WorldWideScience

Sample records for chemical isotope exchange

  1. Separation of the isotopes of boron by chemical exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  2. Advances in boron-10 isotope separation by chemical exchange distillation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang, E-mail: chengruoyu2@sina.co [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Mu Yujun; Li Xiaofeng; Bai Peng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-15

    Advances in boron-10 isotope separation by chemical exchange distillation are reviewed in this article. With a brief introduction of the principle of the separation, the progress on the research of this method and the problems relating to the separation coefficient are discussed. Several new donors, including nitromethane, acetone, methyl isobutyl ketone (MIBK) and diisobutyl ketone (DIBK), which have large separation factors are introduced. The complexes of these new donors and boron trifluoride (BF{sub 3}) are more stable than those of using the donors examined before. Among these new donors nitromethane could be a promising substitute for donors in present use to develop new technology of separating boron-10.

  3. Design of Uranium Isotope Separation Plant by Chemical Exchange

    International Nuclear Information System (INIS)

    The methodology to design a solvent extraction plant for uranium isotope separation by chemical exchange is outlined. This process involves the calculator of the number of stages,the capacity of the plant,the flow rates,and reflux ration in banks of mixer settlers or pulse column used in such a plant. The feed is introduced at the middle of the plant,and the product is withdrawn at one end and the tailings at another. The redox reaction system selected is U(IV)-U(VI) and the equilibrium data of the 40% tri-n-octylamine (TOA) in benzene as the organic phase and 4 M HCI as the aqueous phase are used for the design of the real plant. The resulting analysis for the uranium isotope separation shows that more than 4000 number of stages are required and the reflux ratio is around 700 to produce only 1m3 of product containing 3% of U235 and 0,3% of U235 in the tailings. It is also known that the larger the isotope separation constant the smaller the number of stages needed. The method of design can be used for other systems where the isotope separation constants are more favorable

  4. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl2-EuCl3. The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U4+ - U6 and U3+ - Y4+ systems. The separation of the ionic species was done by precipitation of the Eu2+ ions or by extraction of the Eu3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  5. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  6. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    International Nuclear Information System (INIS)

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating 34S, 35Cl, and 37Cl in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and 79Br is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid. The chemical exchange method involves isotopically selective exchange between an aqueous phase containing a calcium salt and an organic phase containing calcium in the form of a complex with a macrocyclic ligand. The LTD method is suitable for high enrichments at low through-puts; whereas, the chemical exchange techniques is appropriate for lower enrichments at much higher production rates. Current research is directed toward reducing these concepts to practical processes

  7. Separation of stable isotopes of alkali and alkaline earth metals in chemical exchange systems with crown ethers

    International Nuclear Information System (INIS)

    Chemical isotope exchange in two-phase water - organic systems Men+ (water) - MeLn+ (org), where Me = Li, Ca, K, Mg; L = crown ethers with 5 to 6 oxygen atoms in macrocyclic ring; org = CHCl3, CH2Cl2 has been studied. The process of isotope separation has been realized by extraction chromatography. The chromatographic column contained a fixed aqueous phase. The organic solution of metal complex with crown ether was eluted through the column. On contact with the fixed aqueous phase in the course of chromatography, metal salt reextraction occurred and interphase isotope exchange between aqueous and organic phases resulted. Isotope separation factors in these systems were in the range of: 1.0032 - 1.020 (6Li/7Li), 1.0016 - 1.0038 (40Ca/44Ca), 1.0007 - 1.0011 (39K/41K), 1.0014 - 1.0044 (24Mg/26Mg). The theoretical model has been proposed to interpret the high separation factors in crown ether extraction systems. According to this model, the potential in such systems has a very flat bottom. This type of potential results in weakening the force field and decreasing of β-factor (i.e., (s/s')f) in spite of comparatively high energy of complexation. This model can interpret both high separation factors and their strong dependence on the type of crown ether. (author)

  8. Chemical exchange program analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This

  9. Contrasting styles of oxygen isotope exchange

    OpenAIRE

    Valley, J. W.; Eiler, J. M.; Kohn, M.J.; Spicuzza, M.J; Baumgartner, L. P.; Elsenheimer, D.; Graham, C. M.

    1994-01-01

    Exchange of oxygen isotopes encrypts a sensitive record of the thermal evolution and fluid-exchange history of igneous and metamorphic rocks. Deciphering this record requires measurement of isotope ratios at an appropriate scale together with understanding of the processes involved: diffusion, recrystallization, new mineral growth, and fluid flow.

  10. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    Science.gov (United States)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  11. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    Science.gov (United States)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  12. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P.; Dirian, G. [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des

  13. Intermediates in Isotopic Exchange Reactions Involving Diborane

    International Nuclear Information System (INIS)

    By conventional mass spectrometric analysis, the self-exchange reaction of diborane was studied by using boron and hydrogen isotopes as tracers. The ratio of deuterium to boron exchange was found to be 2.8. This suggests that the reaction is not completely proceeding by exchange of BH3's as an entity, and that the mechanism is more complicated than simply a stripping reaction between diborane and a borane. It was therefore decided to attempt to get some knowledge of the intermediates that are present in diborane dissociation since they may shed light on the mechanism of the exchange. Using a specially constructed mass spectrometer of high sensitivity coupled with a flow reactor, it was possible to make a direct detection of the intermediate involved in the diborane equilibria. The intermediates BH3 and BH2 were found to be present and their ionization potentials were measured. In addition, a small amount of B3Hn was observed but the value of n could not be determined because of the weak peaks obtained. An attempt is made to interpret the self-exchange reaction of diborane in terms of these intermediates. The results suggest that diborane is in rapid equilibrium with borane (BH3). In addition, apparently diborane can also dissociate in BH2 which was about twice as abundant as BH3. The B3Hn intermediate that was observed is believed to arise from the reaction. BH3 + B2H6 -> B3H9. In applying this information to the isotopic self-exchange in diborane, it appears that the exchange cannot be going by a stripping mechanism such as BD3 + BH3 - BH3 - BD3 - BH3 + BH3, since the deuterium-to-boron isotopic ratio then should be 3. Another possible mechanism of exchange is BD3 + B2H6 ⇌ B3D3H6; the B3 complex can be pictured as a symmetrical one. If the bonds were all exactly equivalent the D/ 10B ratio would statistically become 3; however, some isotope effect may be present in the fragmentation of the complex and the ratio could deviate from 3. Another possible way in which

  14. Progressive extraction method applied to isotopic exchange of carbon-14

    International Nuclear Information System (INIS)

    Isotopic exchange in natural settings is essentially an irreversible process, so that it progresses continuously until there is complete isotopic equilibrium. In soils, this process involves interaction between isotopes in the liquid and solid phases, and complete isotopic equilibrium may take a very long time. Measurements after partial isotopic exchange have been used to characterize the labile fraction of elements in soils. We describe a method to characterize the extent of isotopic exchange, with application here to incorporation of inorganic carbon-14 (14C) into mineral carbonates and organic matter in soils. The procedure uses a continuous addition of extractant, acid, or H2O2in the examples presented here, coupled with sequential sampling. The method has been applied to demonstrate the degree of isotopic exchange in soil. The same strategy could be applied to many other elements, including plant nutrients. (author)

  15. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  16. Energetics and control of ultracold isotope-exchange reactions between heteronuclear dimers in external fields

    CERN Document Server

    Tomza, Michał

    2015-01-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000$\\,$MHz thus resulting in cold or ultracold products. For these chemical reactions there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. The exothermic isotope-exchange reactions can be tuned to become endothermic by employing a laser-induced state-selective Stark shift control thus providing a ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over quantum states of both reactants and products.

  17. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  18. Specific surface of thin-layer inorganic sorbents and possibilities of radionuclides concentration and elements determination by isotope exchange

    International Nuclear Information System (INIS)

    Methodological features of application of heterogeneous isotope exchange on an example of thin-layer sulfide sorbents depending on conditions (solubility and chemical purity of sulfide layer) is considered in this work. The rate of reaction of isotope exchange at different temperatures ranges and metal concentrations is defined. The activation energy is defined as well. Dependencies of sorption ratio on element concentration in solution are obtained. Data on dynamics of isotop exchange on granular sorbents samples is presented. As radionuclides were used zinc-65, cadmium-115, and lead-212. As carrier were used triacetate cellulose layer, cellulose granules and titanium hydroxide, obtained by sol gel method.

  19. Isotopic enrichment of 15N by ionic exchange cromatography

    International Nuclear Information System (INIS)

    The ionic exchange chromatographic method in columns of resin which is employed in the study of isotopic enrichment of 15N is presented. Determinations are made of the isotopic separation constant for the exchange of isotopes 15N and 14N in the equilibrium involving ammonium hidroxide in the solution phase and ions NH4+ adsorbed in cationic resins: Dowex 50W-X8 and X12, 100-200 mesh. Experiments are also conducted for determination of height of theoretical plates for situations of equilibrium of the NH4+ band in two systems of resin's columns aimed at estimating the experimental conditions used. The isotopic analyses of nitrogen are carried out by mass spectrometry

  20. Chemical stability of levoglucosan: An isotopic perspective

    Science.gov (United States)

    Sang, X. F.; Gensch, I.; Kammer, B.; Khan, A.; Kleist, E.; Laumer, W.; Schlag, P.; Schmitt, S. H.; Wildt, J.; Zhao, R.; Mungall, E. L.; Abbatt, J. P. D.; Kiendler-Scharr, A.

    2016-05-01

    The chemical stability of levoglucosan was studied by exploring its isotopic fractionation during the oxidation by hydroxyl radicals. Aqueous solutions as well as mixed (NH4)2SO4-levoglucosan particles were exposed to OH. In both cases, samples experiencing different extents of processing were isotopically analyzed by Thermal Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS). From the dependence of levoglucosan δ13C and concentration on the reaction extent, the kinetic isotope effect (KIE) of the OH oxidation reactions was determined to be 1.00187±0.00027 and 1.00229±0.00018, respectively. Both show good agreement within the uncertainty range. For the heterogeneous oxidation of particulate levoglucosan by gas-phase OH, a reaction rate constant of (2.67±0.03)·10-12 cm3 molecule-1S-1 was derived. The laboratory kinetic data, together with isotopic source and ambient observations, give information on the extent of aerosol chemical processing in the atmosphere.

  1. Assessing the identifiability in isotope exchange depth profiling measurements

    DEFF Research Database (Denmark)

    Ciucci, Francesco; Panagakos, Grigorios; Chen, Chi;

    2014-01-01

    of identifiability in Isotope Exchange Depth Profiling (IEDP), an important characterization tool in the ionics field, by exploring the measurability of k and D as a function of two dimensionless quantities, the Biot number, and the annealing time divided by the diffusional time scale. In addition, we show a novel...

  2. Technical evaluation on some chemical exchange process for uranium enrichment

    International Nuclear Information System (INIS)

    In CEA in France, Asahi Chemical Industry Co., Ltd., in Japan and others, the industrialization of the uranium enrichment by chemical processes has been studied independently for ten years, using large amount of research expenses. In this study, technological examination was carried out on such processes and their separation characteristics, based on the published literatures. As the results, it was recognized that they have sufficient separation capability to aim at the industrialization, and the power required can be limited relatively low. However, very precise plant design and operation control system are required for them, and it is necessary to watch the future course to carry out the objective evaluation of the economic efficiency. The electric power has become a dominant factor in the production cost of enriched uranium. The separation of uranium isotopes with anion exchange resin being developed by Asahi Chemical Industry Co., Ltd., and the isotope separation by electron exchange using solvent extraction method being developed by CEA in France are introduced. Though the equilibrium separation factor is very small, they utilize reversible processes, and have the possibility of large power reduction and the cost reduction due to scaling-up. (Kako, I.)

  3. Concentrating Low-Level Tritiated Water Through Isotope Exchange

    International Nuclear Information System (INIS)

    Trapping of tritium on polymers with specific functional groups was investigated as a means of treating waste streams containing low levels of tritium. Chemical exchange of tritium with hydrogen on the functional group was used as the mechanism for trapping. The polymers tested include Aurorez polybenzimidazole resin beads, Chelex 100 resin beads, Duolite GT-73, microcrystalline cellulose, and polyethylenimine. The tests were performed under simulated operating conditions on water obtained from the Radioactive Liquid Waste Treatment Facility at Los Alamos National Laboratory. Tritiated water from the Tritium Systems Test Assembly is discharged to this plant. Polyethylenimine is a water-soluble polymer that was tested using a stirred membrane cell with an ultrafiltration membrane. All of the polymers except polyethylenimine took up tritium from the water. Polybenzimidazole demonstrated the highest tritium uptake. The results are explained on the basis of the type of functional group, hydrogen bonding, and rigidity of the molecular structure of the polymer. The theoretical calculations indicate that significant isotope discrimination requires high-frequency modes with hydrogen bonding contribution and support the experimental findings. Modeling suggested trends that may lead to structures that are more efficient in trapping tritium

  4. Concentrating low-level tritiated water through isotope exchange

    International Nuclear Information System (INIS)

    Trapping of tritium on polymers with specific functional groups was investigated as a means of treating waste streams containing low levels of tritium. Chemical exchange of tritium with hydrogen on the functional group was used as the mechanism for trapping. The polymers tested include Aurorez polybenzimidazole resin beads, Chelex 100 resin beads, Duolite GT-73, microcrystalline cellulose, and polyethylenimine. The tests were performed under simulated operating conditions on water obtained from the Radioactive Liquid Waste Treatment Facility at Los Alamos National Laboratory, Tritiated water from the Tritium Systems Test Assembly is discharged to this plant. Polyethylenimine is a water-soluble polymer that was tested using a stirred membrane cell with an ultrafiltration membrane. All of the polymers except polyethylenimine took up tritium from the water. Polybenzimidazole demonstrated the highest tritium uptake. The results are explained on the basis of the type of functional group, hydrogen bonding, and rigidity of the molecular structure of the polymer. The theoretical calculations indicate that significant isotope discrimination requires high-frequency modes with hydrogen bonding contribution and support the experimental findings. Modeling suggested trends that may lead to structures that are more efficient in trapping tritium

  5. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    Energy Technology Data Exchange (ETDEWEB)

    Wauters, T., E-mail: t.wauters@fz-juelich.de [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Douai, D.; Kogut, D. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lyssoivan, A. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Brezinsek, S. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Belonohy, E. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Blackman, T. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Crombé, K. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Drenik, A. [Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Graham, M. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lerche, E. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Loarer, T. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lomas, P.L.; Mayoral, M.-L.; Monakhov, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oberkofler, M. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Philipps, V. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Plyusnin, V. [IST, Instituto de Plasmas e Fusão Nuclear, 1049-001 Lisboa (Portugal); and others

    2015-08-15

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1–7.5 × 10{sup −3} Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H{sub 2}-ICWC at ITER half field conditions on the JET-ILW preloaded by D{sub 2} tokamak operation is estimated to be 7.3 × 10{sup 22} hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  6. Isotopically exchangeable Al in coastal lowland acid sulfate soils.

    Science.gov (United States)

    Yvanes-Giuliani, Yliane A M; Fink, D; Rose, J; Waite, T David; Collins, Richard N

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability - a metal's ability to readily transfer between the soil solid- and solution-phases - of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl2) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg(-1). Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E=1.68×AlKCl, r(2)=0.66, n=25). The addition of a 0.2 M CuCl2 extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial 'organic-rich' CLASS having E values<1000 mg·kg(-1). It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here. PMID:26519574

  7. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  8. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...... to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated...... with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized....

  9. Isotopic exchange in mixed valence compounds in the solid state

    International Nuclear Information System (INIS)

    This work aims at the determination of isotopic exchange kinetics and mechanism in two mixed valence compounds: Cs10(Sbsup(V)Cl6) (Sbsup(III)Cl6)3 and Tl3sup(I)(Tlsup(III)Cl6). The synthesis of the first compound is very difficult because in most of the cases mixtures of chloroantimoniates are obtained. Exchange in Tl4Cl6 labelled on Tlsup(III) is studied in detail by radiochemical analysis and physical techniques: ionic conductivity and positon annihilation. Cation vacancies are easily created in the lattice with formation enthalpy of 0.35 eV and migration enthalpy of 0.52 eV. Isochronic and isothermal exchange curves are described by a kinetic based on species diffusion. Models are given. Exchange is increased by grinding probably because extrinseque defects are introduced

  10. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: New insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification

    Science.gov (United States)

    Frierdich, Andrew J.; Beard, Brian L.; Reddy, Thiruchelvi R.; Scherer, Michelle M.; Johnson, Clark M.

    2014-08-01

    over long reaction times. Experiments at higher temperature result in a smaller fractionation between Fe(II)aq and goethite, consistent with a 1/T2 temperature dependence. Coarsened and trace-element substituted goethites that had low surface areas produced much slower rates of isotopic exchange than the chemically pure forms or goethite of smaller crystal size, resulting in only partial isotopic mixing (10-40%). Fractionation-exchange trajectories produced during slow isotopic exchange are linear, however, and extrapolate to the same (within error) Fe(II)aq-goethite fractionations at 100% isotopic mixing as that for reactions of pure goethite. We conclude that the equilibrium 56Fe/54Fe fractionation for Fe(II)aq-goethite at 22 °C ranges between -1.04 ± 0.08‰ and -1.22 ± 0.11‰ (2σ), depending on particle size, where the more negative fractionation is influenced by surface Fe that has distinct isotopic properties; these results are consistent with earlier measurements by Beard et al. (2010). This work highlights the utility of using multiple exchange-fractionation trajectories to verify the attainment of equilibrium and resolving kinetic isotope effects, and the importance of isotopic exchange rate on disequilibrium mixing between components. We recommend that these techniques are essential for unambiguously demonstrating that measured fractionations during isotopic exchange experiments are, in fact, equilibrium fractionations.

  11. Characterization of the available soil Ni by the isotopic exchange kinetics

    International Nuclear Information System (INIS)

    The aim of this study was to demonstrate that soil Ni available for plants can be characterized by the isotopic exchange kinetics method. Therefore, isotopic exchange kinetics were performed in soil-solution systems to quantify the pool of soil isotopically exchangeable Ni (E value). Another isotopic exchange method in soil-plant was designed to measure the pool of soil available Ni (L value). Results clearly demonstrated that the pool of isotopically exchangeable soil Ni for a given time is the pool of available soil Ni. (author)

  12. Contamination weeping: A chemical ion exchange model

    International Nuclear Information System (INIS)

    Experiments have been conducted to determine the applicability of a chemical ion-exchange model to characterize the problem of nuclear fuel transportation cask contamination and release (''weeping''). Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide -- aqueous interfaces. The solubility of pool contaminant Co and Cs electrolytes at varying pH and the adsorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly adsorb on these powder surfaces and, more specifically, that adsorption occurs in the nominal pH range (pH = 4--6) of a boric acid-moderated spent fuel pool. Desorption has been demonstrated to occur at pH ≤ 3. Cs ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. 9 refs., 5 figs., 1 tab

  13. Study on influencing factors for hydrogen isotopic exchange

    International Nuclear Information System (INIS)

    Background: Hydrogen-water catalytic exchange reaction offers an approach to hydrogen isotope separation, which can be applied in heavy water detritiation. Purpose: To optimize the operating condition for hydrogen-water catalytic exchange reaction, we analysed the influence of different factors on the transfer coefficient. Methods: In detail, the isotope exchange experiments of H-D system were carried out in a self-designed catalytic bed loaded with hydrophobic catalyst and hydrophilic packing with certain volume ratio. The experiments showed the changes of both the transfer coefficient and the pressure drop of column with the changing of the operational temperatures (29℃, 45℃, 60℃ and 75℃), the ratios of gas to liquid (0.58, 1.17, 2.65, 3.54) and the deuterium concentrations (5.05×10-3, 1.0144×10-2, 2.01×10-2). Results: Results showed that 45℃ is the optimal temperature for operating. The transfer coefficient increases with the increasing of the ratio of gas to liquid in the ranges of 0.58 to 1.17 and 2.65 to 3.56, while decreases with the deuterium concentration increases from 5.05×10-3 to 2.01×10-2. The pressure drop of column increases with increasing of gas flow rate. Conclusions: The experiment proves that the ratio of gas to liquid, the reaction temperature and the deuterium concentration are all important factors, which influence the transfer coefficient of deuterium obviously. The optimal operating condition for hydrogen-water catalytic exchange reaction are as follows: the temperature is 45℃, the ratio of gas to liquid is 3.56, and the deuterium concentration is 2.01×10-2. (authors)

  14. Regeneration of the iodine isotope-exchange efficiency for nuclear-grade activated carbons

    International Nuclear Information System (INIS)

    The removal of radioactive iodine from air flows passing through impregnated activated carbons depends on a minimum of three distinguishable reactions: (1) adsorption on the carbon networks of the activated carbons, (2) iodine isotope exchange with impregnated iodine-127, and (3) chemical combination with impregnated tertiary amines when present. When a carbon is new, all three mechanisms are at peak performance and it is not possible to distinguish among the three reactions by a single measurement; the retention of methyl iodide-127 is usually equal to the retention of methyl iodide-131. After the carbon is placed in service, the three mechanisms of iodine removal are degraded by the contaminants of the air at different rates; the adsorption process degrades faster than the other two. This behavior will be shown by comparisons of methyl iodide-127 and methyl iodide-131 penetration tests. It was found possible to regenerate the iodine isotope-exchange efficiency by reaction with airborne chemical reducing agents with little or no improvement in methyl iodine-127 retention. Examples will be given of the chemical regeneration of carbons after exhaustion with known contaminants as well as for many carbons removed from nuclear power operations. The depth profile of methyl iodide-131 penetration was determined in 2-inch deep layers before and after chemical treatments

  15. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    Science.gov (United States)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  16. Oxygen-18 exchange in nitrophenols: Significance for labeling and isotope effect experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hengge, A.C. [Univ. of Wisconsin, Madison, WI (United States)

    1992-03-25

    {sup 18}O isotope effects in and {sup 18}O labelling of nitrophenols is of interest. The authors found and here report that ortho- and paranitrophenols display facile phenolic oxygen exchange in basic solution. Kinetics of these exchange reactions were studied and results of exchange rates are reported. 8 refs., 2 figs., 1 tab.

  17. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Xie, Yun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Du, Liang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); School of Radiation Medicine and Protection (SRMP), School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou 215000 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Tan, Zhaoyi, E-mail: zhyitan@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-04-28

    Highlights: • This is the first theoretical investigation about T–H exchange in vacuum oil. • T–H isotope exchange is accomplished through two different change mechanisms. • Isotope exchange is selective, molecules with −OH and −COOH exchange more easily. • The methyl and methylene radicals in waste oil were observed by {sup 1}HNMR. - Abstract: The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium–hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T–H exchange mechanism and the hyrogenation–dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation–dehydrogenation exchange mechanism, the T–H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with −OH and −COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T–H isotope exchange can be determined by the hydrogenation of T{sub 2} or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  18. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  19. Concurrent reduction and distillation: an improved technique for the recovery and chemical refinement of the isotopes of cadmium and zinc

    International Nuclear Information System (INIS)

    The Electromagnetic Isotope Separations Program of the Oak Ridge National Laboratory has been involved in the separation, chemical recovery, and refinement of the stable isotopes of cadmium and zinc since 1946. Traditionally, the chemical refinement procedures for these elements consisted of ion exchange separations using anion exchange resins followed by pH-controlled hydrogen sulfide precipitations. The procedures were quite time-consuming and made it difficult to remove trace quantities of sulfur which interferes in subsequent attempts to prepare rolled metal foils. As demands for 113Cd and 68Zn (a precursor for the production of the radiopharmaceutical 67Ga) increased, it became evident that a quicker, more efficient refinement procedure was needed. Details of an improved method, which employs concurrent hydrogen reduction and distillation in the recovery and refinement of isotopically enriched zinc, are described. Modifications of the procedure suitable for the refinement of cadmium isotopes are also described. 3 figures, 1 table

  20. Characterization of hydrophobic catalysts for hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Domestic hydrophobic catalysts, KC-1 and KC-2, which were developed for the liquid phase catalytic exchange process separating hydrogen isotopes, were tested against Japanese catalyst, Kogel, which is being used in the Fugen's heavy water upgrader in Japan. KC-1 and KC-2 have different characteristics due to the differences of the solvent and solvent composition used. The test results of domestic hydrophobic catalysts characteristics such as pore distribution, specific surface area, platinum loading, and platinum dispersion from AECL agreed well with the results obtained by KEPRI/KAERI. The shape of KC-1 and KC-2 were 4x4 mm cylindrial pellet and that of Kogel catalyst was 4∼5.5mm sphere. The platinum loading of all catalysts were 0.8 wt%. The BET surface areas were 442, 247, 514m2 ·g-1 for KC-1, KC-2, and Kogel respectively, among which the BET surface area of KC-2 was the smallest. The platinum dispersion area was 2.47, 2.07, 1.90 m2g-1 and the platinum dispersion was 100, 100, 92% for KC-1, KC-2, and Kogel respectively, which showed domestic catalysts had higher values than Kogel catalyst. The average pore size was the largest in KC-2

  1. Biological, chemical, electrochemical, and photochemical fractionation of Fe isotopes

    Science.gov (United States)

    John, S.; King, A.; Hutchins, D.; Adkins, J. F.; Fu, F.; Wasson, A.; Hodierne, C.

    2012-12-01

    Iron is an important nutrient for life in the ocean, where low Fe concentrations often limit the growth of marine phytoplankton. Fe stable isotope ratios (δ56Fe) are a potentially valuable new tool for studying the marine biological cycling of Fe. In order to effectively use Fe isotopes as a biological tracer, however, it is important to parameterize the isotope effect for biological uptake. We have therefore measured the biological fractionation of Fe isotopes by the marine diatoms Thalassiosira pseudonana, T. oceanica, and Phaeodactylum tricornutum in culture. During biological Fe acquisition, Fe(III) is often first reduced from Fe(III) to Fe(II), either in seawater or at the cell surface. Therefore, we have also measured the isotope effect for Fe(III) reduction by chemical, electrochemical, and photochemical processes. Diatoms were cultured in EDTA or NTA buffered media under varying Fe concentrations from Fe-sufficiency to Fe-limitation. Biological fractionation of Fe isotopes was determined by comparing δ56Fe of phytoplankton to the media. The use of a cell wash allows us to distinguish between isotopic fractionation during extracellular adsorption and intracellular uptake. The biological fractionation of Fe isotopes is highly dependent on culture conditions with Δδ56Fe ranging from +0.6 ‰ to -0.5 ‰ depending on ligand composition, species, and Fe-limitation status. Isotope effects for chemical, electrochemical, and photochemical reduction of Fe(III) to Fe(II) span an even larger range. For example, chemical reduction of Fe(III)-EDTA with hydroxylamine hydrochloride has an isotope effect of Δδ56Fe = -2.8 ‰. By contrast, photochemical reduction of Fe(III)-EDTA has an isotope effect of Δδ56Fe = +0.9 ‰. Isotope effects for electrochemical reduction of Fe(III) using a rotating disc electrode allow for greater control of experimental conditions, such as differentiating between the effects of electric potential (voltage) and mass transport (diffusion

  2. Lead exchange in teeth and bone--a pilot study using stable lead isotopes.

    OpenAIRE

    Gulson, B L; Gillings, B R

    1997-01-01

    Stable lead isotopes and lead concentrations were measured in the enamel and dentine of permanent (n = 37) and deciduous teeth (n = 14) from 47 European immigrants to Australia to determine whether lead exchange occurs in teeth and how it relates to lead exchange in bone. Enamel exhibits no exchange of its European-origin lead with lead from the Australian environment. In contrast, dentine lead exchanges with Australian lead to the extent of approximately 1% per year. In one subject, trabecul...

  3. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  4. Film diffusion-controlled kinetics of isotopic exchange in a finite bath

    International Nuclear Information System (INIS)

    This paper examines an isotopic exchange process in which the spherical ion-exchange resins are immersed in an agitated solution of finite volume. It assumes an unstirred liquid film of thickness b-a, a nonlinear concentration profile described by Fick's second law, a concentration of radioactive isotopes in a bulk solution that varies with time, and a constant diffusion coefficient in the liquid film. A rate equation, a diffusion equation, and Laplace transforms along with plots of logs are presented

  5. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  6. Observation of Large Enhancement of Charge Exchange Cross Sections with Neutron-Rich Carbon Isotopes

    CERN Document Server

    Tanihata, I; Kanungo, R; Ameil, F; Atkinson, J; Ayyad, Y; Cortina-Gil, D; Dillmann, I; Estradé, A; Evdokimov, A; Farinon, F; Geissel, H; Guastalla, G; Janik, R; Knoebel, R; Kurcewicz, J; Litvinov, Yu A; Marta, M; Mostazo, M; Mukha, I; Nociforo, C; Ong, H J; Pietri, S; Prochazka, A; Scheidenberger, C; Sitar, B; Strmen, P; Takechi, M; Tanaka, J; Toki, H; Vargas, J; Winfield, J S; Weick, H

    2015-01-01

    Production cross sections of nitrogen isotopes from high-energy carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes. The fragment separator FRS at GSI was used to deliver C isotope beams. The cross sections of the production of N isotopes were determined by charge measurements of forward going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge exchange reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and Fermi transition strength at low excitation energies for neutron-rich isotopes. It was also observed that the cross sections were enhanced much more strongly for neutron rich isotopes in the C-target data.

  7. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    Science.gov (United States)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  8. Radium isotopes as a tracer of sediment-water column exchange in the North Sea

    NARCIS (Netherlands)

    Burt, W.J.; Thomas, H.; Pätsch, J.; Omar, A.; Schrum, C.; Daewel, U.; Brenner, H.; de Baar, H.J.W.

    2014-01-01

    Sediment-water column exchange plays an important role in coastal biogeochemistry. We utilize short-lived radium isotopes (224Ra and 223Ra) to understand and quantify the dominant processes governing sediment-water column exchange throughout the North Sea. Our comprehensive survey, conducted in Sept

  9. Radium isotopes as a tracer of sediment-water column exchange in the North Sea

    NARCIS (Netherlands)

    Burt, W. J.; Thomas, H.; Paetsch, J.; Omar, A. M.; Schrum, C.; Daewel, U.; Brenner, H.; de Baar, H. J. W.

    2014-01-01

    Sediment-water column exchange plays an important role in coastal biogeochemistry. We utilize short-lived radium isotopes (Ra-224 and Ra-223) to understand and quantify the dominant processes governing sediment-water column exchange throughout the North Sea. Our comprehensive survey, conducted in Se

  10. Study of solid-state isotopic exchange of hydrogen in L-alanine

    International Nuclear Information System (INIS)

    The solid-state isotopic exchange of L-Ala with the spillover tritium activated on Rh(Pd) supported catalysts and the reactivity of hydrogen at C(2) and C(3) carbon atoms of L-Ala were studied using tritium NMR. The activation energy of the catalyzed isotopic exchange was measured. Ab initio calculations of the reaction of hydrogen exchange in the alanine molecule with H3O+ ion were carried out. The mechanism and transition states of this reaction were proposed. 22 refs.; 4 figs.; 4 tabs

  11. Homogeneous isotope exchange between thiourea and bis (thiourea) mercury (II) complex

    International Nuclear Information System (INIS)

    The isotope exchange behavior of thiourea with bis (thiourea) mercury (II) complex has been studied. The concentrations of both the metal ion and the complex were varied. The results show that the complex is labile in the kinetic sense. An increase in concentration increases the rate of exchange. Increase in temperature also results in an increase of the late of exchange. (author). 7 refs., 3 tabs

  12. Isotope and chemical geothermometry and its applications

    Institute of Scientific and Technical Information of China (English)

    庞忠和

    2001-01-01

    The Na-K-Mg Geoindicator created by Giggenbach (1988) is convenient to use but it is still based on the empirical geothermometry equations and discrepancy for different cation geo-thermometers is observed. In fact, the location of the curve of "full equilibrium" is different if a different Na-K geothermometry equation is used. The difference is pronounced for temperatures lower than about 220℃. A case study on the Zhangzhou geothermal field of SE China resulted in a reliable estimate of reservoir temperature of 150℃ by the SO4-H2O pair Oxygen-18 isotope geothermometer. This has provided an example of attained equilibrium of the marine sulphate in the geothermal system in the low-medium temperature range (<150℃). A recent refinement of the theoretical geothermometry was achieved by the FixAl method, which provides the possibility to identify and solve problems such as an erroneous analytical value of Aluminium, and influence of processes such as mixing and degassing, and therefore makes it possible to

  13. CPMG sequences with enhanced sensitivity to chemical exchange

    International Nuclear Information System (INIS)

    Improved relaxation-compensated Carr-Purcell-Meiboom-Gill pulse sequences are reported for studying chemical exchange of backbone 15N nuclei. In contrast to the original methods [J. P. Loria, M. Rance, and A. G. Palmer, J. Am. Chem. Soc.121, 2331-2332 (1999)], phenomenological relaxation rate constants obtained using the new sequences do not contain contributions from 1H-1H dipole-dipole interactions. Consequently, detection and quantification of chemical exchange processes are facilitated because the relaxation rate constant in the limit of fast pulsing can be obtained independently from conventional 15N spin relaxation measurements. The advantages of the experiments are demonstrated using basic pancreatic trypsin inhibitor

  14. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

    2008-08-01

    A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

  15. Understanding the remobilization of copper, zinc, cadmium and lead due to ageing through sequential extraction and isotopic exchangeability.

    Science.gov (United States)

    Kumar, Manish

    2016-06-01

    Artificial infiltration facilities (AIFs) are useful to control urban runoff and regulate combined sewer overflows. Over the years, AIFs accumulate significant amounts of soakaway sediments and organic matter. The prolonged retention of soakaway sediments in AIFs is likely to cause metal remobilization due to ageing processes. The measurement of the individual consequence of ageing demands homogeneity in physical and chemical profiles of samples. This leads to assessment of metal remobilization in a single soil core through solid-phase extractions and isotopic exchangeability (E value). Depth-wise variation in the physicochemical properties and metal content of the underlying soil (below 1 m of AIFs) was created through 2 weeks of continuous leaching with artificial road runoff (ARR). Ten samples obtained from a 50-cm core by sectioning it at 5-cm intervals were subsequently incubated for 18 months. The results suggest that degradation of organic matter and changes in functional groups due to ageing govern metal remobilization. In general, the top segment showed significant alteration due to ageing. Post incubation, Zn increased dramatically in contrast to subdued Cu and Pb levels in exchangeable fractions with concomitant rise in organic-bound fractions. Isotopic exchangeability of Cd and Zn showed pronounced effect of ageing, although the effect of ageing was distinct in chemical partitioning and isotopic exchangeability of metals; a comparative study of short-term versus long-term incubation will benefit assessment of initial dynamics and final equilibrium. Consequently, the outcome from this work is a viable tool in risk prediction related to soakaway sediment accumulation in AIF. PMID:27236447

  16. Use of micrometeorological techniques to study the isotopic exchange in ecosystems

    Science.gov (United States)

    Santos, E.; Wagner-Riddle, C.; Brown, S. E.; Stropes, K.

    2015-12-01

    The combination of micrometeorological techniques with high frequency concentration measurements of stable isotopes are a powerful tool to study the temporal dynamics of isotope signatures at the ecosystem level. The objective of this study was to study the isotopic composition of the net CO2 exchange (NEE) above and with corn and tall grass canopies. Profiles of stable isotopes of CO2 (12C-CO2, 13C-CO2 and 18O-CO2) were measured using tunable diode laser trace gas analyzers and multiport sampling systems in corn (12C-CO2 and 13C-CO2, only) and tall grass canopies. These measurements were combined with the flux gradient method and Lagrangian dispersion analysis to estimate the isotopic signatures of the net CO2 flux. The use of a gradient of a concentration threshold to screen half hourly period improved the estimates of flux signatures by the isotope flux ratio approach. The Langrangian dispersion analysis and the isotope flux ratio method estimates showed good agreement above the corn canopy, indicating that the former method can be a viable alternative to study the isotopic exchange within plant canopies. The 13CO2 composition of NEE showed a downward trend near the end of the growing season, which may be related to a reduction of autotrophic respiration in the soil.

  17. Isotope exchange investigation of nitrogen redistribution in expanded austenite

    International Nuclear Information System (INIS)

    Sequential plasma and gaseous nitriding of Fe–18Cr–10Ni–3Mo stainless steel at 390 °C with 14N and 15N isotopes followed by denitriding in flowing hydrogen was investigated. Redistribution of plasma-inserted nitrogen atoms (15N) by subsequent gaseous nitriding (14N) was observed. Denitriding after plasma- and gaseous nitriding resulted in predominant retraction of 14N, and only a minor amount of 15N. The nitrogen isotope diffusion behaviour is explained by two different states of nitrogen bonding and short-range ordering between nitrogen and chromium

  18. Isotope exchange investigation of nitrogen redistribution in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Drouet, M.; Martinavičius, A.;

    2013-01-01

    Sequential plasma and gaseous nitriding of Fe–18Cr–10Ni–3Mo stainless steel at 390°C with 14N and 15N isotopes followed by denitriding in flowing hydrogen was investigated. Redistribution of plasma-inserted nitrogen atoms (15N) by subsequent gaseous nitriding (14N) was observed. Denitriding after...... plasma- and gaseous nitriding resulted in predominant retraction of 14N, and only a minor amount of 15N. The nitrogen isotope diffusion behaviour is explained by two different states of nitrogen bonding and short-range ordering between nitrogen and chromium....

  19. Investigation of Catalytic NOx, reduction with transient techniques, isotopic exchange and FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Emissions from vehicles are suppressed by catalytic conversion, i.e. total oxidation of carbon monoxide and hydrocarbons and reduction of nitrogen oxides. The on-going demand for lower emissions requires more detailed knowledge about the catalytic reaction mechanisms and kinetics on the level of elementary steps, especially because of the mutual interactions in the complex reaction mixture. The reaction mechanisms for the abatement of nitrogen oxides (NOx) are of particular interest, since they are environmentally very unfriendly compounds. Transient experimental techniques can be used as a tool to understand the reaction mechanisms and to develop mathematical models allowing simulation and optimisation of the behaviour of three-way catalyst converters. In chemical kinetics, isotope-labelled reactants are frequently employed to follow reaction pathways and to determine reaction mechanisms. The kinetics and mechanisms of the catalytic reduction of nitrogen oxide (NO) by hydrogen as well as self-decomposition of NO and N2O were studied over alumina based palladium and rhodium-alumina monoliths. In addition, NO reduction with H2 and D2, isotope exchange of hydrogen atoms in water, ammonia and hydrogen with deuterium, as well as adsorption of ammonia and water on the Pd-monolith were studied with transient experiments. Transient step-response experiments, isotopic jumping techniques, steady- state isotopic-transient analysis, temperature programmed desorption (TPD) and Fourier-transformed infrared spectroscopy (FT-IR) were used as experimental techniques. The catalysts were characterised by carbon monoxide chemisorption, nitrogen physisorption and X-ray photoelectron spectroscopy (XPS). Nitrogen, nitrous oxide, ammonia, and water were detected as reaction products in NO reduction by hydrogen. The transient and FT-IR experiments yielded information about the surface reaction mechanisms. The dissociation of NO on the catalyst surface is the crucial step, dominating the

  20. (15)N Heteronuclear Chemical Exchange Saturation Transfer MRI.

    Science.gov (United States)

    Zeng, Haifeng; Xu, Jiadi; Yadav, Nirbhay N; McMahon, Michael T; Harden, Bradley; Frueh, Dominique; van Zijl, Peter C M

    2016-09-01

    A two-step heteronuclear enhancement approach was combined with chemical exchange saturation transfer (CEST) to magnify (15)N MRI signal of molecules through indirect detection via water protons. Previous CEST studies have been limited to radiofrequency (rf) saturation transfer or excitation transfer employing protons. Here, the signal of (15)N is detected indirectly through the water signal by first inverting selectively protons that are scalar-coupled to (15)N in the urea molecule, followed by chemical exchange of the amide proton to bulk water. In addition to providing a small sensitivity enhancement, this approach can be used to monitor the exchange rates and thus the pH sensitivity of the participating (15)N-bound protons. PMID:27548755

  1. Stochastic Simulation of Chemical Exchange in Two Dimensional Infrared Spectroscopy

    CERN Document Server

    Sanda, F; Sanda, Frantisek; Mukamel, Shaul

    2006-01-01

    The stochastic Liouville equations are employed to investigate the combined signatures of chemical exchange (two-state-jump) and spectral diffusion (coupling to an overdamped Brownian oscillator) in the coherent response of an anharmonic vibration to three femtosecond infrared pulses. Simulations reproduce the main features recently observed in the OD stretch of phenol in benzene.

  2. Microbial, Physical and Chemical Drivers of COS and 18O-CO2 Exchange in Soils

    Science.gov (United States)

    Meredith, L. K.; Boye, K.; Whelan, M.; Pang, E.; von Sperber, C.; Brueggemann, N.; Berry, J. A.; Welander, P. V.

    2015-12-01

    Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint [1]. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Soils have been observed to emit COS by undetermined processes. To account for these soil processes, measurements are needed to identify the key microbial, chemical, and physical factors. In this study, we survey COS and δ18O exchange in twenty different soils spanning a variety of biomes and soil properties. By comparing COS fluxes and δ18O-CO2 values emitted from moist soils we investigate whether the same types of CA catalyze these two processes. Additionally, we seek to identify the potential chemical drivers of COS emissions by measuring COS fluxes in dry soils. These data are compared with soil physical (bulk density, volumetric water content, texture), chemical (pH, elemental analysis, sulfate, sulfur K-edge XANES), and microbial measurements (biomass and phylogeny). Furthermore, we determine the abundance and diversity of CA-encoding genes to directly link CA with measured soil function. This work will define the best predictors for COS fluxes and δ18O-CO2 values from our suite of biogeochemical measurements. The suitability of identified predictor variables can be tested in follow-up studies and applied for modeling

  3. Application of personal computers to study the kinetics of heterogeneous isotopic exchange

    International Nuclear Information System (INIS)

    The kinetics of some heterogeneous isotopic exchange reactions of alkaline metal ions between solid (crystalline zirconium phosphate) and liquid phases were investigated. Ion diffusion in solid phase was considered as rate controlling step. The Laplace transformation solution of Fick's II law was used with a Sinclair ZX Spectrum personal computer. In some cases the exchange reaction should be regarded as a superposition of diffusion and a first order process. (author)

  4. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI

    Science.gov (United States)

    Rivlin, Michal; Horev, Judith; Tsarfaty, Ilan; Navon, Gil

    2013-10-01

    The two glucose analogs 2-deoxy-D-glucose (2-DG) and 2-fluoro-2-deoxy-D-glucose (FDG) are preferentially taken up by cancer cells, undergo phosphorylation and accumulate in the cells. Owing to their exchangeable protons on their hydroxyl residues they exhibit significant chemical exchange saturation transfer (CEST) effect in MRI. Here we report CEST-MRI on mice bearing orthotopic mammary tumors injected with 2-DG or FDG. The tumor exhibited an enhanced CEST effect of up to 30% that persisted for over one hour. Thus 2-DG/FDG CEST MRI can replace PET/CT or PET/MRI for cancer research in laboratory animals, but also has the potential to be used in the clinic for the detection of tumors and metastases, distinguishing between malignant and benign tumors and monitoring tumor response to therapy as well as tumors metabolism noninvasively by using MRI, without the need for radio-labeled isotopes.

  5. Adsorption, desorption and isotopic exchange of cadmium on illite: evidence for complete reversibility

    NARCIS (Netherlands)

    Comans, R.N.J.

    1987-01-01

    Adsorption, desorption and isotopic exchange of Cd on illite clay have been studied at low Cd concentrations and low ionic strength. The results indicate that under the conditions of the experiments Cd sorption on illite is completely reversible. Long equilibration times (7–8 weeks) were shown to be

  6. Isotope exchange of indoles with D/sub 2/O over group VIII metals

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, E.A.; Dedov, A.G.; Kurts, A.L.; Luzikov, Yu.N.

    1981-08-01

    Results of H - D exchange between indole and its methyl derivatives and D/sub 2/O over metallic Pt, Rh, and Pd are reported. The composition of the reaction mixture after the isotopic exchange was determined by mass spectrometry. The order of reactivity of the metals was Pt>Pd>Rh. It was determined that it was only the heterocycle ..pi..-electron system that interacts with the surface and mainly the hydrogens at C/sub 2/ and C/sub 3/ that undergo exchange and not those bonded to the N. (BLM)

  7. Iron Isotope Fractionation Reveals Structural Change upon Microbial and Chemical Reduction of Nontronite NAu-1

    Science.gov (United States)

    Liu, K.; Wu, L.; Shi, B.; Smeaton, C. M.; Li, W.; Beard, B. L.; Johnson, C.; Roden, E. E.; Van Cappellen, P.

