandel, 2005a). Here, we use a regional eddy-permitting resolution Ocean General Circulation Model (1/4°) of the North Atlantic basin to simulate the distribution of the Nd isotopic composition, considering BE as the only source. Results show good agreement with the data, confirming previous results obtained using the same parameterization of the source in a coarse resolution global model (Arsouze et al., 2007), and therefore the major control played by the BE processes in the Nd cycle on the regional scale. We quantified the exchange rate of the BE, and found that the time needed for the continental margins to significantly imprint the chemical composition of the surrounding seawater (further referred as characteristic exchange time) is of the order of 0.2 years. However, the timescale of the BE may be subject to large variations as a very short exchange time (a few days) is needed to reproduce the highly negative values of surface waters in the Labrador Sea, whereas a longer one (up to 0.5 years) is required to simulate the radiogenic influence of basaltic margins and distinguish the negative isotopic signatures of North Atlantic Deep Water from the more radiogenic southern origin water masses. This likely represents geographical variations in erosion fluxes and the subsequent particle load onto the continental margins. Although the parameterization of the BE is the same in both configurations of the model, the characteristic exchange time in the eddy-permitting configuration is significantly lower than the previous evaluations using a low resolution configuration (6 months to 10 years), but however in agreement with the available seawater Nd isotope data. This results highlights the importance of the model dynamics in simulating the BE process.

  13. Chemical and isotopic characterization of rainwater in Los Azufres, Michoacan, Mexico and its surroundings. Caracterizacion quimica e isotopica de las precipitaciones pluviales en el campo geotermico de Los Azufres, Michoacan, Mexico y en zonas de referencia

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Mahendra Pal (Instituto de Investigaciones Electricas, Cuernavaca (Mexico)); Barrera Gonzalez, Victor; Sandoval Medina, Fernando; Tapia Salazar, Ruth; Casimiro Espinoza, Emigdio (Residencia de Los Azufres, Morelia (Mexico)); Fernandez Solorzano, Ma Elena (Departamento de Exploracion, Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)); Rye, Robert; Gent, Carol; Johnson, Craig (USGS, Denver, CO. (United States))

    1998-01-15

    The results obtained from the chemical and isotopic monitoring of rainwater in Los Azufres and its surroundings in the period May to September, 1995 are presented. Eight sampling sites were selected to collect rainwater: six in the Los Azufres and its surroundings and two in the offices of the Comision Federal de Electricidad (CFE) in Morelia and Guadalajara. The anions Cl-, SO[sub 4] [sup 2]- and NO[sub 3]- were analyzed in about 350 samples. The rainwater has very low content of carbonic species (i.e. total dissolved CO[sub 2]). Due to it, it is not possible to analyze alkalinity with traditional titration method. The Gran Titration method was implemented to determine alkalinity (or acidity) and carbonic speciation in the samples. The values of acidity (negative of alkalinity) are in the range of 10[sup -4] to 10[sup -6] eq/l and are positive only for the sites Vivero and Guadalajara. The space and time distribution of the chemical and isotopic species in the rainwater could provide the information about the source of acidity. The species S0[sub 4][sup 2]- and NO[sub 3]- contribute to the acidity. To study the isotopic composition of dissolved sulfate, a system is designed to collect 100 1 of rainwater. The dissolved sulfate ions were extracted in the form of barium sulfate to analyze sulfur-34 and oxygen-18. The values of (d34S are around -1.5% in Los Azufres and its surroundings and in the CFE office in Morelia whereas they are very different in the CFE office in Guadalajara (-0.3%). The same values of d34S in Los Azufres and Morelia indicates a regional source of sulfate and is not related to the Los Azufres geothermal system.

  14. Pb isotopes during mingling and melting

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles E.

    2010-01-01

    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...... fail to model the Pb isotope systematics. Selective contamination during diffusional exchange, which can explain the complex Sr and Nd isotope compositions of the hybrid rocks (Blichert-Toft et al., 1992), cannot fully account for the variability of the Pb isotopic data using the identified crustal end......-members. The crustal anatectic end-member, although similar in Sr and Nd isotope composition, has a markedly different Pb isotopic composition than its source gneiss. The differences are consistent with preferential incorporation of radiogenic Pb from accessory phases such as metamict zircon or loosely-bound Pb from...

  15. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.;

    2013-01-01

    Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only...... rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino...... developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein...

  16. The common property of isotope anomalies in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Robert, F. [Museum-USM 205, CNRS-UMS 2679 LEME, 75 - Paris (France)

    2004-03-01

    The treatment proposed to account for the non-mass-dependent isotopic fractionation effect observed for oxygen isotopes during the synthesis of ozone (Robert and Camy-Peyret 2001) is applied to other chemical elements. A numerical treatment to calculate isotopic reaction rate ratios is proposed. This treatment yields non-mass-dependent isotopic effects in other chemical elements, qualitatively similar to those observed in some of the high temperature minerals found in the carbonaceous meteorites. This treatment may reflect the numerical consequences of an unrecognized quantum mechanical effect, linked to a property of chemical reactions involving indistinguishable isotopes. (author)

  17. Quantum Chemical Study of the Fe(III)-Desferrioxamine B Siderophore Complex-Electronic Structure, Vibrational Frequencies, and Equilibrium Fe-Isotope Fractionation

    Science.gov (United States)

    2008-09-19

    DFO-B) complexes in aque - ous solution. In general, there was good agreement between the predicted properties of Fe(III)-DFO-B and previously... aque - ous Fe can lead to isotopic fractionation (Wiederhold et al., 2006). Thus, validation and interpretation of experi- mental findings would be...Holmen et al., 1997 ) used acetohydroxamic acid (aHa) as an analog for high molecular weight hydroxamate siderophores and per- formed Hartree–Fock

  18. Micro-analytical uranium isotope and chemical investigations of zircon crystals from the Chernobyl “lava” and their nuclear fuel inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Pöml, P., E-mail: Philipp.POEML@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Burakov, B. [Laboratory of Applied Mineralogy and Radiogeochemistry, V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg 194021 (Russian Federation); Geisler, T. [Steinmann Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn (Germany); Walker, C.T. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Grange, M.L.; Nemchin, A.A. [Department of Applied Geology, Western Australian School of Mines, Curtin University, GPO Box U1987, Western Australia 6845 (Australia); Berndt, J. [Institut für Mineralogie, Westfälische Wilhelms-Universität, Corrensstraße 24, 48149 Münster (Germany); Fonseca, R.O.C. [Steinmann Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn (Germany); Bottomley, P.D.W.; Hasnaoui, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2013-08-15