    2015-12-01

    Iron (Fe) isotope fractionations were determined during reduction of structural Fe(III) in nontronite NAu-1 biologically by Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA and chemically by dithionite. ~10% reduction was achieved in biological reactors, with similar reduction extents obtained by dithionite. We hypothesize that two stages occurred in our reactors. Firstly, reduction started from edge sites of clays and the produced Fe(II) partially remained in situ and partially was released into solution. Next aqueous Fe(II) adsorbed onto basal planes. The basal sorbed Fe(II) then undergoes electron transfer and atom exchange (ETAE) with octahedral Fe(III) in clays, with the most negative fractionation factor Δ56Febasal Fe(II)-structural Fe(III)of -1.7‰ when basal sorption reached a threshold value. Secondly, when the most reactive Fe(III) was exhausted, bioreduction significantly slowed down and chemical reduction was able to achieve 24% due to diffusion of small size dithionite. Importantly, no ETAE occurred between basal Fe(II) and structural Fe(III) due to blockage of pathways by collapsed clay layers. This two-stage process in our reduction experiments is distinctive from abiotic exchange experiments by mixing aqueous Fe(II) and NAu-1, where no structural change of clay would block ETAE between basal Fe(II) and structural Fe(III). The separation of reduction sites (clay edges) and sorption sites (basal planes) is unique to clay minerals with layered structure. In contrast, reduction and sorption occur on the same sites on the surfaces of Fe oxyhydroxides, where reduction does not induce structure change. Thus, the Fe isotope fractionations are the same for reduction and abiotic exchange experiments for Fe oxides. Our study reveals important changes in electron transfer and atom exchange pathways upon reduction of clay minerals by dissimilatory Fe reducing bacteria, which is prevalent in anoxic soils and sediments.

  8. Separation of hydrogen isotopes by exchange reaction between water and hydrogen using hydrophobic platinum catalyst

    International Nuclear Information System (INIS)

    The case of utilizing exchange reaction and distillation has been found very frequently in practical scale in the separation process of hydrogen isotopes such as heavy water and deuterium. Distillation consumes a large quantity of energy, but it is a promising method in future because of the stability and simplicity of the process utilizing phase equilibrium. In the exchange reaction method, there are four excellent reactions involving the exchange reaction between gas and liquid, and in the practical process, counter flow gas-liquid contact towers are used. In this case, single temperature exchange method and double temperature exchange method are conceivable. In order to prevent the condensation of water molecules on active platinum surface, the catalyst has been made hydrophobic. The evaluation of catalyst activity and its basic theory, the lowering of catalyst activity and the effect of regeneration, the rate of exchange reaction and activation energy, and overall mass transfer coefficient are discussed. The performance of hydrogen isotope separation in a counter flow type exchange tower is represented by two factors in gas and liquid phase reactions, and to improve the performance, the transfer at gas-liquid interface must be accelerated, (Kako, I.)

  9. Ion-exchange membranes in chemical synthesis – a review

    Directory of Open Access Journals (Sweden)

    Jaroszek Hanna

    2016-12-01

    Full Text Available The applicability of ion-exchange membranes (IEMs in chemical synthesis was discussed based on the existing literature. At first, a brief description of properties and structures of commercially available ion-exchange membranes was provided. Then, the IEM-based synthesis methods reported in the literature were summarized, and areas of their application were discussed. The methods in question, namely: membrane electrolysis, electro-electrodialysis, electrodialysis metathesis, ion-substitution electrodialysis and electrodialysis with bipolar membrane, were found to be applicable for a number of organic and inorganic syntheses and acid/base production or recovery processes, which can be conducted in aqueous and non-aqueous solvents. The number and the quality of the scientific reports found indicate a great potential for IEMs in chemical synthesis.

  10. Glucans monomer-exchange dynamics as an open chemical network

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Riccardo, E-mail: riccardo.rao@uni.lu; Esposito, Massimiliano, E-mail: massimiliano.esposito@uni.lu [Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg); Lacoste, David [Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI - 10 rue Vauquelin, F-75231 Paris (France)

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  11. Glucans monomer-exchange dynamics as an open chemical network

    CERN Document Server

    Rao, Riccardo; Esposito, Massimiliano

    2015-01-01

    We describe the oligosaccharides-exchange dynamics performed by so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  12. Assessment of the bioavailability of heavy metals in soils using isotopic exchange kinetics method

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, G.; Gerard, E.; Shallari, S.; Massoura, S.; Schwartz, C.; Morel, J.L. [Ecole Nationale Superieur d' Agronomie et des Industries Alimentaires (ENSAIA-INRA), Lab. Sols et Environnement, 54 - Vandoeuvre les Nancy (France)

    2001-07-01

    The aim of this paper was to investigate the potential risk of food chain contamination of soils from urban and industrial sites by nickel and cadmium. Therefore, the isotopic exchange kinetics (IEK) method, which allows to understand the potential transfer from soil to plant of these two metals, was carried out on soil samples from agricultural, urban and industrial areas contaminated by mining, smelting and other metal industry activities. The IEK method have been successfully used to assess metal bioavailability in natural and anthropogenic metal rich soils and have succeeded in predicting metal transfer to plants, especially to hyper-accumulators. This method allows indeed to characterize the three main characteristics of bioavailability of metals in soils (intensity, quantity and capacity). The latter being the most difficult to assess with traditional chemical extraction procedures. A further step in improving the method would be to characterize for each soil sample the part of the metal in solution which is actually under the form M{sup 2+} rather than assuming that the total metal in solution is M{sup 2+}. It is therefore possible to assess the risk associated with the presence of metals in urban and industrial soils and also to evaluate the management practices on these areas. Their use has also allowed to assess the effect of management practices on contaminated agricultural, urban and industrial soils (liming, sewage sludge applications, phyto-extraction). The effect of such practices is often a combined effect directly on the solubility of the metals (intensity), on the increase or decrease of the exchangeable pool (quantity) and on the decrease or increase of the capacity.

  13. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of the exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.

  14. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data.

    Science.gov (United States)

    Pyle, Lacey A; Hockaday, William C; Boutton, Thomas; Zygourakis, Kyriacos; Kinney, Timothy J; Masiello, Caroline A

    2015-12-15

    Charcoal plays a significant role in the long-term carbon cycle, and its use as a soil amendment is promoted as a C sequestration strategy (biochar). One challenge in this research area is understanding the heterogeneity of charcoal properties. Although the maximum reaction temperature is often used as a gauge of pyrolysis conditions, pyrolysis duration also changes charcoal physicochemical qualities. Here, we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in charcoal chemical properties with variation in CI. We find two types of responses to CI: either linear or threshold relationships. Mass yield decreases linearly with CI, while a threshold exists across which % C, % N, and δ(15)N exhibit large changes. This CI threshold co-occurs with an increase in charcoal aromaticity. C isotopes do not change from original biomass values, supporting the use of charcoal δ(13)C signatures to infer paleoecological conditions. Fractionation of N isotopes indicates that fire may be enriching soils in (15)N through pyrolytic N isotope fractionation. This influx of "black N" could have a significant impact on soil N isotopes, which we show theoretically using a simple mass-balance model. PMID:26523420

  15. Hydrogen isotope exchanges between water and methanol in interstellar ices

    CERN Document Server

    Faure, A; Theulé, P; Quirico, E; Schmitt, B

    2015-01-01

    The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuteration of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger (~20) in low-mass hot corinos and significantly lower (~1) in high-mass hot cores. This dichotomy in methanol deuteration between low-mass and massive protostars is currently not understood. In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion~KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorpor...

  16. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  17. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  18. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M.; Baba, A. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y.; Nishi, M.

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  19. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    MA; Yingjun

    2001-01-01

    Chen, J., Qiu, G., Lu, H. Y. et al., Variation of summer monsoon intensity on the Loess Plateau of central China during the last 130, 000 yrs based on evidence from Rb and Sr distribution, Chinese Science Bulletin, 1997, 42(6): 473.[13]Chen, J., An, Z. S., Wang, Y. J. et al., Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka: Implications for paleomonsoon variations, Science in China, Ser. D, 1999, 42(2): 225.[14]Faure, G., Principles of Isotope Geology, 2nd ed, New York: John Wiley & Son, 1986, 117-199.[15]White, A. F., Blum, A. E., Shultz, M. S. et al., Chemical weathering rates of a soil chronosequence on granitic alluvium:ⅠQuantification of mineralogical and surface area changes and calculation of silicate reaction rates, Geochim. Cosmochim. Acta, 1996, 60(14): 2533.[16]Miller, E. K., Blum, J. D., Friedland, A. J., Determination of soil exchangeable---cation loss and weathering rates using Sr isotopes, Nature, 1993, 362: 438.[17]Liu, C. Q., Zhang, J., Li, C. L., Variation in CaCO3 content and Sr isotopic composition of loess and records of paleocli-matic fluctuation, Chinese Science Bulletin, 1999, 44(16): 1512.

  20. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  1. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. PMID:27451111

  2. Isotopic and impurity element probes of mesoscale chemical dynamics at mineral fluid interfaces

    Science.gov (United States)

    DePaolo, D. J.

    2012-12-01

    Mesoscale interactions control important Earth processes including the growth of minerals from aqueous solutions and silicate liquids, the diffusion of ions in solids and silicate liquids, and the solid-state deformation and recrystallization that constitutes metamorphism. Most of these processes are typically understood from the classical side in terms of macroscopic physical and thermodynamic properties and classical kinetics, and from the molecular side in terms of single molecule or nearest-neighbor interactions. However, in many cases the controlling processes occur at intermediate scales of both length and time, and involve complex interactions among multiple chemical species. A major limitation has been in characterizing and modeling the dynamic processes that lead to the macroscopic properties and behavior. Advanced microscopy techniques allow phase changes, for example, to be monitored at high resolution, and this capability continues to improve. However, other important information about the phase changes, such as the molecular exchange fluxes between phases and the detailed mechanisms of reaction, are not revealed by microscopy. High-resolution isotopic characterization now allows the molecular exchange fluxes to be quantified, and models suggest that the incorporation of impurity elements is directly tied to these fluxes. One of the main advances is that precise isotopic measurements have recently been extended to include major stoichiometric cations such as Ca, Mg, Fe, and K, as well as key impurity elements such as U, Cd, Mo, and Sr. Isotopic analysis at the nano- to microscale would further clarify the detailed dynamics of mineral chemistry controls but are not yet possible except in a few instances. Impurity element concentrations are more easily measured at these small scales, and they are a key bridge between isotopic measurements and microscopy.Other limitations to advancing our knowledge of the chemical and isotopic effects associated with

  3. Charge exchange and chemical reactions with trapped Th3+

    International Nuclear Information System (INIS)

    We have measured the reaction rates of trapped, buffer gas cooled Th3+ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th3+ make them more prone to loss. Our results show that reactions of Th3+ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th3+ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th3+ and carbon dioxide. Loss rates of Th3+ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th3+ with nitrogen and argon depend on the internal electronic configuration of the Th3+.

  4. Charge Exchange and Chemical Reactions with Trapped Th$^{3+}$

    CERN Document Server

    Churchill, L R; Chapman, M S

    2010-01-01

    We have measured the reaction rates of trapped, buffer gas cooled Th$^{3+}$ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th$^{3+}$ make them more prone to loss. Our results show that reactions of Th$^{3+}$ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th$^{3+}$ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th$^{3+}$ and carbon dioxide. Loss rates of Th$^{3+}$ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th$^{3+}$ with nitrogen and argon depend on the internal electronic configuration of the Th$^{3+}$.

  5. Dual Studies on a Hydrogen–Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    OpenAIRE

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen–deuterium (H–D) exchange of resorcinol by electrophilic aromatic substitution using D2O and a catalytic amount of H2SO4. The resulting labeled product is characterized by 1H NMR. Students also visualize a significant kinetic isotope effect (k H/k D ≈ 3 to 4) by adding iodine tincture to solutions of unlabeled resorcinol and the H–D exchange product. This method is highly adaptable to fit a tar...

  6. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  7. Examination of the isotopic exchange columns used in heavy water fabrication by nondestructive metallography

    International Nuclear Information System (INIS)

    In this paper the results are presented of an investigation using nondestructive metallography of the isotopic exchange columns used for heavy water fabrication in ROMAG PROD plant at Drobeta Turnu Severin. The nondestructive metallography is based on the examination of the surface moulds. Thus the corroded areas on the inner walls of the isotopic exchange columns are investigated with metallographic replicas to observe microstructures in steel G 52/28 and reveal possible microcracks. Finally, metallographic structures of the investigated areas were determined but structural modifications with respect to the control ones were not observed. Only, in the tray 30 in the C 1106 column microcracks were evidenced in the characteristic areas at the welded joins were the tray attached to the column. So a new intervention was needed

  8. Short-lived isotopes in central chemical control of ventilation

    International Nuclear Information System (INIS)

    Central chemical ventilatory drive is dependent on elecrolyte and acid-base status of brain ECF, as well as the interaction between H+ metabolism and CO2 fixation and metabolism of amino acid neutrotransmitters - GABA and glutamate. In the anesthetized dogs, using the short-lived positron emitting isotope of carbon (11C) either in the form of molecular CO2 or as HCO3- injected intraarterially it was demonstrated that there is first pass uptake of 16% of HCO3- from blood into brain and 86% uptake of molecular CO2, thus indicating that the brain-blood barrier is permeable to HCO3-, but that HCO3- content in the CNS is regulated as a function of dissociation of strong ions such as Cl- and Na+. Relationship between CO2 fixations and brain glutamine was studied with intraarterial injection of 13N-ammonia and its turnover into glutamine when PCO2 was increased. Ammonia turnover into glutamine was increased by a factor of 2 when PaCO2 was increased by 35 torr, and this rise in glutamine was linearly related to the rise in CSF [HCO3-]. Glutamine is then converted into the active neurotransmitters GABA and glutamate. Thus, the short-lived isotopes allow for assessment of the interaction of biochemical events in the CNS in the central respiratory drive. (orig.)

  9. Isotopic and chemical studies of early crustal metasedimentary rocks

    Science.gov (United States)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  10. Direct measurement of biosphere-atmosphere isotopic CO2 exchange using the eddy covariance technique

    Science.gov (United States)

    Griffis, T. J.; Sargent, S. D.; Baker, J. M.; Lee, X.; Tanner, B. D.; Greene, J.; Swiatek, E.; Billmark, K.

    2008-04-01

    Quantifying isotopic CO2 exchange between the biosphere and atmosphere presents a significant measurement challenge, but has the potential to provide important constraints on local, regional, and global carbon cycling. Past approaches have indirectly estimated isotopic CO2 exchange using relaxed eddy accumulation, the flask-based isoflux method, and flux-gradient techniques. Eddy covariance (EC) is an attractive method because it has the fewest theoretical assumptions and the potential to give a direct measure of isotopic CO2 flux, but it requires a highly sensitive and relatively fast response instrument. To date, no such field measurements have been reported. Here we describe the use of a closed-path tunable diode laser absorption spectroscopy and eddy covariance (EC-TDL) system for isotopic (C16O2, 13CO2, C18O16O) flux measurements. Results are presented from an intensive field experiment conducted over a soybean canopy from 18 July to 20 September 2006. This experiment represents a rigorous field test of the EC-TDL technique because the transport was dominated by relatively high frequency eddies. Net ecosystem CO2 exchange (FN) measured with the EC-TDL system showed strong correlation (r2 = 0.99) in the half-hourly fluxes with an EC open-path infrared gas analyzer (EC-IRGA) over the 60-d period. Net CO2 flux measured with the EC-IRGA and EC-TDL systems agreed to within 9%. Flux loss associated with diminished frequency response beyond 1 Hz for the EC-TDL system was approximately 8% during daytime windy (>4 m s-1) conditions. There was no significant evidence of a kinetic-type fractionation effect related to a phase shift among isotopologues due to tube attenuation. Investigation of isotopic spectral similarity in the flux ratio (δNx) for both 13CO2 and C18O16O transport showed that δNx was relatively independent of eddy scale for this ecosystem type. Flux loss, therefore, did not significantly bias δNx. There was excellent agreement between isofluxes (F

  11. Isotopic study of water exchange between atmosphere and biosphere at Changa Manga site in Pakistan

    International Nuclear Information System (INIS)

    Study of water exchange between atmosphere and biosphere was initiated to understand the ties between these two spheres. Samples of leaves and stems of 23 woody plants along with soil from the surface and from the depth of 7 cm were collected from Changa Manga forest. Moisture content from these samples was extracted using the vacuum distillation method and analyzed for stable isotopes (/sup 18/O and /sup 2/H). Air moisture was also collected in the field. Isotopic data plotted long with the Local Meteoric Water Line (LMWL) indicates that /sup 18/O and /sup 2/H contents of moisture in the leaves of woody plants are higher than their respective stems. This behavior is due to the evaporative enrichment trend originating from the soil moisture in active root zone and also from the leaf surface. The stem samples did not show any significant variation in gamma /sup 18/O suggesting no significant evaporation from stems of big trees. Degree of enrichment of leave samples of woody plants indicated the species-specific effects in isotopes during transpiration. Pine and Eucalyptus leaves showed more variation in the isotopic contents as compared to other species. Temporal variations of /sup 18/O and /sup 2/H in the leaves indicated enriched isotopic values during hot and dry periods as compared to those during wet period (monsoon and winter rains) mainly due to higher transpiration rates at high temperature and low humidity. (orig./A.B.)

  12. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    Science.gov (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  13. Evaluation of Hydrogen Isotope Exchange Methodology on Adsorbents for Tritium Removal

    International Nuclear Information System (INIS)

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D2O, leaving H2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T2O, HTO, and DTO) using D2 (or H2)

  14. Evaluation of hydrogen isotope exchange methodology on adsorbents for tritium removal

    International Nuclear Information System (INIS)

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D2O, leaving H2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T2O, HTO, and DTO) using D2 (or H2). (authors)

  15. Isotopic exchange between CO2 and H2O and labelling kinetics of photosynthetic oxygen

    International Nuclear Information System (INIS)

    The reaction of carbon dioxide with water has been studied by measuring the rate of oxygen exchange between C18O2 and H216O. The mathematical treatment of the kinetics allows to determine with accuracy the diffusion flow between the gas and the liquid phase, in the same way as the CO2 hydration rate. The velocity constant of this last process, whose value gives the in situ enzymatic activity of carbonic anhydrase, has been established in the case of chloroplast and Euglena suspensions and of aerial leaves. The study of the isotopic exchange between C18O2 and a vegetable submitted to alternations of dark and light has allowed to calculate the isotopic abundance of the metabolized CO2 whose value has been compared to that of the intracellular water and that of photosynthetic oxygen. In addition, a new method using 13C18O2 gives the means to measure with accuracy eventual isotopic effects. The labelling kinetics of the oxygen evolved by Euglena suspensions whose water has been enriched with 18O have been established at different temperatures. (author)

  16. Solubility, diffusivity, and isotopic exchange rate of hydrogen isotopes in Li-Pb

    International Nuclear Information System (INIS)

    The diffusion, solution and permeation coefficients of hydrogen isotopes in liquid Li-Pb which is a candidate liquid blanket material for fusion reactors were determined in the temperature range 573-973 K using an unsteady permeation method. Each coefficients was correlated to temperature as follows: DLi-Pb = 1.8 x 10-8 exp(-11590/RT) [m2/s] (1) KLi-Pb = 2.1x10-6 exp(-18700/RT) [1/Pa0.5] (2) PLi-Pb = 1.8x10-9 exp(-30290/RT) [mol/msPa0.5] (3) The hydrogen permeation flux depends on the square root of pressure at 773-973 K. Although the power of pressure declined below 0.4 when temperature was below 673 K, the effects of surface resistance were neglected above 673 K. The hydrogen solubility in liquid Li-Pb was found to correlate with a Sievert's constant. We calculated a height-equivalent to theoretical-plate of a gas-liquid countercurrent extraction tower for tritium recovery rates in liquid Li-Pb to be HL= 7.0x10-2 [m] (4). (authors)

  17. Solubility, diffusivity, and isotopic exchange rate of hydrogen isotopes in Li-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Y.; Edao, Y.; Yamaguchi, S.; Fukada, S. [Dept. of Advanced Energy Engineering Science Interdisciplinary, Graduate School of Engineering Sciences, Kyushu Univ., Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2008-07-15

    The diffusion, solution and permeation coefficients of hydrogen isotopes in liquid Li-Pb which is a candidate liquid blanket material for fusion reactors were determined in the temperature range 573-973 K using an unsteady permeation method. Each coefficients was correlated to temperature as follows: D{sub Li-Pb} = 1.8 x 10{sup -8} exp(-11590/RT) [m{sup 2}/s] (1) K{sub Li-Pb} = 2.1x10{sup -6} exp(-18700/RT) [1/Pa{sup 0.5}] (2) P{sub Li-Pb} = 1.8x10{sup -9} exp(-30290/RT) [mol/msPa{sup 0.5}] (3) The hydrogen permeation flux depends on the square root of pressure at 773-973 K. Although the power of pressure declined below 0.4 when temperature was below 673 K, the effects of surface resistance were neglected above 673 K. The hydrogen solubility in liquid Li-Pb was found to correlate with a Sievert's constant. We calculated a height-equivalent to theoretical-plate of a gas-liquid countercurrent extraction tower for tritium recovery rates in liquid Li-Pb to be H{sub L}= 7.0x10{sup -2} [m] (4). (authors)

  18. Chemical Exchange Saturation Transfer (CEST) Agents: Quantum Chemistry and MRI.

    Science.gov (United States)

    Li, Jikun; Feng, Xinxin; Zhu, Wei; Oskolkov, Nikita; Zhou, Tianhui; Kim, Boo Kyung; Baig, Noman; McMahon, Michael T; Oldfield, Eric

    2016-01-01

    Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd(3+) -based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the (1) H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R(2) =0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4-dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that (1) H NMR shifts for CEST agents-charged species-can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.

  19. Oxygen and hydrogen isotope exchange of geopressured thermal water in the central Guanzhong basin

    Institute of Scientific and Technical Information of China (English)

    YU Juan; MA Zhi-yuan; WANG Zhao-wei; LI Wei-liang; SU Yan

    2009-01-01

    Geothermal water of Xi'an and Xianyang in the central Guanzhong basin is typically geopressured thermal water in China. δ18O and δD data of geopressured thermal water in Xi'an and Xianyang, combined with data from the perimeter of the basin, are analyzed to study features of hydrogen and oxygen shifts. The results show that 18O exchange of geothermal water at the pc-rimeter of the basin and in the non-geopressured thermal water in the center of the basin is not evident, while in most of the geo-pressured thermal water in the central basin, in cities such as Xi'an and Xianyang, significant oxygen exchange had taken place as well as hydrogen exchange, suggesting that isotope exchanges would slowly move the geothermal water system towards equilib-rium. Thermal water reservoirs in the central basin have passed through significant water-rock reactions. Moreover, the geothermal reservoir of Xianyang city is relatively much more enclosed than that of Xi'an city. It has been observed that the more enclosed the geological environment of geothermal water is, the more obvious the oxygen shifts are. With the increasing of the depth, residence time, total amounts of thssolute solids and temperatures of geothermal waters, the oxygen exchange accelerates.

  20. Global changes and the air-sea exchange of chemicals

    International Nuclear Information System (INIS)

    Present and potential future changes to the global environment have important implications for marine pollution and for the air-sea exchange of both anthropogenic and natural substances. This report addresses three issues related to the potential impact of global change on the air-sea exchange of chemicals: Global change and the air-sea transfer of the nutrients nitrogen and iron. Global change and the air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in the atmosphere. The deposition of atmospheric anthropogenic nitrogen has probably increased biological productivity in coastal regions along many continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. The projected future increases of nitrogen oxide emissions from Asia, Africa and South America will provide significant increases in the rate of deposition of oxidized nitrogen to the central North Pacific, the equatorial Atlantic, and the equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur if there are changing patterns of aridity and wind speed as a result of climate change. The most important future effects on surface ocean pCO2 will likely be caused by changes in ocean circulation. The pH of the ocean would decrease by ∼0.3 units for a doubling of pCO2, reducing the capacity of the ocean to take up CO2. There is increasing evidence that dimethyl sulfide from the ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. In this same time frame increases in ground-level effective UV-B radiation could reach 5%, 26% and 66%, at low, mid, and high latitudes in the southern hemisphere. Changes in

  1. Predicting the bioavailability of phosphorus in soil amended with phosphate rocks using isotopic exchange kinetics

    International Nuclear Information System (INIS)

    Investigations on plant responses to applications of various forms and rates of P fertilizers usually involve glasshouse and/or field experiments. This traditional procedure assumes that whatever the soil-fertilizer-plant system, increase in total P uptake by plant between no P treatment (control) and fertilizer treatment equals the plant P uptake from fertilizer. This study uses the isotopic exchange techniques in the laboratory to predict bioavailability of P fertilizers without the need to conduct glasshouse or field experiments. Serdang series soil (Typic Paleudult) was incubated with 7 sources of P fertilizers comprising of triple superhosphate (TSP) and phosphate rocks from North Carolina (NCPR), Algeria (APR), Tunisia (TPR), Jordan (JPR), Christmas Island (CIPR) and China (CPR) at the rates of 0, 2, 4, 6 and 8g Kg-' soil with 20% moisture content at room temperature in three replications. The soils were sampled at 1, 3, 6 and 9 months after incubation and isotopically exchangeable p determined by the method of Fardeau and Jappe (1976). Intensity, quantity and capacity factors of soil P were calculated and the residual availability of these fertilizers were predicted. Phosphorus in solution was highest in TSP treated soil for all treatments. Among the phosphate rocks, NCPR at rate 8g kg-' soil gave the highest value while, CPR at rate 2 gave the lowest value. Thus showing that these PRs have different reactivities in this soil, where NCPR, APR, TPR and JPR were the reactive PR, while CIPR and CPR were the unreactive ones. The isotopically exchangeable P at one minute (1) in the soil sampled 9 months after incubation was found to correlate very well with plant P uptake by oil palm seedlings grown under the same conditions. Calculations made on the percentage of P derived from these fertilizers up to a period of more than one year after application showed that the reactive PRs to have more residual P made available to plants than the unreactive PR

  2. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange

    Science.gov (United States)

    Lai, Chun-Ta; Schauer, Andrew J.; Owensby, Clenton; Ham, Jay M.; Ehleringer, James R.

    2003-09-01

    Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE fluxes were observed for both daytime uptake and nighttime respiration during well-watered conditions when compared to a drought period. Given these differences, we investigated two carbon-flux partitioning questions: (1) What proportions of NEE were contributed by C3 versus C4 species? (2) What proportions of NEE fluxes resulted from canopy assimilation versus ecosystem respiration? To evaluate these questions, air samples were collected every 2 hours during daytime for 3 consecutive days at the same height as the eddy covariance system. These air samples were analyzed for both carbon isotope ratios and CO2 concentrations to establish an empirical relationship for isoflux calculations. An automated air sampling system was used to collect nighttime air samples to estimate the carbon isotope ratios of ecosystem respiration (δR) at weekly intervals for the entire growing season. Models of C3 and C4 photosynthesis were employed to estimate bulk canopy intercellular CO2 concentration in order to calculate photosynthetic discrimination against 13C. Our isotope/NEE results showed that for this grassland, C4 vegetation contributed ˜80% of the NEE fluxes during the drought period and later ˜100% of the NEE fluxes in response to an impulse of intense precipitation. For the entire growing season, the C4 contribution ranged from ˜68% early in the spring to nearly 100% in the late summer. Using an isotopic approach, the calculated partitioned respiratory fluxes were slightly greater than chamber-measured estimates during midday under well-watered conditions. In addition, time series

  3. Assessment of diel chemical and isotopic techniques to investigate biogeochemical cycles in the upper Klamath River, Oregon, USA

    Science.gov (United States)

    Poulson, S.R.; Sullivan, A.B.

    2009-01-01

    The upper Klamath River experiences a cyanobacterial algal bloom and poor water quality during the summer. Diel chemical and isotopic techniques have been employed in order to investigate the rates of biogeochemical processes. Four diel measurements of field parameters (temperature, pH, dissolved oxygen concentrations, and alkalinity) and stable isotope compositions (dissolved oxygen-??18O and dissolved inorganic carbon-??13C) have been performed between June 2007 and August 2008. Significant diel variations of pH, dissolved oxygen (DO) concentration, and DO-??18O were observed, due to varying rates of primary productivity vs. respiration vs. gas exchange with air. Diel cycles are generally similar to those previously observed in river systems, although there are also differences compared to previous studies. In large part, these different diel signatures are the result of the low turbulence of the upper Klamath River. Observed changes in the diel signatures vs. sampling date reflect the evolution of the status of the algal bloom over the course of the summer. Results indicate the potential utility of applying diel chemical and stable isotope techniques to investigate the rates of biogeochemical cycles in slow-moving rivers, lakes, and reservoirs, but also illustrate the increased complexity of stable isotope dynamics in these low-turbulence systems compared to well-mixed aquatic systems. ?? 2009 Elsevier B.V.

  4. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH3-H2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  5. Chemical and isotopic characteristics of hot springs along the along the Neogene Malawi rift.

    Science.gov (United States)

    Atekwana, E. A.; Tsokonombwe, G. W.; Elsenbeck, J.; Wanless, V. D.; Atekwana, E. A.

    2015-12-01

    We measured the concentrations of major ions and dissolved inorganic carbon (DIC) and the stable isotopes of carbon (δ13CDIC), hydrogen (δD) and oxygen (δ18O) of hot springs along the Neogene Malawi rift. We compared the results with those of streams and a cold spring. We aimed to assess the hot springs for evidence of addition of mantle mass, specifically water and carbon and (2) determine the processes that control the chemical and isotopic evolution of the hot springs. Understanding the source(s) of heat for the springs and if the chemical and isotopic characteristics show evidence of mantle processes is an important goal of the Project for Rift Initiation, Development and Evolution (PRIDE). The temperature of the hot springs ranged from 35 to 80 ºC. High temperature anomalies are observed between latitudes 10 to 11, 12 to 13 and 15 to 16 degrees south along the rift axis. The δD and δ18O for the cold spring, hot springs and streams had a similar range, were positively correlated and lie on the trend of the local meteoric water line. We suggest negligible contribution of water from a connate or magmatic source and limited oxygen exchange from water-rock interaction or CO2 exchange from deep sedimentary carbonates. The DIC concentrations of the hot springs are higher (5 to 61 mg C/L) than those of streams (2 to 28 mg C/L) indicating addition of carbon to the DIC pool during the circulation of some springs. The range in the δ13CDIC of the hot springs (-17 to -8‰) is broader and lower compared to streams (-12 to -5‰) due to addition of carbon with a δ13CDIC of -15‰ to the spring water during circulation. Our results indicate that (1) the source of water for the hot springs is meteoric, (2) the hot springs have not experienced extensive water-rock interaction due to fast circulation suggesting highly permeable fault zones, (3) the source of carbon in the DIC of the hot springs is mostly CO2(g) from the soil zone and (4) the springs are heated by normal

  6. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  7. Simulataneous analysis of reactivity of anilines in the hydrogen-isotope exchange reaction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dong-Yu; IMAIZUMI Hiroshi; LEI Qing-Quan; ZHAO Dong-Mei

    2005-01-01

    In order to reveal the reactivity of a functional group in an aromatic compound having two substituents in the aromatic ring, the hydrogen-isotope exchange reaction (T-H exchange reaction) between tritiated water vapor (HTO vapor) and 4-amino-2-methylbenzenesulfonic acid (and 5-amino-2-methylphenol) were dynamically observed at 50℃ (and 70℃) in a gas-solid system. Consequently, the fact that the specific activity of the acid increased with time was obtained, and the T-for-H exchange reaction occurred. By applying the A "-McKay plot method to the data observed, the rate constant of each functional group for the reaction was obtained. After the additive property of the Hammett's rule was applied to this work, the new substituent constants were obtained. From the above-mentioned,the following four items have been confirmed: (1) the reactivity of the functional groups can be dynamically analyzed,and the A"-McKay plot method is useful to analyze the reactivity; (2) the additive property of the Hammett's rule is applicable to quantitative comparison of the reactivity of the functional groups; (3) the reactivity of the functional groups can be simultaneously analyzed by using the A"-McKay plot method in the T-H exchange reaction; and (4) the method used in this work is also useful for analyzing the reactivity of a certain material having some kinds of functional groups.

  8. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    Science.gov (United States)

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  9. Deactivation of a hydrophobic Pt/SDBC catalyst by nitrogen compounds for hydrogen isotopic exchange reaction

    International Nuclear Information System (INIS)

    In order to evaluate the deactivation of a hydrophobic Pt/SDBC catalyst used for a hydrogen isotopic exchange reaction, changes over time in the reaction rate of H2/HDO(v) isotopic exchange over the catalyst induced by the addition of nitric acid, nitrates and nitrogen oxides were studied experimentally. Deactivation was discussed in terms of the balance of the active sites. The catalyst was poisoned by HNO3 reversibly and the poisoning was well explained in terms of the competitive adsorption of HNO3 with H2 or HDO onto the catalytic active sites. The poisoning kinetics were explained by the Zeldovich rate equation. Neutral nitrates of fission products such as Sr(NO3)2 showed negligible poisoning effect on the catalyst. ZrO(NO3)2 showed very similar poisoning behavior with HNO3, and this was considered to result from hydrolysis reactions which produced HNO3. No deactivation was observed by the introduction of NO, NO2 or NH3 into the reactor. Instead of poisoning, the reaction rate was accelerated by NO or NO2 and this was considered to be due to local heating of the catalyst surface by exothermic reactions between nitrogen oxides and hydrogen. (author)

  10. Control factors of chemical and isotopic composition of groundwater in Varadero- Cardenas region, Matanzas, Cuba

    International Nuclear Information System (INIS)

    Multivariate analysis was performed to isotopic and chemical composition of groundwater from the karstic aquifer of Varadero- Cardenas in order to define those factor controlling or influencing its variations in time and space. The research was part of a project sponsored by International of Atomic Energy aimed to improve aquifer management applying isotopic techniques

  11. Tailoring exchange bias through chemical order in epitaxial FePt3 films

    Science.gov (United States)

    Saerbeck, T.; Zhu, H.; Lott, D.; Lee, H.; LeClair, P. R.; Mankey, G. J.; Stampfl, A. P. J.; Klose, F.

    2013-07-01

    Intentional introduction of chemical disorder into mono-stoichiometric epitaxial FePt3 films allows to create a ferro-/antiferromagnetic two-phase system, which shows a pronounced and controllable exchange bias effect. In contrast to conventional exchange bias systems, granular magnetic interfaces are created within the same crystallographic structure by local variation of chemical order. The amount of the exchange bias can be controlled by the relative amount and size of ferromagnetic and antiferromagnetic volume fractions and the interface between them. The tailoring of the magnetic composition alone, without affecting the chemical and structural compositions, opens the way to study granular magnetic exchange bias concepts separated from structural artifacts.

  12. Isotopic study of the water exchange between atmosphere and biosphere at selected sites in Pakistan

    International Nuclear Information System (INIS)

    Study of water exchange between atmosphere and biosphere was initiated to understand the ties between these two spheres. Main objective of this study is to acquire sufficient environmental isotopic data for the exploration of water cycle dynamics in selected areas of Pakistan, in order to contribute to the IAEA global network for the development of regional scale model on ecosystems. Isotope investigations (18O, 2H) help evaluate the major processes such as photosynthesis, respiration and evapotranspiration. From January 2005 to April 2005 non woody plants (wheat, grass) and soil samples from wheat and grass fields (from the surface and 7cm below the surface) were collected. Moisture contents from these samples were extracted using the vacuum distillation method and analysed for hydrogen and oxygen isotope contents. Air moisture was also collected in the field. Woody plants consisting of eucalyptus, pine, delbergia sisso, melia azedarch were sampled from Islamabad. Seventeen more species of woody plants are included in the study, from another site, located near Lahore. Data depicts that the leaves of the wheat plant are more enriched in 18O and 2H than other parts of the same plant and grass. It may be due to the process of evapotranspiration which is more rapid from the wider leaves as compared to the small ones. Rain effect was also observed on δ18O and δ2H of the samples collected just two days after the rain event. Isotopic values of this rainwater were more negative as compared to other rain events that took place during this season. This depletion may be due to the 'continental effect' in precipitation. More than 200 samples from woody plants of different species and soil were collected. Isotopic data of the moisture extracted from leaves and stems of the plants of different species indicate that leaves of all the plants are more enriched in 2H and 18O than that of the respective stems. There also seem some considerable species-specific effects transforming

  13. Analysis of 235U enrichment by chemical exchange in U(IV) - U(VI) system on anionite

    International Nuclear Information System (INIS)

    Full text: A theoretical study about the 235U enrichment by chemical exchange method in U(IV)-U(VI) system on anion-exchange resins is presented. The 235U isotope concentration profiles along the band were numerically calculated using an accurate mathematical model and simulations were carried out for the situation of product and waste withdrawal and feed supply. By means of numerical simulation, an estimation of the migration time, necessary for a desired enrichment degree, was obtained. The required migration distance, the production of uranium 3 at.% 235U per year and the plant configuration are calculated for different operating conditions. An analysis of the process scale for various experimental conditions is also presented. (authors)

  14. Study of T-H isotope exchange between H2-H2O by Pt-C-PTFE hydrophobic catalyst

    International Nuclear Information System (INIS)

    The preparation of Pt-C-PTFE hydrophobic catalyst is described. The experiments of T-H isotope exchange between H2/H2O by Pt-C-PTFE hydrophobic catalyst were carried out at 30 deg C, 50 deg C and 75 deg C respectively. Within the limits (9.65-38.22) cm/s, catalystic activity increases with the increase of hydrogen flow rate. The catalystic activity at 50 deg C is optimum. The catalystic activity of this catalyst between gas-liquid is larger than that between gas-vapour. Mixture of the hydrophobic catalyst with hydrophilic filler in the bed can improve hydrogen isotope exchange

  15. Influence of packing material and method on the efficiency of liquid phase water-hydrogen isotope exchange

    International Nuclear Information System (INIS)

    The influence of packing material in the countercurrent catalytic column on the efficiency of liquid phase water-hydrogen isotope exchange is studied. Stainless steel triangle spring packing demonstrates best performance among the tested three hydrophilic packing materials. Pretreatment of the stainless steel packing lowers the height of a mass transfer unit (HTU) by about 50%. The effectiveness of a catalytic column for water-hydrogen isotope exchange is proved to be higher when the column is packed in layers with hydrophilic packing and hydrophobic catalyst in the volume ratio 1:4

  16. Two stages of isotopic exchanges experienced by the Ertaibei granite pluton, northern Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    刘伟

    2000-01-01

    18O/16O and D/H of coexisting feldspar, quartz, and biotite separates of twenty samples collected from the Ertaibei granite pluton, northern Xinjiang, China are determined. It is shown that the Ertaibei pluton experienced two stages of isotopic exchanges. The second stage of 18O/16O and D/H exchanges with meteoric water brought about a marked decrease in the δ18O values of feldspar and biotite from the second group of samples. The D/H of biotite exhibits a higher sensitivity to the meteoric water alteration than its 18O/16O. However, the first stage of 18O/16O exchange with the 18O-rich aqueous fluid derived from the dehydration within the deep crust caused the Δ18OQuariz-Feidspar reversal. It is inferred that the dehydration-melting may have been an important mechanism for anatexis. It is shown that the deep fluid encircled the Ertaibei pluton like an envelope which serves as an effective screen to the surface waters.

  17. Two stages of isotopic exchanges experienced by the Ertaibei granite pluton, northern Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    18O/16O and D/H of coexisting feldspar, quartz, and biotite separates of twenty samples collected from the Ertaibei granite pluton, northern Xinjiang, China are determined. It is shown that the Ertaibei pluton experienced two stages of isotopic exchanges. The second stage of 18O/16O and D/H exchanges with meteoric water brought about a marked decrease in the δ18O values of feldspar and biotite from the second group of samples. The D/H of biotite exhibits a higher sensitivity to the meteoric water alteration than its 18O/16O. However, the first stage of 18O/16O exchange with the 18O-rich aqueous fluid derived from the dehydration within the deep crust caused the δ18OQuartz-Feldspar reversal. It is inferred that the dehydration-melting may have been an important mechanism for anatexis. It is shown that the deep fluid encircled the Ertaibei pluton like an envelope which serves as an effective screen to the surface waters.

  18. Stable isotopes. Applications and production; Les isotopes stables. Applications - production

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.; Louvet, P.; Soulie, E. [eds.

    1994-12-31

    This conference presents 46 communications concerning stable isotope production, utilization and application, grouped in 6 sessions and posters. The various themes are: biological applications (pharmacology, medical diagnosis, metabolism and protein studies, toxicity and response studies, labelled compounds), analysis procedures (NMR analysis for macromolecules, tracer studies), nuclear applications (utilization of stable isotopes in nuclear reactors), biological, physical and chemical applications (mass transfer, mobility, crystallography, isotopic exchange), stable isotope production (ion chromatography, ion cyclotron resonance, cryogenic distillation).

  19. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  20. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  1. An integrated chemical and stable-isotope model of the origin of Midocean Ridge Hot Spring Systems

    Science.gov (United States)

    Bowers, Teresa Suter; Taylor, Hugh P., Jr.

    1985-12-01

    Chemical and isotopic changes accompanying seawater-basalt interaction in axial midocean ridge hydrothermal systems are modeled with the aid of chemical equilibria and mass transfer computer programs, incorporating provision for addition and subtraction of a wide-range of reactant and product minerals, as well as cation and oxygen and hydrogen isotopic exchange equilibria. The models involve stepwise introduction of fresh basalt into progressively modified seawater at discrete temperature intervals from 100° to 350°C, with an overall water-rock ratio of about 0.5 being constrained by an assumed δ18OH2O at 350°C of +2.0 per mil (H. Craig, personal communication, 1984). This is a realistic model because: (1) the grade of hydrothermal metamorphism increases sharply downward in the oceanic crust; (2) the water-rock ratio is high (>50) at low temperatures and low (demand that the major portion of the water-rock interaction occur at temperatures of 300°-350°C. Interaction at temperatures below approximately 250°C results in negative δ18OH2O shifts, contrary to the observed positive δ18O values of the fluids exiting at midocean ridge vents. Hydrogen isotope fractionation curves by Suzuoki and Epstein (1976), Lambert and Epstein (1980), and Liu and Epstein (1984), among others, are compatible with the model, and require δDH2O to increase at all temperatures as a result of seawater-basalt interaction.

  2. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary...... and primary isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  3. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary and primary...... isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  4. New chemical and original isotopic data on waters from El Tatio geothermal field, Northern Chile

    International Nuclear Information System (INIS)

    The El Tatio geothermal field is located at an height of 4200-4300 m on the Cordillera de los Andes (Altiplano). Geysers, hot pools and mudpots in the geothermal field and local meteoric waters were sampled in April 2002 and analyzed for major and trace elements, δ2H, δ18O and 3H of water, δ34S and δ18O of dissolved sulfate, δ13C of dissolved total carbonate, and 87Sr/86Sr ratio of aqueous strontium. There are two different types of thermal springs that field, that are chloride-rich water and sulfate-rich water. The chemical composition of chloride springs is controlled by magma degassing and by water-rock interaction processes. Sulfate springs are fed by shallow meteoric water heated by ascending gases. In keeping with the geodynamic setting and nature of the reservoir rocks, chloride water is rich in As, B, Cs, Li; on the other hand, sulfate waste is enriched only in B relative to local meteoric water. Alternatively to a merely meteoric model, chloride waters can be interpreted as admixtures of meteoric and magmatic (circa andesitic) water, which moderately exchanges oxygen isotopes with rocks at a chemical Na/K temperature of about 270degC in the main reservoir, and then undergoes loss of vapor (and eventually mixing with shallow water) and related isotopic effects ascent to the surface. These chloride waters do not present tritium and can be classified as submodern (pre-1952). A chloride content of 5,400 mg/l is estimated in the main reservoir, for which δ2H and δ18O values, respectively of -78 per mille and -6.9 per mille, are calculated applying the multistage-steam separation isotopic effects between liquid and vapor. From these data, the meteoric recharge (Cl≅0 mg/l) of the main reservoir should approach a composition of -107 per mille in δ2H and -14.6 per mille in δ18O, when a magmatic water of δ2H=-20 per mille, δ18O=+10 per mille and Cl=17,500 mg/l is assumed. The 87Sr/86 ratios of the hot springs are quite uniform (0.70876 to 0.70896), with

  5. Hydrogen isotope exchange and conditioning in graphite limiters used in TFTR

    International Nuclear Information System (INIS)

    Isotopic exchange experiments performed in TFTR are used to examine the outgassing and diffusive properties of graphite used as the plasma limiter. Changeover from hydrogen to deuterium for different periods ranges from approx.600 to 60 plasma discharges, which appears to be correlated to the limiter temperature. We present a simple analytical model that predicts a fast transient (approx.10 plasma discharges) changeover where the deuterium fueling dilutes the adsorbed and near-surface hydrogen, and a slowly changing term where bulk hydrogen diffuses to the surface. Using this model we can extract an activation energy for diffusion of 0.15 +- 0.02 eV. We hypothesize that interpore diffusion for this porous (approx.15%) material is consistent with our observations. 19 refs

  6. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    Science.gov (United States)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  7. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    Science.gov (United States)

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. Models for calculating the effects of isotopic exchange, radioactive decay, and of recycle in removing iodine from gas and liquid streams

    International Nuclear Information System (INIS)

    Different decontamination factors for 129I and 131I are frequently invoked in environmental impact reports concerned with nuclear fuel recycle. Selected differences, or ratios, have not been justified on the basis of mathematical models or experimental data. A description is given of the origins of these differences in terms of isotopic exchange and material balance equations for the short- and long-lived (or stable) isotopes. The ratios of decontamination factors can be calculated when there is complete attainment of isotopic exchange between gas- or liquid-phase iodine and iodine sorbed by a solid or liquid. If there is no exchange, decontamination factors are isotope-independent unless material recycle occurs within the system. Between these extremes, there can be decontamination factors whose explanation requires experimental determination of the extent of exchange. The model applies to other radioactive isotopes of iodine as well as to other elements with short- and long-lived (or stable) isotopes. (auth)

  9. Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues

    Science.gov (United States)

    Chopra, Rahul; Richter, Frank M.; Bruce Watson, E.; Scullard, Christian R.

    2012-07-01

    Laboratory experiments are used to document isotopic fractionation of magnesium by chemical diffusion in a silicate melt and the results compared to the magnesium isotopic composition across contacts between igneous rocks of different composition in natural settings. The natural samples are from transects from felsic to mafic rocks at Vinal Cove in the Vinalhaven Intrusive Complex, Maine and from the Aztec Wash pluton in Nevada. Two laboratory diffusion couples made by juxtaposing melts made from powders of the felsic and mafic compositions sampled at Vinal Cove were annealed at about 1500 °C for 22.5 and 10 h, respectively. The transport of magnesium in the diffusion couples resulted in easily measured magnesium isotopic fractionations at the interface (δ26Mg∼1.5‰). These isotopic fractionations provide a distinctive isotopic “fingerprint” that we use to determine whether chemical gradients in natural settings where melts of different composition were juxtaposed were due to chemical diffusion. The magnesium isotopic fractionation along one profile at Vinal Cove is exactly what one would expect based on the fractionations found in the laboratory experiments. This is an important result in that it shows that the isotope fractionation by chemical diffusion found in highly controlled laboratory experiments can be found in a natural setting. This correspondence implies that chemical diffusion was the dominant process responsible for the transport of magnesium across this particular contact at Vinal Cove. A second Vinal Cove profile has a very similar gradient in magnesium concentration but with significantly less magnesium isotopic fractionation than expected. This suggests that mass transport at this location was only partly by diffusion and that some other mass transport mechanism such as mechanical mixing must have also played a role. The magnesium isotopic composition of samples from Aztec Wash shows no resolvable isotopic fractionation across the contact

  10. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    Science.gov (United States)

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  11. Preparation of [3H]sulfobromophthalein and related with it problems of tritium label introduction by the method of solid-phase isotopic exchange

    International Nuclear Information System (INIS)

    Sulfobromophthalein labelled with tritium with molar radioactivity 0.5-0.6 pBq/mol is prepared. Different aspects of the process of label introduction into organic compounds with the use of solid-phase catalytic isotopic exchange are considered. A row of arguments are represented for that the isotopic exchange degree depends predominantly on efficiency of tritium spillover in the volume of organic substance applied on catalyst. The fact that isotopic exchange at temperatures up to 180-200 Deg C is realized in solid-phase exchange manly by reaction with tritium cations is the most proved currently

  12. Isotope exchange between natural and anthropogenic Pb in the coastal waters of Singapore: exchange experiment, Kd model, and implications for the interpretation of coastal 210Pb data

    Science.gov (United States)

    Boyle, E. A.; Chen, M.; Zurbrick, C.; Carrasco, G. G.

    2015-12-01

    Observations from annually-banded corals and seawater samples show that marine lead (Pb) in the coastal waters of Singapore has an isotopic composition that does not match that of the anthropogenic aerosols in this region, unlike what is seen in most parts of the open ocean. The 206Pb/207Pb composition of Singaporean marine Pb is 1.18-1.20 whereas the local aerosols are 1.14-1.16. In order to explore this discrepancy further, we collected a large volume water from the Johor River estuary (flowing from Malaysia to the northern border of Singapore), added a distinct isotope spike (NBS981, 206Pb/207Pb =1.093) to an unfiltered sample, and followed the dissolved isotope composition of the mixture during the following two months. The initial dissolved Pb concentration was 18.3 pmol/kg with 206Pb/207Pb of 1.200. "Total dissolvable" Pb released after acidification of the in the unfiltered sample was 373 pmol/kg with 206Pb/207Pb of 1.199, indicating that there is a large particulate Pb reservoir with an isotopic composition comparable to regional crustal natural Pb. The isotope spike should have brought the dissolved 206Pb/207Pb to 1.162, but less than a day after isotope spiking, the dissolved Pb had risen to 1.181 and continued a slow increase to 1.197 over the next two months. This experiment demonstrates that Johor estuary particulate matter contains a large reservoir of exchangeable Pb that will modify the isotopic composition of deposited aeolian aerosol anthropogenic Pb. We have modeled the evolution of Pb and Pb isotopes in this experiment with a single Kd -type model that assumes that there are two or three different Pb reservoirs with different exchange time constants. This observation has implications for isotope equilibrium between high Pb/210Pb continental particles and low Pb/210Pb ocean waters - what is merely isotope equilibration may appear to be 210Pb scavenging.

  13. Electropholic Transition Metal Complexes: Catalysis of Isotope Exchange. April 1, 1992 - December 3, 1996. Final Report

    International Nuclear Information System (INIS)

    The central aim of this project is to exploit transition metal dihydrogen complexes to develop catalysts for isotope exchange reactions between hydrogen and substrates such as water. The authors have partially met this goal by the synthesis of novel cationic rhenium complexes of the form [Re(CO)3(PR3)2(H2)]+. These complexes bind hydrogen somehwat more strongly than the neutral tungsten analogs but also activate the bound H2 to heterolytic cleavage. Thus rapid proton (deuteron) exchange between hydrogen and water can be achieved. An example of this reaction is the rapid formation of bound HD from the complex [Re(CO)3(PR3)2(H2)]+ and deuterium gas. Rapid incorporation of deuterium from D2O has also been observed. In these systems, the competitive binding of water to the metal center is a drawback. The affinity of the Re center for water depends upon the nature of the phosphine ligands, with the presumably more electrophilic PPh3 complex binding water strongly and irreversibly, while the PCy3 complex binds water reversibly. These results have been published in J.Am.Chem.Soc 1994, 116, 4515 and J.Am.Chem.Soc 1997, 119, 4172

  14. Measurement of Ecosystem-Atmosphere Exchange of Isotopic CO2 Using Fourier Transform Infrared (FTIR) Spectroscopy

    Science.gov (United States)

    Cambaliza, M. O.; Mount, G.; Lamb, B.; Westberg, H.; Gibson, R.

    2005-12-01

    Analysis of the isotopic content of atmospheric carbon dioxide provides a wealth of information about the complex interaction between the biosphere and the atmosphere. Traditionally, the isotopic content of atmospheric CO2 has been determined by taking grab samples from field sites followed by laboratory mass spectrometry analysis. This procedure severely limits the duration and frequency of measurements. In this work, we investigate the performance of a measurement method that is based on Fourier Transform Infrared (FTIR) spectroscopy. The FTIR separately measures the concentrations of the 12CO2 and 13CO2 isotopomers of carbon dioxide at approximately one minute intervals with very high signal-to-noise ratio using molecular absorption in a 1-meter cell in the 2100 to 2600 cm-1 region of the isotopic vibration-rotation bands. δ13C values are determined with a precision of approximately 0.7‰ every minute, with higher precision obtained by averaging the short integrations. The FTIR system also measures CO2 flux using the disjunct eddy covariance technique, so the net ecosystem exchange (NEE) and isoflux can also be measured, potentially allowing for the partitioning of the NEE into its photosynthetic and respiratory components. First scientific results from this new instrument are presented from two field campaigns conducted in summer 2005 in a poplar forest near Boardman, Oregon. A 25-m tower was used with air inlets at 0.3, 4.1, 7.5, 10.8, 14.0, and 20.6 meters above the ground. These were switched sequentially into the instrument to achieve height resolution in the canopy, or were kept at constant height. Canopy height was 13 meters. Carbon dioxide concentrations are measured to a precision of about 0.7 ppmv from a one-minute integration with higher precisions obtained from time averaging. CO2 isotopic concentrations were measured with a precision of about 2 ppmv/minute. In this work, we present results of temporal and vertical variations of CO2 concentrations

  15. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  16. Isotopic and chemical composition of submarine geothermal gases from the Bay of Plenty, New Zealand

    International Nuclear Information System (INIS)

    Gas samples collected from the ocean floor near Whale Island, Bay of Plenty, New Zealand, are composed of carbon dioxide, methane, hydrogen, and air. The methane has an isotopic composition of delta13C(PDB) = -280/00 and deltaD(SMOW) = -1250/00. The isotopic and chemical composition show that the gases are of geothermal origin and similar to gas evolved from Whale Island hot springs

  17. Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium

    Science.gov (United States)

    Bullen, T.; White, A.; Blum, A.; Harden, J.; Schulz, M.

    1997-01-01

    Strontium isotopes to identify sources of base cations in catchment waters and biomass, both preferential leaching of Sr from minerals during incipient soil development and changing Sr exchange efficiency must be considered along with chemical contributions due to mineral dissolution. Copyright ?? 1997 Elsevier Science Ltd.

  18. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    Science.gov (United States)

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  19. Topology in isotopic multispace and origin of mantle chemical heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Allegre, C.J.; Hamelin, B.; Provost, A.; Dupre, B.

    1987-02-01

    In this paper we present a simple technique for multidimensional treatment of isotopic data, which allows a global and rigorous correlation between the various radiogenic tracers. This technique is based on the determination of eigenvectors of the data matrix, allowing a geometric description of the inertia ellipsoid corresponding to the cluster of experimental data points. The relationships between the various sets of samples can be analyzed using the projections on the main elongation planes. When processing the Pb-Sr-Nd data for the oceanic mantle (OIB+MORB) with this technique we find that at least four different end-members are needed to define the 'mantle array' which thus cannot be a plane surface. Samples from island arcs (IAB) show the contribution of a component clearly out of the oceanic domain and very similar to terrigenous sediments. Continental tholeiites (CFB) also show some sort of contamination (but distinct from that of IAB) by the continental crust. They also show a domain overlapping with that of the oceanic islands corresponding to the compositions of the 'Dupal anomaly'. Multispace analysis also permits a rigorous comparison of relationships between the various isotopic tracers. In particular, we demonstrate that a U-Pb fractionation independent from the correlated Sr-Nd, Th-U and Th-Sr ones does exist. Consequently, a three-dimensional analysis performed only with lead isotopes yields by itself the main information that can be inferred from the five Pb-Sr-Nd dimensions. Helium also yields independent information decoupled with respect to the other tracers, adding one fifth end-member (Loihi, Hawaii islands) to the OIB+MORB array.

  20. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me......Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation...

  1. Assessing chromate availability in tropical ultramafic soils using isotopic exchange kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, Jeremie; Quantin, Cecile [Univ. Paris Sud CNRS, Orsay (France); Echevarria, Guillaume [ENSAIA-INPL-INRA, Vandoeuvre-les-Nancy (France); Becquer, Thierry [IRD - Univ. Paris VI and XII, Montpellier (France)

    2009-10-15

    Background, aim, and scope The presence of labile chromate in the soils is an environmental problem because of its high toxicity. The isotopic exchange kinetics (IEK) methods have been shown to be a useful tool to measure the phytoavailability of major (P, K) and trace elements (Cd, Zn, Ni, Pb) in soils. This study focused on the potential of applying IEK for chromate to characterize its availability in two tropical ultramafic Ferralsols. Materials and methods Two Ferralsols (NIQ II and NIQ III) of the ultramafic complex of Niquelandia (Goias, Brazil), known to have a high content of extractable chromate, were investigated. We adapted IEK for chromate in order to distinguish different pools of available chromate according to their rate of exchange kinetic. Results The extractable Cr(III) ranged from 9 to 132 mg kg{sup -1}, whereas extractable Cr(VI) ranged from 64 to 1,014 mg kg{sup -1}. The intensity factor, i.e., concentration of soluble Cr, ranged from 78 to 231 {mu}g L{sup -1} in profile NIQ II and from 6 to 141 {mu}g L{sup -1} in profile NIQ III. The highest concentrations were found in both topsoils and in the NIQ II-5 horizon. Most of the Cr(VI) was labile in short (E{sub 0-1} {sub min}) or medium-term (E{sub 1} {sub min-24} {sub h}) in both soils. The E{sub 0-1} {sub min} and E{sub 1} {sub min-24} {sub h} represented 39 to 83% of labile Cr (VI) in NIQ II and 69 to 80% in NIQ III. A high quantity of Cr(VI) was thus extremely labile and highly available, particularly in NIQ II. Moreover, both soils had a high buffering capacity of soluble Cr(VI) by labile pools. (orig.)

  2. Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes

    Science.gov (United States)

    Pogge von Strandmann, Philip A. E.; Porcelli, Don; James, Rachael H.; van Calsteren, Peter; Schaefer, Bruce; Cartwright, Ian; Reynolds, Ben C.; Burton, Kevin W.

    2014-11-01

    Variations in lithium and silicon isotope ratios in groundwaters of the Great Artesian Basin in Australia, and the causes of these variations, have been explored. The chemistries of Li and Si in groundwater are influenced by the dissolution of primary phases, the formation of secondary minerals, and the reaction of solid phases with dissolved constituents, while isotopic variations are generated by uptake into clays, which preferentially incorporate the light isotopes. The lithium isotopic composition (expressed as δ 7Li) of the groundwaters ranges from +9 to +16‰ , and clearly reflects changes in aquifer conditions. Reaction-transport modelling indicates that changes in Li concentrations are principally controlled by the ratio of the weathering rate of primary minerals to the precipitation rate of secondary minerals, whereas δ 7Li is affected by the extent of isotope fractionation during secondary mineral formation (which is dependent on mineralogy). The patterns of groundwater Si concentrations and δ 30Si values versus flow distance suggest that Si is at steady state in the aquifer. The δ 30Si value of most of the groundwater samples is close to -1‰ , which is significantly lower than the δ 30Si value of the reservoir rocks (∼0‰ ). Since precipitation of clays preferentially removes the light Si isotopes from solution, the most plausible explanation for these low groundwater δ 30Si values is addition of Si by dissolution of isotopically light secondary minerals. These data, together with model calculations, show that Li isotopes are extremely sensitive to changes in the chemical and physical conditions in the aquifer, whereas Si is not. Importantly, the model suggests that even in large aquifers with long fluid residence times, where steady-state would be expected to be reached, the concentrations and isotopic fractionation of trace elements are not controlled by Li adsorption. The model developed here provides a basis for using Li isotopes measured

  3. Method of making hydrophobic industrial catalyst for water-hydrogen isotope exchange

    International Nuclear Information System (INIS)

    The authors have performed the research centering around the development of platinum catalyst carried by styrene divinylbenzene copolymer as the hydrophobic catalyst for water-hydrogen isotope exchange for the purpose of heavy water concentration and especially tritium removal. In this paper, the method of industrial production of this catalyst, the results of catalytic performance test by trickle bed and the problems are reported. It was found that only chloroplatinic acid was suitable as the practical raw material of the catalyst. The ethanol solution of chloroplatinic acid is practically most desirable. Generally, the catalytic activity increases by the aging of SDB in pure hydrogen flow. For the impregnation of chloroplatinic acid into SDB, the column method is suitable. The impregnated carriers are dried with an air drier. Then the carriers carrying chloroplatinic acid are reduced in a reaction tube with highly pure hydrogen. The catalytic performance test was performed in a packed tower, and the effects of the shape of catalysts, flow mode, oxygen, scale-up, pressure and impurities are reported. (Kako, I.)

  4. Characterization of the available soil Ni by the isotopic exchange kinetics; Mesure de la fraction assimilable des elements en traces du sol par la methode des cinetiques d`echange isotopique: cas du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, G.; Klein, S.; Morel, J.L. [Laboratoire INRA, Ecole nationale superieure d`agronomie et des industries alimentaires, 54 - Vandoeuvre-les-Nancy (France); Fardeau, J.C. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences du Vivant

    1997-12-31

    The aim of this study was to demonstrate that soil Ni available for plants can be characterized by the isotopic exchange kinetics method. Therefore, isotopic exchange kinetics were performed in soil-solution systems to quantify the pool of soil isotopically exchangeable Ni (E value). Another isotopic exchange method in soil-plant was designed to measure the pool of soil available Ni (L value). Results clearly demonstrated that the pool of isotopically exchangeable soil Ni for a given time is the pool of available soil Ni. (author)

  5. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  6. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    International Nuclear Information System (INIS)

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  7. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  8. Partitioning net ecosystem exchange of CO2: A comparison of a Bayesian/isotope approach to environmental regression methods

    Science.gov (United States)

    Zobitz, J. M.; Burns, S. P.; OgéE, J.; Reichstein, M.; Bowling, D. R.

    2007-09-01

    Separation of the net ecosystem exchange of CO2 (F) into its component fluxes of net photosynthesis (FA) and nonfoliar respiration (FR) is important in understanding the physical and environmental controls on these fluxes, and how these fluxes may respond to environmental change. In this paper, we evaluate a partitioning method based on a combination of stable isotopes of CO2 and Bayesian optimization in the context of partitioning methods based on regressions with environmental variables. We combined high-resolution measurements of stable carbon isotopes of CO2, ecosystem fluxes, and meteorological variables with a Bayesian parameter optimization approach to estimate FA and FR in a subalpine forest in Colorado, United States, over the course of 104 days during summer 2003. Results were generally in agreement with the independent environmental regression methods of Reichstein et al. (2005a) and Yi et al. (2004). Half-hourly posterior parameter estimates of FA and FR derived from the Bayesian/isotopic method showed a strong diurnal pattern in both, consistent with established gross photosynthesis (GEE) and total ecosystem respiration (TER) relationships. Isotope-derived FA was functionally dependent on light, but FR exhibited the expected temperature dependence only when the prior estimates for FR were temperature-based. Examination of the posterior correlation matrix revealed that the available data were insufficient to independently resolve all the Bayesian-estimated parameters in our model. This could be due to a small isotopic disequilibrium (?) between FA and FR, poor characterization of whole-canopy photosynthetic discrimination or the isotopic flux (isoflux, analogous to net ecosystem exchange of 13CO2). The positive sign of ? indicates that FA was more enriched in 13C than FR. Possible reasons for this are discussed in the context of recent literature.

  9. Thermal, chemical and isotopic homogenization of syn-extensional I-type plutons and mafic microgranular enclaves

    Science.gov (United States)

    Tatar Erkül, Sibel; Erkül, Fuat; Uysal, İbrahim

    2015-04-01

    Magma mixing and mingling processes are common phenomenon in the evolution of granitoid magmas. This study deals with examination of mineral chemical, geochemical and isotopic characteristics of enclaves and enclosing syn-extensional granite bodies in western Turkey to make an attempt to solve problems regarding their origin. Mafic microgranular enclaves have granodiorite, quartz monzonite, monzonite and monzodiorite compositions, are subalkaline/calc-alkaline and high-K in character and display typical mixing/mingling textures. Mafic enclaves have partially overlapping geochemical characteristics onto their host rocks in terms of mobile elements and their isotopes while distinct immobile element patterns occur within host rocks and enclaves. Contrasting geochemistry of enclaves is mainly defined by their low SiO2 and high MgO, Mg# and high Fe2O3 contents. Chondrite-normalized spidergrams of enclaves also reveal two contrasting patterns. One is relatively enriched in rare earth element content and the other is slightly enriched and displays relatively flat pattern. 87Sr/86Sr and 143Nd/144Nd contents of enclaves imply considerable amount of crustal input. Crustally derived felsic magma coeval with mafic magma have been chemically, thermally and mechanically exchanged with each other and resulting homogenization led to compositional and isotopic equilibration of mafic and felsic magmas. Fractional crystallization, mixing and the following crustal contamination were responsible for the final composition of syn-extensional granitoids. Such processes appear to have been widely occurred in continental extensional regime that caused melting and mixing of crustal and mantle sources at MOHO depth.

  10. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H2 and D2) at pressure up to 200 MPa using Raman spectroscopy

    International Nuclear Information System (INIS)

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency

  11. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    Science.gov (United States)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary

  12. Monitoring of chemical and isotopic composition of the Euphrates river in Syria

    International Nuclear Information System (INIS)

    The ratios of stable isotopes (18O and 2H), tritium content, together with the chemical composition of major ions of the Euphrates and Balikh (Euphrates tributary) Rivers, and the groundwaters of four wells drilled close to the Euphrates River course, were measured on a monthly basis. The Euphrates River water was monitored at twelve stations along its course in Syria during the period from January 2004 to December 2006, whereas those of the Balikh and groundwaters were only investigated during 2005. Although, the spatial variations of heavy stable isotope concentrations are moderated with respect to other large rivers in the world, the concentrations of these isotopes increase generally downstream the Euphrates River, with a sharp enrichment at Al-Assad Lake. This sharp increase could be explained by the effect of direct evaporation from the river and its tributaries; and the effect of drainage return flows of irrigation waters, isotopically more enriched. Enrichment of stable isotopes in the Euphrates River water was used as a direct indicator of evaporation. Based on an experimental evaporation result of a Euphrates water sample and the integral enrichment of heavy stable isotopes in the Euphrates River system, the amount of water losses by evaporation from Al-Assad Lake was estimated to be about 1.26 to 1.62 billion m''3, according to 18O and deuterium (2H), respectively. This amount represents about 12-16% of the renewable surface water resources in the country. (author)

  13. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  14. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    Science.gov (United States)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  15. Isotopic and geochemical studies of fluid-rock interactions and the chemical evolution of the oceans

    Energy Technology Data Exchange (ETDEWEB)

    Derry, L.A.

    1989-01-01

    The isotopic compositions of Sr and Nd, and the abundances of rare earth elements (REE) are used to study various types of fluid-rock interactions in the Earth's crust. The isotopic compositions of Sr and Nd and REE patterns in marine chemical sediments of Precambrian age are used to estimate the relative importance of continental weathering versus submarine hydrothermal activity in determining the chemical mass balance of the Precambrian oceans. Major and trace element abundances and Sr and Nd isotopes are used to quantify the degree of interaction of a carbonatite fluid-magmatic system with felsic crust, and to constrain the isotopic characteristics of the mantle source region. The isotopic composition of Sr is reported from a well characterized sequence of Upper Proterozoic carbonates from Svalbard and east Greenland. A simple model of carbonate recycling and isotopic mass balance calculations illustrate that sedimentary recycling can have a strong influence on Sr in the oceans. REE patterns from Precambrian banded iron formations (BIFs) are very similar to modern metalliferous sediments, and imply that the overall REE pattern of Precambrian seawater was similar to today. The mantle-like {var epsilon}{sub Nd} values and positive Eu anomalies imply that the source of the REE in the BIFs was submarine hydrothermal activity. The implications of a large hydrothermal flux of reduced Fe on the redox controls of the Precambrian atmosphere are explored, and a testable hypothesis is developed. The mass balance of Eu in the oceans is affected by preferential scavenging at hydrothermal sites. Data from the Cherry Hill, CA mineralizing system imply a complex plumbing system and a long residence time for the water. Isotopic data from the Fen alkaline complex, Norway, define mixing trends between mantle derived magmas or magmatic fluids and old crust.

  16. Contribution to chlorine cycle: a Cl stable isotope approach on Mantle-Ocean exchanges

    Science.gov (United States)

    Bonifacie, M.; Jendrzejewski, N.; Pineau, F.; Agrinier, P.

    2003-04-01

    The stable isotope composition of chlorine (37Cl/35Cl) can be used to trace its geochemical cycle and is a powerfull tool to constrain the origin of high chlorine contents found for some fresh MORB glasses. Despite the fact that chlorine is a volatile element of primary importance, its cycle and isotopic fractionation factors during exchange processes between Earth's reservoirs or phases are poorly known. Furthermore, the scarcity of data for solid samples (rocks or minerals) reflects the analytical difficulty to extract chlorine from silicate structure. The classical methods of pyrohydrolysis followed by isotope-ratio mass spectrometric measurements on CH_3Cl gas have been optimised. Our technique represents the most quantitative and precise method of chlorine extraction for δ37Cl determination on solids published to date. Mean extraction yields are 100 ± 3%, δ37Cl values on duplicate extractions show reproducibility better than 0.2 ppm and the blanks represent less than 5% of the sample size. To characterise chlorine behaviour during the oceanic crust alteration, we have analysed fresh MORB glasses (from SWIR and EPR), altered basalts from leg 504B site (EPR), serpentinized peridotites (from SWIR and MAR) and an altered gabbro from the Hess Deep site (EPR). All samples (n=9) are depleted in 37Cl (δ37Cl from -1.4 to 0 ppm) relative to seawater (δ37Cl =0 ppm); Cl concentrations are between 200 and 2200 ppm. Our results on fresh MORBs: δ37Cl = -1.4 ppm and -0.6 ppm are in the lower range already published (-3 to +11 ppm, e.g. Magenheim et al., 95; Stewart, 2000). However, our δ37Cl range of altered samples: δ37Cl = -1.3 to -0.2 ppm (basalts, serpentinised peridotites and gabbro) is outside the range observed by Magenheim et al., 95 (+0.4 to +7.5 ppm in amphibole-rich rocks and smectite veins) despite the fact that in both study amphibole-rich rocks from the same site (i.e. leg 504B) have been analysed. On this site, our δ37Cl results are very homogeneous

  17. Lithium isotope separation

    International Nuclear Information System (INIS)

    Published methods for 6Li-7Li lithium isotope separation have been reviewed. Future demand for 6Li, whose main use will be as a tritium breeder in blankets surrounding the core of DT fusion power reactors, is likely to exceed 5 Mg/a in the next century. The applicability of the various available methods to such a large scale production rate has been assessed. Research on improving the effectiveness of current lithium isotope separation processes has been carried out worldwide in several major areas during the past decade; these include two-phase chemical exchange systems, ion exchange resin chromatography, highly isotope-selective techniques like laser photoactivation and radiofrequency spectroscopy. Chemical exchange systems appear to offer good potential in the near term for 6Li enrichment

  18. Kinetics of isotopic exchange reaction between hydrogen and water vapor over hydrophobic catalyst in a Co-current bed

    International Nuclear Information System (INIS)

    The kinetics of isotopic exchange reaction between hydrogen and water vapor over Pt- SDB as a hydrophobic catalyst was investigated in a fixed co-current bed. The influence of vari- ous factors on the rate constant of water vapor-hydrogen co-current exchange reaction were studied, including rate equation, order of reaction, temperature dependence of reaction and the species of catalysts. The results show that the overall reaction is first order. The relation of apparent rate constant with temperature accorded with Arrhenius and the apparent rate constant increases with temperature rising. The apparent activation energy of Pt-SDB is lower than Pt-C-PTFE and the rate constant of water vapor-hydrogen co-current exchange reaction increases when the apparent activation energy of the hydrophobic catalyst decreases. (authors)

  19. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz;

    2013-01-01

    ” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...... indicating transmission via the hydrogen bond. In addition, unusual long range effects are seen. Structures, 1H and 13C NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using density functional theory methods......Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static...

  20. Isotopic and chemical techniques in geothermal exploration, development and use. Sampling methods, data handling, interpretation

    International Nuclear Information System (INIS)

    This book is designed as an instructional manual of essential nuclear and complementary methodologies for a multidisciplinary approach to geothermal exploration development and monitoring. It provides comprehensive procedures for carrying out isotope and geochemical investigations of geothermal systems. It focuses on the three stages of geothermal studies of geothermal fluids, i.e. sampling, analysis and data interpretation. Specific chapters of the book provide some background information on the generally adopted strategy and on the behaviour of chemical and isotopic components in the geothermal environment; deal with the nature of surface thermal manifestations and sampling techniques; present analytical data handling and presentation; and concentrate on data interpretation

  1. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Wielandt, Daniel Kim Peel; Schiller, Martin;

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of ...

  2. What are the instrumentation requirements for measuring isotopic composition of net ecosystem exchange of CO2 via eddy covariance methods?

    Science.gov (United States)

    Shorter, J.; Saleska, S.; Herndon, S.; Jimenez-Pizarro, R.; McManus, J. B.; Munger, J. W.; Nelson, D. D.; Zahniser, M.

    2005-12-01

    Better quantification of isotope ratios of atmosphere-ecosystem exchange of CO2 could substantially improve our ability to probe underlying physiological and ecological mechanisms controlling ecosystem carbon exchange, but the ability to make long-term continuous measurements of isotope ratios of exchange fluxes has been limited by measurement difficulties. In particular, direct eddy covariance methods have not yet been used for measuring the isotopic composition of ecosystem fluxes. Here we explore the feasibility of such measurements by: (a) proposing a general criterion for judging whether a sensor's performance is sufficient for making such measurements (the criterion is met when the contribution of sensor error to the flux measurement error is comparable to or less than the contribution of meteorological noise inherently associated with turbulence flux measurements); (b) using data-based numerical simulations to quantify the level of sensor precision and stability required to meet this criterion for making direct eddy covariance measurements of the 13C/12C ratio of CO2 fluxes above a specific ecosystem (a mid-latitude temperate forest in central Massachusetts, USA); and (c) testing whether the performance of a new sensor -- a prototype pulsed quantum cascade laser-based isotope-ratio absorption spectrometer (and plausible improvements thereon) -- is sufficient for meeting the criterion in this ecosystem. We found that the error contribution from a prototype sensor (0.2 per mil, 1 SD of 10-sec integrations) to total isoflux measurement error was comparable to (1.5 to 2X) the irreducible meteorological noise inherently associated with turbulent flux measurements above this ecosystem (daytime measurement error SD of 60 percent of flux versus meteorological noise of 30-40 percent for instantaneous half-hour fluxes). Our analysis also shows that plausible instrument improvements (increase of sensor precision to 0.1 per mil, 1 SD of 10-sec integrations, and

  3. Stable isotope and chemical compositions of European and Australasian ciders as a guide to authenticity.

    Science.gov (United States)

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-01-28

    This paper presents a data set derived from the analysis of bottled and canned ciders that may be used for comparison with suspected counterfeit or substitute products. Isotopic analysis of the solid residues from ciders (predominantly sugar) provided a means to determine the addition of C4 plant sugars. The added sugars were found to comprise cane sugar, high-fructose corn syrup, glucose, or combinations. The majority of ciders from Australia and New Zealand were found to contain significant amounts of added sugar, which provided a limited means to distinguish these ciders from European ciders. The hydrogen and oxygen isotopic compositions of the whole ciders (predominantly water) were shown to be controlled by two factors, the water available to the parent plant and evaporation. Analysis of data derived from both isotopic and chemical analysis of ciders provided a means to discriminate between regions and countries of manufacture.

  4. Stable isotope and chemical compositions of European and Australasian ciders as a guide to authenticity.

    Science.gov (United States)

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-01-28

    This paper presents a data set derived from the analysis of bottled and canned ciders that may be used for comparison with suspected counterfeit or substitute products. Isotopic analysis of the solid residues from ciders (predominantly sugar) provided a means to determine the addition of C4 plant sugars. The added sugars were found to comprise cane sugar, high-fructose corn syrup, glucose, or combinations. The majority of ciders from Australia and New Zealand were found to contain significant amounts of added sugar, which provided a limited means to distinguish these ciders from European ciders. The hydrogen and oxygen isotopic compositions of the whole ciders (predominantly water) were shown to be controlled by two factors, the water available to the parent plant and evaporation. Analysis of data derived from both isotopic and chemical analysis of ciders provided a means to discriminate between regions and countries of manufacture. PMID:25536876

  5. Studying the Permian cross-section (Volga region) using chemical and isotopic investigations

    Science.gov (United States)

    Gareev, Bulat; Georgii, Batalin; Nurgaliev, Danis; Nurgalieva, Nuriya

    2016-04-01

    This paper presents a study of international important site: the cross-section of Permian system's Urzhumian Stage in the ravine "Pechischy". Outcrop is located on the right bank of the Volga River (about 10 km West of Kazan). It has local, regional and planetary correlation features and also footprints of different geographical scale events. The main objective in the research is the deep study of sediments using chemical and isotopic investigations. XRF spectrometer was used for chemical investigations of samples. Chemistry of carbonates and clastic rocks includes the analysis of chemical elements, compounds, petrochemical (lithogeochemical) modules for the interpretation of the genesis of lithotypes. For the review of the geochemistry of stable isotopes of carbon (oxygen) we used IRMS. The main objective is the nature of the isotope fractionation issues, to addressing the issues of stratigraphy and paleogeography. The measurements have shown the variability of chemical parameters in cross-section. It gives us opportunity to see small changes in sedimentation and recognize the factors that influence to the process. The work was carried out according to the Russian Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research.

  6. A Cu(II)2 Paramagnetic Chemical Exchange Saturation Transfer Contrast Agent Enabled by Magnetic Exchange Coupling.

    Science.gov (United States)

    Du, Kang; Harris, T David

    2016-06-29

    The ability of magnetic exchange coupling to enable observation of paramagnetic chemical exchange saturation transfer (PARACEST) in transition metal ions with long electronic relaxation times (τs) is demonstrated. Metalation of the dinucleating, tetra(carboxamide) ligand HL with Cu(2+) in the presence of pyrophosphate (P2O7)(4-) affords the complex [LCu(II)2(P2O7)](-). Solution-phase variable-temperature magnetic susceptibility data reveal weak ferromagnetic superexchange coupling between the two S = 1/2 Cu(II) centers, with a coupling constant of J = +2.69(5) cm(-1), to give an S = 1 ground state. This coupling results in a sharpened NMR line width relative to a GaCu analogue, indicative of a shortening of τs. Presaturation of the amide protons in the Cu2 complex at 37 °C leads to a 14% intensity decrease in the bulk water (1)H NMR signal through the CEST effect. Conversely, no CEST effect is observed in the GaCu complex. These results provide the first example of a Cu-based PARACEST magnetic resonance contrast agent and demonstrate the potential to expand the metal ion toolbox for PARACEST agents through introduction of magnetic exchange coupling. PMID:27276533

  7. Characterizing moisture exchange between the Hawaiian convective boundary layer and free troposphere using stable isotopes in water

    Science.gov (United States)

    Bailey, Adriana; Toohey, Darin; Noone, David

    2013-08-01

    subtropical convective boundary layer (CBL) plays a critical role in climate by regulating the vertical exchange of moisture, energy, trace gases, and pollutants between the ocean surface and free troposphere. Yet bulk features of this exchange are poorly constrained in climate models. To improve our understanding of moisture transport between the boundary layer and free troposphere, paired measurements of water vapor mixing ratio and the stable isotope ratio 18O/16O are used to evaluate moist convective mixing and entrainment processes near the Big Island of Hawaii. Profile data from the island's east side are consistent with moist adiabatic processes below the trade wind temperature inversion. In contrast, profiles on the west side follow moist adiabatic lapse rates within discrete stable layers, suggesting moist convection sets the humidity structure of even the unsaturated regions around the island. Above the trade wind inversion, the transition from well-mixed boundary layer to free troposphere is characterized by a simple mixing line analysis, so long as the thermodynamic properties of the air mass at CBL top are known. Deviations from the mixing line identify thermodynamic boundaries in the atmospheric profile, which can persist from one day to the next. These findings indicate residual layers form during strong mixing events and regulate vertical moisture transport for multiple days at a time. Basic assumptions that synoptic-scale transport controls isotope ratios at CBL top are therefore not sufficient for describing moisture exchange between the boundary layer and free troposphere in the subtropics.

  8. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    CERN Document Server

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  9. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: indicators of temperature distribution and fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Oxygen isotopic profiles of pore-filling calcites in sandstones appear to be a reliable measure of the recent equilibrium temperature distribution in the field before production began. From these data, a detailed, three-dimensional map has been developed, showing the equilibrium temperatures in the geothermal field. A mass balance calculation has been performed using measured /sup 18/O enrichment of the geothermal brine. This calculation implies an overall water; rock volume ratio of approximately 3:1 during the history of the Cerro Prieto system. Paleotemperatures different from the present thermal regime have been studied by examining coexisting mineral systems which exchanged their oxygen with the geothermal brines at different rates.

  10. Stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants

    Institute of Scientific and Technical Information of China (English)

    Zhai Hong-Sheng; Yin Shu-Hui

    2012-01-01

    The quasi-classical trajectory (QCT) method is used to calculate the stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections (PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j' is not only aligned,but also oriented along the direction perpendicular to the scattering plane.The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.

  11. A study on the deactivation and stability of hydrophobic catalyst for hydrogen isotope exchange

    International Nuclear Information System (INIS)

    The hydrophobic catalyst has been prepared by deposition of platinum on porous styrene divinylbenzene copolymers(Pt/SDBC) and at the same time a separated type catalytic reactor has been developed for the Wolsong tritium removal facility(WTRF). Several tests carried out to obtain the experimental performance data of the Pt/SDBC with a recycle reactor system. The long-term stability was also measured with the Pt/SDBC catalyst immersed in water for a long time. The long-term deactivations of the Pt/SDBC catalyst were evaluated quantitatively by mathematical models. The simple mathematical models were presented to evaluate the uniform poisoning and shell progressive poisoning to be occurred simultaneously during the hydrogen isotope exchange between hydrogen gas and liquid water in the Liquid Phase Catalytic Exchange(LPCE) column. The uniform poisoning was well characterized by a time on stream theory and then the deactivation parameters were determined from the experimental performance data. The impurity poisoning was derived by a shell progressive model with two-layer mass transfer. The water vapor condensation was a main cause of the reversible uniform poisoning for the Pt/SDBC catalyst. The values of the decay rate constant (Kd) and order of the decay reaction(m) were of 2 and 4, respectively, based on the experimental data. It indicated that the decay might be attributable to pore mouth poisoning. From the long-term stability of the catalyst immersed in water, there was no intrinsic decay of catalyst activity due to water logging to the catalyst. The activity decreased by only 7% over 18 months, which was equivalent to a catalyst half-life longer than 15 years. On the basis of the above deactivation parameters, the values for kc/kco with Thiele modulus=20 after 3 years and 10 years of operation were expected about 19% and 15% of the initial activity, respectively, while the values for kc/kco with Thiele modulus=100 were of about 22% and 18%, respectively. However

  12. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    International Nuclear Information System (INIS)

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H2/D2O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h-1 and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  13. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Glugla, M.; Shu, W.; Willms, S. [ITER Organization, Saint-Paul-lez-Durance (France)

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  14. Application of isotopic and chemical methods to the study of hydrological problems in Brazilian northeastern areas

    International Nuclear Information System (INIS)

    Hydrological studies are reported with samples of ground water from several region of northern - and northeastern Brazil: Marajo Island (State of Para), State of Piaui, Ceara and Rio Grande do Norte. A description is given of the utilization of chemical and isotopic methods, in particular measurements of tritium concentration and 14C- counting techniques for the determination of the origin and residence time of water. (I.C.R.)

  15. Where Did the Ureilite Parent Body Accrete? Constraints from Chemical and Isotopic Compositions

    Science.gov (United States)

    Goodrich, Cyrena; O'Brien, David P.

    2014-11-01

    Almahata Sitta and other polymict ureilites contain a remarkable diversity of materials, including EH, EL, OC, R- and CB chondrites, in addition to the dominant ureilitic material [1]. These materials represent at least 6 different parent asteroids and a wide range of chemical and isotopic environments in the early Solar System. To understand the origin of this diversity it is critical to know where (heliocentric distance) the ureilite parent body (UPB) accreted. The chemical and isotopic compositions of ureilite precursors (inferred from the compositions of ureilites) can provide clues. Lithophile element ratios such as Si/Mg and Mn/Mg [2,3], and deficits in neutron-rich Cr, Ti and Ni isotopes [3], indicate that ureilite precursors were similar to ordinary or enstatite chondrites (OC or EC), not carbonaceous chondrites (CC). In contrast, high carbon contents, carbon isotopes and oxygen isotopes suggest a genetic link to CC. This poses a conundrum considering the variation of asteroid types, which suggests that EC and OC dominate the inner asteroid belt and CC the outer belt. However, the CC-like oxygen isotopes of ureilites strongly suggest the effects of parent-body aqueous alteration [4,5], which clearly implies that the UPB accreted beyond the ice line. Lithophile element properties of ureilites compared with chondrites may not be a reliable indicator of location of accretion, because lithophile elements in chondrites are sited mainly in chondrules and the UPB accreted before most chondrules formed [6]. Ureilite Cr, Ti and Ni isotopes may indicate late introduction of the neutron rich isotopes of these elements to the CC-formation region [7]. We conclude that the UPB accreted in the outer belt, like CC. The UPB or one of its offspring must have migrated to the inner belt to acquire OC, EC and R-chondrite materials.[1] Horstmann M. & Bischoff A. [2014] Chemie der Erde 74, 149.[2] Goodrich C. [1999] MAPS 34, 109.[3] Warren P. [2011] GCA 46, 53.[4] Young E. [1999

  16. Ruthenium(0) nanoparticle-catalyzed isotope exchange between 10B and 11B nuclei in decaborane(14).

    Science.gov (United States)

    Yinghuai, Zhu; Widjaja, Effendi; Sia, Shirley Lo Pei; Zhan, Wang; Carpenter, Keith; Maguire, John A; Hosmane, Narayan S; Hawthorne, M Frederick

    2007-05-23

    Well dispersed ruthenium(0) nanoparticles, stabilized in the ionic liquid agent, trihexyltetradecylphosphonium dodecylbenzenesulfonate, have been successfully prepared via a reduction reaction of the precursor [CpRuCp*RuCp*]PF6 (Cp* = C5Me5). The ruthenium(0) nanoparticles were shown to catalyze the isotope exchange reaction between 10B enriched diborane and natural abundant B10H14 to produce highly 10B enriched (approximately 90%) decaborane(14) products. The ruthenium(0) nanoparticles were characterized by TEM, XRD, and XPS. The 10B enriched decaborane(14) has been analyzed by Raman spectroscopy, NMR, and high-resolution MS. PMID:17472379

  17. Preparation of Pt-SDB hydrophobic catalyst used in H2-H2O isotope exchange reaction

    International Nuclear Information System (INIS)

    The preparation of Pt-SDB hydrophobic catalyst is studied, in which platinum as active metal and polystyrene divinylbenzene (SDB) as the carrier. Hydrogen isotope exchange reaction is carried out with Pt-SDB catalyst in counter-current in the trickle bed. The effect of preparing condition on the activity of catalyst is discussed. The results show that the excellent catalyst is obtained by reduced at the temperature of 200 degree C over 8 hours. Hydrophobic catalyst is high activity and stability as the amount of platinum content is 3%, the platinum can reach the economic use with the content of (1-2)%

  18. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  19. The effect of natural weathering on the chemical and isotopic compositions of biotites

    Science.gov (United States)

    Clauer, Norbert; O'Neil, J.R.; Bonnot-Courtois, C.

    1982-01-01

    The effect of progressive natural weathering on the isotopic (Rb-Sr, K-Ar, ??D, ??18O) and chemical (REE, H2O+) compositions of biotite has been studied on a suite of migmatitic biotites from the Chad Republic. During the early stages of weathering the Rb-Sr system is strongly affected, the hydrogen and oxygen isotope compositions change markedly, the minerals are depleted in light REE, the water content increases by a factor of two, and the K-Ar system is relatively little disturbed. During intensive weathering the K-Ar system is more strongly disturbed than the Rb-Sr system. Most of the isotopic and chemical modifications take place under nonequilibrium conditions and occur before newly formed kaolinite and/or smectite can be detected. These observations suggest that 1. (a) "protominerals" may form within the biotite structure during the initial period of weathering, and 2. (b) only when chemical equilibrium is approached in the weathering profile are new minerals able to form. ?? 1982.