    U isotope data measured on real fragments of the Chernobyl nuclear fuel included in zircon crystals crystallised from the Chernobyl “lava” are presented for the first time. The U isotope data show no anomalies and lie within the expected burnup values for the Chernobyl nuclear fuel. However, the U concentration, the U isotopic composition, and the Ti concentration in the host zircon vary significantly within single crystals as well as between single crystals. Our results indicate that during the time of melt activity temperature and melt composition likely varied considerably. New melt was formed progressively (and solidified) during the accident that reacted and mixed with pre-existing melt that never fully equilibrated. In such an environment zircon crystals crystallised at temperatures below 1250 °C, as estimated from thermodynamic considerations along with the observation that the centre of the investigated zircon crystal contains monoclinic ZrO{sub 2} inclusions. Since the zircon crystals crystallised before the silicate melt spread out into the reactor block basement, the flow of the melt into the basement must also have occurred at temperatures below 1250 °C.

  19. Heavy atom isotope effects on enzymatic reactions

    Science.gov (United States)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  20. The silicon isotope record of early silica diagenesis

    Science.gov (United States)

    Tatzel, Michael; von Blanckenburg, Friedhelm; Oelze, Marcus; Schuessler, Jan A.; Bohrmann, Gerhard

    2015-10-01

    The heavy isotopes of silicon are strongly enriched in some of the youngest, early diagenetically formed porcellanite layers from the Southwest Indian Ridge (Pleistocene) and the Maud Rise (Pliocene). These porcellanite layers are composed of opal-CT and were formed by the conversion of amorphous silica (opal-A) from siliceous sediment via dissolution-reprecipitation. Their bulk δ30Si values range between 1.7 and 2.3‰. Detritus-poor siliceous sediment surrounding these layers is significantly lower at -0.3 to 1.5‰. Sequential chemical extractions of bulk siliceous sediment show (i) preferential dissolution of diatoms featuring higher δ30Si than radiolaria and Al-Si components. The detailed investigation of porcellanite layers by micro-scale Si isotope and Al/Si analyses using UV femtosecond laser ablation ICP mass spectrometry show that (ii) precipitation of authigenic aluminum silicates enriched in light Si isotopes drives pore waters to even higher δ30Si. We suggest that the same processes redistributed stable silicon isotopes in precursor siliceous sediments of ancient chert. We infer that past environmental conditions can be reconstructed with high fidelity from the stable Si isotope composition of chert when initial seawater Si concentrations were high (such as in the Precambrian). Exchange of Si between layers during phase transformation (from opal-A to opal-CT and from opal-CT to quartz) is impeded when variable amounts of detrital minerals are present, because they control rates of silica phase transformation and hence the timing of dissolution-reprecipitation during burial.

  1. Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: Phantom experiments

    Science.gov (United States)

    Oh, Jang-Hoon; Kim, Hyug-Gi; Woo, Dong-Cheol; Jeong, Ha-Kyu; Lee, Soo Yeol; Jahng, Geon-Ho

    2017-03-01

    The physical and technical development of chemical-exchange-saturation-transfer (CEST) magnetic resonance imaging (MRI) using clinical 3 T MRI was explored with the goal of mapping asparagine (Asn), gamma-aminobutyric acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI), which exist in the brain. Phantoms with nine different conditions at concentrations of 10, 30, and 50 mM and pH values of 5.6, 6.2, and 7.4 were prepared for the five target molecules to evaluate the dependence of the CEST effect in the concentration, the pH, and the amplitude of the applied radiofrequency field B1. CEST images in the offset frequency range of ±6 parts per million (ppm) were acquired using a pulsed radio-frequency saturation scheme with a clinical 3 T MRI system. A voxel-based main magnetic field B0 inhomogeneity correction, where B0 is the center frequency offset at zero ppm, was performed by using the spline interpolation method to fit the full Z-spectrum to estimate the center frequency. A voxel-based CEST asymmetry map was calculated to evaluate amide (-NH), amine (-NH2), and hydroxyl (-OH) groups for the five target molecules. The CEST effect for Glu, GABA, and Gly clearly increased with increasing concentrations. The CEST effect for MI was minimal, with no noticeable differences at different concentrations. The CEST effect for Glu and Gly increased with increasing acidity. The highest CEST asymmetry for GABA was observed at pH 6.2. The CEST effect for Glu, GABA, and Gly increased with increasing B1 amplitude. For all target molecules, the CEST effect for the human 3 T MRI system increased with increasing concentration and B1 amplitude, but varied with pH, depending on the characteristics of the molecules. The CEST effect for MI may be not suitable with clinical MRI systems. These results show that CEST imaging in the brain with the amine protons by using 3 T MRI is possible for several neuronal diseases.

  2. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions

    Science.gov (United States)

    Marin-Carbonne, Johanna; Chaussidon, Marc; Robert, François

    2012-09-01

    Oxygen and silicon isotopes in cherts have been extensively used for the reconstruction of seawater temperature during the Precambrian. These reconstructions have been challenged because cherts can have various origins (hydrothermal, sedimentary, volcanic silicification) and their isotopic compositions might have been reset by metamorphic fluid circulation. Existing criteria used to assess the pristine sedimentary origin of a chert are based on petrography (criterion #1: chert is composed mostly of microquartz); on the bulk oxygen isotopic composition (criterion #2: bulk δ18O has to be close enough to the maximum δ18O value previously measured in other cherts of the same age); and on the presence of a large δ18O range at the micrometer scale (criterion #3: δ18O range of ˜10‰ at ˜2 μm). However, these criteria remain incomplete in determining precisely the origin and degree of preservation of ancient cherts. We report in situ Si and O isotope compositions and trace element concentrations in seven chert samples ranging from 1.88 to 3.5 Ga in age. Correlations between δ30Si and Al2O3 (and K2O, TiO2) reveal that microquartz is of three different origins, i.e. diagenetic, hydrothermal or silicification. Moreover, chert samples composed mostly of diagenetic microquartz show a large range of δ30Si at the micrometer scale (1.7-4.5‰), consistent with the large range of δ18O previously found in the Gunflint diagenetic cherts. We propose two further quantitative criteria to assess the origin, state of preservation and diagenetic history of cherts. Criterion #4 uses trace element concentrations coupled with δ30Si to ascribe the origin of cherts among three possible end-members (diagenetic, hydrothermal, and silicified). Criterion #5 is the presence of a large range of δ30Si in pure diagenetic microquartz. In the seven samples analyzed in this study, only one (from the Gunflint Iron formation at 1.88 Ga) passes all the criteria assessed here and can be used for