  20. Study of Pt/SDB hydrophobic catalyst for T-H isotopic exchange between water and hydrogen

    International Nuclear Information System (INIS)

    A methods of preparing platinum/polystyrene divinyl benzene (Pt/SDB) hydrophobic catalyst for hydrogen isotopic exchange between water and hydrogen is presented. Specific surface of the support is more than 400 m2/g. Two approaches of reduction are used for platimum dispersion and comparison is made with each other. Platinum particles obtained by reduction of hydrazine hydrate are smaller. Particles obtained by reduction of hydrogen are larger and their shapes of boundary are unclear. Dispersion of platinum on the support decreases with increasing the amount of platinum. When the amount of platinum is increased to 4 percent, granules of platinum exist as colony. The T-H catalytic exchange at 30 deg C, 50 deg C and 70 deg C has been measured. The activity at 50 deg C is the best. Optimum amount of platinum on the SDB is between 0.5% to 1.5%

  1. Exchange reaction of hydrogen isotopes on proton conductor ceramic of hydrogen pump for blanket tritium recovery system

    International Nuclear Information System (INIS)

    Electrochemical hydrogen pump using ceramic proton conductor has been investigated to discuss its application for the blanket tritium recovery system of the nuclear fusion reactor. As the series of those work, the transportation experiments of H2-D2 mixture via ceramic proton conductor membrane have been carried out. Then, the phenomenon that was caused by the exchange reaction between the deuterium in the ceramic and the hydrogen in the gas phase has been observed. So, the ceramic proton conductor which doped deuterium was exposed to hydrogen under the control of zero current, and the effluent gas was analyzed. It is considered that the hydrogen in the gas phase is taken as proton to the ceramic by isotope exchange reaction, and penetrates to the ceramic by diffusion with replacement of deuteron. (author)

  2. Anglo-Saxon animal husbandry techniques revealed though isotope and chemical variations in cattle teeth

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.A. [NERC Isotope Geosciences Laboratory, BGS, Keyworth, Nottingham NG12 5GG (United Kingdom)], E-mail: je@nigl.nerc.ac.uk; Tatham, S. [School of Archaeology and Ancient History, University of Leicester, Leicester LE1 7RH (United Kingdom); Chenery, S.R. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Chenery, C.A. [NERC Isotope Geosciences Laboratory, BGS, Keyworth, Nottingham NG12 5GG (United Kingdom)

    2007-09-15

    The Sr concentration and isotope composition of tooth enamel from domesticated animals from two neighbouring Anglo-Saxon settlements, at Empingham (6-7th century) and Ketton (10-12th century) in Rutland, central England, are compared both with each other, and with associated human populations. Data from the Empingham II site form discrete fields in Sr concentration and isotope composition space for cattle, pig and sheep with a partial overlap of the human and pig fields. By contrast there is significant overlap in all the animal and human data fields from the Ketton site. The differences in data distribution between the two sites are attributed to animal husbandry techniques, as the surface geology of the two areas is very similar, implying geological factors are an unlikely cause of the difference. It is suggested that the grazing and feeding patterns of animals at the Empingham II site were controlled and restricted, whereas at the Ketton site the animals grazed and foraged freely over a common area. Strontium isotope variation within cattle molars from the two settlements show marked differences that reflect the nature of their feeding and rearing. The enamel from a cattle molar from the Empingham II site has a well-defined, systematic variation of Sr isotope composition with Sr concentration, whereas no such patterns exist in a comparable cattle molar from Ketton. Chemical and O isotope variations in the cattle tooth from Empingham II show sympathetic variation of Sr and Ba concentrations with Sr isotope composition from cusp to cervix. The cusp has higher Sr and Ba concentrations log (Sr/Ca) ratio of -3.1 and {sup 87}Sr/{sup 86}Sr ratio of 0.71151 where as the cervical region of the enamel has log (Sr/Ca) = -3.3 and {sup 87}Sr/{sup 86}Sr = 0.71061.

  3. Treatment and disposal of steam generator and heat exchanger chemical cleaning wastes

    International Nuclear Information System (INIS)

    Wet air oxidation was effective in reducing the organic loading of Ontario Hydro's EDTA-based steam generator cleaning wastes and the organic acid formulation used for heat exchanger chemical cleaning. Destruction of the complexing agents resulted in direct precipitation of iron from the waste steam generator magnetite solvent and from the heat exchanger cleaning waste. The oxidized liquors contain lower molecular weight organic acids, ammonia and amines, suitable for secondary biological treatment. The oxidized copper waste requires further treatment to reduce dissolved copper levels prior to biological digestion. A preliminary evaluation of UV and ozone degradation of these wastes showed less promise than wet air oxidation. 24 refs., 1 fig., 4 tabs

  4. Can Galactic chemical evolution explain the oxygen isotopic variations in the Solar System?

    CERN Document Server

    Lugaro, Maria; Ireland, Trevor R; Maddison, Sarah T

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16O-rich CO and 16O-poor H2O, where the H2O subsequently combined with interstellar dust to form relatively 16O-poor solids within the Solar Nebula. Another model for creating the different reservoirs of 16O-rich gas and 16O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the Solar System dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the Solar System. The GCE scenario is in contradiction with observations of the 18O/17O ratios in nearby molecular clouds and young stellar objects. ...

  5. Assessing the authenticity of commercial deep-sea drinking water by chemical and isotopic approaches.

    Science.gov (United States)

    Peng, Tsung-Ren; Liang, Wen-Jui; Liu, Tsang-Sen; Lin, Yu-Wen; Zhan, Wen-Jun

    2015-01-01

    This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0 ‰ for both δ(2)H and δ(18)O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ(2)H and δ(18)O values of around -51 ‰ and -8 ‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.

  6. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    Science.gov (United States)

    Marzouk, E. R.; Chenery, S. R.; Young, S. D.

    2013-12-01

    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.

  7. Carbon isotopic analysis of dissolved organic carbon in produced water brines by wet chemical oxidation and cavity ring-down spectroscopy

    Science.gov (United States)

    Thomas, B.; Conaway, C.; Kharaka, Y. K.; Saad, N.

    2012-12-01

    We have adapted the Picarro iTOC CRDS isotope analyzer for analysis of produced water brines via wet chemical persulfate oxidation. In particular, we developed strategies and techniques for overcoming the limitation imposed by low oxidation efficiencies due to the chloride ion interference with persulfate oxidation. These techniques are important for understanding the origin of dissolved organic carbon in subsurface fluids from oilfields, as a tracer of fracking fluids in groundwater, and in interpreting changes in groundwater DOC as a result of microbial activity including oil biodegradation or microbially enhanced oil recovery. We describe the limitations of this new instrument for the analysis of DOC in brines including sample requirements, matrix effects, and the effect of DOC composition on reaction efficiency and isotopic measurements. We compare strategies including anion exchange cartridges, persulfate reactant concentrations, and reaction time. The CRDS analysis of DOC in brines is a useful tool for understanding the origin and fate of DOC and is a potentially powerful tool to identifiy evidence of contamination due to hydrofracturing chemicals that have a distinctive carbon isotopic signature relative to natural brine.

  8. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    Science.gov (United States)

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  9. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  10. Inferring global and regional methane sources and sinks using isotopic observations and atmospheric chemical transport models

    Science.gov (United States)

    Rigby, M. L.; Wenger, A.; O'Doherty, S.; Lunt, M. F.; Ganesan, A.; Manning, A.; Prinn, R. G.

    2015-12-01

    Measurements of the major isotopologues of atmospheric methane have the potential to improve our understanding of the methane budget at the global and regional scale. Using global and regional chemical transport models, we can predict the atmospheric variations in 13C-CH4 and D-CH4, for given assumptions about source isotope ratios and fractionation due to methane sinks. This information can then be used to test the impact that various measurement techniques, technologies and sampling strategies have on our knowledge of the methane budget. We show that, at the global scale, an extensive and accurate network of isotopic measurements can lead to a reduction in the uncertainties in the major global sources. Furthermore, measurements of the D/H ratio in methane may provide some level of uncertainty reduction in the magnitude of the OH sink. Uncertainties can be reduced with improved precision and accuracy of the atmospheric observations. However, to make the most of an atmospheric methane isotope network, we show that the characterisation of source isotope ratios must also be improved. Finally, we put the theory into practice by deriving sector-specific methane sources at the national scale using 13C-CH4 samples collected as part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. GAUGE measurements are made from a tall tower site to the east of the UK, a background station on the west coast of Ireland and during intensive aircraft sampling campaigns. We will discuss the challenges and benefits associated with adding isotopic information to a national greenhouse gas sampling network and outline a strategy for improvements in the future.

  11. Size-Induced Enhancement of Chemical Exchange Saturation Transfer (CEST) Contrast in Liposomes

    OpenAIRE

    Zhao, Jason M.; Har-el, Yah-el; McMahon, Michael T.; Zhou, Jinyuan; Sherry, A. Dean; Sgouros, George; Bulte, Jeff W. M.; van Zijl, Peter C.M.

    2008-01-01

    Liposome-based chemical exchange saturation transfer (lipoCEST) agents have shown great sensitivity and potential for molecular magnetic resonance imaging (MRI). Here we demonstrate that the size of liposomes can be exploited to enhance the lipoCEST contrast. A concise analytical model is developed to describe the contrast dependence on size for an ensemble of liposomes. The model attributes the increased lipoCEST contrast in smaller liposomes to their larger surface-to-volume ratio, causing ...

  12. STUDY ON THE PHYSICAL CHEMICAL PROPERTIES OF FFA—1 ION EXCHANGE FIBER

    Institute of Scientific and Technical Information of China (English)

    YuanSiguo; LuYun; 等

    1998-01-01

    The physical and chemical properties of FFA-1 ion exchange fiber have been characterized with IR spectrum,thermal analysis and SEM means.The pH titration curve,swelling rate,mechanical properties,resistance drop of filter layer as well as the dynamic adsorption for SO2 was determined.These experiments provided the essential parameters for the practical application of FFA-1 material in adsorption of toxic gases.

  13. Absence of oxygen isotope fractionation/exchange of (hemi-) cellulose derived sugars during litter decomposition

    NARCIS (Netherlands)

    M. Zech; R. A. Werner; D. Juchelka; K. Kalbitz; B. Buggle; B. Glaser

    2011-01-01

    Aiming at developing a novel tool for palaeoclimate research, we recently proposed a new method for determining the oxygen isotope composition of monosaccharides (Zech, M., Glaser, B., 2009. Compound-specific δ18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and

  14. The application of isotope and chemical analyses in managing transboundary groundwater resources

    International Nuclear Information System (INIS)

    Highlights: ► Chemical analyses, D, O and C isotopes were used to correlate cross border aquifers. ► Water of transboundary thermal GWB Mura-Zala is of meteoric origin. ► δD (−87‰ to −75‰), δ18O (−11.9‰ to −10.4‰) and 14C (less than 6.1 pmC). ► δ13C values are shifted significantly, cannot be used for radiocarbon age corrections. ► Environmental isotopes can act as an early warning in the thermal water management. - Abstract: Managing transboundary groundwater resources requires accurate and detailed knowledge of aquifers and groundwater bodies. The Pannonian Basin is the largest intracontinental basin in Europe with a continuous succession of more than 7 km of Miocene to Quaternary sediments and with an average geothermal gradient of about 5 °C/100 m. Geographically the Pannonian basin overlaps eight countries (Hungary, Romania, Serbia, Croatia, Slovenia, Austria, Slovakia and Ukraine), so the issue of transboundary cold and thermal water resources is regionally very important. The T-JAM bilateral Hungarian–Slovenian (HU–SLO) project is the first to apply modern isotopic and chemical analyses in the characterization and correlation of a number of shared groundwater resources in the Mura-Zala Sub-basin of the Pannonian. The aims of this work were the identification of groundwater flow paths, the delineation of transboundary aquifers based on thermal and cold groundwater geochemical and isotope properties in the Mura-Zala Basin, and providing input to calibrate a hydraulic numerical model. Following a common groundwater sampling campaign, 24 cold and thermal groundwater samples from seven aquifers were collected for chemical, isotope, gas and noble gas analyses. Chemical analyses, and D, O and C isotopes were used to correlate cross border aquifers. A regional groundwater flow is hydrogeologically possible in some aquifers in the Mura-Zala Basin, and has been confirmed by hydrogeochemistry. The Újfalu (HU) and Mura (SLO) Formations

  15. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    Science.gov (United States)

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. PMID:23452149

  16. Measuring the Effect of Fuel Chemical Structure on Particulate and Gaseous Emissions using Isotope Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Mueller, C J; Martin, G C; Upatnicks, A; Dibble, R W; Cheng, S

    2003-09-11

    Using accelerator mass spectrometry (AMS), a technique initially developed for radiocarbon dating and recently applied to internal combustion engines, carbon atoms within specific fuel molecules can be labeled and followed in particulate or gaseous emissions. In addition to examining the effect of fuel chemical structure on emissions, the specific source of carbon for PM can be identified if an isotope label exists in the appropriate fuel source. Existing work has focused on diesel engines, but the samples (soot collected on quartz filters or combustion gases captured in bombs or bags) are readily collected from large industrial combustors as well.

  17. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  18. Research on the hydrogen-water isotope exchange reaction by Pt-SDB hydrophobic catalyst

    International Nuclear Information System (INIS)

    The authors study the Pt-SDB hydrophobic catalyst used in the hydrogen-water exchange reaction. Platinum is as active metal and the polystyrene divinylbenzene (SDB) is as hydrophobic carrier in the Pt-SDB hydrophobic catalyst. The experimental results show that the efficiency of catalytic exchange reaction is higher in random bed with a packing ratio of 1:1 mixture of catalyst and hydrophilic or 1:4 in order bed. The volume transfer coefficient increases with increasing temperature, but the trend is slow down when the temperature is above 60 degree C

  19. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  20. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    Science.gov (United States)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  1. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    Energy Technology Data Exchange (ETDEWEB)

    Lugaro, Maria [Monash Centre for Astrophysics (MoCA), Building 28, Monash University, Clayton, VIC 3800 (Australia); Liffman, Kurt [CSIRO/MSE, P.O. Box 56, Highett, VIC 3190 (Australia); Ireland, Trevor R. [Planetary Science Institute and Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Maddison, Sarah T., E-mail: maria.lugaro@monash.edu [Centre for Astrophysics and Supercomputing, Swinburne University, H39, P.O. Box 218, Hawthorn, VIC 3122 (Australia)

    2012-11-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced {sup 16}O-rich CO and {sup 16}O-poor H{sub 2}O, where the H{sub 2}O subsequently combined with interstellar dust to form relatively {sup 16}O-poor solids within the solar nebula. Another model for creating the different reservoirs of {sup 16}O-rich gas and {sup 16}O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the {sup 18}O/{sup 17}O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  2. Influence of helium on hydrogen isotope exchange in tungsten at sequential exposures to deuterium and helium–protium plasmas

    International Nuclear Information System (INIS)

    Hydrogen isotopes exchange in tungsten was investigated after sequential exposures to low energy deuterium (D) and helium–seeded protium (He–seeded H) plasmas at sample temperatures of 403 and 533 K. Deuterium depth profiles were measured by the D(3He, p)4He nuclear reaction with 3He+ energies between 0.69 and 4.5 MeV allowing determination of the D concentration up to a depth of 8 μm. It was found that a significant part of the deuterium initially retained in tungsten after D plasma exposure was released during sequential exposure to a protium plasma. However, exposure of the D-plasma-exposed W samples to the He–seeded H plasma reduces the amount of released deuterium as compared to pure H plasma exposure

  3. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through carbon-13 stable isotopes’ Ivar van der Velde Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and terrestrial b

  4. Contribution to the study of proteins and peptides structure by hydrogen isotopic exchange

    International Nuclear Information System (INIS)

    Development of hydrogen exchange measurement methods to study the structure and the molecular interaction of globular protein molecules in aqueous solution (ribonuclease A, cytochrome c, coupling factors of chloroplasts), in peptide hormones in trifluoroethanol solution (angiotensin II, corticotropin) and in proteins of membranes (rhodopsin)

  5. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.

  6. Assessing river-groundwater exchange in the regulated Rhone River (Switzerland) using stable isotopes and geochemical tracers

    International Nuclear Information System (INIS)

    Modern flood protection projects are often combined with measures for river restoration, which enlarge the river bed to improve the flow capacity during peak discharge. For the planning of such projects it is essential to quantify the river-groundwater exchange. To address this question in the highly regulated upper Rhone River basin, a combination of stable isotope techniques with geochemical and transient tracers has been used. The δ18O signal in precipitation decreases towards more negative values with a slope of 0.34%% per 100 m altitude, precipitation during winter was about 5.5%% more negative than in summer. Since in winter about 55% of the water in the River Rhone comes from high alpine hydropower reservoirs with a known δ18O value, this isotopic signature provides direct information of the source region and the seasonality in samples from groundwater wells. On a spatial scale SO42- measurements help to constrain groundwater components, because the tributaries and groundwater sources south of the Rhone are rich in SO42- with concentrations of more than 12 mM in spring water. In winter the Rhone water reaches concentrations of up to 1.5 mM, and during snowmelt in summer, this value drops below 0.5 mM. Finally the transient tracer 3H/3He is used to estimate groundwater inflow in deep gravel pits and to calculate an average travel velocity in the alluvial aquifer of about 1.7 kma-1

  7. Ceramic Heat Exchangers and Chemical Reactors with Micro-Scale Features for In-Situ Resource Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop compact and lightweight ceramic heat exchangers and chemical reactors suitable for high temperature processes. These devices will have...

  8. Evidence for Oxygen-Isotope Exchange in Chondrules and Refractory Inclusions During Fluid-Rock Interaction on the CV Chondrite Parent Body

    Science.gov (United States)

    Krot, A. N.; Nagashima, K.

    2016-08-01

    Plagioclase in chondrules, CAIs and AOAs from the carbonaceous chondrite Kaba (CV3.1) experienced oxygen-isotope exchange with a metasomatic fluid responsible for the formation of magnetite, fayalite and Ca,Fe-rich silicates on the CV parent body.

  9. Determination of plutonium isotopes in urine samples from radiation workers using 236Pu tracer, anion exchange resin and alpha spectrometry

    International Nuclear Information System (INIS)

    Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of Pu-isotopes in urine samples using anion exchange resin and 236Pu tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of plutonium along with calcium phosphate. Separation of Pu was carried out by Amberlite, IRA-400, anion exchange resin. Pu-fraction was electrodeposited and activity estimated using tracer recovery by alpha spectrometer. Twenty routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 74-96% with a mean and standard deviation of 85 and 6% respectively. (author)

  10. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    Science.gov (United States)

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  11. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    Science.gov (United States)

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  12. Pyrolysis of oil at high temperatures: Gas potentials, chemical and carbon isotopic signatures

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui; XIAO XianMing; YANG LiGuo; XIAO ZhongYao; GUO LiGuo; SHEN JiaGui; LU YuHong

    2009-01-01

    Although the gas cracked from oil has been believed to be one of the important sources in highly ma-tured marine basins, there are still some debates on its resource potentials and chemical and isotopic compositions. In this study a Cambrian-sourced marine oil sample from the Silurian reservoir of well TZ62 in the central Tarim basin was pyrolyzed using sealed gold tubes with two different pyrolysis schemes: continuous pyrolysis in a closed system and stepwise semi-open pyrolysis. The results show that the maximum weight yield of C1-5 gases occurs at EasyRo=2.3% and the residual gas poten-tial after this maturity is only 43.4 mL/g, about 12% of the yield of 361 mL/g at EasyRo=2.3%. Combined with the results of kinetic modeling, the main stage of gas generation from oil cracking is believed within the EasyRo=1.6%-2.3%. The increase in the volume yield of C1-5 gases at EasyRo2.3% in a closed system is mainly related to the re-cracking of previously formed C2-5 wet gases, not the direct cracking of oil. The stepwise pyrolysis experiments show that the gas from the cracking of residual oil at EasyRo2.3% is characterized by very high dryness index (higher than 92%) and heavy methane carbon isotopes ranging from -28.7‰ to -26.7‰, which is quite different from the gases from the con-tinuous pyrolysis in a closed system. The kinetic modeling of methane carbon isotope fractionation shows that the carbon isotopes of methane within the main stage of gas generation (EasyRo<2.3%) are far lighter than the carbon isotopes of the precursor oils under a geological heating rate of 2℃/Ma. The above observations and results provide some new clues to the accurate recognition and objective re-source evaluation of oil cracking gas in highly mature marine basins.

  13. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    Science.gov (United States)

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  14. Coordination of Cd 2+ ions in the internal pore system of zeolite-X: A combined EXAFS and isotopic exchange study

    Science.gov (United States)

    Ahmed, I. A. M.; Young, S. D.; Mosselmans, J. F. W.; Crout, N. M. J.; Bailey, E. H.

    2009-03-01

    The effect of prolonged contact time (up to 130 days) on the immobilization of Cd by sorption to calcium exchanged zeolite-X (CaX), under environmentally relevant conditions, was studied using both isotopic exchange and extended X-ray absorption fine structure spectroscopy (EXAFS). Sorption and isotopic exchange measurements revealed time-dependent Cd sorption and indicated the movement of Cd 2+ ions into less accessible sites due to ageing. EXAFS suggested progressive fixation of Cd in the double six-ring ( D6R) unit of the CaX structure. Proportional allocation of the apparent Cd-Si bond distance to two 'end-members', across all contact times, indicated that the bond distance for labile Cd was 3.41 Å and for non-labile (or fixed) Cd was 3.47 Å.

  15. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p plot for quantitative analysis of DIACEST MRI.

  16. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    -course experiments of up to 10 days. More than 85% of the added S-35-degrees was distributed into the reduced sulfur pools comprising SIGMA-HS-(=H2S - HS- + S2-), iron sulfide (FeS) and pyrite (FeS2) in less than 10 min after S-35-degrees labeling. When 1.2-mu-mol SIGMA-HS- cm-3 was present in the slurry, 64...... the isotopic fractionations. All S-35, however, that was incorporated into AVS (i.e. SIGMA-HS- + FeS), S-degrees and FeS2 during short-term (SO42-)-S-35 incubations originated from the formed (H2S)-S-35 and realistic sulfate reduction rates therefore were measured from the sum of the radioactivities of reduced...

  17. Chemically selective polymer substrate based direct isotope dilution alpha spectrometry of Pu

    International Nuclear Information System (INIS)

    Highlights: • Membrane based alpha spectrometry was developed for plutonium. • A thin bifunctional layer was grafted on a porous membrane. • UV method used for grafting is simple and highly reproducible. • This method does not require preconcentration and source preparation steps. • Isotope dilution was used to enhance analytical performance. - Abstract: Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3 M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate–sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM–EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3–4 M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using 238Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 86 ± 3% below Pu(IV) loading capacity (1.08 μg in 2 × 1 cm2) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to

  18. Chemical and Isotope Compositions of Neogene Hippopotamidae Teeth From Lake Albert (Uganda): Implications for Environmental Change

    Science.gov (United States)

    Brugmann, G. E.; Brachert, T. C.; Ssemmanda, I.; Mertz, D. F.

    2008-12-01

    lake, and is therefore a powerful tool for tracing ancient hydrological networks. The large variation of the Sr isotope composition can be explained if the lake is fed by different sources: water draining Cenozoic volcanic terrains have low 87Sr/86Sr (~ 0.704), whereas Proterozoic-Achaean terrains of the rift flanks have high 87Sr/86Sr (>0.718). Thus, the increasing 87Sr/86Sr from 5.2 to 2.3 Ma, suggests that water supply from volcanic terrains ceases and the local, Achaean run-off dominated the lake water chemistry. Consistent with the concurrent increase of ?18O, this suggests that increasing aridity and evaporation of lake water on a regional scale, interrupts the axial river network and local river discharge becomes dominant. The decrease of 87Sr/86Sr starting at about 2 Ma indicates new water supply from volcanic rock dominated terrains, which could reflect a tectonic restructuring of the rift valley or the initiation of the young Toro-Ankole igneous province. Palaeoclimate records from rift systems are governed by global climate forcing mechanisms and interacting geodynamics. Our study of the chemical and isotope record of tooth enamel from mammals permits the identification of these local and global environmental changes, in the western EARS on geological time scales. investigation.

  19. Application of a chemical ion exchange model to transport cask surface decontamination

    International Nuclear Information System (INIS)

    Radionuclide contamination of stainless steel surfaces occurs during submersion in a spent fuel storage pool, Subsequent release or desorption of these contaminants from a nuclear fuel transportation cask surface under varying environmental conditions occasionally results in the phenomenon known as contamination 'weeping'. Experiments have been conducted to determine the applicability of a chemical ion exchange model to characterise the problem of cask contamination and release. Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide-aqueous interfaces. The solubility of Co and Cs electrolytes at varying pH and the absorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly absorb on these powder surfaces and, more specifically, that absorption occurs in the nominal pH range (pH = 4-6) of a boric acid moderated spent fuel pool. Desorption has been demonstrated to occur at pH≤3. Cs+ ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. (author)

  20. Application of a chemical ion exchange model to transport cask surface decontamination

    International Nuclear Information System (INIS)

    Radionuclide contamination of stainless steel surfaces occur during submersion in a spent fuel storage pool. Subsequent release or desorption of these contaminants from a nuclear fuel transportation cask surface under varying environmental conditions occasionally results in the phenomenon known as contamination ''weeping.'' Experiments have been conducted to determine the applicability of a chemical ion-exchange model to characterize the problem of cask contamination and release. Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide -- aqueous interfaces. The solubility of Co and Cs electrolytes at varying pH and the absorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly adsorb on these powder surfaces and, more specifically, that adsorption occurs in the nominal pH range (pH = 4--6) of a boric acid-moderated spent fuel pool. Desorption has been demonstrated to occur at pH ≤ 3. Cs ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. 8 refs., 5 figs

  1. Galactic Chemical Evolution and the Oxygen Isotopic Composition of the Solar System

    CERN Document Server

    Nittler, Larry R

    2012-01-01

    We review current observational and theoretical constraints on the Galactic chemical evolution (GCE) of oxygen isotopes in order to explore whether GCE plays a role in explaining the lower 17O/18O ratio of the Sun, relative to the present-day interstellar medium, or the existence of distinct 16O-rich and 16O-poor reservoirs in the Solar System. Although the production of both 17O and 18O are related to the metallicity of progenitor stars, 17O is most likely produced in stars that evolve on longer timescales than those that produce 18O. Therefore the 17O/18O ratio need not have remained constant over time, contrary to preconceptions and the simplest models of GCE. An apparent linear, slope-one correlation between delta17O and delta18O in the ISM need not necessarily reflect an O isotopic gradient, and any slope-one galactocentric gradient need not correspond to evolution in time. Instead, increasing 17O/18O is consistent both with observational data from molecular clouds and with modeling of the compositions o...

  2. Chemical and isotopic compositions of natural gases from the Japanese major oil and gas fields

    International Nuclear Information System (INIS)

    Carbon isotopic ratios (13C/12C) and chemical compositions of methane (C1), ethane (C2), propane (C3), i-butane (i-C4) and n-butane (n-C4) were measured for natural gases from the Japanese major oil and gas fields. The C1/(C2+C3) vs. δ13C(C1) plot suggests that most samples analyzed in the present study are of thermogenic origin with a minor contribution of biogenic gases. Some gases show unusually high ratios of C2/C3 and i-C4/n-C4, and low ratios cf C3/i-C4 (Unusual-Hydrocarbon-Ratio gases: UHR gases). The carbon isotopic ratios and hydrocarbon compositions strongly suggest that these unusual ratios were caused by the chromatographic effect of sediments during migration of the gases. By comparing hydrocarbon ratios (C1/C2, C2/C3, C2/i-C4, C2/n-C4, C3/i-C4, C3/n-C4 and i-C4/n-C4) of the UHR and normal gases, it was found that the natural gases tend to lose their hydrocarbons during migration in the order: n-C4 ≅ C3 > C2 ≅ i-C4 > C1. (author)

  3. Chemical and isotopic compositions of volcanic gases from the east Sunda and Banda arcs, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Poorter, R.P.E.; Bergen, M.J. van; Kreulen, R. (Univ. of Utrecht (Netherlands)); Varekamp, J.C. (Wesleyan Univ., Middletown, CT (United States)); Poreda, R.J. (Scripps Institution of Oceanography, La Jolla, CA (United States))

    1991-12-01

    The easternmost Sunda Arc and the Banda Arc represent a continent-arc collision zone where magma genesis is influenced by subducted continent-derived material. Chemical and isotopic studies of volcanic gas samples from this environment provide information on the sources of volatiles in arc magmas. These volcanic gases, some of which last equilibrated at magmatic temperatures, are characterized by anomalous low {sup 3}He/{sup 4}He values, but by common arc values of C/S {approx} 2-4, {delta}{sup 13}C {approx} {minus}3{per thousand}, and {delta}{sup 34}S{sub tot} {approx} +5{per thousand}. Abundant helium and high He/Ar ratios are consistent with the subduction of terrigenous components in local sediments (or slivers of continental crust). Although individual concentration and isotope ratios of volatile components may be explicable by complex fractionation in the recycling process, the combined data are in agreement with an important role of subducted sedimentary source components. Comparison of the authors results with volcanic gas data from other arcs indicates that the carbon and sulfur signals in arc gases are relatively insensitive to the amount and nature of sediment on the subsiding plate. Hence, a contribution to arc volcanic gases from subducted altered oceanic crust cannot be excluded.

  4. Chemical and isotopic methods for characterization of pollutant sources in rain water

    International Nuclear Information System (INIS)

    The acid rain formation is related with industrial pollution. An isotopic and chemical study of the spatial and temporary distribution of the acidity in the rain gives information about the acidity source. The predominant species in the acid rain are nitrates and sulfates. For the rain monitoring is required the determination of the anion species such as HCO3, Cl, SO4, NO3 and p H. So it was analyzed the cations Na+ , K+ , Ca2+ and Mg2+ to determine the quality analysis. All of them species can be determined with enough accuracy, except HCO3 by modern equipment such as, liquid chromatograph, atomic absorption, etc. The HCO3 concentration is determined by traditional methods like acid-base titration. This work presents the fundamental concepts of the titration method for samples with low alkalinity (carbonic species), for rain water. There is presented a general overview over the isotopic methods for the characterization of the origin of pollutant sources in the rain. (Author)

  5. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    Science.gov (United States)

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  6. Isotopic fractionation of carbon, deuterium and nitrogen : a full chemical study

    CERN Document Server

    Roueff, E; Hickson, K M

    2015-01-01

    Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly for carbon containing molecules. Aims. We want to check the underlying hypothesis that the 13C/ 12C ratio of nitriles and isonitriles is equal to the elemental value via a chemical time dependent gas phase chemical model. Methods. We have built a chemical network containing D, 13C and 15N molecular species after a careful check of the possible fractionation reactions at work in the gas phase. Results. Model results obtained for 2 different physical conditions corresponding respectively to a moderately dense cloud in an early evolutionary stage and a dense depleted pre-stellar core tend to show that ammonia and its singly deuterated form are somewhat enriched in 15N, in agreement with observations. The 14N/ 15N ratio in N2H+ is found to be close to the elemental v...

  7. Possibilities of chemical isolation of element 106 from aqueous solutions according to the model experiments with short lived tungsten isotopes

    International Nuclear Information System (INIS)

    A rapid method for continuous separation of short-lived tungsten isotopes from the lanthanides has been developed. It consists in transforming nuclear reaction products from the target by an aerosol jet to an absorber where the KCl particulates are dissolved in 0.2 M HF and percolating the product solution through three successively linked columns filled with ion exchange resins Dowex 50X8 (cationite), Dowex 1X8 (anionite) and again Dowex 50X8. 3 refs

  8. Sulphur isotopic and chemical compositions of the natural waters in the Chuncheon area, Korea

    International Nuclear Information System (INIS)

    The contribution of Chinese sources to the acid deposition in neighbouring countries in Far East Asia has been disputed. This study is to examine the isotopic composition of the S in the natural waters in the Chuncheon area to see if the isotopic composition can be an indicator of the pollution sources in the area. Meteoric water sampled between September 2000 and July 2001 and surface water sampled in December 2000 and April 2001 in the area were collected to examine their chemical and isotopic compositions. The pH values of the meteoric water lie between 4.02 and 6.89, but mostly lower than 5.6, indicating considerable acid deposition. The pH of the surface water is generally higher than that of the atmospheric water. Factor analysis on the concentrations of the dissolved components suggests that the surface water chemistry depends principally on the chemistry of the atmospheric water. The dissolution of carbonate minerals and silicate-water interaction plays a rather minor role in affecting the water chemistry. δ18O and δD of all the natural water samples align fairly well along the global meteoric water line. The δ34S of the dissolved SO4 in the meteoric water has values ranging from 3.4 to 8.2 per mille, showing little seasonal difference. The contribution from sea-salt to the total atmospheric S is estimated to be less than 10%. The δ34S of the anthropogenic S in the Chuncheon atmosphere is calculated to be 2.5 to 7.2 per mille, which partly overlaps the reported values of S in Chinese coal, Chinese rainfall, and Japanese fallout. Appropriate tracking and quantitative estimation of the contribution from possible pollution sources to the local S concentrations requires more information on the isotopic compositions of the potential pollution sources. The δ34S of the dissolved SO4 in the surface water has values ranging from 3.2 to 6.2 per mille, which is a little narrower than that of the meteoric water. The δ34S and the concentration range of the

  9. An isotopic exchange method applied to the study of surface mobility in catalysis; Methode d`echange isotopique appliquee a l`etude de la mobilite de surface en catalyse

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Duprez, D. [LACCO, 86 - Poitiers (France)

    1994-12-31

    A method for isotopic exchange of oxygen and hydrogen on the surface of supported metal catalysts (Rh, Pt), is presented. This method allows to determine various properties of oxides used as supports (rate of exchange, quantity of exchanges species, surface and bulk diffusion coefficients) which can be correlated to some specific properties of the oxides (dehydroxylation, acidity and basicity). 5 figs., 9 refs.

  10. Chemical and isotopic techniques for development of groundwater management strategies in a coastal aquifer: Krishna river delta, South India

    International Nuclear Information System (INIS)

    The Krishna and Godavari districts of the Andhra Pradesh in India have a flourishing agricultural production and the farmers of these areas make use of the mineral rich alluvium of the Krishna river delta more effectively for the purpose. The delta comprises sediments of both fluvial and marine origin. The groundwater quality vary widely both laterally and vertically in the alluvial formations. By and large, the most potential fresh water aquifers occur as isolated pockets and their extent is more in upper deltaic plain, whereas in the coastal tracts the fresh water occurrence is limited to sand dunes and beach ridges at shallow depth up to 14 m. The quality of deeper aquifers down to about 200m is generally brackish to saline water in the deltaic region except in some pockets (Rao, 1999). The irrigation demand is met through the extensive canal network that offtake from Prakasam Barrage located across the river Krishna in Vijayawada. In recent years it has been reported that groundwater is being extensively used in addition to the surface water supplied through the canal systems. The groundwater is also used to meet the domestic needs. Several tube wells have been installed in the northern part of the delta region. Identification of the origin of groundwater salinity and design of measures to control the salinisation process are the problems usually faced by a hydrogeologist. The conventional chemical data on groundwater allow formulation of hypothesis regarding chemical evolution and origin of salinity. Generally the ionic ratios such as Na+/Cl-, Ca2+/Mg2+, Cl-/I- are used for the purpose. However, in many cases the chemistry of water may undergo further secondary changes such as precipitation, ion exchange etc., which may make it difficult to identify the salinisation mechanism precisely. Environmental isotopes 3H, 14C, 2H and 18O could help in knowing the source of the salinity. Age evaluations using radio-isotopic techniques confirm the chemical

  11. Study of multi-site chemical exchange in solution state by NMR: 1D experiments with multiply selective excitation

    Indian Academy of Sciences (India)

    Samanwita Pal

    2010-07-01

    Chemical exchange in solution state has been investigated traditionally by both 1D and 2D NMR, permitting the extraction of kinetic parameters (e.g. the spin-lattice relaxation time 1, the exchange rate constant and the activation parameters). This work demonstrates a simple 1D NMR approach employing multiply selective excitation to study multi-site exchange processes in solution, applying it to systems that exhibit three-site exchange. This approach involves simultaneous excitation of all - or a chosen subset of - the exchanging sites by using an appropriately modulated shaped radiofrequency pulse. The pulse sequence, as well as analysis is summarized. Significant features of the experiment, which relies on sign labelling of the exchanging sites, include considerably shorter experiment time compared to standard 2D exchange work, clear definition of the exchange time window and uniform pulse non-ideality effects for all the exchanging sites. Complete kinetic information is reported in the study of dynamic processes in superacid solutions of two weak bases, studied by 1H NMR. An analytical solution, leading to the determination of four rate parameters, is presented for proton exchange studies on these systems, which involve a mixture of two weak bases in arbitrary concentration ratio, and stoichiometric excess of the superacid.

  12. Chemical and strontium isotope characterization of rainwater in Beijing during the 2008 Olympic year

    Science.gov (United States)

    Xu, Zhifang; Tang, Yang; Ji, Jianpeng

    2012-04-01

    To improve the air quality during the 2008 Beijing Olympic Games, the Beijing Municipal Government enforced a series of emission control measures. This provided a valuable case study to evaluate the effectiveness of these aggressive measures on mitigating air pollution and improving the atmospheric environment. In this paper, we report the first results of the chemical and Sr isotopic compositions of the rainwater in Beijing during the 2008 Olympic year. The ionic composition of samples show that Ca2 + and NH4+ were the dominant cations, accounting for about 76-97% of the total cations, and that SO42 - and NO3- were the major anions, accounting for 61-91% of the total anions measured. Using Na as the indicator of marine origin and Al as that of terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. The calculated results indicate that the major chemical components were mainly of non-sea-salt origin. Good correlation between Ca2 + and Sr2 + (R2 = 0.85) in rainwater samples indicates the potential of Sr as a provenance tracer for Ca. Sr2 + concentrations in rainwater samples ranged from 0.01 to 2.87 μmol l- 1, with 87Sr/86Sr ratios from 0.7092 to 0.7109. All of the samples had a 87Sr/86Sr ratio higher than that of seawater. The 87Sr/86Sr isotopic and elemental ratio systems show that the data set of rainwater was mainly distributed between the seawater end-member (~ 0.70917) and the soil dust end-member (0.7111-0.7115), and the analysis indicate that the effect of anthropogenic inputs could decrease in 2008. Comparisons of the chemical composition of the rainwater in different periods show that all chemical components, except NH4+, had the lowest concentration levels during the Olympic Game period. The VWM concentrations of major ions in the rainwater decreased significantly during the Olympic period by up to 29% for SO42 -, 39% for NO3-, 38% for Ca2 +, 51% for Mg2 +, 57% for K+, and 44% for Na+, compared with

  13. Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA

    Directory of Open Access Journals (Sweden)

    I. R. van der Velde

    2014-01-01

    Full Text Available We present an enhanced version of the SiBCASA photosynthetic/biogeochemical model for a future integration with a multi-tracer data-assimilation system. We extended the model with (a biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from Global Fire Emissions Database (GFED version 3.1, (b a new set of 13C pools that cycle consistently through the biosphere, and (c, a modified isotopic discrimination scheme to estimate variations in 13C exchange as a~response to stomatal conductance. Previous studies suggest that the observed variations of atmospheric 13C/12C are driven by processes specifically in the terrestrial biosphere rather than in the oceans. Therefore, we quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. Based on an assessment of observed respiration signatures we conclude that SiBCASA does well in simulating global to regional plant discrimination. The global mean discrimination value is 15.2‰, and ranges between 4 and 20‰ depending on the regional plant phenology. The biomass burning emissions (annually and seasonally compare favorably to other published values. However, the observed short-term changes in discrimination and the respiration 13C signature are more difficult to capture. We see a too weak drought response in SiBCASA and too slow return of anomalies in respiration. We demonstrate possible ways to improve this, and discuss the implications for our current capacity to interpret atmospheric 13C observations.

  14. Chemical and isotopic characteristics of a glacier-derived naled in front of Austre Grønfjordbreen, Svalbard

    OpenAIRE

    Jacob C. Yde; Andy J. Hodson; Solovjanova, Irina; Steffensen, Jørgen P.; Nørnberg, Per; Heinemeier, Jan; Olsen, Jesper

    2012-01-01

    The chemical and stable isotope composition of a glacier-derived naled in front of the glacier Austre Grønfjordbreen, Svalbard, is examined to elucidate how secondary processes such as preferential retention and leaching affect naled chemistry. Internal candle ice layers have a chemical composition almost similar to that of the lower stratified granular ice layer, whereas the upper granular ice layer has a significantly different composition, which resembles the composition found in glacier m...

  15. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob;

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V....

  16. The measurement of the chemically mobile fraction of lead in soil using isotopic dilution analysis

    International Nuclear Information System (INIS)

    The chemically available fraction of lead in eight soils measured by isotopic dilution analysis using 212Pb ranged from 7 to 16% of the total content of lead in soil. The soluble fractions achieved values up to 63% of the total content in 1 M NH4NO3, 1 M MgCl2 and 0.05 M DTPA solutions. Increasing the contact time between water and soil, the water-soil ratio from 1:1 to 5:1 and increasing the temperature of the soil-water suspension raised the chemically available fraction in soil. Comparing various soil parameters and the mobile fraction of lead, only pH shows a significant correlation. The amphoteric character of lead causes a minimum of mobility about pH 6; pH-values below are responsible for the higher mobility of lead as Pb2+, at pH-values above 6 soluble hydroxy and humic acid complexes are formed. (orig.)

  17. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    Science.gov (United States)

    Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan

    2016-02-01

    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.

  18. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    Science.gov (United States)

    Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan

    2016-02-01

    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7-9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5-1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.

  19. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang

    2012-01-01

    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  20. Chemically selective polymer substrate based direct isotope dilution alpha spectrometry of Pu.

    Science.gov (United States)

    Paul, Sumana; Pandey, Ashok K; Shah, R V; Aggarwal, S K

    2015-06-01

    Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate-sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM-EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3-4M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using (238)Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 86±3% below Pu(IV) loading capacity (1.08 μg in 2×1 cm(2)) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to significant extent (7%) but U(VI) sorbed with 78±3% efficiency from the solutions having 3M HNO3 concentration. However, Pu(IV) chemical recovery in the membrane remained unaffected from the solution containing 1:1000 wt. proportion of Pu(IV) to U(VI). Pu concentrations in the (U, Pu)C samples and in the irradiated fuel dissolver solutions were determined. The results thus obtained

  1. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    Science.gov (United States)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  2. Sm isotope composition and Sm/Eu ratio determination in an irradiated 153Eu sample by ion exchange chromatography-quadrupole inductively coupled plasma mass spectrometry combined with double spike isotope dilution technique

    International Nuclear Information System (INIS)

    Within the framework of the research undertaken by the French Atomic Energy Commission on transmutation of long-lived radionuclides, targets of highly enriched actinides and fission products were irradiated in the fast neutron reactor Phenix. Precise and accurate measurements of the isotopic and elemental composition of the enriched elements are therefore required. In order to obtain the uncertainties of several per mil and to reduce handling time and exposure to analyst on radioactive material, the on-line coupling of ion exchange chromatography with quadrupole inductively coupled plasma mass spectrometry has been associated with the technique of the double spike isotope dilution. We present in this paper the results obtained on an irradiated sample of Europium oxide powder (enriched at 99.13% in 153Eu). After irradiation of around 5 mg of Eu2O3 powder the theoretical calculations predict the formation of several micrograms of gadolinium and samarium isotopes. In relation to the very high activity of the sample after irradiation and the very low quantity of Sm formed, the on-line ion exchange chromatography separation of Gd, Sm and Eu before Sm isotope ratio measurements has been developed for the quantification of the 152Sm/153Eu ratio. These on-line measurements were associated with the double spike isotope dilution technique after calibration of a 147Sm/151Eu spike solution. The external reproducibility of Sm isotopic ratios was determined to be around 0.5% (2 σ) resulting in a final uncertainty on the 152Sm/153Eu ratio of around 1% (2 σ). These on-line measurements present therefore a robust and high-throughput alternative to the thermal-ionisation mass spectrometry technique used so far in combination with off-line chromatographic separation, particularly in nuclear applications where characterisation of high activity sample solutions is required. (authors)

  3. Fast simulation and optimization of pulse-train chemical exchange saturation transfer (CEST) imaging

    International Nuclear Information System (INIS)

    Chemical exchange saturation transfer (CEST) MRI has been increasingly applied to detect dilute solutes and physicochemical properties, with promising in vivo applications. Whereas CEST imaging has been implemented with continuous wave (CW) radio-frequency irradiation on preclinical scanners, pulse-train irradiation is often chosen on clinical systems. Therefore, it is necessary to optimize pulse-train CEST imaging, particularly important for translational studies. Because conventional Bloch–McConnell formulas are not in the form of homogeneous differential equations, the routine simulation approach simulates the evolving magnetization step by step, which is time consuming. Herein we developed a computationally efficient numerical solution using matrix iterative analysis of homogeneous Bloch–McConnell equations. The proposed algorithm requires simulation of pulse-train CEST MRI magnetization within one irradiation repeat, with 99% computation time reduction from that of conventional approach under typical experimental conditions. The proposed solution enables determination of labile proton ratio and exchange rate from pulse-train CEST MRI experiment, within 5% from those determined from quantitative CW-CEST MRI. In addition, the structural similarity index analysis shows that the dependence of CEST contrast on saturation pulse flip angle and duration between simulation and experiment was 0.98  ±  0.01, indicating that the proposed simulation algorithm permits fast optimization and quantification of pulse-train CEST MRI. (paper)

  4. Fast simulation and optimization of pulse-train chemical exchange saturation transfer (CEST) imaging.

    Science.gov (United States)

    Xiao, Gang; Sun, Phillip Zhe; Wu, Renhua

    2015-06-21

    Chemical exchange saturation transfer (CEST) MRI has been increasingly applied to detect dilute solutes and physicochemical properties, with promising in vivo applications. Whereas CEST imaging has been implemented with continuous wave (CW) radio-frequency irradiation on preclinical scanners, pulse-train irradiation is often chosen on clinical systems. Therefore, it is necessary to optimize pulse-train CEST imaging, particularly important for translational studies. Because conventional Bloch-McConnell formulas are not in the form of homogeneous differential equations, the routine simulation approach simulates the evolving magnetization step by step, which is time consuming. Herein we developed a computationally efficient numerical solution using matrix iterative analysis of homogeneous Bloch-McConnell equations. The proposed algorithm requires simulation of pulse-train CEST MRI magnetization within one irradiation repeat, with 99% computation time reduction from that of conventional approach under typical experimental conditions. The proposed solution enables determination of labile proton ratio and exchange rate from pulse-train CEST MRI experiment, within 5% from those determined from quantitative CW-CEST MRI. In addition, the structural similarity index analysis shows that the dependence of CEST contrast on saturation pulse flip angle and duration between simulation and experiment was 0.98 ± 0.01, indicating that the proposed simulation algorithm permits fast optimization and quantification of pulse-train CEST MRI. PMID:26020414

  5. Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups.