  3. Chemical and isotopic variations in the Wiśniówka Mała mine pit water, Holy Cross Mountains (south-central Poland)

    Science.gov (United States)

    Migaszewski, Zdzisław M.; Gałuszka, Agnieszka; Hałas, Stanisław; Dąbek, Józef; Dołęgowska, Sabina; Budzyk, Irena; Starnawska, Ewa; Michalik, Artur

    2009-03-01

    In 2005 and 2006, hydrogeochemical study was carried out in the bipartite Wiśniówka Mała pit lake of the Holy Cross Mountains (south-central Poland). This is the largest acidic water body in Poland. This report presents the element concentrations in the water and sediment, stable sulfur and oxygen isotope ratios in the soluble sulfates, and stable oxygen isotope ratio in the water. The scope of the investigation also encompassed mineralogical examinations (scanning electron microscope, X-ray diffraction) of the sediment. The results of this study show that there is a spatial and temporal variability in concentrations of most elements and sulfur isotope ratios in the examined pit lake. The water of the western pond displayed a lower pH with a mean of 3.73 and higher conductivity (390 μS cm-1) as well as higher concentrations of sulfates (156 mg L-1) and most of the cations and anions. The concentrations of Fe2+ and Fe3+ averaged 0.8 and 0.4 mg·L-1. In contrast, the eastern pond water revealed a higher pH (mean of 4.36), lower conductivity (293 μS cm-1) and lower sulfate (90 mg L-1) and trace metal levels. Similar variations were recorded in the stable sulfur isotope ratios. The δ34SV-CDT(SO4 2-) values in the water of the western pit pond were in the range of -6.7 to -4.6‰ (mean of -5.6‰), whereas that in the eastern pit pond ranged from -2.2 to -0.9‰ (-1.6‰). The alkalinity of the entire lake water was below 0.1 mg·L-1 CaCO3. No distinct difference in the δ18OV-SMOW(SO4 2-) was noted between the western and eastern pit ponds. Compared to the Purple Pond in the Sudetes (Poland) and similar sites throughout the world, the examined pit lake is highlighted by distinctly low concentrations of sulfates, iron and other trace metals. Based on this and other studies performed in the Holy Cross Mountains, a conclusion can be drawn that the SO4 2- in the Wiśniówka Mała pit lake water is a mixture of SO4 2- derived from the following sources: (1) pyrite

  4. Isotopic Changes During Digestion: Protein

    Science.gov (United States)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  5. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  6. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types-I,-II,IIS, and -III

    Science.gov (United States)

    Schimmelmann, Arndt; Lewan, Michael D.; Wintsch, Robert P.

    1999-11-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381°C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330°C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ≈ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381°C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350°C for 72 h, or 330°C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115°C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  7. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III

    Science.gov (United States)

    Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

    1999-01-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381??C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330??C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ~ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 ??C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350??C for 72 h, or 330??C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115??C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  8. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.

  9. Petrogenesis and significance of the Hongshan syenitic pluton,South Taihang: zircon SHRIMP U-Pb age, chemical compositions and Sr-Nd isotopes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Hongshan syenitic pluton (South Taihang) is mainly made up of hornblende syenite and minor granite. SHRIMP zircon dating yields a U-Pb age of 135 ± 2.7 Ma for the emplacement of the pluton, while biotite Rb-Sr isotopic data give an isochron of 120.3 ± 2.4 Ma. Hongshan syenites show low silica, high alkalis and LILE such as Sr, and exhibit negligible Eu anomalies or slightly positive anomalies in the REE patterns. The syenites show quite enriched isotopic compositions with Isr from 0. 7052 to 0. 7102 and εNd( t ) from - 7.5 to - 11. 1. Petrogenesis of the pluton can be that partial melting of an enriched lithospheric mantle gave birth to an alkali basaltic magma, which subsequently underplated in the lower crust and experienced a coupled fractionation of ferromagnesian phases like pyroxene and hornblende and minor ( < 10 % ) contamination of lower continental crust, producing the Hongshan syenites that partially evolved into granite through combined fractionation of hornblende and feldspar. Our data are not in agreement with a previous model that the syenites originated from melting of lower crust in a thickened crust circumstance, and thus do not support the speculation of "East China Plateau" in the Mesozoic.

  10. Isotopic-chemical study of fluid of producing wells and natural springs from Las Tres Virgenes, Baja California Sur systems, Mexico. Estudio quimico-isotopico de fluidos de pozos productores y manantiales del sistema Las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Portugal Marin, Enrique; Barragan, Rosa Maria; Arellano Gomez, Victor Manuel (Instituto de Investigaciones Electricas, Cuernavaca (Mexico)); Tello H, Enrique (Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)); Garcia, Consuelo (Residencia del Campo Geotermico Las Tres Virgenes, Baja California Sur (Mexico))

    1998-09-15

    Results of the chemical and isotopic studies from springs, domestic and geothermal wells in Las Tres Virgenes, Baja California Sur, Mexico are presented. Three water types were found to be in the study zone. Sulphate-type water at the North, bicarbonate-type waters at the South and sodium chloride type at the West. The last group includes the reservoir water. The estimated geothermometric temperature for the LV-1 well was 259 degrees Celsius with CCG geothermometer, while the estimated temperature for the springs were low, due to high dilution of the deep fluid with groundwater. The isotopic data (d[sup 18]O and dD) were used to define the local meteoric line, the isotopic composition of the reservoir recharge and the possible elevation where the reservoir recharge is likely to occur. Finally a discussion about the possible origin of the geothermal water based on the isotopic data is presented.

  11. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around &ldq...

  12. Active microchannel heat exchanger

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  13. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    Science.gov (United States)

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  14. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  15. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: a novel chemical approach.

    Science.gov (United States)

    Yang, Ce; Jia, Lihui; Wang, Shouguo; Gao, Chen; Shi, Dawei; Hou, Yanglong; Gao, Song

    2013-12-20

    SmCo5 based magnets with smaller size and larger maximum energy product have been long desired in various fields such as renewable energy technology, electronic industry and aerospace science. However, conventional relatively rough synthetic strategies will lead to either diminished magnetic properties or irregular morphology, which hindered their wide applications. In this article, we present a facile chemical approach to prepare 200 nm single domain SmCo5@Co core/shell magnets with coercivity of 20.7 kOe and saturation magnetization of 82 emu/g. We found that the incorporation of GO sheets is responsible for the generation of the unique structure. The single domain SmCo5 core contributes to the large coercivity of the magnets and the exchange-coupled Co shell enhances the magnetization. This method can be further utilized in the synthesis other Sm-Co based exchange-coupled magnets.