    Science.gov (United States)

    Park, Jihye; Feng, Dawei; Zhou, Hong-Cai

    2015-09-16

    A facile preparation of a mesoporous Cr-MOF, PCN-333(Cr) with functional group, has been demonstrated through a dual exchange strategy, involving a sequential ligand exchange and metal metathesis process. After optimization of the exchange system, the functionalized PCN-333(Cr), N3-PCN-333(Cr) shows well maintained crystallinity, porosity, as well as much improved chemical stability. Because of the exceptionally large pores (∼5.5 nm) in PCN-333(Cr), a secondary functional moiety, Zn-TEPP with a size of 18 Å × 18 Å, has been successfully clicked into the framework. In this article, we have also analyzed kinetics and thermodynamics during dual exchange process, showing our attempts to interpret the exchange event in the PCN-333. Our findings not only provide a highly stable mesoporous Cr-MOF platform for expanding MOF-based applications, but also suggest a route to functionalized Cr-MOF which may have not been achievable through conventional approaches.

  6. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    Science.gov (United States)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  7. Geometrical and geochemical properties of isotope exchange and reaction fronts in the Alta aureole, Utah: evidence for scale-dependent heterogeneity and anisotropy in permeability of marbles

    Science.gov (United States)

    Bowman, J. R.

    2012-12-01

    A carbon isotope exchange front, periclase reaction front and an oxygen isotope exchange front are developed with increasing distance from the igneous contact in dolomitic marbles of the south Alta aureole, Utah in response to infiltration-driven metamorphism of the marbles. Their relative distances from the igneous contact, approx. 100, 200 and 350 m, respectively, are consistent with down-temperature infiltration of water-rich fluid that was equilibrated isotopically with the adjacent Alta stock. At the aureole scale both the C and O isotope exchange fronts exhibit significant dispersion: there is significant variation in both δ18O and δ13C values at any given position for >100m to either side of the geometric centers of both fronts. Applications of one-dimensional models of advection-dispersion to these aureole-scale dispersed fronts yield a minimum dispersion coefficient of 2E-8 m2/sec. However at outcrop and bedding scale, steep, coherent gradients in both δ18O and δ13C exist at or near bedding boundaries between marble layers of contrasting lithology and isotopic compositions; modeling of these profiles requires much lower diffusion/dispersion coefficients in the range of 7E-12 to 1E-14 m2/sec. The periclase reaction front (isograd) can be mapped as a fairly regular surface at the aureole scale, located an average 200 m from the igneous contact, and normally of narrow width (concordant, the bedding-controlled variations in permeability also lead to significant permeability anisotropy, with effective permeability parallel to bedding>>permeability normal to bedding. In contrast, permeability within individual beds appears to be relatively homogeneous, as suggested by relatively consistent mineral modes and homogeneous δ18O and δ13C values within individual beds, and by steep, highly coherent δ18O and δ13C gradients preserved at or near bedding boundaries.

  8. Chemical and Isotopic Constraints on the Origin of Cenozoic Pacific Northwest Volcanism

    Science.gov (United States)

    Carlson, R. W.; Hart, W. K.; Grove, T. L.; Donnelly-Nolan, J. M.; Barr, J. A.; Till, C. B.

    2009-12-01

    same location, however, 4He/3He shifts to low values in Snake River Plain basalts (Graham et al., JVGR, 2009), which is the only chemical and isotopic characteristic of Snake River Plain basalts that suggests input from the deep mantle.

  9. Kinetic bottlenecks to chemical exchange rates for deep-sea animals – Part 1: Oxygen

    Directory of Open Access Journals (Sweden)

    E. T. Peltzer

    2012-10-01

    Full Text Available Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the

  10. Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO2 of the cave atmosphere

    Science.gov (United States)

    Dreybrodt, Wolfgang; Hansen, Maximilian; Scholz, Denis

    2016-02-01

    We present a theoretical derivation of the exchange time, τex, needed to establish isotopic equilibrium between atmospheric CO2 in a cave and HCO3- dissolved in a thin water film covering the surface of a speleothem. The result is τex = τredex · [HCO3-]/ (KH · pCO2 cave) , where τredex depends on the depth, a, of the water film and on temperature. [HCO3-] is the concentration of bicarbonate, pCO2 cave the partial pressure of CO2, and KH is Henry's constant. To test the theory we prepared stagnant or flowing thin films of a NaHCO3 solution and exposed them at 20 °C to an CO2 containing atmosphere of pCO2 500, 12,500, or 25,000 ppmV and defined isotope composition. The δ13C and δ18O values of the DIC in the solution were measured as a function of the exposure time. For stagnant films with depths between 0.06 and 0.2 cm the δ13C values exhibit an exponential approach towards isotope equilibrium with the atmospheric CO2 with exchange time, τex. The δ18O values first evolve towards isotopic equilibrium with atmospheric CO2, reach a minimum value and then drift away from the isotopic equilibrium with atmospheric CO2 approaching a steady state caused by isotopic exchange of oxygen with water. The experimental findings are in satisfactory agreement with the theoretical predictions. To further investigate isotope evolution in cave analogue conditions, a water film containing 5 mmol/L of NaHCO3 with a depth of 0.013 cm flowing down an inclined borosilicate glass plate was exposed to an atmosphere with pCO2 = 500 ppmV at a temperature of 20 °C. The δ13C and δ18O values were measured as a function of flow (exposure) time, t. The isotope compositions in the DIC of the water film decrease linear in time by δDIC (t) =δDIC (0) - (δDIC (0) -δDIC (∞)) · t /τex where δDIC (0) is the initial isotope composition of dissolved inorganic carbon (DIC) in the water film and δDIC (∞) its final value. From these data an exchange time τex of ca. 7000 s was obtained

  11. Short and long term chemical and isotopic variations of Lake Trasimeno (Italy)

    Science.gov (United States)

    Frondini, Francesco; Dragoni, Walter; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Donnini, Marco; Morgantini, Nicola

    2016-04-01

    Lake Trasimeno, located in Umbria (central Italy), is a shallow lake of a remarkable naturalistic interest and a significant resource for the economy of the region (Ludovisi and Gaino, 2010; Dragoni, 2004). The Lake Trasimeno has an average area of about 124 km2 with a maximum depth of approximately 5.5 m, has no natural outlet and the volume of water stored is strictly linked to rainfall. In order to limit water level variations in 1898 an efficient outlet was built. At present the water exits from the Lake only when the level reaches a fixed threshold above the outlet channel, so during periods with low precipitation the evaporation becomes the most relevant output from the lake. For instance, between 1989 and 2013 the outlet did not work, and the maximum depth of the lake was reduced to little more than three meters. In the framework of climate change, it is important to understand the changes that could affect Lake Trasimeno in the near future. To this aim it is necessary to individuate the long term trends of the hydrologic, chemical and physical characteristics of the Trasimeno water and distinguish them from the short term variations. At the present it is available a long record of hydrologic data allowing reliable studies on quantitative variations at Lake Trasimeno (Dragoni et al., 2015; Dragoni et al., 2012; Ludovisi and Gaino, 2010), but the definition of the chemical and isotopic trends of lake water it is still a problematic task. On the basis of new chemical and isotopic data, collected from 2006 to 2015, it is possible to observe (i) short term and/or very short (seasonal) variations in temperature, salinity and saturation state with respect to carbonate minerals and a long term trends in isotopic composition of water and total load of mobile species (Cl, Na). The short term variations readily respond to the precipitation regime and are strongly related to lake level; the long term trend is probably related to the progressive increase of near

  12. Short and long term chemical and isotopic variations of Lake Trasimeno (Italy)

    Science.gov (United States)

    Frondini, Francesco; Dragoni, Walter; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Donnini, Marco; Morgantini, Nicola

    2016-04-01

    Lake Trasimeno, located in Umbria (central Italy), is a shallow lake of a remarkable naturalistic interest and a significant resource for the economy of the region (Ludovisi and Gaino, 2010; Dragoni, 2004). The Lake Trasimeno has an average area of about 124 km2 with a maximum depth of approximately 5.5 m, has no natural outlet and the volume of water stored is strictly linked to rainfall. In order to limit water level variations in 1898 an efficient outlet was built. At present the water exits from the Lake only when the level reaches a fixed threshold above the outlet channel, so during periods with low precipitation the evaporation becomes the most relevant output from the lake. For instance, between 1989 and 2013 the outlet did not work, and the maximum depth of the lake was reduced to little more than three meters. In the framework of climate change, it is important to understand the changes that could affect Lake Trasimeno in the near future. To this aim it is necessary to individuate the long term trends of the hydrologic, chemical and physical characteristics of the Trasimeno water and distinguish them from the short term variations. At the present it is available a long record of hydrologic data allowing reliable studies on quantitative variations at Lake Trasimeno (Dragoni et al., 2015; Dragoni et al., 2012; Ludovisi and Gaino, 2010), but the definition of the chemical and isotopic trends of lake water it is still a problematic task. On the basis of new chemical and isotopic data, collected from 2006 to 2015, it is possible to observe (i) short term and/or very short (seasonal) variations in temperature, salinity and saturation state with respect to carbonate minerals and a long term trends in isotopic composition of water and total load of mobile species (Cl, Na). The short term variations readily respond to the precipitation regime and are strongly related to lake level; the long term trend is probably related to the progressive increase of near

  13. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics

    Science.gov (United States)

    Labidi, J.; Cartigny, P.; Jackson, M. G.

    2015-05-01

    To better address how subducted protoliths drive the Earth's mantle sulfur isotope heterogeneity, we report new data for sulfur (S) and copper (Cu) abundances, S speciation and multiple S isotopic compositions (32S, 33S, 34S, 36S) in 15 fresh submarine basaltic glasses from the Samoan archipelago, which defines the enriched-mantle-2 (EM2) endmember. Bulk S abundances vary between 835 and 2279 ppm. About 17 ± 11% of sulfur is oxidized (S6+) but displays no consistent trend with bulk S abundance or any other geochemical tracer. The S isotope composition of both dissolved sulfide and sulfate yield homogeneous Δ33S and Δ36S values, within error of Canyon Diablo Troilite (CDT). In contrast, δ34S values are variable, ranging between +0.11 and +2.79‰ (±0.12‰ 1σ) for reduced sulfur, whereas oxidized sulfur values vary between +4.19 and +9.71‰ (±0.80‰, 1σ). Importantly, δ34S of the reduced S pool correlates with the 87Sr/86Sr ratios of the glasses, in a manner similar to that previously reported for South-Atlantic MORB, extending the trend to δ34S values up to + 2.79 ± 0.04 ‰, the highest value reported for undegassed oceanic basalts. As for EM-1 basalts from the South Atlantic ridge, the linear δ34S-87Sr/86Sr trend requires the EM-2 endmember to be relatively S-rich, and only sediments can account for these isotopic characteristics. While many authors argue that both the EM-1 and EM-2 mantle components record subduction of various protoliths (e.g. upper or lower continental crust, lithospheric mantle versus intra-metasomatized mantle, or others), it is proposed here that they primarily reflect sediment recycling. Their distinct Pb isotope variation can be accounted for by varying the proportion of S-poor recycled oceanic crust in the source of mantle plumes.

  14. Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica

    Science.gov (United States)

    Ritter, François; Steen-Larsen, Hans Christian; Werner, Martin; Masson-Delmotte, Valérie; Orsi, Anais; Behrens, Melanie; Birnbaum, Gerit; Freitag, Johannes; Risi, Camille; Kipfstuhl, Sepp

    2016-07-01

    Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow isotopic composition are required. This study presents continuous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric general circulation models (AGCMs) equipped with water vapor isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T, humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2-5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mixing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of ˜ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation occurs during sublimation and that vapor-snow exchanges can no longer be

  15. Isotopic separation by ion chromatography; La separation isotopique par chromatographie ionique

    Energy Technology Data Exchange (ETDEWEB)

    Albert, M.G.; Barre, Y.; Neige, R. [CEA Centre d`Etudes de la Vallee du Rhone, 26 - Pierrelatte (France). Dept. de Technologie de l`Enrichissement

    1994-12-31

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs.

  16. The radiometric analysis of non-radioactive materials by chemical exchange

    International Nuclear Information System (INIS)

    The use of radioisotopes to measure the composition of different materials via chemical exchange within an instrument is described. The product of the reaction is a radioactive gas which is counted and serves as the indicator of measurement. This method has been applied to a number of different liquids and gases for their specific and sensitive determination. The chief limiting condition on sensitivity is imposed by the specific activity of the radiochemical component. Where high specific activities are available, sensitivity in terms of chemical quantity will be very great. The recent development of quinol- Kr85 clathrate compounds has provided a basic radiochemical source which not only provides high specific activities at low cost but also excellent half-life and energy characteristics. These clathrate compounds can be oxidized only by very strong oxidizing agents, such as ozone to release Kr85. When coupled with a salt, such as sodium chlorite, the sensing of reducing materials such as SO2 may be accomplished. Two applications of the radiometric technique employing clathrates are described. The first is the development of a balloon-borne sonde for the meteorological analysis of ozone in the upper atmosphere. The other is its use in air pollution and process control work in the form of a portable analyser. Different gases may be analysed by this device by merely changing the radiochemical reaction cell. (author)

  17. Chemical and isotope characteristics of a tufa-precipitating stream in Karwów (south-central Poland)

    Science.gov (United States)

    Duliński, Marek; Gradziński, Michał; Motyka, Jacek; Czop, Mariusz

    2016-04-01

    Chemical and isotope composition of a tufa-precipitating spring located in Karwów (south-central Poland) is described with the emphasis on the CO2-H2O-CaCO3 system. Carbonate solution is formed with participation of biogenic carbon dioxide and appears at the surface close to saturation state with respect to calcite. At the outflow of the spring the water is characterized by long-term stability of physical and chemical parameters. Along the course of the spring the tufa bed is formed as a result of CO2 outgassing. The carbon and oxygen isotope investigations were performed both on water solutions and the tufa calcite precipitated on CaCO3 plates exposed in water for different periods of time. In general, results of the 13C analyses and numerical modeling using NETPATH code suggest that calcite is precipitated close to carbon isotope equilibrium conditions except for the situations when the extreme outgassing of CO2 takes place. Several measured precipitate samples have shown distinctly lower δ18O values than expected for tufa formation under equilibrium conditions. This cannot be explained by kinetic effects known from karstic caves or lake studies as they lead to higher δ18O values of precipitated carbonates than at isotope equilibrium. Also, short-term fluctuations of water temperature cannot be responsible for the observed deviations in oxygen isotope composition of measured tufa samples from equilibrium values. Further work is needed to better understand the factors controlling 18O isotope composition of tufa deposits.

  18. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    International Nuclear Information System (INIS)

    Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), 'air' (i.e. N2 + O2 + Ar, 1-5%) and CO2 (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (4 content (>90%) with low CO2 (1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, 4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.

  19. Isotopic and chemical studies of groundwater in the Llanura Tucumana geothermal area; Tucuman, Argentina

    International Nuclear Information System (INIS)

    The Llanura Tucumana extends along the eastern Andean margin, between 27oS-28oS and 64o50'W- 65o40'W. It is a structural depression infilled by a thick sedimentary sequence, as shown by the preliminary geophysical studies (Pomposiello, et al., 1991, 2000; Favetto et al. 2000). It is bounded to the west by the Nevados del Aconquija (5500m) and the Sierra de Guasayan (600m) at east. Both ranges are part of the Sierras Pampeanas System. The southern part of this plain is an important thermal area, which is known through surface manifestations and drilled wells. There are a great quantity of artesian wells with discharge water at temperatures that oscillate between 30oC and 50oC. The Aconquija System is a climatic barrier for the humid east winds. The precipitation is torrential with intense and short time storms, mainly in summer. The rain amount decreases gradually to the SE, from 1200 to 800mm and it is 600mm near the Rio Hondo Dam area. The mean January temperature is 26.7oC and the coldest month is July with 12.9oC. This paper presents the isotopic and chemical results and a first approach for the origin and circulation pattern of water (au)

  20. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.

    Science.gov (United States)

    Rivest, Jessy B; Jain, Prashant K

    2013-01-01

    Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II-VI, IV-VI, and III-V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes

  1. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    CERN Document Server

    Thygesen, A O; Ludwig, H -G; Ventura, P; Yong, D; Collet, R; Christlieb, N; Melendez, J; Zaggia, S

    2016-01-01

    The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135{\\AA} in 13 giants near the tip of the RGB, using high signal-to-noise, high-resolution spectra. We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, ...

  2. Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments

    Science.gov (United States)

    Guéguen, Florence; Stille, Peter; Dietze, Volke; Gieré, Reto

    2012-12-01

    Passive air samplers have been installed in industrial, urban, rural and remote forested environments in order to collect coarse airborne particles for subsequent chemical characterization. To identify principal polluting sources, isotopic tracers, such as Sr, Nd and Pb isotopic ratios, have been used. The mass deposition rates (MDRs) of trace metals, determined for each of the studied environments, clearly indicate that industrial and traffic sites are especially affected by air pollution. Elements such as V, Pb, Fe, Cr, Co, Mo, Cd, Ni, As, Sb and Zn are notably enriched in samples from industrial zones, whereas V, Mn, Ba, Sr, Al, U, Th, rare earth elements (REE), Zr, Y, Cs, Rb, Sb, Sn and Cu are principal components of the airborne particles collected close to areas influenced by heavy traffic. The chemical/isotopic baseline composition derived from the airborne particles is the result of mixing of particles from different industrial sources, traffic and fertilizers. The monthly analysis of trace-metal MDRs of the collected airborne particle samples from different stations around the industrial zone allows for the detection of distinct atmospheric dust-deposition events during the year, characterized by high MDRs. "Natural" dusts from regional soil re-suspension, including from more distant regions like the Sahara desert, might overprint the regional atmospheric baseline composition, as suggested by trace metal trajectories in ternary diagrams and by Sr, Nd and Pb isotope data.

  3. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.

    Science.gov (United States)

    Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar; Whittaker, Jonathan; Weiss, Michael A; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function. PMID:26715336

  4. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  5. Investigation of geothermal fields in himalayan range in pakistan using isotope and chemical techniques

    International Nuclear Information System (INIS)

    /sub 4/-H/sub 2/O) geothermometer indicates equilibrium temperatures around 150 degree C. For the Tato springs, the isotope and chemical geothermometers (except for the K-Mg) agree on equilibrium temperature of about 170-200 degree C. Thermal waters of Kotli are immature having meteoric origin. They are of sodium bicarbonate type. The thermal water seems to be young or significant component of fresh water is mixing. Reservoir temperatures estimated by K-Mg and Na-K-Ca-Mg thermometers have similar range (122-l25 degree C). Geothermometer based on dissolved silica gives reservoir temperature about 100 degree C. (author)

  6. What are the instrumentation requirements for measuring the isotopic composition of net ecosystem exchange of CO2 using eddy covariance methods?

    Science.gov (United States)

    Saleska, Scott R; Shorter, Joanne H; Herndon, Scott; Jiménez, Rodrigo; McManus, J Barry; Munger, J William; Nelson, David D; Zahniser, Mark S

    2006-06-01

    Better quantification of isotope ratios of atmosphere-ecosystem exchange of CO2 could substantially improve our ability to probe underlying physiological and ecological mechanisms controlling ecosystem carbon exchange, but the ability to make long-term continuous measurements of isotope ratios of exchange fluxes has been limited by measurement difficulties. In particular, direct eddy covariance methods have not yet been used for measuring the isotopic composition of ecosystem fluxes. In this article, we explore the feasibility of such measurements by (a) proposing a general criterion for judging whether a sensor's performance is sufficient for making such measurements (the criterion is met when the contribution of sensor error to the flux measurement error is comparable to or less than the contribution of meteorological noise inherently associated with turbulence flux measurements); (b) using data-based numerical simulations to quantify the level of sensor precision and stability required to meet this criterion for making direct eddy covariance measurements of the 13C/12C ratio of CO2 fluxes above a specific ecosystem (a mid-latitude temperate forest in central Massachusetts, USA); (c) testing whether the performance of a new sensor-a prototype pulsed quantum cascade laser (QCL) based isotope-ratio absorption spectrometer (and plausible improvements thereon)-is sufficient for meeting the criterion in this ecosystem. We found that the error contribution from a prototype sensor (approximately 0.2 per thousand, 1 SD of 10 s integrations) to total isoflux measurement error was comparable to (1.5 to 2x) the irreducible 'meteorological' noise inherently associated with turbulent flux measurements above this ecosystem (daytime measurement error SD of approximately 60% of flux versus meteorological noise of 30-40% for instantaneous half-hour fluxes). Our analysis also shows that plausible instrument improvements (increase of sensor precision to approximately 0.1 per

  7. Carbon and oxygen isotope separation by plasma chemical reactions in carbon monoxide glow discharge

    International Nuclear Information System (INIS)

    The separation of carbon and oxygen isotopes in CO glow discharge has been studied. The isotope enrichment in the products was measured by quadru-pole mass spectrometer. The reaction yield and empirical formula of solid phase products were determined by the gas-volumetric analysis. The stable products obtained in our experiment are CO2 and solid polymers formed on the discharge wall. The polymer consists of both carbon and oxygen and the oxygen/carbon mole ratio in the polymer is 0.35±0.05. Thi isotope enrichment coefficients show a strong negative dependence on discharge current though the relative reaction yields have an opposite tendency. Consequently, the maximum isotope enrichment coefficients for 13C in wall deposit of 2.31 and for 18O in CO2 of 1.37 are obtained when the discharge current and the reaction yields are minimum in our experimental range. The experimental results of isotope enrichment have been compared with theoretical values estimated by an analytical model of literature. The dilution mechanism of the isotope enrichment of stable products is inferred from the isotopic distributions of 13C and 18O in products and theoretical predictions for isotope enrichment. (author)

  8. Chemical weathering of granitic rocks: an experimental approach and Pb-Li isotope tracing

    International Nuclear Information System (INIS)

    In order to characterize water-rock interactions in granite, we performed laboratory experiments and Pb-Li isotope tracing. The aim of the present work is to better constrain the processes of water-rock interactions, both in terms of source and extent of weathering, by measuring major and trace elements, as well as Pb and Li isotope signatures. (authors)

  9. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla

    International Nuclear Information System (INIS)

    To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. (orig.)

  10. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunmei; Peng, Shuai; Wang, Rui; Chen, Min [Beijing Hospital, Department of Radiology, Beijing (China); Chen, Haibo; Su, Wen [Beijing Hospital, Department of Neurology, Beijing (China); Zhao, Xuna [Peking University, Center for MRI Research and Beijing City Key Lab for Medical Physics and Engineering, Beijing (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States)

    2014-10-15

    To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. (orig.)

  11. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    Science.gov (United States)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  12. Isotopic and chemical composition of waters and gases from the east coast accretionary prism, New Zealand

    International Nuclear Information System (INIS)

    Gases and saline waters discharges from springs and mud volcanoes along the east coast of the North Island of New Zealand provide a unique opportunity to study the evolution of fluids within an active accretionary prism. The waters show intermediate (5000 mg Cl/kg) to high (26,000 mg Cl/kg) salinities and are enriched in both deuterium (δ 2H from -20 to -2 per mille) and oxygen-18 (δ18O from +3 to 7 per mille) with respect to local groundwater. Cl/Br ratios are with 250±50 close to those of seawater (285), B/Cl ratios are higher than those of seawater (0.0003) and range from 0.003 to 0.03 at comparatively uniform Li/B ratios of 0.05 ± 0.03. Relative Na, K and Mg contents suggest close attainment of water-rock equilibrium at temperatures of 85 ± 25 deg. C. Gas geothermometers (CO2, CH4, Ar) indicate equilibration in the liquid phase at somewhat higher temperatures of 100 ± 20 deg. C. Ratios of 3He/4He in gases from the central sector reach values of 3.35 RA indicating the presence of about 40% of mantle He. Significant amounts of N2 appear to be added from other than atmospheric sources. Formation of the highest Cl water (26,000 mg Cl/kg) is explained in terms of the hydration of basalt of a subducted seamount to form chlorite or serpentine. The isotopic and chemical compositions of the waters in the subducting sediments are compatible with the assumption that they form the main source for the magmatic components of waters discharged from andesitic volcanoes and associated geothermal systems. (author). 37 refs, 9 figs, 3 tabs

  13. Tree-Ring Carbon Isotopic Constraints on Carbon-Water Exchanges between Atmosphere and Biosphere in Drought Regions in Northwestern China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised d 13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency.

  14. U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Kate; DePaolo, Donald J.; Christensen, John N.

    2005-12-27

    Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

  15. Isotopic partitioning of net ecosystem CO2 exchange reveals the importance of methane oxidation in a boreal peatland

    Science.gov (United States)

    Hasselquist, Niles; Peichl, Matthias; Öquist, Mats; Crill, Patrick; Nilsson, Mats

    2016-04-01

    Partitioning net ecosystem CO2 exchange (NEE) into its different flux components is crucial as it provides a mechanistic framework to better assess how the terrestrial carbon cycle may respond to projected environmental change. This is especially important for northern boreal peatlands, which store approximately one-quarter of the world's soil carbon and yet at the same time are projected to experience some of the greatest environmental changes in the future. Using an experimental setup with automated chambers for measuring NEE (transparent chambers), ecosystem respiration (Reco; opaque chambers) and heterotrophic respiration (Rh; opaque chambers on vegetation-free trenched plots) in combination with continuous measurements of δ13C using near-infrared, diode-laser-based cavity-ring down spectroscopy (Picarro G1101-i analyzer), we partitioned NEE of CO2 into gross primary productivity (GPP), ecosystem respiration (Reco), heterotrophic respiration (Rh) and autotrophic respiration (Ra) using two different approaches (i.e., chamber- and isotope-based methods) in a boreal peatland in northern Sweden (Degerö). Given that δ13C was continuously measured in each chamber, we were also able to further partition Rh into soil organic matter (SOM) mineralization by saprotrophic microbes and the oxidation of methane (CH4) by methanotrophic bacteria. During the ten day measurement period (in late July 2014), the average daily NEE flux at the mire was -0.6 g C m-2 d-1. Overall, the two partitioning approaches yielded similar estimates for the different NEE component fluxes. Average daily fluxes of Rh and Ra were similar in magnitude, yet these two flux components showed contrasting diurnal responses: Ra was greatest during the day whereas there was little diurnal variation in Rh. In general, average 13C signature of CO2 efflux from the Rh chambers (-41.1 ± 0.6 ‰) was between the 13C signature of SOM (-25.8 ± 0.6 ‰) and CH4 in pore water (-69.0 ± 0.8 ‰). Assuming that

  16. Comparison of acetate turnover in methanogenic and sulfate- reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: Evidence for isotopic exchange

    NARCIS (Netherlands)

    De Graaf, W.; Wellsbury, P.; Parkes, R.J.; Cappenberg, T.E.

    1996-01-01

    Acetate turnover in the methanogenic freshwater anoxic sediments of Lake Vechten, The Netherlands, and in anoxic sediments from the Tamar Estuary, United Kingdom, and the Grosser Jasmunder Bodden, Germany, the latter two dominated by sulfate reduction, was determined, Stable isotopes and radioisotop

  17. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Daniel Paech

    Full Text Available BACKGROUND AND PURPOSE: Nuclear Overhauser Enhancement (NOE mediated chemical exchange saturation transfer (CEST is a novel magnetic resonance imaging (MRI technique on the basis of saturation transfer between exchanging protons of tissue proteins and bulk water. The purpose of this study was to evaluate and compare the information provided by three dimensional NOE mediated CEST at 7 Tesla (7T and standard MRI in glioblastoma patients. PATIENTS AND METHODS: Twelve patients with newly diagnosed histologically proven glioblastoma were enrolled in this prospective ethics committee-approved study. NOE mediated CEST contrast was acquired with a modified three-dimensional gradient-echo sequence and asymmetry analysis was conducted at 3.3 ppm (B1 = 0.7 µT to calculate the magnetization transfer ratio asymmetry (MTR(asym. Contrast enhanced T1 (CE-T1 and T2-weighted images were acquired at 3T and used for data co-registration and comparison. RESULTS: Mean NOE mediated CEST signal based on MTR(asym values over all patients was significantly increased (p<0.001 in CE-T1 tumor (-1.99 ± 1.22%, tumor necrosis (-1.36 ± 1.30% and peritumoral CEST hyperintensities (PTCH within T2 edema margins (-3.56 ± 1.24% compared to contralateral normal appearing white matter (-8.38 ± 1.19%. In CE-T1 tumor (p = 0.015 and tumor necrosis (p<0.001 mean MTR(asym values were significantly higher than in PTCH. Extent of the surrounding tumor hyperintensity was smaller in eight out of 12 patients on CEST than on T2-weighted images, while four displayed at equal size. In all patients, isolated high intensity regions (0.40 ± 2.21% displayed on CEST within the CE-T1 tumor that were not discernible on CE-T1 or T2-weighted images. CONCLUSION: NOE mediated CEST Imaging at 7 T provides additional information on the structure of peritumoral hyperintensities in glioblastoma and displays isolated high intensity regions within the CE-T1 tumor that cannot be acquired on CE-T1 or T2

  18. Isotopic geology

    International Nuclear Information System (INIS)

    Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)

  19. Preliminary geothermal model of volcanic areas in Ecuador based on chemical and isotopic investigation of thermal indicators

    International Nuclear Information System (INIS)

    Since 1986, the waters and gases of eight geothermal areas have been sampled and analysed to establish their chemical and isotopic composition. In Chachimbiro and Cuicocha 18O enrichment up to 5% and deuterium enrichment up to 20% have been observed. The isotopic variations seen in Chachimbiro could be explained by hypothetical deep geothermal water with a temperature range from 240 deg. C to surface temperature. The values observed in Cuicocha, on the other hand, are due to mixing of hot groundwater with fresh lagoon water. In other areas, the isotopic composition of the thermal waters basically corresponds to that of meteoric water falling from various altitudes ranging from 2500 to 4200 m above sea level. The Na/K ratios indicate reservoir temperatures for the chloride waters emerging in the Chachimbiro, Cuenca and Papallacta geothermal areas of approximately 240 deg. C, 210 deg. C and 200 deg. C, respectively. From the data on the Chalupas caldera it is impossible to construct any reasonable theory regarding the presence of a deep, high-temperature aquifer. Tungurahua volcano samples consist of sulphuric acid water with an isotopic composition similar to waters evaporating at about 200 deg. C. The number of samples from the Chimborazo area was too low to justify any assumptions about the thermal characteristics of the water. The waters in Tufino originate in surface aquifers modified by hot gases registering 230 deg. C on the geothermometers. (author). 24 refs, 12 figs, 1 tab

  20. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet

    Science.gov (United States)

    Xiao, Yan; Teng, Fang-Zhen; Su, Ben-Xun; Hu, Yan; Zhou, Mei-Fu; Zhu, Bin; Shi, Ren-Deng; Huang, Qi-Shuai; Gong, Xiao-Han; He, Yong-Sheng

    2016-03-01

    We present high-precision measurements of iron (Fe) and magnesium (Mg) isotopic compositions of olivine, orthopyroxene, and chromite separates from harzburgites, dunites, and chromitites in the mantle section of the Luobusa ophiolite, southern Tibet, to investigate the origins of podiform chromitite. Two harzburgites in the Zedong ophiolite, southern Tibet, are also reported for comparison. The olivine and orthopyroxene in the Luobusa and Zedong harzburgites have similar Fe and Mg isotopic compositions, with δ56Fe values ranging from 0‰ to +0.083‰ in olivine, from -0.034‰ to +0.081‰ in orthopyroxene and δ26Mg values ranging from -0.25‰ to -0.20‰ in olivine, from -0.29‰ to -0.26‰ in orthopyroxene, respectively. The olivines of two dunites from the Luobusa display small Fe and Mg isotopic variations, with δ56Fe values of +0.014‰ and +0.116‰ and δ26Mg values of -0.21‰ and -0.29‰. All chromites in the Luobusa chromitites have lighter Fe isotopic compositions than the coexisting olivines, with δ56Fe values ranging from -0.247‰ to +0.043‰ in chromite and from -0.146‰ to +0.215‰ in olivine (Δ56FeChr-Ol = -0.294 to -0.101‰). The chromite δ26Mg values span a significant range from -0.41‰ to +0.14‰. Large disequilibrium Fe and Mg isotope fractionation between chromite and olivine, as well as positive correlation of chromite δ56Fe values with their MgO contents, could be attributed to Fe-Mg exchange between chromite and olivine. In the disseminated chromitites, the higher modal abundances of olivine than chromite would result in a more extensive Fe-Mg exchange, whereas chromite in the massive chromitite where olivine is rare could not be affected by this process.

  1. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO3-, OH- and BO3- environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  2. Partitioning Net Ecosystem Carbon Exchange Into net Assimilation and Respiration With Canopy-scale Isotopic Measurements: an Error Propagation Analysis With Both 13C and 18O Data

    Science.gov (United States)

    Peylin, P.; Ogee, J.; Cuntz, M.; Bariac, T.; Ciais, P.; Brunet, Y.

    2003-12-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of non-foliar respiration (FR) and gross photosynthesis (FA). However the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes and a rigorous estimation of the errors on FA and FR is needed. In this study we account and propagate uncertainties on all terms in the mass balance equations for total and "labeled" CO2 in order to get precise estimates of the errors on FA and FR. We applied our method to a maritime pine forest in the Southwest of France. Using the δ 13C-CO2 and CO2 measurements, we show that the resulting uncertainty associated to the gross fluxes can be as large as 4 æmol m-2 s-1. In addition, even if we could get more precise estimates of the isoflux and the isotopic signature of FA we show that this error would not be significantly reduced. This is because the isotopic disequilibrium between FA and FR is around 2-3‰ , i.e. the order of magnitude of the uncertainty on the isotopic signature of FR (δ R). With δ 18O-CO2 and CO2 measurements, the uncertainty associated to the gross fluxes lies also around 4 æmol m-2 s-1. On the other hand, it could be dramatically reduced if we were able to get more precise estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 10-15‰ , i.e. much larger than the uncertainty on δ R. The isotopic disequilibrium between FA and FR or the uncertainty on δ R vary among ecosystems and over the year. Our approach may help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  3. Radiosynthesis of [18F]fluorophenyl-L-amino acids by isotopic exchange on carbonyl-activated precursors

    International Nuclear Information System (INIS)

    Aromatic [18F]fluoroamino acids have earlier been developed as promising probes for diagnostics using PET. However, a wider use of these radiofluorinated compounds has been limited due to radiosynthetic constraints. The work here presents an amenable three-step radiosynthesis pathway for the preparation of 2-[18F]fluoro-L-phenylalanine (2-[18F]Fphe), 2-[18F]fluoro-L-tyrosine (2-[18F]Ftyr), 6-[18F]fuoro-L-m-tyrosine (6-[18F]Fmtyr) and 6-[18F]fluoro-L-DOPA (6-[18F]FDOPA). For this, corresponding precursors were 18F-fluorinated by nucleophilic isotopic exchange, followed by either removal of an activating formyl group with Rh(PPh3)3Cl or its conversion by Baeyer-Villiger oxidation, respectively, and subsequent hydrolysis of protecting groups in acidic medium. Two efficient synthetic approaches were developed for the preparation of highly functionalized fluoro-benzaldehydes and -ketones which were used as labeling precursors. The compounds (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carboxylate (1a), (2S,5S)-tert-butyl 5-(5-acetyl-2-fluorobenzyl)-2-tert-butyl-3-methyl-4-oxoimidazolidine-1 -carboxylate (1c), (2S,5S)-benzyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carbo-xylate (1d), 4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thyl)b enzal-dehyde (1e) and 1-(4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thy l)phenyl)ethanone (1f), could be prepared in six steps and overall yields of 41%, 48%, 37%, 27%, and 32%, respectively. (2S,5S)-tert-Butyl 5-(4-(benzyloxy)-2-fluoro-5-formylbenzyl)-2-tert-butyl-3-methyl-4 -oxoimidazolidi ne-1-carboxylate (1b) was prepared in ten steps with an overall yield of 19% while compounds (2S,5S)-tert-butyl 5-(5-(3,5-bis(trifluoromethyl)-benzoyl)-2-fluorobenzyl)-2-tert-butyl-3 -methyl-4-oxoimidazolidine-1-carboxylate (1g) and (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-(2,2,2-trifluoroacetyl)benzyl)-3-methyl

  4. Radiosynthesis of [{sup 18}F]fluorophenyl-L-amino acids by isotopic exchange on carbonyl-activated precursors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Melean, Johnny

    2011-02-01

    Aromatic [{sup 18}F]fluoroamino acids have earlier been developed as promising probes for diagnostics using PET. However, a wider use of these radiofluorinated compounds has been limited due to radiosynthetic constraints. The work here presents an amenable three-step radiosynthesis pathway for the preparation of 2-[{sup 18}F]fluoro-L-phenylalanine (2-[{sup 18}F]Fphe), 2-[{sup 18}F]fluoro-L-tyrosine (2-[{sup 18}F]Ftyr), 6-[{sup 18}F]fuoro-L-m-tyrosine (6-[{sup 18}F]Fmtyr) and 6-[{sup 18}F]fluoro-L-DOPA (6-[{sup 18}F]FDOPA). For this, corresponding precursors were {sup 18}F-fluorinated by nucleophilic isotopic exchange, followed by either removal of an activating formyl group with Rh(PPh{sub 3}){sub 3}Cl or its conversion by Baeyer-Villiger oxidation, respectively, and subsequent hydrolysis of protecting groups in acidic medium. Two efficient synthetic approaches were developed for the preparation of highly functionalized fluoro-benzaldehydes and -ketones which were used as labeling precursors. The compounds (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carboxylate (1a), (2S,5S)-tert-butyl 5-(5-acetyl-2-fluorobenzyl)-2-tert-butyl-3-methyl-4-oxoimidazolidine-1 -carboxylate (1c), (2S,5S)-benzyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carbo-xylate (1d), 4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thyl)b enzal-dehyde (1e) and 1-(4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thy l)phenyl)ethanone (1f), could be prepared in six steps and overall yields of 41%, 48%, 37%, 27%, and 32%, respectively. (2S,5S)-tert-Butyl 5-(4-(benzyloxy)-2-fluoro-5-formylbenzyl)-2-tert-butyl-3-methyl-4 -oxoimidazolidi ne-1-carboxylate (1b) was prepared in ten steps with an overall yield of 19% while compounds (2S,5S)-tert-butyl 5-(5-(3,5-bis(trifluoromethyl)-benzoyl)-2-fluorobenzyl)-2-tert-butyl-3 -methyl-4-oxoimidazolidine-1-carboxylate (1g) and (2S,5S

  5. Novel Chemically Stable Er3+-Yb3+ Codopded Phosphate Glass for Ion-Exchanged Active Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 赵士龙; 胡丽丽

    2003-01-01

    A novel Er3+-Yb3+ codoped phosphate glass,which combines good chemical durability with good spectroscopic properties,is developed for the ion-exchange process.The relevant properties of this glass are presented for reference in the design and modelling of ion-exchanged active waveguide devices.The weight-loss rate of this glass is 1.45 × 10-5 g.cm-2.h-1 in boiling water,which is comparable to that of Kigre's Q-246 silicate glass.The emission cross section of Er3+ in this glass is calculated to be 0.72 × 10-20 cm2 using the McCumber theory.It is found that a planar waveguide with three modes at 632.8 nm is readily realized in this glass from our primary ion-exchange experiments.

  6. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  7. Origin of the thermal waters of Stabio (Switzerland) and Sirmione (Italy) based on isotope and chemical investigations

    International Nuclear Information System (INIS)

    The study area is located in Southern Switzerland near the Swiss boundary and in Northern Italy, at the Garda Lake. The thermal waters of Stabio and Sirmione as well as the mineral water of Salo were investigated with hydrochemical and isotope methods as tritium, stable isotopes and also 36Cl, radon and uranium. The results of these investigations clearly indicate that the waters of Stabio and Sirmione have a different origin than the normal shallow groundwater of the today's meteoric water cycle. They may be linked to the deep tectonic fault zones and induced flow systems. Also its chemical composition reflects a strong influence of water rock interaction processes or of a mixing component of an original deep sedimentary brine (author)

  8. Origin of the thermal waters of Stabio (Switzerland) and Sirmione (Italy) based on isotope and chemical investigations

    International Nuclear Information System (INIS)

    The study areas are located in Southern Switzerland near the Swiss boundary to Italy and in Northern Italy, at Garda Lake. The thermal waters of Stabio and Sirmione as well as the mineral water of Salo were investigated with hydrochemical and isotopic methods in which tritium, stable isotopes as well as 36C1, Radon and Uranium were measured. The results of these investigations clearly indicate that the waters of Stabio and Sirmione have a different origin than the normal shallow groundwater arising from the present day meteoric water cycle. Both areas may be linked to deep tectonic fault zones and induced flow systems. Furthermore, its chemical composition reflects a strong influence of water rock interaction processes and/or of mixing components of original deep sedimentary brine with a shallow groundwater. Interaction with the uprising CO2 also takes place. (author)

  9. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  10. Chemical assessment of ballast water exchange compliance: Implementation in North America and New Zealand

    Directory of Open Access Journals (Sweden)

    Monaca eNoble

    2016-05-01

    Full Text Available Fluorescence by naturally occurring dissolved organic matter (FDOM is a sensitive indicator of ballast water source, with high FDOM in coastal ballast water decreasing typically dramatically when replaced by oceanic seawater during ballast water exchange. In this study, FDOM was measured in 92 ships arriving at Pacific ports on the US west coast and in New Zealand, and used to assess their compliance with ballast water regulations that required 95% replacement of port water to minimize invasive species risks. Fluorescence in many ships that reported ballast water exchange was significantly higher than is usual for oceanic seawater, and in several cases, significantly higher than in other ships with similar provenance and ballast water management. Pre-exchange source port conditions represented the largest source of uncertainty in the analysis, because residual coastal FDOM when highly fluorescent can significantly influence the fluorescence signature of exchanged ballast water. A meta-analysis comparing the intensities of FDOM in un-exchanged ballast tanks with calculated pre-exchange intensities assuming that ships all correctly implemented and reported ballast water exchange revealed notable discrepancies. Thus, the incidence of high-FDOM port waters was seven times lower in reality than would be expected on the basis of these calculations. The results suggest that a significant rate of reporting errors occur due to a combination of factors that may include inadequate ballast water exchange and unintentional or deliberate misreporting of ballast water management.

  11. Ion Exchange Processed CdS Nanorods in Powder Form Using Cadmium Hydroxide Nanowires By Wet Chemical Route

    Directory of Open Access Journals (Sweden)

    Savita L. Patil

    2010-06-01

    Full Text Available Simple, inexpensive and soft chemical route (wet chemical method was employed for the synthesis of bulk forms of cadmium hydroxide [Cd(OH2] nanowires bundles and their conversion to cadmium sulphide [CdS] nanorods at room temperature by simple anion exchange route. Due to difference in solubility product and diffusion rates of the Cd(OH2 and CdS, the anion exchange reaction was taken place and CdS nanorods were formed. CdS nanorods were characterized by X-ray diffraction (XRD, and scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis. Since CdS is semi-conducting material, it has variety of potential applications, this work demonstrates a cost effective method for the synthesis of CdS nanorods in bulk form like CNT.