  16. IUPAC Periodic Table of the Isotopes

    Science.gov (United States)

    Holden, N.E.; Coplen, T.B.; Böhlke, J.K.; Wieser, M.E.; Singleton, G.; Walczyk, T.; Yoneda, S.; Mahaffy, P.G.; Tarbox, L.V.

    2011-01-01

    For almost 150 years, the Periodic Table of the Elements has served as a guide to the world of elements by highlighting similarities and differences in atomic structure and chemical properties. To introduce students, teachers, and society to the existence and importance of isotopes of the chemical elements, an IUPAC Periodic Table of the Isotopes (IPTI) has been prepared and can be found as a supplement to this issue.

  17. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.

    Science.gov (United States)

    Xie, Hong; Huang, Zhi-Yong; Cao, Ying-Lan; Cai, Chao; Zeng, Xiang-Cheng; Li, Jian

    2012-08-01

    Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p EDTA and the Σ(BCR) values extracted with the modified BCR approach are helpful to detect the labile pools of Pb in soils. In addition, the negative correlation between soil pH and the labile pools of Pb in soils may be useful for further remediation to reduce the bioavailability of Pb in contaminated soils.

  18. Suitability of Isotope Kinetic Approach to Assess Phos—phorus Status and Bioavailability of Major Acidic Soils in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XIONGLIMING; J.C.FARDEAU

    1997-01-01

    A 32P isotope kinetic approach was used to describe the chemical status and bioavailability of phosphorus in 32 acidic soils from subtropical China.By determining the residual radoactivity,rt,in soil solution at different time,t,after introduction of the isotope in an amount of R into the steady soil-water system,a well-defined isotope kinetic model was established,and upon this model the decrease rate ,n,of log(rt/R) with respect to logt,the mean sojourn time of phosphate ions in solution,the mean exchange rate and the mean flux of phosphate ions between soil solid and solution phases were calculated.Other parameters,such as the exchangeable P within the first minute of isotope exchange(E1),and P in various compartments that could be exchanged with solution phosphte ions at different perods of time,were also obtained.For these acidic soils,the r1/R had a significant correlation with the contents of clay and free Al2O3 where r1 is the radioactivity in solution 1 minute after introduction of the isotope into the system.Parameter n also had a significant correlation with clay content and a neagtive correlation with soil pH,E1 values and Cp,the P concentration in soil solution,also Significantly correlated with clay and sesquioxide contents of the soils.these indicated that these isotope kinetic parameters were largely influenced by P-fixing components of the soils.For the soils with strong P-fixing ability,the E1 values overestimated labile P pools and hence their correlations with A values and plant P uptake were not significant .The other iostope kinetic parameters also had no significant correlation with plant P uptak.On the other hand,the convetional chemical-extracted p correlated better with plant P uptake .It was concluded that the iostope kinetic method could assess the p chemical status yet it would inappropriate in predicting plant available P for soils with a high P-fixing ability as the problem of an overestimation of soil lable P in these soils was

  19. The Chemical and Isotopic Signature of Old Groundwater and Magmatic Solutes in a Costa Rican Rainforest: Evidence From Carbon, Helium, and Chlorine

    Science.gov (United States)

    Webb, M. D.; Genereux, D. P.; Solomon, D. K.

    2008-12-01

    Major ion, 18O, and water budget data from previous hydrologic studies at a Costa Rica lowland rainforest site, La Selva Biological station at the foot of Volcan Barva, indicate the presence and mixing of two distinct groundwaters: - bedrock groundwater: relatively high-solute groundwater that represents interbasin groundwater flow into the lowland rainforest watersheds, and - local groundwater: more dilute groundwater recharged locally in the lowlands. In this study we found that C, He, and Cl concentrations and isotope data (ä13C, 14C, 3He/4He, 36Cl/Cl), in groundwater and surface water at La Selva and upslope in Braulio Carillo National Park, are strongly consistent with the mixing hypothesis and provide insight into the age and origin of the two groundwaters. Highly significant linear trends on plots of isotopic abundance vs. the inverse of concentration support the mixing of two groundwaters. High ä13C (-4.89), low 14C (7.98 pmC), high R/RA for He (6.88), and low 36Cl/Cl (17 x 10-15) of bedrock groundwater indicate that elevated C, He, and Cl concentrations in this groundwater are derived from magmatic outgassing and/or weathering of volcanic rock, most likely beneath nearby Volcan Barva. The estimated ä13C of magmatic CO2 was -2.6 , almost identical to the previously- measured ä13C of CO2 in high-temperature gases from two volcanoes in the region (-2.9 at Momotombo in Nicaragua and -2.7 at Arenal in Costa Rica). Concentrations and isotopic ratios of C, He, and Cl in local water are consistent with atmospheric/precipitation sources for He and Cl and a biogenic soil-gas CO2 source for DIC. 14C dating, using NETPATH (a geochemical mass-balance model), indicate an apparent age of bedrock groundwater in the range 2700-4300 years. Local groundwater has 14C concentrations >100 pmC, indicating the presence of anthropogenic "bomb carbon" and thus ages less than ~55 years for these samples collected in 2006. Overall the data are fully consistent with the conceptual

  20. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    Science.gov (United States)

    Pal, Dipak C.; Sarkar, Surajit; Mishra, Biswajit; Sarangi, A. K.

    2011-06-01

    The Jaduguda U (-Cu-Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A - high Co (up to 30800 ppm), no/low Ni; type-B - moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C - no/low Co and high Ni (up to 43000 ppm); type-D - neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06‰. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0‰. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  1. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial-brine-rock-CO2 interactions

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia

    2016-01-01

    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  2. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    Indian Academy of Sciences (India)

    Dipak C Pal; Surajit Sarkar; Biswajit Mishra; A K Sarangi

    2011-06-01

    The Jaduguda U (–Cu–Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A — high Co (up to 30800 ppm), no/low Ni; type-B — moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C — no/low Co and high Ni (up to 43000 ppm); type-D — neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06%. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  3. Isotopic imaging of refractory inclusions in meteorites with the NanoSIMS 50L

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Motoo [Robert M. Walker Laboratory for Space Science, ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77573 (United States)], E-mail: motoo.ito-1@nasa.gov; Messenger, Scott [Robert M. Walker Laboratory for Space Science, ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77573 (United States)], E-mail: scott.r.messenger@nasa.gov

    2008-12-15

    Oxygen isotopic micro-distributions within and among silicate and oxide minerals in a meteorite were measured with the JSC NanoSIMS 50L by isotopic imaging. High precision isotopic images with micrometer-scale resolution revealed detailed O isotope distributions within CAI minerals. Small-scale heterogeneous distributions of O isotopes constrain the history of isotopic exchange mechanisms in the CAI during and since its formation in the early solar system. We describe the development O isotopic imaging of insulating minerals with high precision of {+-}6 and 3 per mille for {delta}{sup 17}O and {delta}{sup 18}O, respectively.

  4. Experimental and theoretical investigation of isotope fractionation of zinc between aqua, chloro, and macrocyclic complexes.

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Telouk, Philippe; Abe, Minori

    2010-02-25

    This work reports on the chemical isotope fractionation of Zn(II) by a solvent extraction method with the crown ether dicyclohexano-18-crown-6. The (m)Zn/(64)Zn ratios (m = 66, 67, and 68) were analyzed by multiple-collector inductively coupled plasma mass spectrometry. The relative deviations of the (66)Zn/(64)Zn ratios relative to the unprocessed material (delta(66)Zn) was determined to be -0.51 to -0.32 in the acidity region 1.0-6.0 mol dm(-3) (M) HCl. The acidity dependence of delta(m)Zn was explained by the isotope exchange reactions between Zn(II) species (Zn(2+), ZnCl(+), ZnCl(2), ZnCl(3)(-), and ZnCl(4)(2-)) and the mole fractions of them. The magnitude of delta(m)Zn due to the related Zn(II) species estimated by quantum chemical calculations was in agreement with delta(m)Zn experimentally obtained. Contribution of nuclear field shift to the isotope fractionation was estimated to be less than 10% of delta(m)Zn by quantum chemical calculations.

  5. Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion.

    Science.gov (United States)

    Song, Xiaolei; Walczak, Piotr; He, Xiaowei; Yang, Xing; Pearl, Monica; Bulte, Jeff Wm; Pomper, Martin G; McMahon, Michael T; Janowski, Mirosław

    2016-07-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Predicted, focal opening of the BBB through intra-arterial infusion of hyperosmolar mannitol is feasible, but there is a need to facilitate imaging techniques (e.g. MRI) to guide interventional procedures and assess the outcomes. Here, we show that salicylic acid analogues (SAA) can depict the brain territory supplied by the catheter and detect the BBB opening, through chemical exchange saturation transfer (CEST) MRI. Hyperosmolar SAA solutions themselves are also capable of opening the BBB, and, when multiple SAA agents were co-injected, their locoregional perfusion could be differentiated.

  6. A novel methodology to investigate isotopic biosignatures

    Science.gov (United States)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    . coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.

  7. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    Science.gov (United States)

    Sturchio, N.C.; Böhlke, J.K.; Beloso, A.D.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  8. The case for metamorphic base metal mineralization: pyrite chemical, Cu and S isotope data from the Cu-Zn deposit at Kupferberg in Bavaria, Germany

    Science.gov (United States)

    Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.

    2017-01-01

    The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn

  9. Geochemistry of the Dissolved Load of the Changjiang Basin Rivers: Anthropogenic Impacts and Chemical Weathering, Evidences from Major Elements, Sr and B Isotopes

    Institute of Scientific and Technical Information of China (English)

    Benjamin Chetelat; LIU Cong-qiang

    2008-01-01

    @@ 1 Introduction Rivers provide a unique opportunity to have average information about chemical and physical erosion, about the major geochemical fractionations created by these major geological processes but also about the impact and disturbances of human activities on the Earth Engine.

  10. 基于技术系统进化理论的换热器化学除垢方法的研究%Research on Chemical Anti- fouling Methods of Heat Exchanger Based on Technical System Evolution Theory

    Institute of Scientific and Technical Information of China (English)

    李耀中; 李英利; 胡建超

    2011-01-01

    基于技术系统进化理论预测换热器化学除垢方法的研究方向,寻找一种能够代替或改善现有的除垢方法,从而解决现有化学法存在的污染环境、损伤设备、成本较高等缺点。%Based on technical system evolution theory to predict future research direction for chemical anti - fouling methods of heat exchanger and finding a method to replace or improve the present anti - fouling one. Furthmore, could overcome the shortcoming of the present chemical method such as polluting the environment, damaging equipment,and higher cost etc.

  11. Neutron-Rich Silver Isotopes Produced by a Chemically Selective Laser Ion-Source: Test of the R-Process " Waiting-Point " Concept

    CERN Multimedia

    2002-01-01

    The r-process is an important nucleosynthesis mechanism for several reasons: \\begin{enumerate} \\item It is crucial to an understanding of about half of the A>60 elemental composition of the Galaxy; \\item It is the mechanism that forms the long-lived Th-U-Pu nuclear chronometers which are used for cosmochronolgy; \\item It provides an important probe for the temperature (T$ _{9} $)-neutron density ($n_{n}$) conditions in explosive events; and last but not least \\item It may serve to provide useful clues to and constraints upon the nuclear properties of very neutron-rich heavy nuclei. \\end{enumerate} \\\\ \\\\With regard to nuclear-physics data, of particular interest are the T$ _{1/2} $ and P$_{n-} $ values of certain$\\,$ "waiting-point"$\\,$ isotopes in the regions of the A $ \\approx $ 80 and 130. r-abundance peaks. Previous studies of $^{130}_{\\phantom{1}48}$Cd$_{82}$ and $^{79}_{29}$Cu$_{50}$. $\\beta$-decay properties at ISOLDE using a hot plasma ion source were strongly complicated by isobar and molecular-ion c...

  12. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia. I. Chemical and isotopic changes in major components of interstitial water

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, A.; Presley, B.J.; Kaplan, I.R.