  12. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Hung-Chun [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); You, Chen-Feng, E-mail: cfy20@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); Sun, Chih-Hsien [Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan (China)

    2010-03-15

    Mud volcanoes are important pathways for CH{sub 4} emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH{sub 4} were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH{sub 4} (>90%), 'air' (i.e. N{sub 2} + O{sub 2} + Ar, 1-5%) and CO{sub 2} (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH{sub 4} concentration (CH{sub 4} > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO{sub 2} up to 85%, and much lower CH{sub 4} content (<37%). High CH{sub 4} content (>90%) with low CO{sub 2} (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C{sub 1} (methane)/C{sub 2} (ethane) + C{sub 3} (propane) and {delta}{sup 13}C{sub CH4} results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH{sub 4} concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH{sub 4} emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH{sub 4} could contribute up to 10% of total natural CH{sub 4} emissions in Taiwan.

  13. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging.

    Science.gov (United States)

    Kim, Jinsuh; Wu, Yin; Guo, Yingkun; Zheng, Hairong; Sun, Phillip Zhe

    2015-01-01

    Chemical exchange saturation transfer (CEST) MRI is a versatile imaging method that probes the chemical exchange between bulk water and exchangeable protons. CEST imaging indirectly detects dilute labile protons via bulk water signal changes following selective saturation of exchangeable protons, which offers substantial sensitivity enhancement and has sparked numerous biomedical applications. Over the past decade, CEST imaging techniques have rapidly evolved owing to contributions from multiple domains, including the development of CEST mathematical models, innovative contrast agent designs, sensitive data acquisition schemes, efficient field inhomogeneity correction algorithms, and quantitative CEST (qCEST) analysis. The CEST system that underlies the apparent CEST-weighted effect, however, is complex. The experimentally measurable CEST effect depends not only on parameters such as CEST agent concentration, pH and temperature, but also on relaxation rate, magnetic field strength and more importantly, experimental parameters including repetition time, RF irradiation amplitude and scheme, and image readout. Thorough understanding of the underlying CEST system using qCEST analysis may augment the diagnostic capability of conventional imaging. In this review, we provide a concise explanation of CEST acquisition methods and processing algorithms, including their advantages and limitations, for optimization and quantification of CEST MRI experiments. PMID:25641791

  14. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    Science.gov (United States)

    Patchett, P. J.

    1983-01-01

    The Lu-176-Hf-176 isotope method and its applications in earth sciences are discussed with regard to planetary-evolution studies. From new data on basalts from oceanic islands, Hf-176/Hf-177 and Nd-143/Nd-144 are found to display a single linear isotopic variation in the suboceanic mantle, whereas considerable divergences occur in Hf-176/Hf-177-Sr-87/Sr-86 and Nd-143/Nd-144-Sr87/Sr-86 diagrams. With the acquisition of further Hf-Sr-Nd isotopic data, these discordant Sr-87/Sr-86 relationships may allow a distinction between processes such as mantle metasomatism, influence of sea-water altered material in the magma source, or recycling of sediments into the mantle. The best quality Hf isotope data are obtained from granitoid or zircons, and are most suitable for studying ancient terrestrial Hf isotopic variations. Lu-Hf is shown to be a viable method for dating ancient terrestrial and extraterrestrial samples, but is unlikely to find wide application in pure chronological studies because it offers little advantage over existing methods.

  15. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS

    DEFF Research Database (Denmark)

    Schiller, Martin; Paton, C.; Bizzarro, Martin

    2012-01-01

    We report a novel approach for the chemical purification of Ca from silicate rocks by ion-exchange chromatography, and a highly-precise method for the isotopic analysis of Ca - including the smallest isotope Ca (0.003%) - by high-resolution multiple collector inductively coupled plasma source mas...

  16. Synthesis and radioiodination of di-iodo-Evan's blue via isotopic exchange reaction in the molten state and evaluation of the kinetics

    Energy Technology Data Exchange (ETDEWEB)

    El-Azony, K.M. [Research Center Juelich (Germany). Inst. of Nuclear Chemistry]|[Hot Lab. Center, Cairo (Egypt). Radioactive Isotopes and Generators Dept.; Bier, D.; Coenen, H.H. [Research Center Juelich (Germany). Inst. of Nuclear Chemistry

    2004-07-01

    Many aryl halides were synthesized from aryl amines such as iodo-trypan, iodo-methylene blue and iodo-toluidine. Methylene blue and toludine blue are phenothiazinium dyes and were used to localize parathyroid glands visually during surgery. Radioiodination of these compounds by using iodine-123 analogues for scintgraphic localization of parathyroids was reported. Radiolabelled dyes administered may also localize in tumor tissues. Evan's blue dye was used to study altered sarcolemmal permeability in dystrophic muscle fibers, and in animals to study muscular dystrophy. In this work Diiodo-Evan's blue was synthesized via Sandmeyer reaction and characterized by mass spectrum analysis. A procedure for labelling DIEB with Na{sup 131}I via isotopic exchange in molten medium was developed. The labelling conditions studied for the isotopic exchange of {sup 131}I-for-I in DIEB included the effect of temperature and solvents (melt of acetamide, benzoic and pivalic acid). Kinetic studies were performed to obtain [{sup 131}I] DIEB with more reliable reaction conditions. Quality control for the final product ([{sup 131}I] DIEB) was performed by HPLC. (orig.)

  17. Quasiclassical trajectory studies of 18O(3P) + NO2 isotope exchange and reaction to O2 + NO on D0 and D1 potentials

    Science.gov (United States)

    Fu, Bina; Zhang, Dong H.; Bowman, Joel M.

    2013-07-01

    We report quasiclassical trajectory calculations for the bimolecular reaction 18O(3P) + NO2 on the recent potential energy surfaces of the ground (D0) and first excited (D1) states of NO3 [B. Fu, J. M. Bowman, H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory. Comput. 9, 893 (2013)], 10.1021/ct3009792. The branching ratio of isotope exchange versus O2 + NO formation, as well as the product angular distributions and energy and rovibrational state distributions are presented. The calculations are done at the collision energy of relevance to recent crossed beam experiments [K. A. Mar, A. L. Van Wyngarden, C.-W. Liang, Y. T. Lee, J. J. Lin, and K. A. Boering, J. Chem. Phys. 137, 044302 (2012)], 10.1063/1.4736567. Very good agreement is achieved between the current calculations and these experiments for the branching ratio and final translational energy and angular distributions of isotope exchange products 16O(3P) + NO2 and O2 + NO formation products. The reactant 18O atom results in 18O16O but not N18O for the O2 + NO formation product channel, consistent with the experiment. In addition, the detailed vibrational and rotational state information of diatomic molecules calculated currently for the 34O2 + NO formation channel on D0 and D1 states are in qualitative agreement with the previous experimental and theoretical results of the photodissociation of NO3 and are consistent with older thermal bimolecular kinetics measurements.

  18. Chemical evolution of Mg isotopes versus the time variation of the fine structure constant

    International Nuclear Information System (INIS)

    We show that the synthesis of Mg25,26 at the base of the convective envelope in low-metallicity asymptotic giant branch stars can produce the isotopic ratios needed to explain the low-z subset (with z<1.8) of the many-multiplet data from quasar absorption systems without invoking a time variation of the fine structure constant. This is supported by observations of high abundances of the neutron-rich Mg isotopes in metal-poor globular-cluster stars. We conclude that the quasar absorption spectra may be providing interesting information on the nucleosynthetic history of such systems

  19. Inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The application of inorganic ion exchangers and adsorbents to both waste treatment and the recovery of fission products and actinides were of primary concern at this meeting. The meeting covered the two major fields of fundamental studies and industrial applications

  20. Chemical exchange saturation transfer of the cervical spinal cord at 7 T.

    Science.gov (United States)

    Dula, Adrienne N; Pawate, Siddharama; Dethrage, Lindsey M; Conrad, Benjamin N; Dewey, Blake E; Barry, Robert L; Smith, Seth A

    2016-09-01

    High-magnetic-field (7 T) chemical exchange saturation transfer (CEST) MRI provides information on the tissue biochemical environment. Multiple sclerosis (MS) affects the entire central nervous system, including the spinal cord. Optimal CEST saturation parameters found via simulation were implemented for CEST MRI in 10 healthy controls and 10 patients with MS, and the results were examined using traditional asymmetry analysis and a Lorentzian fitting method. In addition, T1 - and T2 *-weighted images were acquired for lesion localization and the transmitted B1 (+) field was evaluated to guide imaging parameters. Distinct spectral features for all tissue types studied were found both up- and downfield from the water resonance. The z spectra in healthy subjects had the expected z spectral shape with CEST effects apparent from 2.0 to 4.5 ppm. The z spectra from patients with MS demonstrated deviations from this expected normal shape, indicating this method's sensitivity to known pathology as well as to tissues appearing normal on conventional MRI. Examination of the calculated CESTasym revealed increased asymmetry around the amide proton resonance (Δω = 3.5 ppm), but it was apparent that this measure is complicated by detail in the CEST spectrum upfield from water, which is expected to result from the nuclear Overhauser effect. The z spectra upfield (negative ppm range) were also distinct between healthy and diseased tissue, and could not be ignored, particularly when considering the conventional asymmetry analysis used to quantify the CEST effect. For all frequencies greater than +1 ppm, the Lorentzian differences (and z spectra) for lesions and normal-appearing white matter were distinct from those for healthy white matter. The increased frequency separation and signal-to-noise ratio, in concert with prolonged T1 at 7 T, resulted in signal enhancements necessary to detect subtle tissue changes not possible at lower field strengths. This study

  1. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    Science.gov (United States)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  2. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C in the ocean

    Directory of Open Access Journals (Sweden)

    A. Schmittner

    2013-09-01

    Full Text Available Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease δ13CDIC values of colder (warmer water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air–sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air–sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air–sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface

  3. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.

    Science.gov (United States)

    Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong

    2016-08-01

    The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded. PMID:27080408

  4. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.

    Science.gov (United States)

    Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong

    2016-08-01

    The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded.

  5. Unusual diagenetic alteration of volcanoclastic sediments in the Tonga fore-are: Evidence from chemical and strontium isotopic compositions of interstitial waters

    Science.gov (United States)

    Blanc, Gérard; Vitali, Frédéric; Stille, Peter

    1995-11-01

    The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl 2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H 2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO 4, HCO 3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,≤1,000 years). The extensive diagenetic processes in the Tonga margin were mostly caused by the recent intrusion of andesite sills and dikes into the Miocene sediments.

  6. Assessment of chemical exchange in tryptophan–albumin solution through 19F multicomponent transverse relaxation dispersion analysis

    International Nuclear Information System (INIS)

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T2 relaxation into Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of 19F T2 relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T2 relaxation curve acquired, for example, at the CPMG frequency υCPMG = 125, the nature of two distinct peaks in the associated T2 distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T2 peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan–albumin complex in the chemical-exchanging, two-compartment system

  7. Assessment of chemical exchange in tryptophan–albumin solution through {sup 19}F multicomponent transverse relaxation dispersion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping-Chang, E-mail: pingchang.lin@howard.edu [Howard University, Department of Radiology, College of Medicine (United States)

    2015-06-15

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T{sub 2} relaxation into Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of {sup 19}F T{sub 2} relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T{sub 2} relaxation curve acquired, for example, at the CPMG frequency υ{sub CPMG} = 125, the nature of two distinct peaks in the associated T{sub 2} distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T{sub 2} peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan–albumin complex in the chemical-exchanging, two-compartment system.

  8. Chemical and isotopic study of thermal springs and gas discharges from Sierra de Chiapas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nencetti, A; Tassi, F; Vaselli, O [Department of Earth Sciences, Florence (Italy); Macias, J. L [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Magro, G [CNR-Institute of Geosciences and Earth Resources, Pisa (Italy); Capaccioni, B [Institute of Volcanology and Geochemistry, Urbino (Italy); Minissale, A [CNR-Institute of Geosciences and Earth Resources, Florence (Italy); Mora, J. C [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico)

    2005-01-15

    Thermal water and gas discharges south-east of El Chichon volcano, Mexico are associated mainly with NW-SE oriented fault systems. Spring discharges include i) waters with Na-Cl composition and TDS>3000 mg/L; ii) waters with Ca-SO{sub 4} composition and TDS values between 1400 and 2300 mg/L; iii) waters with Na-Cl composition and TDS of 800 to 2400 mg/L and sulphate content up to 650 mg/L and iv) waters with Ca-HCO{sub 3} composition and low salinity (TDS <250mg/L). Most of these waters are associated with free-gas discharges of N{sub 2} (up to 93 % by vol.), CO{sub 2} (2.4 to 31.2 % by vol.) and Ar (up to 1.25 % by vol.) with a predominant meteoric origin. H{sub 2}S is present only in gas samplers collected at El Azufre (up to 1.1 % by vol.). The {delta}13C CO{sub 2} values are always below -9.7% (PDB) and suggest a partially biogenic origin for CO{sub 2}. Chemical and isotopic features of spring discharges indicate that fluid circulation in the Sierra de Chiapas is mainly regulated by meteoric waters that tend to infiltrate the upper and middle-Cretaceous carbonate units up to the lower Cretaceous-upper Jurassic evaporitic formations (by Lopez-Ramos, 1982). The latter provide the main source of the species in solution. No evidence for high-to-medium enthalpy systems at depth beneath the Sierra de Chiapas has been found. [Spanish] La Sierra de Chiapas localizada en el Sureste de Mexico, se caracteriza por la presencia de descargas de gas y agua. La mayoria de los manantiales termales se asocian a rocas volcanicas Terciarias a lo largo de fallas regionales con orientacion NOSE. Las descargas termales se dividen en cuatro grupos: i) aguas con composicion Na-Cl y Solidos Disueltos Totales (SDT) >3000 mg/L; ii) aguas con composicion Ca-SO{sub 4} y valores de SDT entre 1400 y 2300 mg/L; iii) aguas con composicion Na-Cl, bajos contenidos de SDT (800 2400 mg/L) y un contenido de sulfato alto (hasta 650 mg/L) y iv) aguas con una composicion Ca-HCO{sub 3} y salinidad baja

  9. Chlorine isotope enrichment on a strong alkaline anion exchanger in dependence of type and concentration of the strange electrolytic solution

    International Nuclear Information System (INIS)

    Chlorine isotope enrichment for heterogenous ionexchange equilibria was studied. The dependence of element separation effects on the anion of the strange electrolyte (for same cation), on the cation of the strange electrolyte (for same anion), on the concentration of the strange electrolyte and also on the acetone: water ratio of the solvent was investigated. (orig./HBR)

  10. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    Science.gov (United States)

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  11. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  12. Chemical and isotopic characteristics of a glacier-derived naled in front of Austre Grønfjordbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    Jacob C. Yde

    2012-03-01

    Full Text Available The chemical and stable isotope composition of a glacier-derived naled in front of the glacier Austre Grønfjordbreen, Svalbard, is examined to elucidate how secondary processes such as preferential retention and leaching affect naled chemistry. Internal candle ice layers have a chemical composition almost similar to that of the lower stratified granular ice layer, whereas the upper granular ice layer has a significantly different composition, which resembles the composition found in glacier meltwater. Grey, platy cryogenic calcite precipitates are found in clusters on the surface of the naled assemblage, indicating preferential retention of Ca2 +  and HCO3 −. This process is particular pronounced in the distal part of the naled. The isotopic composition in the naled is in accordance with the local meteoric water line and without indications of kinetic fractionation during freezing. The ability to form ice-marginal naled indicates that Austre Grønfjordbreen has the high meltwater storage potential required for triggering a glacier surge event.

  13. Principles of stable isotope distribution

    CERN Document Server

    Criss, Robert E

    1999-01-01

    1. Abundance and Measurement of Stable Isotopes 1.1. Discovery of Isotopes 1.2. Nuclide Types, Abundances, and Atomic Weights 1.3. Properties and Fractionation of Isotopic Molecules 1.4. Material Balance Relationships 1.5. Mass Spectrometers 1.6. Notation and Standards 1.7. Summary 1.8. Problems References 2. Isotopic Exchange and Equilibrium Fractionation 2.1. Isotopic Exchange Reactions 2.2. Basic Equations 2.3. Molecular Models 2.4. Theory of Isotopic Fractionation 2.5. Temperature Dependence of Isotopic Fractionation Factors 2.6. Rule of the Mean 2.7. Isotopic Thermometers

  14. Isotopic and chemical characteristics of water in the basin of Gafsa,Tunisia

    International Nuclear Information System (INIS)

    Water in the basin of Gafsa in characterized by a very negative 18O contens (-0.7 to -0.76% vs SMOW). These contents differ from the average recorded for precipitation in Tunis-Carthage (-0.5% vs SMOW). The dating with 14C demonstrated that the recharge of the water table dates back to a period relatively ancient probably the humid Holocen. These isotopic analysis (18O, 2H, 14C) permitted to better specify the origin of the underground water, the communications between the different levels of aquifers, the refill and the age of waters. However, additional isotopic analysis are necessary for a better appraisal of these interpretations (author)

  15. Heat recovery from a spray dryer using a glass tube heat exchanger. A demonstration at ABM Chemicals, Gloucester

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This project at ABM Chemicals demonstrates the use of a glass tube heat exchanger to recover heat directly from a spray dryer exhaust to pre-heat the inlet air. It was originally envisaged that this would reduce the energy consumption of the dryer by around 20%. The background to the project, the results to date, corrosive nature of exhaust and expected savings are discussed. Reduced performance, believed to be due to a higher-than-anticipated level of fines in the exhaust, leading to fouling of the heat transfer surfaces, and eventually to the failure of a number of the glass tubes is described. Measures are currently in hand to reduce the carryover and further monitoring of the replacement exchanger is planned.

  16. Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis.

    OpenAIRE

    Jahnke, L L; Summons, R E; Dowling, L M; Zahiralis, K D

    1995-01-01

    A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysacchar...

  17. Chemical and isotopic fingerprinting of small ungauged watershed: How far the hydrological functioning can be understood?

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Luck, Jean-Marc; Ben Othman, Dalila; Joseph, Christian; Négrel, Philippe

    2016-05-01

    This study presents the ability of major/trace elements together with strontium isotopes to trace water origins at small scale at the outlet of a small watershed (Peyne, Hérault, France). Two small sub-basins draining distinct lithologies in their headwater (Plio-Villafranchian conglomerate versus Triassic gypsum-rich marls and dolomites) and the Miocene formations downstream are investigated. The Ca/Na vs. Mg/Na ratios and Ca/Sr vs. 87Sr/86Sr ratios allow the different facies that imprint the water signature to be identified, according to the hydrological conditions (low/high flows). Moreover, Sr isotopes evidence the two distinct Miocene facies, the sandy marls and the marine carbonates. The variation of the signature at the outlet of the basin allows identifying the main contributing compartments according to the hydrological conditions. This approach, based on a limited number of samples, highlights the potential of geochemical and isotopic tracers to define the contributing compartments to the runoff at the outlet of a basin. It thus could be considered as a potential alternative way to classical hydrological monitoring to delineate the main contributing areas during floods, especially in small ungauged river basins, where most of the devastating flash floods are recorded.

  18. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    International Nuclear Information System (INIS)

    The 176Lu-176Hf isotope method and its applications in earth sciences are discussed. Greater fractionation of Lu/Hf than Sm/Nd in planetary magmatic processes makes 176Hf/177Hf a powerful geochemical tracer. In general, proportional variations of 176Hf/177Hf exceed those of 143Nd/144Nd by factors of 1.5 to 3 in terrestrial and lunar materials. Lu-Hf studies therefore have a major contribution to make in understanding of terrestrial and other planetary evolution through time, and this is the principal importance of Lu-Hf. New data on basalts from oceanic islands show unequivocally that whereas considerable divergences occur in 176Hf/177Hf-87Sr/ 86Sr and 143Nd/144Nd-87Sr/86Sr diagrams, 176Hf/ 177Hf and 143Nd/144Nd display a single, linear isotopic variation in the suboceanic mantle. These discordant 87Sr/86Sr relationships may allow, with the acquisition of further Hf-Nd-Sr isotopic data, a distinction between processes such as mantle metasomatism, influence of seawater-altered material in the magma source, or recycling of sediments into the mantle. Further applications of the method are discussed. (author)

  19. Chemically modified glasses for analysis of hydrogen isotopes by gas chromatography

    International Nuclear Information System (INIS)

    An extensive experimental research has been carried out by gas chromatographic runs in order to identify the most suitable adsorbents and define the best operated conditions for selective separation and analysis of hydrogen isotopes in near real-time (i.e. less than 10 min.). Preparation and operation procedures of chromatographic column for hydrogen isotope separation have been examined. This is one of the main requirements of the tritium separation from heavy water of CANDU reactor and of the tritium fuel cycle in D-T fusion reactors. This paper describes the preparation of absorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermoresisting glass with Fe(NH4)2(SO4)2 6H2O and Cr2O3, respectively, have been experimentally investigated at 77 K for H2, HD, and D2 separation and the results of chromatographic runs are also reported and discussed. The hydrogen operating conditions of the adsorbent column Fe (III)/glass and Cr2O3/glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been study by means of the analysis of the retention times, separation factors and HETP. (authors)

  20. Calculation of individual isotope equilibrium constants for geochemical reactions

    Science.gov (United States)

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  1. I. Nuclear Production Reaction and Chemical Isolation Procedure for Americium-240 II. New Superheavy Element Isotopes: Plutonium-242(Calcium-48,5n)(285)114

    Science.gov (United States)

    Ellison, Paul Andrew

    2011-12-01

    Part I discusses the study of a new nuclear reaction and chemical separation procedure for the production of 240Am. Thin 242Pu, natTi, and natNi targets were coincidently activated with protons from the 88-Inch Cyclotron, producing 240Am, 48V, and 57Ni, respectively. The radioactive decay of these isotopes was monitored using high-purity Ge gamma ray detectors in the weeks following irradiation. The excitation function for the 242 Pu(p, 3n)240Am nuclear reaction was measured to be lower than theoretical predictions, but high enough to be the most viable nuclear reaction for the large-scale production of 240 Am. Details of the development of a chemical separation procedure for isolating 240Am from proton-irradiated 242Pu are discussed. The separation procedure, which includes two anion exchange columns and two extraction chromatography columns, was experimentally investi- gated using tracer-level 241Am, 239Pu, and model proton-induced fission products 95Zr, 95Nb, 125Sb, and 152Eu. The separation procedure was shown to have an Am/Pu separation factor of >2x10 7 and an Am yield of ˜70%. The separation procedure was found to purify the Am sample from >99.9% of Eu, Zr, Nb, and Sb. The procedure is well suited for the processing of ˜1 gram of proton-irradiated 242Pu to produce a neutron-induced fission target consisting of tens of nanograms of 240Am. Part II describes the use of the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron for the study of the 242Pu(48Ca,5n)285114 nuclear re- action. The new, neutron-deficient, superheavy element isotope 285114 was produced in 48Ca irradiations of 242Pu targets at a center-of-target beam energy of 256 MeV ( E* = 50 MeV). The alpha decay of 285114 was followed by the sequential alpha decay of four daughter nuclides, 281Cn, 277Ds, 273Hs, and 269 Sg. 265Rf was observed to decay by spontaneous fission. The measured alpha-decay Q-values were compared with those from a macroscopic

  2. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    OpenAIRE

    Liu, Xiao-ming; Rudnick, Roberta L.

    2011-01-01

    Chemical weathering, as well as physical erosion, changes the composition and shapes the surface of the continental crust. However, the amount of continental material that has been lost over Earth’s history due to chemical weathering is poorly constrained. Using a mass balance model for lithium inputs and outputs from the continental crust, we find that the mass of continental crust that has been lost due to chemical weathering is at least 15% of the original mass of the juvenile continental ...

  3. Development of hydrophobic catalyst for hydrogen isotope exchange between hydrogen gas and liquid water (Preprint No. CI-2)

    International Nuclear Information System (INIS)

    The exchange of deuterium between hydrogen and water is important for heavy water production. The exchange reaction is too slow and requires a catalyst for any practicability. However usual catalysts lose their catalytic activity in contact with liquid water probably because of water engulfing all the catalytic sites and preventing hydrogen from reaching them. This problem has been overcome by imparting hydrophobicity to these catalysts. A brief account of the development of a hydrophobic catalyst Pt-C-PTFE is given. (author). 16 refs., 4 tabs., 6 figs

  4. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    International Nuclear Information System (INIS)

    Highlights: • Trace element concentrations and lead isotopic ratios were measured in sediment. • Increased element fluxes driven by increased erosion rates linked to land use changes. • Lead isotopic ratios suggest the two sites received lead input from different sources. - Abstract: Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite

  5. Lithium isotope separation by 6Li/7Li countercurrent exchange between lithium-amalgam and aqueous LiOH in a spray column

    International Nuclear Information System (INIS)

    Lithium isotope separation by 6Li/7Li exchange between lithium-amalgam and aqueous LiOH has been investigated by using a column consisting of a vertical Pyrex glass tube in which aqueous LiOH flows up and a fine spray of lithium-amalgam falls down. As the number of theoretical plates, a value of 48 was obtained on a single column while the amalgam stability was η = 0.74, where η is the ratio between Li concentration in amalgam at the column bottom and that at the column top. That is, a large separation may be obtained in a single column in spite of amalgam decomposition which takes place as a side reaction. (author)

  6. Szilard-Chalmers effect and isotopic exchange reactions in a mixed valency compound Tl3(I) (Tl(III)Cl6)

    International Nuclear Information System (INIS)

    Transfer annealing has been studied in solid 204Tl(I) or 204Tl(III) labelled Tl2Cl6. Three steps are evidenced, and the annealing is not influenced by pre-irradiating with gamma-rays, nor by the presence or not of oxygen. Grinding of the samples leads to an important increase of the weight of the step of lowest activation energy, without modifying significantly the activation energy of each step. Isotopic exchange is invoked for explaining the results. Reactor irradiation of the compound leads to a 1/5 proportion for 204Tl(III)/204Tl(I). The evolution of these species on heating is identical to that observed for the labelled samples, which imply a common mechanism. It is therefore suggested the recoil species rapidly stabilize in the lattice in the form of stable chlorinated ions, such as are well known in aqueous solutions

  7. Positive-pion double-charge-exchange reaction: experiments on the isotopic pairs oxygen-16,18 and magnesium-24,26

    International Nuclear Information System (INIS)

    The (π+,π-) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs 1618O and 2426Mg. Energy excitation functions of d sigma/d Ω, across the (3,3) π-N resonance, are presented for transitions to double-isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 50 to 330 are presented for the DIAS from the T = 1 nuclei. The similarities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the 18O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples

  8. Positive-pion double-charge-exchange reaction: experiments on the isotopic pairs oxygen-16,18 and magnesium-24,26

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.J.

    1981-06-01

    The (..pi../sup +/,..pi../sup -/) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs /sup 16/ /sup 18/O and /sup 24/ /sup 26/Mg. Energy excitation functions of d sigma/d ..cap omega.., across the (3,3) ..pi..-N resonance, are presented for transitions to double-isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 5/sup 0/ to 33/sup 0/ are presented for the DIAS from the T = 1 nuclei. The similarities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the /sup 18/O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples.

  9. Determination of wine authenticity and geographical origin by measuring non-exchangeable hydrogen stable isotopes in wine ethanol with EIM-IRMS® methodology in combination with δ18O values obtained from wine water.

    Science.gov (United States)

    Smajlovic, Ivan; Glavanovic, Mirko; Sparks, Kimberlee L.; Sparks, Jed P.; Jovic, Slobodan

    2014-05-01

    Wine consumption has grown significantly in the last two decades, with the United States being the leading consumer of wine in the world. It is also the second largest wine producer and importer after the European Union, which consists of 27 European countries. The world has seen a significant increase in production from new world countries, especially the United States, Australia and Chile, and wine imports have grown significantly with this globalization. The quality and authenticity of products have become critical concerns. With the amount of wine being imported the need for verifying wine authenticity and understanding procedures used in wine making has become more important than ever. Understanding the origin of consumed wine in rapidly expanding global economy has become fundamental in order to control quality and protect consumers. In our previous scientific work we have shown that EIM-IRMS®, Ethanol Isotope Measurement - Isotope Ratio Mass Spectrometry (EIM-IRMS®), is capable of providing unique molecular fingerprint that cannot be reproduced or counterfeited. Today we know that δ18O value from the wine water is one of the most important parameters which can give information about wine geographical origin. Earlier we have suggested that grape juice or grape pulp is a closed biochemical system in which all chemical compounds stand in dynamic equilibrium and are in direct connection with each other. Taking that into consideration we have concluded that if system is genuine and if no water, or no sugar has been added to the grape must or grape juice prior to alcoholic fermentation, then ethanol which is made in process of alcoholic fermentation will have specific δD value of non-exchangeable hydrogen stable isotopes which will be in range from -205 to -215 ‰ vs. V-SMOW. In this work we will show that this value, which we named δDn (non-exchangeable hydrogen stable isotopes in ethanol), is very important because it can support or refute conclusions

  10. Nonuniform isotope patterns produced by collision-induced dissociation of homogeneously labeled ubiquitin: implications for spatially resolved hydrogen/deuterium exchange ESI-MS studies.

    Science.gov (United States)

    Ferguson, Peter L; Konermann, Lars

    2008-06-01

    There is an ongoing debate whether collision-induced dissociation (CID) of electrosprayed proteins after solution-phase hydrogen/deuterium exchange (HDX) is a viable approach for determining spatially resolved deuteration patterns. This work explores the use of two methods, source-CID and hexapole tandem mass spectrometry (MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer, for measuring the fragment deuteration levels of regioselectively labeled ubiquitin. Both methods reveal that b-ions exhibit HDX levels significantly below that of the intact protein, whereas several y'' fragments are labeled to a much greater extent. These results are consistent with earlier source-CID data (Akashi, S.; Naito, Y.; Takio, K. Anal. Chem. 1999, 71, 4974-4980). However, the measured b-ion deuteration levels are in disagreement with the known solution-phase behavior of ubiquitin. Partial agreement is observed for y''-ions. Control experiments on homogeneously labeled ubiquitin (having the same average deuteration level at every exchangeable site) result in highly nonuniform fragment HDX levels. In particular, b-ions exhibit deuteration levels significantly below that of intact ubiquitin, thereby mimicking the behavior seen for the regioselectively labeled protein. This effect is likely caused by isotope fractionation during collisional activation, facilitated by the high mobility of charge carriers (scrambling) in the gas phase. The observation that the b-ion labeling behavior is largely independent of the spatial isotope distribution within solution-phase ubiquitin invalidates these ions as reporters of the protein deuteration pattern. This work questions the common practice of interpreting any nonuniformities in fragment deuteration as being indicative of regioselective solution-phase labeling. Artifactual deuterium enrichment or depletion during collisional activation may have contributed to the current lack of consensus as to whether HDX/CID represents a potentially

  11. Identification of Methanotrophic Lipid Biomarkers in Cold-Seep Mussel Gills: Chemical and Isotopic Analysis

    Science.gov (United States)

    Jahnke, Linda L.; Summons, Roger E.; Dowling, Lesley M.; Zahiralis, Karen D.

    1995-01-01

    A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta-8, delta-10, and delta-ll. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol(11.0% 4(alpha)-methyl-cholesta-8(14), 24-dien-3(beta)-ol) was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3(beta)-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4 per thousand for total tissue, -60.6 and -62.4 per thousand for total lipids, -60.2 and -63.9 per thousand for phospholipid fatty acids, and -71.8 and -73.8 per thousand for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria further supporting the conversion of the bacterial methyl-sterol pool.

  12. Chemical and U-Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France)

    Science.gov (United States)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-10-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca / Na, Mg / Na, and Sr / Na ratios, but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals, and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system, and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured bedrock depleted in 234U), implying (234U/238U) AR below 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the - over time - homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs, depending on the hydrological

  13. Continuous In-situ Measurements of Carbonyl Sulfide (OCS) and Carbon Dioxide Isotopes to Constrain Ecosystem Carbon and Water Exchanges

    Science.gov (United States)

    Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.

    2015-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  14. The Strontium Isotope Record of Zavkhan Terrane Carbonates: Strontium Isotope Stability Through the Ediacaran-Cambrian Transition

    OpenAIRE

    Petach, Tanya N.

    2015-01-01

    First order trends in the strontium isotopic (87Sr/86Sr) composition of seawater are controlled by radiogenic inputs from the continent and non-radiogenic inputs from exchange at mid-ocean ridges. Carbonates precipitated in seawater preserve trace amounts of strontium that record this isotope ratio and therefore record the relative importance of mid-ocean ridge and weathering chemical inputs to sea water composition. It has been proposed that environmental changes during the Ediacaran-Cambria...

  15. Direct High-Precision Measurements of the (87)Sr/(86)Sr Isotope Ratio in Natural Water without Chemical Separation Using Thermal Ionization Mass Spectrometry Equipped with 10(12) Ω Resistors.

    Science.gov (United States)

    Li, Chao-Feng; Guo, Jing-Hui; Chu, Zhu-Yin; Feng, Lian-Jun; Wang, Xuan-Ce

    2015-07-21

    Thermal ionization mass spectrometry (TIMS) allows excellent precision for determining Sr isotope ratios in natural water samples. Traditionally, a chemical separation procedure using cation exchange resin has been employed to obtain a high purity Sr fraction from natural water, which makes sample preparation time-consuming. In this study, we present a rapid and precise method for the direct determination of the Sr isotope ratio of natural water using TIMS equipped with amplifiers with two 10(12) Ω resistors. To eliminate the (87)Rb isobaric interference, Re ribbons are used as filaments, providing a significant advantage over W ribbons in the inhibition of Rb(+) emission, based on systematically examining a series of NIST SRM987 standard doping with various amounts of Rb using Re and W ribbons. To validate the applicability of our method, twenty-two natural water samples, including different water types (rain, snow, river, lake and drinking water), that show a large range in Sr content variations (2.54-922.8 ppb), were collected and analyzed from North and South China. Analytical results show good precision (0.003-0.005%, 2 RSE) and the method was further validated by comparative analysis of the same water with and without chemical separation. The method is simple and rapid, eliminates sample preparation time, and prevents potential contamination during complicated sample-preparation procedures. Therefore, a high sample throughput inherent to the TIMS can be fully utilized.

  16. Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods

    International Nuclear Information System (INIS)

    Chemical exchange saturation transfer (CEST) of metabolite protons that undergo exchange processes with the abundant water pool enables a specific contrast for magnetic resonance imaging (MRI). The CEST image contrast depends on physical and physiological parameters that characterize the microenvironment such as temperature, pH, and metabolite concentration. However, CEST imaging in vivo is a complex technique because of interferences with direct water saturation (spillover effect), the involvement of other exchanging pools, in particular macromolecular systems (magnetization transfer, MT), and nuclear Overhauser effects (NOEs). Moreover, there is a strong dependence of the diverse effects on the employed parameters of radiofrequency irradiation for selective saturation which makes interpretation of acquired signals difficult. This review considers analytical solutions of the Bloch–McConnell (BM) equation system which enable deep insight and theoretical description of CEST and the equivalent off-resonant spinlock (SL) experiments. We derive and discuss proposed theoretical treatments in detail to understand the influence of saturation parameters on the acquired Z-spectrum and how the different effects interfere and can be isolated in MR Z-spectroscopy. Finally, we provide an overview of reported CEST effects in vivo and discuss proposed methods and technical approaches applicable to in vivo CEST studies on clinical MRI systems. (topical review)

  17. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    Science.gov (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  18. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    Science.gov (United States)

    Eisman, G. A.

    1990-02-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes, useful as the proton transport medium and separator. The following work will outline some of the performance characteristics which are typical for such membranes.

  19. Process and Control Design for a Novel Chemical Heat Exchange Reactor

    OpenAIRE

    Haugwitz, Staffan; Hagander, Per; Norén, Tommy

    2006-01-01

    A new chemical reactor, the Open Plate Reactor (OPR), is being developed by Alfa Laval AB. It has a very flexible configuration with distributed inlet ports, cooling zones and internal sensors. This gives the OPR improved control capabilities compared to standard chemical reactors in addition to better heat transfer capacity. In this paper, we address the relationship between the process design, the number of actuators used and how to use these actuators in feedback contro...

  20. Quantitative chemical exchange saturation transfer (qCEST) MRI – Omega plot analysis of RF spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate

    OpenAIRE

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direc...

  1. MRI nanoprobes based on chemical exchange saturation transfer: LnIII chelates anchored on the surface of mesoporous silica nanoparticles

    Science.gov (United States)

    Ferrauto, Giuseppe; Carniato, Fabio; Tei, Lorenzo; Hu, He; Aime, Silvio; Botta, Mauro

    2014-07-01

    The formation of ternary complexes between neutral LnIII-DO3A chelates anchored on MCM-41 mesoporous silica nanoparticles (MSNs) and silanol groups on the surface allows obtaining highly efficient chemical exchange saturation transfer (CEST) MRI nanoprobes. These new probes achieve excellent sensitivity in the μM range (per LnIII ion), significantly greater than that of other paramagnetic CEST nanosystems such as dendrimers or micelles and three orders of magnitude higher than that of the corresponding molecular agents.The formation of ternary complexes between neutral LnIII-DO3A chelates anchored on MCM-41 mesoporous silica nanoparticles (MSNs) and silanol groups on the surface allows obtaining highly efficient chemical exchange saturation transfer (CEST) MRI nanoprobes. These new probes achieve excellent sensitivity in the μM range (per LnIII ion), significantly greater than that of other paramagnetic CEST nanosystems such as dendrimers or micelles and three orders of magnitude higher than that of the corresponding molecular agents. Electronic supplementary information (ESI) available: Synthesis and characterization of the materials; Z- and ST-spectra of all materials; sensitivity threshold for TmDO3A-MCM-41 and EuDO3A-MCM-41 pH and temperature dependence of ST% for TbDO3A-MCM-41. See DOI: 10.1039/c4nr02753a

  2. Kinetic estimation of hydrogen isotope exchange reaction between tritiated-water (HTO) vapor and each amino acid in a heterogeneous system

    International Nuclear Information System (INIS)

    The hydrogen isotope exchange reaction between HTO vapor and each amino acid has been observed in order to establish a method of estimation of the internal exposure of organically bound tritium in a heterogeneous system at 25-70degC. Rate constants (k) for the amino acids have been obtained by applying the A''-McKay plot method. Using these k values, Arrhenius plots for both the COOH and NH2 groups are drawn, and linearity was obtained over the range of 25-70degC. Comparing the rate constants, the following four statements can be made regarding the T-for-H exchange reaction. (1) The reactivity of the functional groups in amino acids increases with increasing temperature. (2) Applying Taft's equation, the ratio of polar effect to steric effect is 2:8 in the COOH group and 9:1 in the NH2 group at 25degC. (3) The A''-McKay plot method is useful for studying the reactivity of materials, not only with one (or the same kind of) functional group(s) but also with two different kinds of functional groups. (4) The method used in this work may be useful to investigate the behavior of organically bound tritium, quantitatively. (author)

  3. Determination of uranium isotopes in urine samples from radiation workers using 232U tracer, anion-exchange resin and alpha-spectrometry

    International Nuclear Information System (INIS)

    Bioassay technique is used for the estimation of actinides present in the body based on the excretion rate of body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha-spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of U-isotopes in urine samples using anion-exchange resin and 232U tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of uranium along with calcium phosphate. Separation of U was carried out by Amberlite, IRA-400, anion-exchange resin. U-fraction was electrodeposited and activity estimated using tracer recovery by alpha-spectrometer. Eight routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range of 51% to 67% with a mean and standard deviation of 60% and 5.4%, respectively. (author)

  4. Optimized electron-optical system of a static mass-spectrometer for simultaneous isotopic and chemical analysis

    Science.gov (United States)

    Gall', L. N.; Masyukevich, S. V.; Sachenko, V. D.; Gall', N. R.

    2016-01-01

    A new approach to control the linear dimensions of analytical electrophysical systems is suggested. This approach uses the lens properties of electron-optical elements with a curvilinear axis. It is shown that such an approach can be effectively applied, in particular, to synthesize ion-optical systems (IOSs) for static magnetic mass spectrometers and can be implemented owing to off-axis fundamental points, the "poles" of an electron-optical system, introduced earlier by one of the authors. The capabilities of the new approach are demonstrated with the synthesis of the IOS of a static mass spectrometer dedicated for isotopic and chemical analysis with an increased resolution. A new IOS not only provides desired high ion-optical parameters at decreased dimensions of the mass spectrometer as a whole but also makes it possible to loosen requirements for the manufacturing accuracy of IOS main elements.

  5. Nickel isotopes as a new geochemical tracer

    Science.gov (United States)

    Gall, L.; Williams, H. M.; Siebert, C.; Halliday, A.

    2010-12-01

    Research into "non-traditional" stable isotope systems has been of great interest over the past decade. The stable isotope system of nickel (Ni) has not been studied as intensively as other transition metals (e.g. Fe, Cr, Cu, Zn, and Mo), even though it is a ubiquitous element in geological environments and is a bioessential trace metal, e.g. for production of methane by methanogens. We have developed a novel chemical separation procedure to isolate Ni from most geological matrices. Because of its chemical behavior during ion-exchange chromatography complete separation of Ni is very complex. We therefore make use of a Ni double spike that allows us to optimize the chemical separation and correct instrumental mass bias during mass spectrometry analysis. This technique allows high precision Ni isotope measurements resulting in long term external reproducibility of USGS rock standard BHVO-2 of 0.09‰ (2s.d.) on δ60/58Ni with typical measurement errors as low as 0.04‰ (2s.d.). We have measured the isotope composition of Ni in a variety of terrestrial samples demonstrating significant isotope variation. In magmatic rocks Ni isotopes appear to be largely homogeneous, with only small variations (no more than 0.2‰) between different rock types, from ultramafic to felsic. There is no evidence of significant isotopic fractionation during melting and differentiation of the silicate Earth. In contrast we find significant systematic isotope variations (up to 1.5‰) between magmatic rocks and FeMn crusts, shales and sulphides. Our data clearly demonstrate mass-dependent fractionation of Ni isotopes in the marine and terrestrial environment by inorganic processes, in addition to the biological fractionations already reported by others, highlighting the potential of Ni isotopes as a powerful new tracer for Earth Surface processes.

  6. Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement

    Directory of Open Access Journals (Sweden)

    Jérémie Charles

    2016-03-01

    Full Text Available In this study, adsorption-oriented processes for pollutant removal from metal polycontaminated surface-finishing discharge water were applied individually as well as in combination with ion-exchange treatment to remove the remaining metal ions and organic load. Several materials were compared using batch experiments, namely an activated carbon, three ion-exchange resins (IRA 402Cl, IR 120H and TP 207, and two non-conventional cross-linked polysaccharide-based biosorbents (starch and cyclodextrin. This article presents the abatements obtained in chemical pollution as monitored by complete chemical analysis. For the same experimental conditions (similar discharge water, pollutant concentrations, stirring rate, contact time, and initial pH, the highest levels of pollutant removal were attained with the combined use of two materials, an activated carbon and a mixture of two ion-exchange resins. This physicochemical treatment effectively lowered the main pollutants present in the discharge water such as Cu, Ni and COD, by more than 96%, 79% and 74% respectively (average values for three samples, while the treatment with carbon alone lowered them by 58%, 9% and 70%, and resins alone by 85%, 61% and 16%. Similar interesting results were obtained with the cyclodextrin-based adsorbent and its use alone was sufficient to obtain decreases in Cu, Ni and COD of more than 94%, 77% and 67% respectively. The adsorption-oriented process using cyclodextrin polymer could be an advantageous approach for removing organic and metallic pollutants from metal surface-finishing discharge water due to the non-toxic character of CD to humans and the environment.

  7. Nondestructive radio isotopic technique for performance evaluation of industrial grade anion exchange resins Amberlite IRN78 and Indion NSSR

    Energy Technology Data Exchange (ETDEWEB)

    Singare, Pravin U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2016-01-15

    The present study deals with the application of radiotracers 131I and 82Br as a non-destructive tool to evaluate the performance of Amberlite IRN78 (nuclear grade) and Indion NSSR (non-nuclear grade) anion exchange resins. In general based on radiotracer applications it was observed that Amberlite IRN78 resins show superior performance over Indion NSSR resins under identical operational parameters.