    1979-01-01

    Water and interstitial water from the reducing fjord of Saanich Inlet, British Columbia were analyzed for their major element composition, ammonia, phosphate and silica contents, and for stable isotope composition of sulfur and carbon species. Ca was the only major element to show a significant change with depth (a 75 per cent decrease in some cases). Ammonia and phosphate are highly enriched in the interstitial water (IW), concentrations reaching 250 ppM and 39 ppM, respectively. Total dissolved CO/sub 2/ in IW increases strongly with depth (20 to 30 times that in overlying sea-water) and it becomes enriched in C/sup 13/ (deltaC/sub PDB//sup 13/ approx. = 17.8%). Both sulfate and dissolved sulfide decreased with depth to a complete disappearance of all sulfur species from the interstitial water. The dissolved sulfide is highly enriched in S/sup 34/ (deltaS/sup 34/ approx. = + 18%). All these changes are attributed to strong biological activity in the sediments.

  13. Chemical and isotopic ( 87Sr/ 86Sr, δ 18O, δD) constraints to the formation processes of Red-Sea brines

    Science.gov (United States)

    Pierret, M. C.; Clauer, N.; Bosch, D.; Blanc, G.; France-Lanord, C.

    2001-04-01

    About twenty deeps filled with hot brines and/or metalliferous sediments, are located along the Red-Sea axis. These brines present a well-suited framework to study the hydrothermal activity in such a young ocean. The present study outlines the results of a geochemical approach combining major-, trace-element and isotopic (oxygen, hydrogen, strontium) analyses of brines in six of the deeps, to evaluate different processes of brine formation and to compare the evolution of each deep. Important heterogeneities in temperature, salinity, hydrographic structure and chemistry are recorded, each brine having its own characteristics. The intensity of hydrothermal circulation varies among the deeps and ranges from being strong (Atlantis II and Nereus) to weak (Port-Soudan) and even to negligible (Valdivia and Suakin) and it varies along the entire Red-Sea axis. These observations do not favour a unique formational model for all of the brines. For example, the brines of the Suakin deep appear to have been formed by an old sea water which dissolved evaporite beds, without significant fluid circulation and hydrothermal input, while others such as Atlantis II or Nereus Deeps appear to be dominated by hydrothermal influences. A striking feature is the absence of a relationship between the position of the deeps along the axis and their evolutionary maturity.

  14. Pharmaceutical Applications of Ion-Exchange Resins

    Science.gov (United States)

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  15. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 µm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

    Science.gov (United States)

    Clauer, Norbert; Lewan, Michael D.; Dolan, Michael P.; Chaudhuri, Sambhudas; Curtis, John B.

    2014-01-01

    Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K–Ar dating of whole rocks and chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their <2 μm fractions resulting from differences in detrital sources and depositional settings give scattered results that homogenize progressively during burial due to increased authigenesis, and concomitant increased alteration of the detrital material.

  16. Fast ion extraction in laser isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Hazak, G.; Gell, Y.; Boneh, Y.; Goshen, S.

    1980-10-01

    An analysis of the E x B scheme for fast ion extraction in laser isotope separation is presented. Using an analytically solvable model and a numerical simulation we have found that the scheme can meet the rather severe time and space restrictions imposed by the large cross section for charge exchange.

  17. The non-mass-dependent oxygen isotope effect in the electrodissociation of carbon dioxide - A step toward understanding NoMaD chemistry. [fractionations in meteorites

    Science.gov (United States)

    Heidenreich, J. E., III; Thiemens, M. H.

    1985-01-01

    A non-mass dependent (NoMaD) oxygen isotope effect is demonstrated in the dissociation of CO2 similar to that observed in the electrosynthesis of ozone. The molecular oxygen produced carries the signature of two separate isotopic fractionation processes; a mass-dependent fractionation probably due to CO2 + O isotopic exchange, and a secondary NoMaD fractionation (delta O-17 = 0.97 + or - 0.09 delta O-18, with the O2 depleted in O-17 and O-18). It is suggested that the effect is due to either the formation or relaxation of ozone in an excited electronic state. This represents the latest advance in the understanding of chemical NoMaD effects which may be essential to the explanation of non-mass-dependent fractionations observed in meteorites.

  18. Mineralogical, Chemical, and Isotopic Characterization of Fracture-Coating Minerals in Borehole Samples from Western Pahute Mesa and Oasis Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, F C; Rose, T P; Zhou, X

    2000-09-01

    This report summarizes the results of a mineralogical and geochemical investigation of fracture-coating phases obtained from archived borehole core and cuttings samples from the western Pahute Mesa-Oasis Valley region. The objective is to provide data needed to validate UGTA flow and transport models for this region. Fracture-lining minerals were characterized using micrographic techniques (SEM-EDS), and selected calcite samples were analyzed for their stable isotope ({sup 13}C/{sup 12}C and {sup 18}O/{sup 16}O) and rare earth element (REE) abundances. The main conclusions are as follows: (1) The distribution of fracture-lining mineral phases is a function of primary rock type, the style and degree of syn-depositional alteration, effects of post-depositional hydrothermal alteration, and fracture location relative to recharge waters (in the unsaturated zone) or through going groundwater (in the saturated zone). (2) Fracture-lining minerals within the welded tuff aquifers (principally the Timber Mountain and Paintbrush Tuffs) are characterized by the assemblage calcite + chalcedony + Fe- and Mn-oxyhydroxides + mixed illite/smectite (in approximate decreasing order of abundance). The predominant mode of host rock alteration is quartzofeldspathic. (3) Interbedded rhyolitic lava flow aquifers are characterized by the fracture-lining assemblage chalcedony + mixed illite/smectite + Fe- and Mn-oxyhydroxides {+-} calcite {+-} quartz {+-} K-feldspar (in approximate decreasing order of abundance). These include lava flow aquifers from the Thirsty Canyon, Beatty Wash, Paintbrush, and Quartz Mountain groups. The predominant mode of host rock alteration is quartzofeldspathic. (4) Fracture-lining zeolite minerals are abundant only within one of the basaltic lava flow aquifers (Trachyte of Ribbon Cliff) where they occur with chalcedony + calcite + clay minerals. (5) Stable isotope analyses ({sup 13}C/{sup 12}C and {sup 18}O/{sup 16}O) of secondary calcite samples were used to

  19. Chemical and isotopic relationship of mafic and felsic magmas in a sub-volcanic reservoir: The Guadalupe Igneous Complex (GIC), Sierra Nevada, California

    Science.gov (United States)

    Ratschbacher, B. C.; Paterson, S. R.; Putirka, K. D.