  8. Prominent features in isotopic, chemical and dust stratigraphies from GV7, a drilling site in East Antarctica

    Science.gov (United States)

    Caiazzo, Laura

    2016-04-01

    In the framework of the new project "The IPICS 2k Array: a network of ice core climate and climate forcing records for the last two millennia", which represents a thematic research line of International Partnerships in Ice Core Sciences (IPICS), a 250 m deep ice core was retrieved (spanning roughly the last millennium) at GV7 site, together with several shallow firn cores and snow pits. The PNRA (Programma Nazionale di Ricerche in Antartide) project "IPICS-2kyr-It" represents the Italian contribution to IPICS "The 2k Array" and it is being accomplished in collaboration with KOPRI (Korean Polar Reasearch Institute). The availability of various records from the same site all spanning a temporal period ranging from the last decades to the last centuries will allow achieving a stacked record of chemical and isotopic markers and accumulation rate that is basic for a reliable climatic reconstruction. Previous surveys in the area of GV7 (70°41' S - 158°51' E, 1950 m a.s.l., East Antarctica) showed that this site is characterized by a relatively high snow accumulation (about 240 mm water eq./year), allowing a high resolution study of the climatic variability in the last millennium. Here we present the isotopic, chemical and dust stratigraphies of the snow pits sampled at GV7 during the 2013/14 field season and analysed in Italy and in Korea. Reversibly deposited components such as nitrate and methansulphonic acid (MSA) appear to be well preserved and show a clear seasonal profiles, as one can observe from the records achieved both by Italian and Korean labs. Such a feature, together with the high accumulation rate, allowed obtaining an accurate dating of the snow pits, based on the counting of annual layers. At this purpose, a multi-parametric approach was chosen by using MSA, non-sea-salt sulphate, and d18O as seasonal markers. The dating confirmed the value of the accumulation rate found during previous samplings.

  9. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C in the ocean

    Directory of Open Access Journals (Sweden)

    A. Schmittner

    2013-05-01

    Full Text Available Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease δ13CDIC values of colder (warmer water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre and remineralized (δ13Crem contributions as well as the effects of biology (Δδ13Cbio and air–sea gas exchange (δ13C*. The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement

  10. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    Science.gov (United States)

    Degnan, James R.; Bohlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  11. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Shannon K., E-mail: hanna.shannonk@gmail.com [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); Miller, Robert J. [Marine Science Institute, University of California, Santa Barbara, CA 93106 (United States); Lenihan, Hunter S. [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States)

    2014-08-30

    Highlights: • CNTs decrease the filtration rate of mussels by as much as 24%. • Metals in CNTs and their δ{sup 13}C can be used to quantify CNTs in biological samples. • Mussels exposed to CNTs deposit high concentrations of them in biodeposits. • CNTs accumulate mainly in gut tissue of mussels during exposure. - Abstract: Carbon nanotubes (CNTs) are one of the few truly novel nanomaterials and are being incorporated into a wide range of products, which will lead to environmental release and potential ecological impacts. We examined the toxicity of CNTs to marine mussels and the effect of mussels on CNT fate and transport by exposing mussels to 1, 2, or 3 mg CNTs l{sup −1} for four weeks and measuring mussel clearance rate, shell growth, and CNT accumulation in tissues and deposition in biodeposits. We used metal impurities and carbon stable isotope ratios of the CNTs as tracers of CNT accumulation. Mussels decreased clearance rate of phytoplankton by 24% compared with control animals when exposed to CNTs. However, mussel growth rate was unaffected by CNT concentrations up to 3 mg l{sup −1}. Based on metal concentrations and carbon stable isotope values, mussels deposited most CNTs in biodeposits, which contained >110 mg CNTs g{sup −1} dry weight, and accumulated about 1 mg CNTs g{sup −1} dry weight of tissue. We conclude that extremely high concentrations of CNTs are needed to illicit a toxic response in mussels but the ability of mussels to concentrate and deposit CNTs in feces and pseudofeces may impact infaunal organisms living in and around mussel beds.

  12. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    Science.gov (United States)

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions

  13. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara, E-mail: Chiara.Perazzolo@epfl.ch; Verde, Mariachiara [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Homans, Steve W. [University of Leeds, Institute of Molecular and Cellular Biology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)

    2007-05-15

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k{sub ex} = 500-2000 s{sup -1} were typically observed in APO-rMUP for residues located adjacent to a {beta}-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change.

  14. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin

    OpenAIRE

    Millot, Romain; Guerrot, Catherine; Innocent, Christophe; Négrel, Philippe; Sanjuan, Bernard

    2011-01-01

    International audience This work reports chemical and isotope data and temperature estimates for seven water samples collected from Triassic formations in the Paris Basin in France. Four samples were collected in the central part of the Basin (saline waters) and three were collected at the edge of the Basin near the recharge zone (dilute waters). The saline waters collected from the Chaunoy and Champotran boreholes have high salinities (around 120 g/L) and very similar chemical and isotopi...

  15. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  16. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    Science.gov (United States)

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions of sediment at the sites differed spatially, indicating that the Pb (and other trace elements by association) originated from different natural sources at the two locations.

  17. My academic life with isotopes

    International Nuclear Information System (INIS)

    The present article outlines investigations and experience made by the author in carrying out a variety of studies on isotopes since 1939. First, he was interested in transuranic elements and his studies on artificial radioactive isotopes covered the detection of plutonium at Nagasaki, chemical separation of plutomium from atmosphere at Tokyo, spectral analysis of alpha rays from plutomium, application of 113mIn to emission spectral analysis as a tracer, chemical enrichment of 76As hot atom, and non-destructive analysis of the chemical state of 119Sn produced through EC disintegration in solid material. His studies on natural radioactivity include measurement of the radium content in rock and mineral samples collected in the Korean Peninsula, investigation on the formation process of minerals found around hot springs and determination of the age of rock and mineral samples. He started investigations on isotope enrichment around 1965. Studies in this field cover the application of cataphoretic processes to separation of 23Na and 22Na, enrichment of 7Li and other alkali metals, enrichment of 6Li by isotope exchange, derivation of an empirical equation (Saito-Kanno Equation) for mass effect in couter-current cataphoresis of molten halides, etc. (Nogami, K.)

  18. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  19. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    Science.gov (United States)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m2 and 20-40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  20. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses.

    Science.gov (United States)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ(13)C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m(2) and 20-40 cm = 1770.6 gC m(2)) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  1. Magnesium isotopes as a probe of the Milky Way chemical evolution

    OpenAIRE

    Thygesen, Anders Overaa

    2015-01-01

    The study of elemental abundance ratios from spectroscopy of stars has for a long time been used to investigate the structure and the chemical evolution history of the Milky Way. However, even with the ever-increasing number of stars with detailed abundances, many details about the Milky Way evolution are still not understood. While elemental abundance measurements already provide a lot of information, nucleosynthesis models predict not only bulk abundances of an element, but also its isotopi...

  2. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina

    International Nuclear Information System (INIS)

    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production

  3. Controls of Net Ecosystem Exchange at an Old Field, a Pine Plantation, and a Hardwood Forest under Identical Climatic and Edaphic Conditions-Isotopic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chanton, J. P.; Mortazavi, B.

    2004-11-04

    During the past year we have submitted two manuscripts. 1. Mortazavi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren and G. Katul. Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions (in Press). Oecologia 2. Mortazavi, B. and J. P. Chanton. Use of Keeling plots for determining sources of dissolved organic carbon in nearshore and open ocean systems (Published in Limnology and Oceanography (2004) Vol 49 pages 102-108). 3. Mortazavi, B., J. L. Prater, and J. P. Chanton (2004). A field-based method for simultaneous measurements of the 18O and 13C of soil CO2 efflux. Biogeosciences Vol 1:1-16 Most recent products delivered: Mortazavi, B. and J. P. Chanton. Abiotic and biotic controls on the 13C of respired CO2 in the southeastern US forest mosaics and a new technique for measuring the of soil CO2 efflux. Joint Biosphere Stable Isotope Network (US) and Stable Isotopes in Biosphere Atmosphere Exchange (EU) 2004 Meeting, Interlaken, Switzerland, March 31-April 4, 2004. Mortazavi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren and G. Katul. Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. American Geophysical Union Fall Meeting, San Francisco, USA, December 8-12, 2003. Prater, J., Mortazavi, B. and J. P. Chanton. Measurement of discrimination against 13C during photosynthesis and quantification of the short-term variability of 13C over a diurnal cycle. American Geophysical Union Fall Meeting, San Francisco, USA, December 8-12, 2003.

  4. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    International Nuclear Information System (INIS)

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu2+ and Ni2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu3+ showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs

  5. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  6. Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description

    Science.gov (United States)

    Ceraolo, M.; Miulli, C.; Pozio, A.

    A simplified dynamical model of a fuel cell of the proton exchange membrane (PEM) type, based on physical-chemical knowledge of the phenomena occurring inside the cell has been developed by the authors. The model has been implemented in the MATLAB/SIMULINK environment. Lab tests have been carried out at ENEA's laboratories; and a good agreement has been found between tests and simulations, both in static and dynamic conditions. In a previous study [M. Ceraolo, R. Giglioli, C. Miulli, A. Pozio, in: Proceedings of the 18th International Electric Fuel Cell and Hybrid Vehicle Symposium (EVS18), Berlin, 20-24 October 2001, p. 306] the basic ideas of the model, as well as its experimental validation have been published. In the present paper, the full implementation of the model is reported in detail. Moreover, a procedure for evaluating all the needed numerical parameters is presented.

  7. Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater.

    Science.gov (United States)

    Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G

    2016-01-01

    Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.

  8. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  9. Chemical and dimensional evolution of cationic ions exchange resins in cement pastes

    International Nuclear Information System (INIS)

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. After use they are usually encapsulated in cementitious materials. However, the solidified waste forms can exhibit a strong expansion, possibly leading to cracking. Its origin is not well understood as well as the conditions when it occurs.In this work, the interactions between cationic resins in the Na+ or Ca2+ form and tricalcium silicate (C3S), Portland cement (CEM I) or Blast furnace slag cement (CEM III/C) are investigated at an early age in order to gain a better understanding of the expansion process.The results show that during the hydration of a paste of C3S or CEM I containing IERs in the Na+ form, the resins exhibit a transient expansion of small magnitude due to the decrease in the osmotic pressure of the interstitial solution. This expansion, which occurs just after cement setting, is sufficient to damage the material which is poorly consolidated for several reasons: small hydration degree, precipitation of less cohesive sodium bearing C-S-H, heterogeneous microstructure with highly porous zones and lastly cleavable crystals of portlandite at the interface between resins and paste. This expansion can be prevented by performing a calcium pretreatment of the resins or by using a CEM III/C cement with a slower rate of hydration than that of Portland cement. (author)

  10. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas water interaction between magmatic component and shallow fluids

    Science.gov (United States)

    Inguaggiato, S.; Martin-Del Pozzo, A. L.; Aguayo, A.; Capasso, G.; Favara, R.

    2005-03-01

    Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas-water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80-100° C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO 2 in the springs was also detected and associated with high CO 2 degassing.

  11. Radiochemical separation of gold by amalgam exchange

    Science.gov (United States)

    Ruch, R.R.

    1970-01-01

    A rapid and simple method for the radiochemical separation of gold after neutron activation. The technique is based on treatment with a dilute indium-gold amalgam, both chemical reduction and isotopic exchange being involved. The counting efficiency for 198Au in small volumes of the amalgam is good. Few interferences occur and the method is applicable to clays, rocks, salts and metals. The possibility of determining silver, platinum and palladium by a similar method is mentioned. ?? 1970.

  12. Conceptualization of groundwater flow of a coastal arid aquifer using isotopic and chemical tools: La Paz, Baja California Sur, Mexico

    Science.gov (United States)

    Tamez-Melendez, Carol; Hernández-Antonio, Arturo; Mahlknecht, Jürgen

    2016-04-01

    Groundwater from the La Paz coastal aquifer in Baja California Sur, Mexico, is the main source of drinking water for the local population. Due to its proximity to the coast, sea water intrusion is the main factor of salinization of groundwater. Other geochemical processes also affect the quality of the aquifer threating its vulnerability. Forty-seven samples were analyzed for ion chemistry and isotopes. A hierarchical cluster analysis was performed for a better interpretation resulting in three main groups and proved for geographical correspondence. Deuterium and d18O ranged from -82 to -52.1 and from -11.6 to -7 permil, respectively, showing that the main recharge originates in the Sierra el Novillo, flowing toward SE-NW direction and in accordance to deuterium excess (d) high evaporation effects (d>10‰) are mostly in the middle portion of the study area and in El Centenario due to high kinetic isotope fractioning related to elevated temperatures. Hydrogeochemistry analyses demonstrated salinization mainly due to sea water intrusion and in second instance due water-rock interaction, where enrichment of Na+ (ranges from 35.7 to 1089 mg/L-1) was present in some samples probably due to weathering of silicates and/or cation exchange in soils with Ca2+ (27.7 to 658 mg/L-1) at clay-surfaces. High concentrations of NO3-2 (ranges from 1.4 to 48.8 mg/L-1), Cl- (ranges from 54.4 to 2960 mg/L-1) and Na+ show that anthropogenic input is mainly coming from an agricultural area (El Centenario-Chametla) where heavy groundwater extractions are made for irrigational purposes, lowering the groundwater table up to 10 m and consequently promoting upconing and salinity concentrations (NaCl). Carbon-13 and radiocarbon ranged from -12.3 to -9.1‰ and from 29.5 to 100.4 pmC, respectively. Distribution of ages (up to ~5000 years) indicates two flow trends (E-W and SE-NW).

  13. Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide

    Directory of Open Access Journals (Sweden)

    A. F. Hofmann

    2012-11-01

    Full Text Available Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc. as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3-CO32– acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around

  14. A study of the wet chemical oxidation and solidification of radioactive spent ion exchange resins

    International Nuclear Information System (INIS)

    This paper describes the research works on the decomposition of Ion-Exchange Resins (IERs) in H2O2-Fe2+/Cu2+ catalysis systems for volume reduction and improvement of immobilization in cement. The resins used in the study were polystyrene strong acidic and basic resins containing about 45% of water. The radioactive spent resins loading 60Co, 137Cs, 134Cs, 90Sr and 51Cr with a radioactive activity level of 4GBq/m3 were obtained from a reactor installation. It has been found in batch scale experiment that many factors has influence on the decomposition of IERs, and the most important ones are H2O2 dosage, H2O2 dose rate, temperature and pH value. The best temperature range is 97-99 deg. C. The pH-value of resin slurry chosen in this study is 2.0-3.0. The appropriate dosage of H2O2(30% vol.) is 200 ml/25 g wet mixed resins. The decomposition ratio is 100% and more than 90% for cation and anion IERs respectively, while it is 85% for mixed resins (as TOC-value). The analytical results indicates that the radioactive nuclides loaded in the spent resins are concentrated in decomposition solution and solid residues. No radioactivity enters into the off-gas, while the condensate from the reaction system has a radioactive activity of 1.65 Bq/l. Foaming is a problem associated with resin dissolution. Addition of a little amount of anti-foam agent can solve this problem very well. Three cementation materials have been chosen for encapsulation of decomposition residue. All of the tree kind of solidification materials can produce qualified cemented products with excellent properties for long term storage. The adopted volume reduction (VR) process can significantly reduce waste volume of solidified product decreases by 40% compared with that of original spent resin. (author). 4 refs, 2 figs, 2 tabs

  15. Chemical and isotopic compositions of waters from springs and wells in the Damour River basin and coastal plain of Lebanon

    International Nuclear Information System (INIS)

    Full text: A hydro chemical and isotopic study was achieved on groundwater of the Damour River basin and on wells in the coastal Mediterranean plain in Lebanon. The aim of this study was to determine the origin, the age and the quality of groundwater resources in the limestone aquifer of the Damour river basin. The results showed that most of the groundwater in the coastal plain and pumped from wells for irrigation and drinking water supply is directly recharged in this area. It contains up to 30% of groundwater recharged in the high mountains. The pumped groundwater is not polluted by seawater intrusion. The elevated solute content of the ground waters in the coastal plain compared to that of the spring waters is due to the different intensive agricultural activities. The relatively long mean residence time of the spring waters of around 10 years contradicts the assumption that the low Mg++/Ca++ ratio is due to a non-established hydro chemical equilibrium. The results of this combined hydrochemical and isotopic study in the Damour River basin and the coastal plain yielded new hydrological insights: Most of the groundwater in the coastal plain and pumped from wells for irrigation and drinking water supply is directly recharged in this area. It contains up to 30% of groundwater recharged in the high mountains. The pumped groundwater from shallow wells contains such water only during the summer season; The pumped groundwater is not polluted by seawater intrusion; The elevated solute content of the groundwaters in the coastal plain compared to that of the spring waters is due to the different intensive agricultural activities. There is no relationship to the MRT of the water; The temperature of the spring waters is related to the altitude of the recharge area. The temperature of the groundwater decreases with depth and reflects the admixture of groundwater recharged in higher elevations. The thermal gradient does not play any role; The relatively long mean residence

  16. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy

    Science.gov (United States)

    Valentino, G. M.; Cortecci, G.; Franco, E.; Stanzione, D.

    1999-08-01

    Based on their δ 34S signature, sulfate minerals and native sulfur around fumaroles and hot water pools from the Campi Flegrei volcanic area derive from supergenic oxidation of volcanic H 2S. Their mean δ 34S value (-0.2±1.7‰) matches with that of fumarolic H 2S at Solfatara (-0.3±0.3‰), as well as with the δ 34S of +1.4‰ obtained for total sulfur in fresh trachyte from the area. All δ 34S values indicate a mostly deep-seated origin for sulfur. Thermal waters were analysed for major and minor chemistry and for oxygen, hydrogen and sulfur isotope compositions. Pools at Pisciarelli are filled with evaporated meteoric water heated by rising (magmatic) gases. The water δ 18O (+3.8±1.3‰) and δ 2H (+6.5±2.2‰) values in these steam-heated waters are controlled by mixing and evaporation effects, and the δ 34S value of dissolved sulfate (-1.3±0.3‰) basically agrees with supergenic oxidation of deep-seated H 2S as the major source of sulfur. Instead, water from thermal springs and wells elsewhere in the Campi Flegrei appears to be a mixture between dilute meteoric and saline marine components. The latter may be local seawater from the bay of Pozzuoli. The δ 18O and δ 2H values of waters sampled during 1993-1994 range from -5.6 to +0.3‰ and from -33 to -3.4‰, respectively. The δ 34S values of dissolved sulfate range between -0.1 and +19.5‰. In general, sulfate is probably derived essentially from two sources, both within the volcanic cover, i.e., oxidation/dissolution of pyrite and anhydrite, and marine water. An occasional source of water and sulfate is represented by (magmatic) gases, which directly interact with shallow meteoric water as in the case of the Hotel Tennis well yielding steam-heated water with δ 18O=-1.5±0.2‰, δ 2H=-17±1‰ and δ 34S=-0.1‰.

  17. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  18. Applying clumped isotopes of O2 to atmospheric and biogeochemical problems

    Science.gov (United States)

    Yeung, Laurence

    2016-04-01

    I will describe recent measurements of isotopic "clumps" in diatomic molecules, e.g., 18O18O in O2, which are being utilized to constrain atmospheric circulation on glacial-interglacial timescales and biogeochemical cycling in the oceans. While our understanding of these tracers is still evolving, several features of their geochemistry are apparent: (1) the proportional abundance of these isotopic "clumps" is governed by traditional chemical effects as well as combinatorial effects unique to clumped isotopes, and (2) when isotopic exchange reactions are disfavoured, chemical-kinetic and/or reservoir effects, rather than thermodynamic equilibrium, determine their clumped-isotope composition. Combinatorial clumped-isotope signatures imparted during photosynthesis are being developed as endmember signatures of gross primary productivity in the oceans. In addition, clumped-isotope measurements of O2 in the atmosphere (i.e., Δ36 values) suggest that isotopic clumping in O2 is continuously being altered by ozone photochemistry in the troposphere and stratosphere. Yet, the contrast in isotope-exchange rates between the stratosphere (where exchange is fast) and the troposphere (where exchange is slow) results in a gradient in Δ36 values with altitude, wherein stratospheric intrusions are detectable as elevated Δ36 values. Moreover, global chemical-transport model simulations suggest that ozone photochemistry in the troposphere re-orders the O2 reservoir in the troposphere on annual timescales. The Δ36 value at the surface is therefore sensitive to the tropospheric residence time of O2 with respect to stratosphere-troposphere exchange. Consequently, Δ36 values at the surface likely respond to changes in the strength of the global overturning circulation.

  19. The isotopic and chemical evolution of planets: Mars as a missing link

    Science.gov (United States)

    Depaolo, D. J.

    1988-01-01

    The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites.

  20. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Cuntz, M.; Bariac, T.; Brunet, Y.; Berbigier, P.; Richard, P.; Ciais, P.

    2004-06-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of nonfoliar respiration (FR) and net photosynthesis (FA) in order to better understand the variations of this exchange. However, the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes, and a rigorous estimation of the errors on FA and FR is needed. In this study, we account for and propagate uncertainties on all terms in the mass balance and isotopic mass balance equations for CO2 in order to get accurate estimates of the errors on FA and FR. We apply our method to a maritime pine forest in the southwest of France. Nighttime Keeling plots are used to estimate the 13C and 18O isotopic signature of FR (δR), and for both isotopes the a priori uncertainty associated with this term is estimated to be around 2‰ at our site. Using δ13C-CO2 and [CO2] measurements, we then show that the uncertainty on instantaneous values of FA and FR can be as large as 4 μmol m-2 s-1. Even if we could get more accurate estimates of the net CO2 flux, the isoflux, and the isotopic signatures of FA and FR, this uncertainty would not be significantly reduced because the isotopic disequilibrium between FA and FR is too small, around 2-3‰. With δ18O-CO2 and [CO2] measurements the uncertainty associated with the gross fluxes lies also around 4 μmol m-2 s-1 but could be dramatically reduced if we were able to get more accurate estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 12-17‰. The isotopic disequilibrium between FA and FR and the uncertainty on δR vary among ecosystems and over the year. Our approach should help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  1. On the synthesis of radiofluorinated amino acids by isotope exchange based on the example of 6-[18F]Fluor-L-DOPA

    International Nuclear Information System (INIS)

    In nuclear medical diagnosis, 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine (6-[18F]fluoro-LDOPA), an analogue of L-DOPA, is one of the few established radiopharmaceuticals used for the in vivo investigation of the presynaptic dopaminergic metabolism and of some kind of tumours via Positron Emission Tomography (PET). The presently used method of preparation of the radiotracer by electrophilic labelling is limited to low amounts of activity at high costs. Known nucleophilic syntheses, however, result either in insufficient enantiomeric purity or the known multi-step syntheses are hard to automate, due to their complexity. During this work a novel, easy to automate alternative for the preparation of 6-[18F]fluoro-L-DOPA, was developed and evaluated, using a direct nucleophilic 18F-fluorination of a protected amino acid derivative. The resulting product has a very high enantiomeric purity. At first, the general suitability of the (S)-BOC-BMI-derivatives for the synthesis of 18F-labelled amino acids, used in this work, was investigated using a less complex precursor, which resulted in the amino acid 6-[18F]fluoro-L-m-tyrosin via acidic hydrolysis. The preparation of a useful precursor for the nucleophilic 18F-isotope substitution, namely the (2S,5S)-tert.-butyl- 5-(2-fluoro-5-formylbenzyl)-2-tert. -butyl-3-methyl-4-oxoimidazolidine-1-carbox= yl ate, was investigated in three general different ways. At first it was tried to obtain this product via formylation after coupling with the BOC-BMI, secondly via α,β-dehydro amino acid derivatives and finally via a systematic multi-step synthesis. Only the last mentioned way resulted in a precursor with sufficient purity that could be labelled. The radiochemical yield of the isotopic exchange was about 60 %. In the next step, the presented concept was modified to synthesize a precursor for the preparation of 6-[18F]fluoro-L-DOPA. Only a combination of the protecting groups benzyl and THP resulted in the useful precursor (2S,5S

  2. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  3. Stable isotopes and chemical composition at different spatial scales indicate sink function of eroded OC in a tropical catchment

    Science.gov (United States)

    Chaplot, V.; Rumpel, C.; Fontaine, S.; Bouahom, B.; Valentin, C.

    2009-04-01

    Our objective was to evaluate the fate of eroded carbon at landscape level in a steep slope area of the Mekong basin submitted to traditional slash-and-burn (SAB) agriculture. We monitored carbon erosion at different spatial scales ranging from 1m² (micro-plot level) installed within a hillslope to 1×107 m² (watershed). Samples were taken throughout the 2003 rainy season, in order to quantitatively assess the fate of eroded OC. Laboratory analysis of the chemical composition of eroded OC by analysis for its elemental, istotopic (13C, 15N, 14C) and bulk chemical composition were performed to assess potential microbial decomposition of eroded sediment during transport and sedimentation. Our data show, that 92.7% of eroded OC were sedimented at a distance lower that 1.5m from its source. Analysis of the composition of eroded organic matter at different scales showed a significant decrease of the C/N ratio and an enrichment of 13C and 15N isotopes, which occurred within the hillslope and in first order reaches. These changes were interpreted as resulting from OC decomposition and used to assess the CO2 emissions, which might have occurred during the erosion process. Our results indicate, that within the hillslope, potential CO2 emissions with 0.43 gCm-2y-1 would be 3.3 times higher than the OC exports by water erosion but represented about 10% only of the OC deposited. Potential CO2 emissions during the transport from the hillslope to the watershed outlet would represent 14% of total eroded OC. Based on these results, we suggest that erosion induced OC sequestration amounts to 43 gCm-2y-1 in the hillslope and, 33 gCm-2y-1 at the watershed level.

  4. Changes in formation gas composition and isotope content as indicators of unsaturated-zone chemical reactions related to recharge events

    International Nuclear Information System (INIS)

    The constituent composition and carbon and oxygen isotopes for CO2 in unsaturated-zone gases have been utilized to provide an independent means of determining what chemical reactions occurred during an extended artificial recharge experiment on the High Plains of Texas. Gas samples were collected from a sample point at a depth of 16 metres beneath a waterspreading basin to see what effect recharging water had on the unsaturated-zone atmosphere. Two different systems, one open and one closed, were sampled during this study. The 13C, 18O, Psub(CO2), and N/Ar data for gas collected during a 1975 experiment show the influence of unsaturated-zone gases being displaced by recharging waters, the trend towards equilibration with dissolved atmospheric gases as the sampling point is submerged by rising waters, the onset of a reducing environment and, following the termination of recharge, the slow recovery of the gas composition to pre-recharge conditions. The 13C content of the CO2 in the gases varied from -18.06% for the pre-recharge formation gas, to -10.01% for gases approaching equilibrium with dissolved atmospheric gases, to -38.01% for a CO2 produced from methane generated in a reducing evironment. The log Psub(CO2) for the above samples varied from -2.10 to -3.02 to -4.18 atmospheres, respectively. Recovery to pre-recharge unsaturated-zone atmospheric conditions took many months following the termination of recharge. (author)

  5. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon (14C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14C abundances showed that (1) bomb-derived 14C has penetrated the first 16 cm mineral soil at least; (2) Δ14C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  6. Chemical and isotopic signature of groundwater after sea water encroachment in coastal aquifers of the Cornia river basin (Tuscany, Italy)

    International Nuclear Information System (INIS)

    Groundwaters in several regions within the Mediterranean basin exhibit a boron concentration which often exceeds the potability limit of 1 mg/L. The origin, fate and geochemical processes of boron in groundwater is now being investigated in Israel, Greece, Cyprus and Italy within the framework of the coordinated research project BOREMED, financially supported by the European Union. We report here the current status of the BOREMED investigations on groundwater of the Cornia Valley in Western Tuscany, Italy. Although high boron (up to 4 mg/L) is observed in inland groundwater as well, the emphasis of this presentation is on aspects related to the boron content of coastal aquifers of the Cornia Valley, which may attain 8 mg/L. This high boron concentration, although often well above that of seawater (5 mg/L), appears to be connected with sea water encroachment due to groundwater overexploitation. A geochemical explanation is proposed here, on the basis of the behaviour and contents of various chemical and isotopic tracers

  7. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  8. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P < 0.01) while the pH-dependent exchange rate followed a dominantly base-catalyzed exchange relationship (P < 0.01). In summary, our study verified that a simplified qCEST analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system.

  9. Comparison of methods for nutrient measurement in calcareous soils: Ion-exchange resin bag, capsule, membrane, and chemical extractions

    Science.gov (United States)

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2002-01-01

    Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms-bags, capsules, and membranes-and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, "warm" and "cold." The third experiment extracted nutrients from the same soils in a field equilibration. Our results show that the four extraction techniques are not comparable. This conclusion is due to differences among the methods in the net quantities of nutrients extracted from equivalent soil volumes, in the proportional representation of nutrients within similar soils and treatments, in the measurement of nutrients that were added in known quantities, and even in the order of nutrients ranked by net abundance. We attribute the disparities in nutrient measurement among the different resin forms to interacting effects of the inherent differences in resin exchange capacity, differences among nutrients in their resin affinities, and possibly the relatively short equilibration time for laboratory trials. One constraint for measuring carbonate-related nutrients in high-carbonate soils is the conventional ammonium acetate extraction method, which we suspect of dissolving fine CaCO3 particles that are more abundant in Nakai series soils, resulting in erroneously high Ca2+ estimates. For study of plant-available nutrients, it is important to identify the nutrients of foremost interest and understand differences in their resin sorption dynamics to determine the most appropriate extraction method.

  10. Interpretation of chemical and isotopic data from boreholes in the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Analyses of pore water from boreholes at Yucca Mountain indicate that unsaturated-zone pore water has significantly larger concentrations of chloride and dissolved solids than the saturated-zone water or perched-water bodies. Chemical compositions are of the calcium sulfate or calcium chloride types in the Paintbrush Group (Tiva Canyon, Yucca Mountain, Pah Canyon, and bedded tuffs), and sodium carbonate or bicarbonate type water in the Calico Hills Formation. Tritium profiles from boreholes at Yucca Mountain indicate tritium-concentration inversions (larger tritium concentrations are located below the smaller tritium concentration in a vertical profile) occur in many places. These inversions indicate preferential flow through fractures. Rock-gas compositions are similar to that of atmospheric air except that carbon dioxide concentrations are generally larger than those in the air. The delta carbon-13 values of gas are fairly constant from surface to 365.8 meters, indicating little interaction between the gas CO2 and caliche in the soil. Model calculations indicate that the gas transport in the unsaturated zone at Yucca Mountain agrees well with the gas-diffusion process. Tritium-modeling results indicate that the high tritium value of about 100 tritium units in the Calico Hills Formation of UZ-16 is within limits of a piston-flow model with a water residence time of 32 to 35 years. The large variations in tritium concentrations with narrow peaks imply piston flow or preferential fracture flow rather than matrix flow. In reality, the aqueous-phase flow in the unsaturated zone is between piston and well-mixed flows but is closer to a piston flow

  11. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3

    NARCIS (Netherlands)

    Battiston, AA; Bitter, JH; de Groot, FMF; Overweg, AR; Stephan, O; van Bokhoven, JA; Kooyman, PJ; van der Spek, C; Vanko, G; Koningsberger, DC

    2003-01-01

    The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, Fe-57 Mossbauer spectroscopy, Al-27 NMR, EELS, HR-TEM, XRD, N-2 physisorption, and FTIR spectroscopy) we

  12. Improvement in the chemical separation and determination of uncertainties for bulk analysis of Pu isotopes at ultra-trace levels by using MC-ICP-MS

    International Nuclear Information System (INIS)

    Improved bulk analysis based on extraction chromatography and systematic evaluations of uncertainties of plutonium isotopes at ultra-trace levels in environmental swipe samples are presented. In the modified method based on a single column system using UTEVA resin for MC-ICP-MS, hydrogen peroxide was introduced to obtain pure plutonium isotopes from chemical separation by removing excess organic-based reducing reagents. We confirmed that hydrogen peroxide effectively decomposed the reducing reagents characterized by UV-Vis absorption spectroscopy and the peak fluctuations were significantly reduced. To examine the reliability of analytical performance, we systematically evaluated the combined uncertainties during the overall chemical procedures using simulated samples containing Pu reference materials. (author)

  13. Sister chromatid exchanges in the bone marrow cells of in vivo rats induced by gamma radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Sister chromatid exchanges (SCE) in the bone marrow of in vivo rats induced by gamma radiation doses and by the chemical mutagens, mitomycin C (MMC), cyclophosphamide (CP), and sulphonate-methylmethane (SMM), were studied. The purpose was to evaluate the sensitivity and reproducibility of a simplified SCE in vivo detecting system developed in our laboratory and to compare the results obtained with those reported elsewhere. Simplification consisted in administering the amounts of 5-bromo-2'-deoxyuridine (BrdU) necessary to observe the SCE, after first adsorbing the BrdU in activated carbon and then injecting it interperitoneally, into the rats. The results were a longer time in vivo ADN incorporation without convulsions in the rats, and a reduction in the time course as compared to other methods. We observed a basal rate of 3.6+-0.37 SCE/cell and that: 0.44 Gy of gamma radiation induced 7.7+-0.73 SCE/cell; 1.6 μg/g of MMC induced 8.1+-1.20 SCE/cell; 5 μg/g of CP induced 8.25+-1.5 SCE/cell, 40 μg/g of SMM induced 22.0+-5 SCE/cell and 380 μg/g of sulphonate-ethylmethane induced 8.6+-1.2 SCE/cell. This showed that all the agents were capable of inducing SCE in the bone marrow cells of rats in vivo under our conditions. We noted a greater induced efficiency for gamma radiation than the obtained by other investigators and a relatively similar efficiency in the case of chemical mutagens as reported in other studies. (author)

  14. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders

    Science.gov (United States)

    DeBrosse, Catherine; Nanga, Ravi Prakash Reddy; Wilson, Neil; D’Aquilla, Kevin; Elliott, Mark; Yan, Felicia; Wade, Kristin; Nguyen, Sara; Worsley, Diana; Parris-Skeete, Chevonne; McCormick, Elizabeth; Xiao, Rui; Cunningham, Zuela Zolkipli; Fishbein, Lauren; Nathanson, Katherine L.; Lynch, David R.; Stallings, Virginia A.; Yudkoff, Marc; Falk, Marni J.; Reddy, Ravinder; McCormack, Shana E.

    2016-01-01

    Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group–specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group–specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (P = 0.026) prolonged postexercise τCr in the medial gastrocnemius muscle, suggestive of less OXPHOS capacity. Additionally, we observed that lower resting CrCEST was associated with prolonged τPCr, with a Pearson’s correlation coefficient of –0.42 (P = 0.046), consistent with previous hypotheses predicting that resting creatine levels may correlate with 31P magnetic resonance spectroscopy–based estimates of OXPHOS capacity. We conclude that CrCEST can noninvasively detect changes in muscle creatine content and OXPHOS capacity, with high anatomic resolution, in individuals with mitochondrial disorders. PMID:27812541

  15. Chemical diffusion and surface exchange in selected Ln–Ba–Sr–Co–Fe perovskite-type oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, K. [AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Hydrogen Energy, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Klimkowicz, A. [AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Hydrogen Energy, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Shibaura Institute of Technology, Department of Engineering Science and Mechanics, 3-7-5, Toyosu, Koto-ku, 135-8548 Tokyo (Japan); Świerczek, K., E-mail: xi@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Hydrogen Energy, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Malik, A. [AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Hydrogen Energy, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Ariga, Y.; Tominaga, T.; Takasaki, A. [Shibaura Institute of Technology, Department of Engineering Science and Mechanics, 3-7-5, Toyosu, Koto-ku, 135-8548 Tokyo (Japan)

    2015-10-05

    Highlights: • Characterization of basic physicochemical properties of selected Ln–Ba–Sr–Co–Fe perovskite-type oxides. • Determination of D and K for Ln–Ba–Sr–Co–Fe perovskite-type oxides. • Strong effect of enthalpy of oxidation and influence of porosity recorded. • Possibility of using X-ray diffraction data for evaluation of transport coefficients. - Abstract: In this paper, a discussion on determination of chemical diffusion coefficient (D) and surface exchange reaction coefficient (K) was given on a basis of electrical conductivity and mass relaxation experiments, performed for selected Ln–Ba–Sr–Co–Fe perovskite-type oxides. The synthesized materials were analyzed in terms of their basic physicochemical properties (crystal structure, oxygen nonstoichiometry, electrical conductivity). Gathered relaxation-type data were critically analyzed, and a strong effect of the enthalpy of the oxidation process, as well as an influence of the porosity were observed, showing limitations of applicability of these techniques, especially for simultaneous determination of D and K. An additional discussion and results were also given regarding possibility of using X-ray diffraction data, recorded during change of the oxygen partial pressure at elevated temperatures, for evaluation of the considered transport coefficients.

  16. Chemical and Pb isotope composition of phenocrysts from bentonites constrains the chronostratigraphy around the Cretaceous-Paleogene boundary in the Hell Creek region, Montana

    Science.gov (United States)

    Ickert, Ryan B.; Mulcahy, Sean R.; Sprain, Courtney J.; Banaszak, Jessica F.; Renne, Paul R.

    2015-09-01

    An excellent record of environmental and paleobiological change around the Cretaceous-Paleogene boundary is preserved in the Hell Creek and Fort Union Formations in the western Williston Basin of northeastern Montana. These records are present in fluvial deposits whose lateral discontinuity hampers long-distance correlation. Geochronology has been focused on bentonite beds that are often present in lignites. To better identify unique bentonites for correlation across the region, the chemical and Pb isotopic composition of feldspar and titanite has been measured on 46 samples. Many of these samples have been dated by 40Ar/39Ar. The combination of chemical and isotopic compositions of phenocrysts has enabled the identification of several unique bentonite beds. In particular, three horizons located at and above the Cretaceous-Paleogene boundary can now be traced—based on their unique compositions—across the region, clarifying previously ambiguous stratigraphic relationships. Other bentonites show unusual features, such as Pb isotope variations consistent with magma mixing or assimilation, that will make them easy to recognize in future studies. This technique is limited in some cases by more than one bentonite having compositions that cannot be distinguished, or bentonites with abundant xenocrysts. The Pb isotopes are consistent with a derivation from the Bitterroot Batholith, whose age range overlaps that of the tephra. These data provide an improved stratigraphic framework for the Hell Creek region and provide a basis for more focused tephrostratigraphic work, and more generally demonstrate that the combination of mineral chemistry and Pb isotope compositions is an effective technique for tephra correlation.

  17. Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.-C. [INRA, Departement Environnement et Agronomie, Versailles (France)]. E-mail: fardeau@versailles.inra.fr; Zapata, F. [IAEA, Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Programme, Vienna (Austria)

    2002-05-15

    A 'soil P fertility recapitalization' initiative utilizing large rates of phosphate rocks (PRs) was proposed to improve the soil P status and increase the sustainable food production in acid and P-deficient tropical soils. Two series of experiments were carried out using five tropical acid soils treated with heavy applications of Gafsa phosphate rock (GPR). In the first series, the soils were mixed with GPR at the following application rates: 0, 500, 1000 and 2000 mg P{center_dot}kg{sup -1}, and incubated for one month in moist conditions. In another series, 1000 mg P kg{sup -1} applied as GPR was added to three soils and incubated for 1.5 month; thereafter 50 mg P kg{sup -1} as triple superphosphate (TSP) were added. The {sup 32}P isotopic exchange method was utilized to assess the contribution of GPR to the available soil P. Changes in amounts, E, of P transferred with time as phosphate ions from the soil particles to the soil solution as well as changes in pH, calcium and phosphate concentrations in soil suspensions were determined. It was found that: (i) the contribution of P from GPR to recapitalization of soil P fertility was mainly assessed by E pool size, pH, calcium and phosphate concentrations; other variables were not significant at the 0.1 level; (ii) heavy applications of GPR did not saturate all the P sorption sites, P freshly applied as water-soluble P was still sorbed; (iii) recapitalization of soil P fertility using GPR was partly obtained in some acid tropical soils; (iv) Upon dissolution, GPR provided calcium ions to crops and to soils, thus reducing Al toxicity, but its liming effect was limited. To explain these effects with heavy application rates of GPR, it was postulated that a coating of Al and Fe compounds is formed around PR particles with time, thus reducing further dissolution. (author)

  18. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C.; Costa e Silva, Filipe; Pereira, Joao S.; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought. PMID

  19. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  20. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  1. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    Science.gov (United States)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  2. Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes

    Science.gov (United States)

    Bouchez, Camille; Goncalves, Julio; Deschamps, Pierre; Vallet-Coulomb, Christine; Hamelin, Bruno; Doumnang, Jean-Claude; Sylvestre, Florence

    2016-04-01

    In the Sahelian belt, Lake Chad is a key water body for 13 million people, who live on its resources. It experiences, however, substantial and frequent surface changes. Located at the centre of one of the largest endorheic basins in the world, its waters remain surprisingly fresh. Its low salinity has been attributed to a low infiltration flow whose value remains poorly constrained. Understanding the lake's hydrological behaviour in response to climate variability requires a better constraint of the factors that control its water and chemical balance. Based on the three-pool conceptualization of Lake Chad proposed by Bader et al. (2011), this study aims to quantify the total water outflow from the lake, the respective proportions of evaporation (E), transpiration (T), and infiltration (I), and the associated uncertainties. A Bayesian inversion method based on lake-level data was used, leading to total water loss estimates in each pool (E + T + I = ETI). Sodium and stable isotope mass balances were then used to separate total water losses into E, T, and I components. Despite the scarcity of representative data available on the lake, the combination of these two geochemical tracers is relevant to assess the relative contribution of these three outflows involved in the control of the hydrological budget. Mean evapotranspiration rates were estimated at 2070 ± 100 and 2270 ± 100 mm yr-1 for the southern and northern pools, respectively. Infiltration represents between 100 and 300 mm yr-1 but most of the water is evapotranspirated in the first few kilometres from the shorelines and does not efficiently recharge the Quaternary aquifer. Transpiration is shown to be significant, around 300 mm yr-1 and reaches 500 mm yr-1 in the vegetated zone of the archipelagos. Hydrological and chemical simulations reproduce the marked hydrological change between the normal lake state that occurred before 1972 and the small lake state after 1972 when the lake surface shrunk to a one

  3. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts

    Science.gov (United States)

    Liu, Xiao-Ming; Rudnick, Roberta L.; McDonough, William F.; Cummings, Michael L.

    2013-08-01

    Mineralogical, chemical, and Li and Nd isotopic compositions of two drill cores (8-9 m deep) through bauxites developed on the Miocene Columbia River Basalts document the changes associated with basalt weathering, provide insights into the processes involved, and allow us to examine the overall influence of chemical weathering on juvenile (basaltic) crust. Gibbsite, hematite, ±kaolinite, halloysite, goethite, and maghemite are the weathering products in the bauxites. Quartz is observed near the tops of the cores and its abundance decreases progressively with depth; no quartz is observed below five meters depth in either core. Most major and trace elements, including "mobile" and some "immobile" elements are severely depleted in the bauxites. Niobium is less mobile relative to the rare earth elements, thus chemical weathering attenuates the negative Nb anomaly in the continental crust. Li and Nd are strongly depleted relative to fresh basalt, and both increase systematically towards the surface in the quartz-bearing samples while δ7Li and ɛNd values decrease systematically towards the surface in these same samples. Both Li and Nd were likely lost from the bauxites through leaching. The systematic enrichment of Li, Nd, and quartz, as well as the less radiogenic Nd isotopic composition at the tops of both profiles reflects 20-60 wt.% addition of an eolian component to the soils. The eolian dust is unlikely to have experienced significant post-depositional weathering due to the relatively high Li contents near the tops of the profiles, and, therefore, the low δ7Li and ɛNd values suggest that the dust came from an old, weathered region of the continent. Our results demonstrate that lithium isotopes are sensitive tracers of chemical weathering, particularly in extreme weathering settings, and support the hypothesis that chemical weathering influences the mass and composition of the continental crust.

  4. Post-Wisconsinan Chemical Weathering Rates and Trajectories From a 13,400-Year Sediment Core Record of Lead Isotopic Ratios in Maine

    Science.gov (United States)

    Perry, R. H.; Norton, S. A.; Koons, P. O.; Handley, M.

    2008-12-01

    Lead isotopic ratios recorded in a 5.3-m 13.4-ka 14C-dated lake sediment core from Sargent Mountain Pond, Maine (USA) are interpreted as an archive of post-glacial chemical weathering. Early weathering yielded highly radiogenic sediment from the preferential release of U and Th decay products (206Pb, 207Pb, and 208Pb) from accessory mineral phases in the catchment's predominantly-granitic till and bedrock relative to non-radiogenic 204Pb from the more abundant primary minerals. Values for 207Pb/206Pb in the sediment increased rapidly from 0.799 to 0.814 in the catchment's first 4,000 years of post-Wisconsinan weathering, and thereafter increased only slightly to just prior to the 19th century. Values for 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb decline over the same time-scale, as a result of decreasing radiogenic Pb being released from catchment weathering. Our results are consistent with: (1) the published interpretation of Pb isotopic variation in ferromanganese ocean crusts as a reflection of continental-scale glacial-interglacial chemical weathering cycles, (2) bench-scale whole-rock weathering experiments, and (3) soil chronosequence Pb isotope dissolution experiments and bridge the gap between short-term, mineral-scale experiments and long-term, ocean sediment records. We establish a time-scale for depletion of accessory minerals, and loss of their Pb isotopic signature at one catchment, and document the concurrent shift to slower primary mineral-controlled chemical weathering after deglaciation.