    2013-12-01

    It is commonly believed that the interaction of mafic and felsic melts in the form of mixing/mingling as well as their genetic link in the form of fractionation play an important role in the formation of continental crust. The combination of whole rock major element content and isotopic signature, as presented in this study, is a powerful tool to identify the origin and genetic relation of mafic and felsic melts in magmatic arc settings where new material is added to the crust. The GIC is part of the Jurassic Sierran magmatic arc exposed in the Western Metamorphic Belt and contains two main units consisting of mafic (up to 9 wt. % MgO and 49 to 56 wt. % SiO2) and felsic (around 75 wt. % SiO2) rocks, which locally mingled and mixed to different proportions at a shallow emplacement level. In the lower parts of the GIC, fine-grained gabbros gradually evolve into the overlying diorite to meladiorite unit. A mingling zone separates these mafic rocks from granites, granophyres and overlying rhyolites in the upper part of the complex. Major element whole rock analyses show that the GIC is bimodal with gabbros and granitoids acting as endmembers in SiO2, MgO and CaO contents. For Al2O3, Na2O and other element oxides, the different units strongly overlap in compositions. Recent work using single grain zircon U-Pb dating found ages for both the gabbros and the felsic part of the complex of 151 Ma within uncertainty (Saleeby et al., 1989; Ernst et al., 2009, and unpublished data from this study). These ages are in agreement with Rb-Sr data from each unit, which fall on a 152×7 Ma isochron and therefore imply closed-system evolution. Major oxide data show that assimilation of the exposed surrounding host rocks is unlikely and cannot serve as an assimilant to reproduce the observed felsic compositions from the gabbroic rocks. Sri, Nd and Pb systematics show that all units except for capping granophyres and rhyolites plot close together implying a shared parental melt, which is

  20. Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico-Guatemala): implications for volcanic surveillance

    Science.gov (United States)

    Rouwet, Dmitri; Inguaggiato, Salvatore; Taran, Yuri; Varley, Nicholas; Santiago S., José A.

    2009-04-01

    This study presents baseline data for future geochemical monitoring of the active Tacaná volcano-hydrothermal system (Mexico-Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500-2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal ( T from 25.7°C to 63.0°C) HCO3-SO4 waters are thought to have formed by the absorption of a H2S/SO2-CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as -128 and -19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of -3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio ( R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/ S (5.9 ± 0.5) and ( L + S)/ M

  1. By-products of the serpentinization process on the Oman ophiolite : chemical and isotopic composition of carbonate deposits in alkaline springs, and associated secondary phases

    Science.gov (United States)

    Sissmann, O.; Martinez, I.; Deville, E.; Beaumont, V.; Pillot, D.; Prinzhofer, A.; Vacquand, C.; Chaduteau, C.; Agrinier, P.; Guyot, F. J.

    2014-12-01

    The isotopic compositions (d13C, d18O) of natural carbonates produced by the alteration of basic and ultrabasic rocks on the Oman ophiolite have been measured in order to better understand their formation mechanisms. Fossil carbonates developed on altered peridotitic samples, mostly found in fractures, and contemporary carbonates were studied. The samples bear a large range of d13C. Those collected in veins are magnesian (magnesite, dolomite) and have a carbon signature reflecting mixing of processes and important fractionation (-11‰ to 8‰). Their association with talc and lizardite suggests they are by-products of a serpentinization process, that must have occurred as a carbon-rich fluid was circulating at depth. On the other hand, the carbonates are mostly calcic when formed in alkaline springs, most of which are located in the vicinity of lithological discontinuities such as the peridotite-gabbro contact (Moho). Aragonite forms a few meters below the surface of the ponds in Mg-poor water, and is systematically associated with brucite (Mg(OH)2). This suggests most of the Mg dissolved at depth has reprecipitated during the fluid's ascension through fractures or faults as carbonates and serpentine. Further up, on the surface waters of the ponds (depleted in Mg and D.I.C.), thin calcite films precipitate and reach extremely negative d13C values (-28‰), which could reflect either a biological carbon source, or kinetic fractionation from pumping atmospheric CO2. Their formation represent an efficient and natural process for carbon dioxide mineral sequestration. The d18O signature from all samples confirm the minerals crystallized from a low-temperature fluid. The hyperalkaline conditions (pH between 11 and 12) allowing for these fast precipitation kinetics are generated by the serpentinization process occurring at depth, as indicated by the measured associated H2-rich gas flows (over 50%) seeping out to the surface.

  2. Research trend survey on the stable isotope utilization technology; Antei doitai no riyo gijutsu ni kansuru kenkyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report reviews the activities and the trends in the area of the stable isotope use attracting attention recently. In the medicine and clinical treatment sector, the remarkable trends are the extension of {sup 13}C use. The breath test and the magnetic resonance spectroscopy (MRS) diagnosis have been developed as inspection methods. It is noted that investigation has been initiated on the magnetic resonance imaging (MRI) using {sup 3}He and {sup 129}Xe for the lung imaging. In the organic chemistry and biochemistry sector, the stable isotopes are used for analyzing the structures of complicated natural compounds and materials relating to life science and for analyzing the chemical reaction mechanism of organic compounds. In the nuclear energy sector, {sup 10}B and {sup 7}Li have been used as neutron absorption materials and pH neutralizing reagent, respectively. In the analysis and measurement sector, the process of isotopic dilution is used for the environmental analysis of trace elements including harmful substances. Among various separation methods of isotopes, well studied uranium enrichment processes and deuterium separation processes are described. Separation of {sup 15}N by ion exchange resin method and plasma ion cyclotron resonance (ICR) isotope separation have been studied, recently. 133 refs., 53 figs., 7 tabs.

  3. Copper isotope fractionation by desert shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, Jesica U., E-mail: jnavarrete2@miners.utep.edu [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States); Viveros, Marian; Ellzey, Joanne T. [University of Texas at El Paso, Department of Biological Sciences, El Paso, TX 79968 (United States); Borrok, David M. [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States)

    2011-06-15

    Copper has two naturally occurring stable isotopes of masses 63 and 65 which can undergo mass dependent fractionation during various biotic and abiotic chemical reactions. These interactions and their resulting Cu isotope fractionations can be used to determine the mechanisms involved in the cycling of Cu in natural systems. In this study, Cu isotope changes were investigated at the organismal level in the metal-accumulating desert plant, Prosopis pubescens. Initial results suggest that the lighter Cu isotope was preferentially incorporated into the leaves of the plant, which may suggest that Cu was actively transported via intracellular proteins. The roots and stems show a smaller degree of Cu isotope fractionation and the direction and magnitude of the fractionations was dependent upon the levels of Cu exposure. Based on this and previous work with bacteria and yeast, a trend is emerging that suggests the lighter Cu isotope is preferentially incorporated into biological components, while the heavier Cu isotope tends to become enriched in aqueous solutions. In bacteria, plants and animals, intracellular Cu concentrations are strictly regulated via dozens of enzymes that can bind, transport, and store Cu. Many of these enzymes reduce Cu(II) to Cu(I). These initial results seem to fit into a broader picture of Cu isotope cycling in natural systems where oxidation/reduction reactions are fundamental in controlling the distributions of Cu isotopes.

  4. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Craig, L.B.; Farma, A.J.

    1987-01-06

    This invention concerns a heat exchanger as used in a space heater, of the type in which hot exhaust gases transfer heat to water or the like flowing through a helical heat exchange coil. A significant improvement to the efficiency of the heat exchange occurring between the air and water is achieved by using a conduit for the water having external helical fluting such that the hot gases circulate along two paths, rather than only one. A preferred embodiment of such a heat exchanger includes a porous combustion element for producing radiant heat from a combustible gas, surrounded by a helical coil for effectively transferring the heat in the exhaust gas, flowing radially from the combustion element, to the water flowing through the coil. 4 figs.

  5. Cadomian (˜560 Ma) crust buried beneath the northern Arabian Peninsula: Mineral, chemical, geochronological, and isotopic constraints from NE Jordan xenoliths

    Science.gov (United States)

    Stern, Robert J.; Ali, Kamal A.; Ren, Minghua; Jarrar, Ghaleb H.; Romer, Rolf L.; Leybourne, Matthew I.; Whitehouse, Martin J.; Ibrahim, Khalil M.

    2016-02-01

    In order to better understand the nature and formation of the lower continental crust beneath northern Arabia, we studied lower crustal xenoliths brought up by Neogene basalts in NE Jordan. Most of these xenoliths are comprised of primary phases plagioclase + two-pyroxenes with magnetite and ilmenite. Most clinopyroxene are augite whereas orthopyroxene mostly are hypersthene (Mg# = 50-80). Plagioclase feldspar is dominantly andesine-labradorite; pyrope-rich garnet and Fe-rich olivine (Fo75 to Fo62) are rare. These xenoliths represent cumulates formed from intermediate magmas that pooled in the lower crust. Many xenoliths also contain small, fine-grained K-rich zones interpreted as melt pockets reflecting late magmatic infiltration of the lower crust. The xenoliths display a wide range in major element compositions (37-51 wt.% SiO2, 4-15 wt.% MgO and 0.1-6.3 wt.% TiO2), enrichment in Ba, K, Sr, Pb and Eu, and some trace element ratios atypical of bulk continental crust (e.g., K/Rb = 1265 ± 565, K/U = 63 000 ± 60 080 and Th/U = 0.96 ± 0.56); these extreme ratios reflect widespread K-metasomatism associated with melt pockets. The magmas from which these cumulates formed may have been generated at a reararc convergent margin setting. Four U-Pb zircon populations yield indistinguishable ages of 554 ± 4 Ma; 559 ± 5 Ma; 559 ± 6 Ma, and 563 ± 5 Ma. Initial 87Sr/86Sr values (0.70260-0.70352) and positive εNd(560) (with the exception of a single, more radiogenic sample (+9.6), range = + 1.3 to +4.8) indicate that the lower crust sampled by the xenoliths originated in the asthenospheric mantle, with little or no interaction with older crust, although Pb isotopic compositions allow for some interaction with older or subducted crustal materials. We interpret the geochemistry and mineralogy of these xenoliths to indicate that the lower crust beneath NE Jordan is mafic and comprised of plagioclase-rich 2-pyroxene igneous rocks. The lower crust of this area formed by

  6. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  7. Isotopes a very short introduction

    CERN Document Server

    Ellam, Rob

    2016-01-01

    An isotope is a variant form of a chemical element, containing a different number of neutrons in its nucleus. Most elements exist as several isotopes. Many are stable while others are radioactive, and some may only exist fleetingly before decaying into other elements. In this Very Short Introduction, Rob Ellam explains how isotopes have proved enormously important across all the sciences and in archaeology. Radioactive isotopes may be familiar from their use in nuclear weapons, nuclear power, and in medicine, as well as in carbon dating. They have been central to establishing the age of the Earth and the origins of the solar system. Combining previous and new research, Ellam provides an overview of the nature of stable and radioactive isotopes, and considers their wide range of modern applications. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subjec...

  8. Results of mineral, chemical, and sulfate isotopic analyses of water, soil, rocks, and soil extracts from the Pariette Draw Watershed, Uinta Basin, Utah

    Science.gov (United States)

    Morrison, Jean M.; Tuttle, Michele L.W.; Fahy, Juli W.

    2015-08-06

    In 2010, Utah Department of Environmental Quality (DEQ) Division of Water Quality (UDWQ, 2010) determined that water quality in Pariette Draw was in violation of Federal and State water quality criteria for total dissolved solids (TDS), selenium (Se), and boron (B). The measure of total dissolved solids is the sum of all the major ion concentrations in solution and in this case, the dominant ions are sodium (Na) and sulfate (SO4), which can form salts like thenardite (Na2SO4) and mirabilite (Na2SO4⋅H2O). The Utah Department of Environmental Quality (2010) classified the contamination as natural background and from nonpoint sources related to regional lithology and irrigation practices. Although the daily loads of the constituents of concern and water chemistry have been characterized for parts of the watershed, little is known about the controls that bedrock and soil mineralogy have on salt, Se, and B storage and the water-rock interactions that influence the mobility of these components in ground and surface waters. Studies in the Uncompahgre River watershed in Colorado by Tuttle and others (2014a, 2014b) show that salt derived from weathering of shale in a semiarid climate is stored in a variety of minerals that contribute solutes to runoff and surface waters based on a complex set of conditions such as water availability, geomorphic position (for example, topography controls the depth of salt accumulation in soils), water-table fluctuations, redox conditions, mineral dissolution kinetics, ion-exchange reactions, and secondary mineral formation. Elements like Se and B commonly reside in soluble salt phases, so knowledge of the behavior of salt minerals also sheds light on the behavior of associated contaminants.

  9. Paleoproxies: Heavy Stable Isotope Perspectives

    Science.gov (United States)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.

  10. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  11. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    Science.gov (United States)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-