  5. Isotopic studies in soil and plant nutrition

    International Nuclear Information System (INIS)

    One of the most important peaceful applications of isotopes is in research for the enhancement of our understanding for increased crop production and better management of resources with higher economic efficiency and environmental safety. Nuclear techniques helped in generating useful information on such aspects as use-efficiency of fertilizer nutrients, quantifying their losses from soil and their biological transformations. Such information was, hitherto, obtained indirectly by conventional methods. Radio and stable isotopes have also been successfully employed for getting information in such diverse fields as soil erosion, turnover of soil organic matter, pesticide retention in soil ground water recharge etc. The property of 137Cs adhering tightly to certain exchange surface in soil and its chemically inert nature has made it a useful tool for soil erosion studies. In this paper, applications of isotopes in the research and other such studies as degradation, movement and retention of pesticides, movement of nitrate in soil, biological and ammoniacal nitrogen fixation in soil is discussed

  6. Chemical characterization and stable carbon isotopic composition of particulate polycyclic aromatic hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2012-08-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography coupled with a mass spectrometer (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the different species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion from others origins of particulate matter (vehicular exhaust using isotopic measurements (with δ13CPAH = −28.7 to −26.6‰ but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach of source tracking.

  7. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging

    Science.gov (United States)

    Yan, Gen; Zhang, Tao; Dai, Zhuozhi; Yi, Meizhi; Jia, Yanlong; Nie, Tingting; Zhang, Handi; Xiao, Gang; Wu, Renhua

    2016-01-01

    Purpose We developed a novel magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer (CEST) for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood—brain barrier (BBB) disruption. Materials and Methods All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0) and other metabolites (glutamine, myoinositol, creatinine, and choline) were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution. Results The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm) downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz). The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection. Conclusion The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA. PMID:27711138

  8. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Mueller-Lutz, Anja; Zimmermann, Lisa; Boos, Johannes; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf (Germany); Schmitt, Benjamin [Siemens Ltd. Australia, Healthcare Sector, Macquarie Park, NSW (Australia)

    2016-01-15

    To evaluate glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging at 3T in the assessment of the GAG content of cervical IVDs in healthy volunteers. Forty-two cervical intervertebral discs of seven healthy volunteers (four females, three males; mean age: 21.4 ± 1.4 years; range: 19-24 years) were examined at a 3T MRI scanner in this prospective study. The MRI protocol comprised standard morphological, sagittal T2 weighted (T2w) images to assess the magnetic resonance imaging (MRI) based grading system for cervical intervertebral disc degeneration (IVD) and biochemical imaging with gagCEST to calculate a region-of-interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF). GagCEST of cervical IVDs was technically successful at 3T with significant higher gagCEST values in NP compared to AF (1.17 % ± 1.03 % vs. 0.79 % ± 1.75 %; p = 0.005). We found topological differences of gagCEST values of the cervical spine with significant higher gagCEST effects in lower IVDs (r = 1; p = 0). We could demonstrate a significant, negative correlation between gagCEST values and cervical disc degeneration of NP (r = -0.360; p = 0.019). Non-degenerated IVDs had significantly higher gagCEST effects compared to degenerated IVDs in NP (1.76 % ± 0.92 % vs. 0.52 % ± 1.17 %; p < 0.001). Biochemical imaging of cervical IVDs is feasible at 3T. GagCEST analysis demonstrated a topological GAG distribution of the cervical spine. The depletion of GAG in the NP with increasing level of morphological degeneration can be assessed using gagCEST imaging. (orig.)

  9. FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere-atmosphere chemical exchange

    Science.gov (United States)

    Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.

    2015-11-01

    Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.

  10. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu-Zhong; Deng, Min; Wang, Yi-Xiang J. [Chinese University of Hong Kong, Prince of Wales Hospital, Department of Imaging and Interventional Radiology, Faculty of Medicine (China); Yuan, Jing [Hong Kong Sanatorium and Hospital, Medical Physics and Research Department, Happy Valley, Hong Kong (China); Wei, Juan [Philips Healthcare Asia, Shanghai (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States); Kennedy Krieger Institute, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, MD (United States)

    2016-06-15

    To evaluate Chemical Exchange Saturation Transfer (CEST) MRI for liver imaging at 3.0-T. Images were acquired at offsets (n = 41, increment = 0.25 ppm) from -5 to 5 ppm using a TSE sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified as the asymmetric magnetization transfer ratio (MTR{sub asym}) at 3.5 ppm and the total MTR{sub asym} integrated from 0.5 to 1.5 ppm, respectively, from the corrected Z-spectrum. Reproducibility was assessed for rats and humans. Eight rats were devoid of chow for 24 hours and scanned before and after fasting. Eleven rats were scanned before and after one-time CCl4 intoxication. For reproducibility, rat liver APTw and GlycoCEST measurements had 95 % limits of agreement of -1.49 % to 1.28 % and -0.317 % to 0.345 %. Human liver APTw and GlycoCEST measurements had 95 % limits of agreement of -0.842 % to 0.899 % and -0.344 % to 0.164 %. After 24 hours, fasting rat liver APTw and GlycoCEST signals decreased from 2.38 ± 0.86 % to 0.67 ± 1.12 % and from 0.34 ± 0.26 % to -0.18 ± 0.37 % respectively (p < 0.05). After CCl4 intoxication rat liver APTw and GlycoCEST signals decreased from 2.46 ± 0.48 % to 1.10 ± 0.77 %, and from 0.34 ± 0.23 % to -0.16 ± 0.51 % respectively (p < 0.05). CEST liver imaging at 3.0-T showed high sensitivity for fasting as well as CCl4 intoxication. (orig.)

  11. Chemical and boron isotope microanalysis of tourmalines as a guide to fluid-rock interaction in the Habachtal emerald deposit, Tauern Window, Austria

    Science.gov (United States)

    Trumbull, R. B.; Krienitz, M.-S.; Grundmann, G.; Wiedenbeck, M.

    2009-04-01

    Tourmalines from the Habachtal emerald deposit in the Eastern Alps formed together with emerald in a ductile shear zone during blackwall metasomatism between pelitic country rocks and a serpentinite body. Electron microprobe and secondary ion mass spectrometric (SIMS) analyses provide a record of chemical and B-isotope variations in tourmalines which represent an idealized profile from metapelites into the blackwall sequence of biotite and chlorite schists. Tourmaline is intermediate schorl-dravite in the country rock and become increasingly dravitic in the blackwall zones, while F and Cr contents increase and Al drops. Metasomatic tourmaline from blackwall zones is typically zoned optically and chemically, with rim compositions rich in Mg, Ti, Ca and F compared with the cores. The total range in delta-11B values is -13.8 to -5.1 permil and the within-sample variations are typically 3 to 5 permil. Both of these ranges are beyond the reach of closed-system fractionation at the estimated 500-550C conditions of formation, and at least two boron components with contrasting isotopic composition are indicated. A key observation from tourmaline core analyses is a systematic shift in delta-11B from the country rock (-14 to -10 permil) to the inner blackwall zones (-9 to -5 permil). We suggest that two separate fluids were channeled and partially mixed in the Habachtal shear zone during blackwall alteration and tourmaline-emerald mineralization. A regional metamorphic fluid carried isotopically light boron as observed in the metapelite country rocks. The other fluid is derived from the serpentinite association and has isotopically heavier boron typical for MORB or altered oceanic crust.

  12. Methodological Adaptations for Reliable Measurement of Radium and Radon Isotopes in Hydrothermal Fluids of Extreme Chemical Diversity in Yellowstone National Park, Wyoming, USA

    Science.gov (United States)

    Role, A.; Sims, K. W. W.; Scott, S. R.; Lane-Smith, D. R.

    2015-12-01

    To quantitatively model fluid residence times, water-rock-gas interactions, and fluid flow rates in the Yellowstone (YS) hydrothermal system we are measuring short-lived isotopes of Ra (228Ra, 226Ra, 224Ra, 223Ra) and Rn (222Rn, and 220Rn) in hydrothermal fluids and gases. While these isotopes have been used successfully in investigations of water residence times, mixing, and groundwater discharge in oceanic, coastal and estuarine environments, the well-established techniques for measuring Ra and Rn isotopes were developed for seawater and dilute groundwaters which have near neutral pH, moderate temperatures, and a limited range of chemical composition. Unfortunately, these techniques, as originally developed are not suitable for the extreme range of compositions found in YS waters, which have pH ranging from water temperatures from ambient to 93 degree C, and high dissolved CO2 concentrations. Here we report on our refinements of these Ra and Rn methods for the extreme conditions found in YS. Our methodologies are now enabling us to quantitatively isolate Ra from fluids that cover a large range of chemical compositions and conduct in-situ Rn isotope measurements that accommodate variable temperatures and high CO2 (Lane-Smith and Sims, 2013, Acta Geophys. 61). These Ra and Rn measurements are now allowing us to apply simple models to quantify hot spring water residence times and aquifer to surface travel times. (224Ra/223Ra) calculations provide estimates of water-rock reaction zone to discharge zone of 4 to 14 days for Yellowstone hot springs and (224Ra/228Ra) shallow aquifer to surface travel times from 2 to 7 days. Further development of more sophisticated models that take into account water-rock-gas reactions and water mixing (shallow groundwater, surface run-off, etc.) will allow us to estimate the timescales of these processes more accurately and thus provide a heretofore-unknown time component to the YS hydrothermal system.

  13. Isotopic analysis of dissolved organic carbon in produced water brines by wet chemical oxidation and cavity ring-down spectroscopy

    Science.gov (United States)

    Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif

    2013-04-01

    Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation

  14. Palaeoclimatic and deforestation effect on the coastal fresh groundwater resources of SE Ivory Coast from isotopic and chemical evidence

    Science.gov (United States)

    Adiaffi, Bernard; Marlin, Christelle; Oga, Yéï Marie Solange; Massault, Marc; Noret, Aurelie; Biemi, Jean

    2009-05-01

    SummaryIn the South-east of the Ivory Coast, two aquifer systems have been studied in the sedimentary deposits at the South and in the fractured bedrock at the North of the study area (5-6°N, 2.40-4.40°W) : (1) the Continental Terminal (CT) and (2) the Paleoproterozoïc Bedrock (PB). In the studied area, the vegetation cover has undergone significant changes since 1955 in addition to climate change. Rainforests have gradually disappeared due to natural and anthropological deforestation. The impact of deforestation on groundwater of the PB and on the CT has been studied by a geochemical approach. Stable isotopes ( 18O, 2H and 13C) contents, radiocarbon ( 14C) contents and chemical data (major ions) have been measured on a set of 25 groundwater samples. The residence time of the groundwaters is estimated with the 14C using two models: (i) the model of well-mixed reservoir (WMR model) and (ii) the piston flow model (PF model). The range of the PB groundwater residence time (15,200-8300 to ˜300-100 a BP) for both models shows that the recharge has started at the beginning of the post-glacial period whereas the CT aquifer recharge is much more recent (from 300 a BP to today). The PB groundwater provides information about paleoclimatic conditions that occurred over the studied area during the late Pleistocene. The low contents indicate cold and/or more humid conditions of recharge. During that period, the low content of 13C is consistent with a vegetation cover dominated by rainforest (C 3 plants). After the 20th century, the progressive evolution of vegetation cover from forest to cultivated plants and grasses is shown by the enrichment of groundwater in 13C (C 3 plants to C 4 plants). The relatively high mineralization level (mean of 143.7 mg L -1) and high δ18O- δ2H values of modern PB groundwater reflect of a recharge process that is slowed by a thick layer (16.3-72.5 m) of weathered formations above the PB formations. Groundwaters of the CT aquifer are

  15. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    Science.gov (United States)

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring

  16. Comprehensive and Quantitative Profiling of the Human Sweat Submetabolome Using High-Performance Chemical Isotope Labeling LC-MS.

    Science.gov (United States)

    Hooton, Kevin; Han, Wei; Li, Liang

    2016-07-19

    Human sweat can be noninvasively collected and used as a media for diagnosis of certain diseases as well as for drug detection. However, because of very low concentrations of endogenous metabolites present in sweat, metabolomic analysis of sweat with high coverage is difficult, making it less widely used for metabolomics research. In this work, a high-performance method for profiling the human sweat submetabolome based on chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) is reported. Sweat was collected using a gauze sponge style patch, extracted from the gauze by centrifugation, and then derivatized using CIL. Differential (12)C- and (13)C-dansylation labeling was used to target the amine/phenol submetabolome. Because of large variations in the total amount of sweat metabolites in individual samples, sample amount normalization was first performed using liquid chromatography with UV detection (LC-UV) after dansylation. The (12)C-labeled individual sample was then mixed with an equal amount of (13)C-labeled pooled sample. The mixture was subjected to LC-MS analysis. Over 2707 unique metabolites were detected across 54 sweat samples collected from six individuals with an average of 2002 ± 165 metabolites detected per sample from a total of 108 LC-MS runs. Using a dansyl standard library, we were able to identify 83 metabolites with high confidence; many of them have never been reported to be present in sweat. Using accurate mass search against human metabolome libraries, we putatively identified an additional 2411 metabolites. Uni- and multivariate analyses of these metabolites showed significant differences in the sweat submetabolomes between male and female, as well as between early and late exercise. These results demonstrate that the CIL LC-MS method described can be used to profile the human sweat submetabolome with high metabolomic coverage and high quantification accuracy to reveal metabolic differences in different sweat

  17. Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser Basin, Yellowstone National Park during June-September, 1995

    Science.gov (United States)

    Fournier, R.O.; Weltman, U.; Counce, D.; White, L.D.; Janik, C.J.

    2002-01-01

    Each year at Norris Geyser Basin, generally in August or September, a widespread hydrothermal 'disturbance' occurs that is characterized by simultaneous changes in the discharge characteristics of many springs, particularly in the Back Basin. During the summer season of 1995, water samples from eight widely distributed hot springs and geysers at Norris were collected each week and analyzed to determine whether chemical and isotopic changes also occurred in the thermal waters at the time of the disturbance. In addition, Beryl Spring in Gibbon Canyon, 5.8 km southwest of Norris Geyser Basin, was included in the monitoring program. Waters discharged by four of the monitored hot springs and geysers appear to issue from relatively deep reservoirs where temperatures are at least 270 C and possibly higher than 300 C. At the time of, and for several days after, the onset of the 1995 disturbance, the normally neutral-chloride waters discharged by these four features all picked up an acid-sulfate component and became isotopically heavier. The acid-sulfate component appears to be similar in composition to some waters discharged in 100 Spring Plain that issue from subsurface regions where temperatures are in the range 170-210 C. However, the two monitored springs that discharge acid-chloride-sulfate waters in the 100 Spring Plain region did not show any significant chemical or isotopic response to the annual disturbance. Beryl Spring, and two neutral-chloride hot springs at Norris that appear to draw their water from reservoirs where temperatures are 250 C or less, also did not show any significant chemical or isotopic response to the annual disturbance. After the start of the annual disturbance, chloride concentrations in water sampled from Double Bulger Geyser in the Back Basin increased from about 800 ppm to about 1500 ppm, nearly twice as high as any previously reported chloride concentration in a thermal water at Yellowstone. The isotopic composition of that water

  18. Modeling of Isotope Fractionation in Stratospheric CO2, N2O, CH4, and O3: Investigations of Stratospheric Chemistry and Transport, Stratosphere-Troposphere Exchange, and Their Influence on Global Isotope Budgets

    Science.gov (United States)

    Boering, Kristie A.; Connell, Peter; Rotman, Douglas

    2004-01-01

    We investigated the isotopic fractionation of CH4 and hydrogen (H2) in the stratosphere by incorporating isotope-specific rate coefficients into the Lawrence Livermore National Laboratory (LLNL) 2D model and comparing the model results with new observations from the NASA ER-2 aircraft (funded through a separate task under the Upper Atmosphere Research Program). The model results reveal that fractionation which occurs in the stratosphere has a significant influence on isotope compositions in the free troposphere, an important point which had previously been ignored, unrecognized or unquantified for many long-lived trace gases, including CH4 and H2 which we have focused our efforts on to date. Our analyses of the model results and new isotope observations have also been used to test how well the kinetic isotope effects are known, at least to within the uncertainties in model chemistry and transport. Overall, these results represent an important step forward in our understanding of isotope fractionation in the atmosphere and demonstrate that stratospheric isotope fractionation cannot be ignored in modeling studies which use isotope observations in the troposphere to infer the global budgets of CH4 (an important greenhouse gas) and of H2 (a gas whose atmospheric budget must be better quantified, particularly before a large human perturbation from fuel cell use is realized). Our analyses of model results and observations from the NASA ER-2 aircraft are briefly summarized separately below for CH4, H2, and H2O and for the contribution of these modeling studies to date to our understanding of isotope fractionation for N2O, CO2, and O3 as well.

  19. Isotopic geology; Geologie isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Allegre, C. [Paris-7 Univ. Denis Diderot, 75 (France); Institut de physique du globe de Paris, 75 - Paris (France)

    2005-07-01

    Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)

  20. Activation analysis and isotope dilution applied to the determination of rare earth elements in ytrium oxides

    International Nuclear Information System (INIS)

    A method for determining rare earth elements from matrix constituted by sample of ytrium oxide is shown. Ion exchange technique and electron with chelating agent have been chosen for chemical separations. The method consists of using isotope dilution followed by activation analysis in order to determine the amounts of the elements

  1. A theoretical study of soft mode behavior and ferroelectric phase transition in 18O-isotope exchanged SrTiO3: evidence of phase coexistence at the quantum critical point

    Science.gov (United States)

    Mkam Tchouobiap, S. E.

    2014-02-01

    Motivated by recent experiments, the dynamics of the ferroelectric soft mode and the ferroelectric phase transition mechanism in 18O isotope exchanged systems SrTi(16O1-x18Ox)3 (abbreviated as STO18-x) are reinvestigated as a function of the 18O isotope exchange rate x, within a quasiharmonic model (QHM) for quantum ferroelectric modes in double-Morse local potential with mean-field approximation interactions between modes. The approach was realized within the framework of the variational principle method at finite temperature through the quantum mean-field approximation and by taking into account the effect of isotope replacement through the predominant mass effect, the cell volume effect, homogeneity of the composition throughout the material and the concentration-dependent ferroelectric mode distortion effect. The dynamics of the lowest-frequency soft phonon mode clearly presents an increased softening phenomenon with increasing x and a complete one at the corresponding phase transition temperature Tc, demonstrating the perfect soft-mode-type quantum ferroelectric phase transition for x ⩾ xc. Also, a ferroelectric-paraelectric phase coexistence state has been found near the quantum critical point xc and its origin is discussed. The ferroelectric phase transition mechanism is analyzed and its nature discussed, where a second-order phase transition close to the tricritical point is predicted. In addition, the effect of quantum fluctuations on the soft mode dynamics is discussed which reveals its reduction with increasing x and the crossover of the soft mode dynamics from the quantum to the classic one at the full 18O exchange limit x = 1, for which the origin seems to lie in the new homogeneity associated with the direct reduction of quantum fluctuations effects on the soft mode behavior. Within the QHM, consistent agreement with some of the previous experimental results and theoretical predictions of quantum ferroelectricity throughout the full range of x are

  2. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    Science.gov (United States)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  3. Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2006-01-01

    The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C-12-PSV:C-60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 1802 isotopic labelling...... throughout the active layer with the largest concentration towards the aluminium electrode. For devices that had been kept in the dark oxygen species were only observed at the immediate interface between the aluminium and the organic layer. The isotopic labelling allowed us to demonstrate that the oxygen...

  4. Chemical and isotopic diversity in basalts dredged from the East Pacific Rise at 10°S, the fossil Galapagos Rise and the Nazca plate

    Science.gov (United States)

    Batiza, Rodey; Oestrike, Richard; Futa, Kiyoto

    1982-01-01

    We present petrographic, chemical and isotopic data for fresh lava samples dredged from three regions: (1) the fossil Galapagos Rise; (2) an elongate volcano near this extinct spreading center; and (3) the East Pacific Rise at 10°S. The samples from the Galapagos Rise are among the first samples from any fossil spreading center to be analyzed. Alkalic picrites from the elongate seamount and transitional basalts from the East Pacific Rise are both somewhat unusual rock types considering their respective tectonic environments.

  5. I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114

    OpenAIRE

    Ellison, Paul Andrew

    2011-01-01

    Part I discusses the study of a new nuclear reaction and chemical separation procedure for the production of 240Am. Thin 242Pu, natTi, and natNi targets were coincidently activated with protons from the 88-Inch Cyclotron, producing 240Am, 48V, and 57Ni, respectively. The radioactive decay of these isotopes was monitored using high-purity Ge gamma ray detectors in the weeks following irradiation. The excitation function for the 242Pu(p, 3n)240Am nuclear reaction was measured to be lower than t...

  6. MULTIPLE ORIGINS OF NITROGEN ISOTOPIC ANOMALIES IN METEORITES AND COMETS

    International Nuclear Information System (INIS)

    Isotopic fractionation and mixing calculations compared with coupled hydrogen and nitrogen isotopic composition of organic molecules from primitive chondrites, interplanetary dust particles (IDPs), and comets C/1995 O1 (Hale-Bopp) and 81P/Wild2 reveal that meteoritic and cometary organic matter contains three different isotopic components of different origins. (1) A major component of carbonaceous chondrites, IDPs, and comets Hale-Bopp and Wild2 shows correlated H and N isotopic compositions attributable to isotope exchange between an organic matter of solar composition and a reservoir formed by ion-molecule reactions at T 15N-rich component having identical 15N and D enrichments relative to the protosolar gas. Temperatures > 100 K deduced from the low D/H ratio and an anti-correlation between the abundance of this component and meteoritic age indicate a late origin in the solar protoplanetary disk. N2 self-shielding and the non-thermal nucleosynthesis of 15N upon irradiation are possible but unlikely sources of this component, and a chemical origin is preferred. (3) An interstellar component with highly fractionated hydrogen isotopes and unfractionated nitrogen isotopes is present in ordinary chondrites. A dominantly solar origin of D and 15N excesses in primitive solar system bodies shows that isotopic anomalies do not necessarily fingerprint an interstellar origin and implies that only a very small fraction of volatile interstellar matter survived the events of solar system formation.

  7. The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers

    Science.gov (United States)

    Campodonico, Verena Agustina; García, María Gabriela; Pasquini, Andrea Inés

    2015-09-01

    The Paraná River basin is one of the largest hydrological systems in South America (∼2.6 × 106 km2). Downflow the confluence of tributaries, most large rivers exhibit transverse and longitudinal inhomogeneities that can be detected for tens or even hundreds of kilometers. Concordantly, a noticeable cross-sectional chemical asymmetry in the dissolved load was distinguished in the Middle Paraná River, after the confluence of its main tributaries (i.e., the Paraguay and Upper Paraná rivers). Water chemistry and isotopic signature in three cross-sections along the Middle Paraná River, as well as from main and minor tributaries, and some deep (∼105 m bs) and shallow boreholes (∼15 m bs) located near both river banks, were analyzed in order to define the extent of mixing and identify possible contributions from groundwater discharges. Downflow the confluence of the Upper Paraná and Paraguay rivers a chemical and isotopic asymmetry was observed, mainly through the values of EC, major ions (Ca2+, Na+, Mg2+, Cl- and SO42-), some trace elements (Fe, U, Th, Ba, Sr, As and REE) and stable isotopes (δ18O and δ2H). Toward its western margin, higher elemental concentrations which resembled that of the Paraguay River were measured, whereas at the eastern border, waters were more diluted and preserved the chemical signature of the Upper Paraná River. This variability remained detectable at least until ∼225 km downflow the confluence, where differences between western and eastern margins were less evident. At ∼580 km downflow the confluence, a slight inversion in the transverse chemical asymmetry was observed. This trend switch can be the result of the input of solutes from minor tributaries that reach the main channel from the East and/or may be due to higher groundwater discharges from the East bank. A mass balance model was applied, as a first approach, to estimate the groundwater inflow using the geochemical tracer 222Rn. The results indicate that groundwater

  8. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    OpenAIRE

    A. Schmittner; Gruber, N.; Mix, A. C.; Key, R.M.; Tagliabue, A.; Westberry, T. K.

    2013-01-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high...

  9. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    OpenAIRE

    A. Schmittner; Gruber, N.; Mix, A. C.; Key, R.M.; Tagliabue, A.; Westberry, T. K.

    2013-01-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDI...

  10. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical weathering in a polar climate

    Science.gov (United States)

    Lyons, W.B.; Nezat, C.A.; Benson, L.V.; Bullen, T.D.; Graham, E.Y.; Kidd, J.; Welch, K.A.

    2002-01-01

    We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.

  11. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 < Ca, Mg < 1,000; 1 < K, Br, Sr, Li, Fe, SO4 < 100; Mn, Zn, Al, I, HCO3, SiO2 < 1. Mean ionic concentrations of Ca, Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  12. Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts

    DEFF Research Database (Denmark)

    Gagnevin, D.; Waight, Tod Earle; Daly, J.S.;

    2007-01-01

    Plagioclase phenocrysts in dacites from the high-K calc-alkaline CapraiaVolcano were investigated for major, trace element and Sr isotope variations in order to gain better insight into the proposed open-system behaviour of the volcano. Repeated dissolution zone in plagioclases from the early-eru...

  13. Selected bibliography on heavy water, tritiated water and hydrogen isotopes (1981-1992)

    International Nuclear Information System (INIS)

    A selected bibliography on heavy water, tritiated water and hydrogen isotopes is presented. This bibliography covers the period 1981-1992 and is in continuation to Division's earlier report BARC-1192 (1983). The sources of information for this compilation are Chemical Abstracts, INIS Atom Index and also some scattered search through journals and reports available in our library. No claim is made towards exhaustiveness of this bibliography even though sincere attempts have been made for a wide coverage. The bibliography is arranged under the headings: (1) production, purification, recovery, reprocessing and storage, (2) isotope exchange, 3) isotope analysis, (4) properties and (5) miscellaneous. Total number of references in the bibliography are 1762. (author)

  14. Selected bibliography on heavy water, tritiated water and hydrogen isotopes (1981-1992)

    Science.gov (United States)

    Gopalakrishnan, V. T.; Sutawane, U. B.; Rathi, B. N.

    A selected bibliography on heavy water, tritiated water and hydrogen isotopes is presented. This bibliography covers the period 1981-1992 and is in continuation to Division's earlier report BARC-1192 (1983). The sources of information for this compilation are Chemical Abstracts, INIS Atom Index and also some scattered search through journals and reports available in our library. No claim is made towards exhaustiveness of this bibliography even though sincere attempts have been made for a wide coverage. The bibliography is arranged under the headings: (1) production, purification, recovery, reprocessing and storage; (2) isotope exchange; (3) isotope analysis; (4) properties; and (5) miscellaneous. Total number of references in the bibliography are 1762.

  15. Stable isotope studies: Progress report, March 1985--August 1987

    International Nuclear Information System (INIS)

    Studies have been carried out in the following areas: Stable Isotope Fractionation (1) Effects of chemical poisons and surface modifiers on polycrystalline platinum electrode surfaces have been investigated with a goal to develop a new form of heterogeneous catalyst for the hydrogen isotope exchange between dihydrogen and water. (2) A new nitrogen-15 fractionation process has been developed, based on the isotope exchange between liquid N2O3-N2O4 mixture and their vapor phase at a subambient temperature and a raised pressure. (3) A closed chemical recycle process has been developed for use in connection with the refluxer in the Nitrox-type nitrogen-15 plant. Isotope Effects (1) The vapor pressure isotope effect (VPIE) study of liquid fluoromethanes have been completed. (2) The VPIE study of solid and liquid ammonia has been completed. (3) A theoretical foundation of the additivity for the vibrational zero-point energy (ZPE) has been developed. Studies of Liquid Ammonia. With an aim to study intermolecular interaction (and the inversion phenomenon, in particular) in liquid ammonia, and to further investigate various ammonia solutions, a molecular dynamics (MD) study has been initiated. An MD program has been completed, and force field functions have been developed for an ensemble of non-rigid ammonia molecules. 107 refs., 41 figs., 10 tabs

  16. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: Chemical, microbial and isotope assessment of a 1D flow-through experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Gavilan, G., E-mail: georginavidal@biorem.cat [D D' ENGINY BIOREM S.L., Madrazo 68, bxs., 08006 Barcelona (Spain); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain); Carrey, R., E-mail: rcarrey@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain); Solanas, A., E-mail: asolanas@ub.edu [Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona (Spain); Soler, A., E-mail: albertsolergil@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain)

    2014-10-01

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100 mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in {sup 13}C-ethanol compared to the value of the injected ethanol (− 30.6‰), to a later depletion, achieving δ{sup 13}C values well below the initial isotope composition (to a minimum of − 46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled

  17. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: Chemical, microbial and isotope assessment of a 1D flow-through experiment

    International Nuclear Information System (INIS)

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100 mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in 13C-ethanol compared to the value of the injected ethanol (− 30.6‰), to a later depletion, achieving δ13C values well below the initial isotope composition (to a minimum of − 46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled through the

  18. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France)

    Science.gov (United States)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-03-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions

  19. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland

    Science.gov (United States)

    Rautio, Anne; Korkka-Niemi, Kirsti

    2015-03-01

    Stable isotopes (δ 18O, δD), dissolved silica (DSi) concentration and major ion composition were used to indicate groundwater/surface-water interaction between the aquifers, the rivers and a lake in the high-latitude Lake Pyhäjärvi catchment in Finland. Significant differences were recorded in water chemistry between the groundwater and surface waters, especially in the stable isotope composition and DSi concentrations, which could thus be used as tracers. The baseline data on isotopic patterns and hydrogeochemistry in the hydrological cycle were provided by a 1-year monitoring survey in this snow-type catchment area. The proportions of groundwater in the rivers, the lake inshore area and in a groundwater abstraction plant were calculated using stable isotopes and DSi. Two inflowing rivers had distinct differences in their water chemistry. DSi has potential as a tracer in the river environment, whereas stable isotopes were more applicable in the lake environment. Locally, near the shoreline, the effect of discharging groundwater on the lake-water quality could clearly be observed. Furthermore, infiltration of the lake water into the aquifer could be observed near the pumping wells onshore. This infiltration presents a potential risk for the water quality of water supply (intake) wells. Frequent sampling is needed as part of the evaluation of the level of groundwater/surface-water interaction in snow-type catchments in order to estimate the magnitude of seasonal variation. In groundwater/surface-water interaction studies, spring thaw and high-precipitation events could be problematic, in terms of both sampling and interpreting results.

  20. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)

    Science.gov (United States)

    Gastmans, Didier; Hutcheon, Ian; Menegário, Amauri Antônio; Chang, Hung Kiang

    2016-04-01

    Groundwater from the fractured basalt Serra Geral Aquifer (SGA) represents an important source for water supply in Northeastern São Paulo state (Brazil). Groundwater flow conditions in fractured aquifers hosted in basaltic rocks are difficult to define because flow occurs through rock discontinuities. The evaluation of hydrodynamic information associated with hydrochemical data has identified geochemical processes related to groundwater evolution, observed in regional flowpaths. SGA groundwaters are characterized by low TDS with pH varying from neutral to alkaline. Two main hydrochemical facies are recognized: Ca-Mg-HCO3, and Na-HCO3 types. Primarily, the geochemical evolution of SGA groundwater occurs under CO2 open conditions, and the continuous uptake of CO2 is responsible for mineral dissolution, producing bicarbonate as the main anion, and calcium and magnesium in groundwater. Ion exchange between smectites (Na and Ca-beidelites) seems to be responsible for the occurrence of Na-HCO3 groundwater. Toward the Rio Grande, in the northern portion of the study area, there is mixing between SGA groundwater and water from the sandstones of the Guarani Aquifer System, as evidenced by the chemical and isotopic composition of the groundwater. Inverse mass balance modeling performed using NETPATH XL produces results in agreement with the dissolution of minerals in basalt (feldspars and pyroxenes) associated with the uptake of atmospheric CO2, as well as the dissolution of clay minerals present in the soil. Kaolinite precipitation occurs due to the incongruent dissolution of feldspars, while Si remains almost constant due to the precipitation of silica. The continuous uptake of CO2 under open conditions leads to calcite precipitation, which in addition to ion exchange are responsible by Ca removal from groundwater and an increase in Na concentrations. Down the flow gradientCO2 is subject to closed conditions where the basalts are covered by the sediments of Bauru Group or

  1. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG0, δ S0 and δH0) have also been calculated for the adsorption of Pb2+, Cs+, Fe3+, Cd2+, Cu+2, Zn2+, Co2+ and Eu3+ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe3+, Co2+, Cu+2, Zn2+, Cd2+, Cs+, Pb2+ and Eu3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  2. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  3. Depositional conditions for the Kuna Formation, Red Dog Zn-PB-Ag-Barite District, Alaska, inferred from isotopic and chemical proxies

    Science.gov (United States)

    Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.

    2015-01-01

    Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of

  4. Coordinated analysis of Comet 81P/Wild-2 dust samples: Nanoscale measurements of its organic/ inorganic chemical and isotopic composition and optical properties

    Science.gov (United States)

    Messenger, K. N.; Messenger, S. R.; Clemett, S. J.; Keller, L. P. Class='hr'>; Zolensky, M. E.

    2006-12-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. This is the first sample of extraterrestrial materials returned from beyond the moon. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected (cells and 25 cometary grains were fully studied by an international collaboration among 150 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. This scientific consortium was made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments. Coordinated and replicate analyses of the samples were made possible by subdividing individual particles into 50 nm-thick sections by ultramicrotomy, providing up to 100 sections from a 20 um particle. We present results of a coordinated study of comet Wild 2 dust samples in which individual particles were analyzed by FTIR microspectroscopy, field emission scanning-transmission electron microscopy (STEM), and isotopic measurements with a NanoSIMS 50L ion microprobe. The STEM is equipped with a thin window energy- dispersive X-ray (EDX) spectrometer that was used to acquire spectrum images that contained a high count- rate EDX spectrum in each pixel, enabling the determination of the nm-scale spatial distribution of quantitative element abundances. These samples were later analyzed by the JSC NanoSIMS 50L ion microprobe, which acquired 100 nm spatial resolution C, N, and O isotopic images. This analytical protocol enables direct comparison of the submicrometer chemical and isotopic compositions of the cometary materials.

  5. Distribution of uranium, thorium, and isotopic composition of uranium in soil samples of south Serbia: Evidence of depleted uranium

    OpenAIRE

    Sahoo Sarata Kumar; Fujimoto Kenzo; Čeliković Igor; Ujić Predrag; Žunić Zora S.

    2004-01-01

    Inductively coupled plasma mass spectrometry and thermal ionization mass spectrom - etry were used to measure concentration of uranium and thorium as well as isotopic composition of uranium respectively in soil samples collected around south Serbia. An analytical method was established for a routine sample preparation procedure for uranium and thorium. Uranium was chemically separated and purified from soil samples by anion exchange resin and UTEVA extraction chromatography and its isotopic c...

  6. Sister-chromatid exchanges and cell-cycle kinetics in the lymphocytes of workers occupationally exposed to a chemical mixture in the tyre industry.

    Science.gov (United States)

    Sasiadek, M

    1993-08-01

    Cytogenetic studies of clinically healthy workers employed in the rubber industry showed an increase in chromosome aberrations (CAs), sister-chromatid exchanges (SCEs) and a decrease in proliferation indices (PIs). The aim of the present study was to establish, using the SCE and PI tests, genotoxic effects of hazardous chemicals in the rubber industry. An increase in mean SCEs in the lymphocytes of vulcanizers as compared to controls was observed. Since the PI in the exposed group was insignificantly decreased as compared to the controls, it could be concluded that the SCE test is the most sensitive cytogenetic test for the detection of a genotoxic effect of chemicals in the rubber industry. There was no evidence in the present study that the genotoxic effect of chemicals in the rubber industry was enhanced by cigarette smoking. PMID:7688857

  7. Calibration of Rainfall-Runoff Model by Referring to Hydrological Separation of Runoff Components using Chemical and Isotopic Characteristics of Discharge

    Science.gov (United States)

    Chikamori, H.

    2008-12-01

    Calibration of Rainfall-Runoff Model by Referring to Hydrological Separation of Runoff Components using Chemical and Isotopic Characteristics of Discharge Hidetaka Chikamori Graduate School of Environmental Science, Okayama University, JAPAN A rainfall-runoff model is generally calibrated by minimizing error in calculated runoff using records of hydrological components, that is, observed rainfall, discharge and observed or estimated evapotranpiration. However, calibration using only hydrological components sometimes produces a model with strange structure that does not reflect physical properties of an objective basin. It is probably due to error in referred hydrological records. In this study, the author calibrated a rainfall runoff model using not only hydrological record but also chemical and isotopic data of discharge so as to obtain a reasonably structured model from multiple viewpoints. Besides, the model structure was improved in order to simulate isotopic characteristics well. It is well known that ratio of surface flow in total flow can be estimated by change in concentration of cation or anion. Relative concentration of 18O, δ18O is well used for separating runoff of retained water in soil as "old water" from total runoff. A Long-and-Short Term Tank Model (LST2 Model) was applied to three Hinoki Cypress catchments in Mie experimental basin located in the middle of Japan. One of these catchments is of well-maintained planted forest, and two are of poor-maintained planted. A model was calibrated by Differential Evolution for each catchment using hydrological data, concentration of K+ and δ18O. In these catchments, Gomi et al (2008) showed that concentration of K+ well expresses ratio of surface runoff to total runoff, and that δ18O subsurface runoff to total runoff. The results show that an original version of LST2 Model cannot simulated delayed subsurface flow ratio estimated by δ18O, although it well simulates surface flow ratio estimated by

  8. Exchange Reactions. Proceedings of the Symposium on Exchange Reactions

    International Nuclear Information System (INIS)

    The mechanisms and kinetics of chemical reactions are of great interest to chemists. The study of exchange reactions in particular helps to shed light on the dynamics of chemical change, providing an insight into the structures and the reactivities of the chemical species involved. The main theme of this meeting was the subject of oxidation-reduction reactions in which the net result is the transfer of one or more electrons between the different oxidation states of the same element. Other studies reported included the transfer of protons, atoms, complex ligands or organic radicals between molecules. Heterogeneous exchange, which is of importance in many cases of catalytic action, was also considered. For a long time isotopic tracers have formed the most convenient means of studying exchange reactions and today a considerable amount of work continues to be done with their aid. Consequently, several papers presented at this Symposium reported on work carried out by purely radiochemical tracer methods. In recognition, however, of the important role which nuclear magnetic resonance and electron spin resonance play in this field, in particular in the study of fast reactions, a number of reports on investigations in which these techniques had been used was included in the programme. By kind invitation of the United States Government the Symposium on Exchange Reactions was held from 31 May to 4 June at the Brookhaven National Laboratory, Upton, Long Island, N.Y., USA. It was attended by 46 participants from nine countries and one inter-governmental organization. The publication of these Proceedings makes the contents of the papers and the discussion available to a wider audience

  9. Towards standards for data exchange and integration and their impact on a public database such as CEBS (Chemical Effects in Biological Systems)

    International Nuclear Information System (INIS)

    Integration, re-use and meta-analysis of high content study data, typical of DNA microarray studies, can increase its scientific utility. Access to study data and design parameters would enhance the mining of data integrated across studies. However, without standards for which data to include in exchange, and common exchange formats, publication of high content data is time-consuming and often prohibitive. The MGED Society ( (www.mged.org)) was formed in response to the widespread publication of microarray data, and the recognition of the utility of data re-use for meta-analysis. The NIEHS has developed the Chemical Effects in Biological Systems (CEBS) database, which can manage and integrate study data and design from biological and biomedical studies. As community standards are developed for study data and metadata it will become increasingly straightforward to publish high content data in CEBS, where they will be available for meta-analysis. Different exchange formats for study data are being developed: Standard for Exchange of Nonclinical Data (SEND; (www.cdisc.org)); Tox-ML ( (www.Leadscope.com)) and Simple Investigation Formatted Text (SIFT) from the NIEHS. Data integration can be done at the level of conclusions about responsive genes and phenotypes, and this workflow is supported by CEBS. CEBS also integrates raw and preprocessed data within a given platform. The utility and a method for integrating data within and across DNA microarray studies is shown in an example analysis using DrugMatrix data deposited in CEBS by Iconix Pharmaceuticals

  10. The use of chemical and isotopic data as indicators of the origin of waters and dissolved salts in the Bambui calcareous aquifer (Bahia-Brazil)

    International Nuclear Information System (INIS)

    Samples of 25 wells located in the Bambui limestone aquifer in the region of Irece - Bahia, have been analised for the isotopic ratio 18O/16O and the major chemical species Ca, Mg, Na, K, Cl, SO4 and bicarbonate. The oxygen-18 data have been found to range between -2,62/00(in a thousand) to -6,66/00(in a thousand) relative to the universal Standard Mean Ocean Water (SMOW) and are compared with the values of the precipitation in the localities of Jacobina and Lencois (meteorological stations nearby) and with the values of the groundwater in sedimentary basins in northeastern Brazil. The comparison suggests that aquifer system is recharged by precipitation originated in northeastern Brazil, instead of originating on coast of Bahia, east of the area. Furthermore, the waters in aquifer are not found homogenized, having widely varying 18O and chemical composition and being of different ages. The strong correlation between the observations Ca, Mg, Na, Cl and TDS (total dissolved solids) suggests an aerosol origin of salts, not excluding the hypothesis of dissolution of rock, which concentrations. The comparison of characteristic ratios Mg/Ca, SO4/Cl and (Cl-Na)/Cl, a Piper diagrama and a dendrogram established by cluster analysis, indicates that the wells may be separated in to two groups according to the isotopic or geochemical environment to which they belong. These groups may represent the differents sources of salt proposed, one being from the limestone, the other having come from aerosols. (Author)

  11. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  12. Chemical studies on the synthesis and characterization of some ion- exchange materials and its use in the treatment of hazardous wastes

    International Nuclear Information System (INIS)

    Now inorganic ion exchange materials play an important role in analytical chemistry, based originally on their thermal and radiation resistance as well as their stability to chemical attack.Vanadate salts are one of the main categories of inorganic ion exchange materials widely used in separation and preconcentration of some toxic and hazardous elements from different waste media. Attempts in this study are focused on the preparation of two inorganic ion exchange materials ,Tin Vanadate (SnV) and Titanium Potassium Vanadate(TiKV) for treatment of hazardous waste.These material were characterized using X-ray spectra (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. On the basis of distribution studies, the materials have been found that they are highly selective for Pb(II) and Cs(I)ions. Thermodynamic parameters (i.e. ΔG, ΔS and ΔH) have also been calculated for the adsorption of Pb2+, Cs+, Fe3+, Cd2+, Cu+2, Zn2+and Co2+ ions on Tin Vanadate (SnV) and Titanium Potassium Vanadate(TiKV) showing that the overall adsorption process is spontaneous and endothermic. The mechanism of diffusion of Fe3+, Co2+, Cu2+, Zn2+, Cd2+, Cs+and Pb2+ ions for Tin Vanadate (SnV) and Titanium Potassium Vanadate(TiKV) as cation exchangers were studied as a function of particle size, concentration of the exchanging ions, reaction temperatures and drying temperatures. The exchange rate was controlled by a particle diffusion mechanism as a limited batch technique and is confirmed from straight lines of B versus 1/r2 plots. The values of diffusion coefficients, activation energies and entropies of activation were calculated and their significance was discussed. The data obtained have been compared with that reported for other inorganic exchangers. Exchange isotherms for Cs+ ,Co2+and Cd2+ions were determined at 25, 45 and 65±1 degree C. These isotherms showed that Cs+ ,Co2+and Cd2+ are physically adsorbed. Finally, separations of the above mentioned cations on Tin Vanadate

  13. Chemical Synthesis of Deoxynivalenol-3-β-d-[13C6]-glucoside and Application in Stable Isotope Dilution Assays

    Directory of Open Access Journals (Sweden)

    Katharina Habler

    2016-06-01

    Full Text Available Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first 13C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[13C6]-glucoside originated from unlabeled deoxynivalenol and [13C6]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[13C6]-glucoside and the purchased labeled standard [13C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.

  14. Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays.

    Science.gov (United States)

    Habler, Katharina; Frank, Oliver; Rychlik, Michael

    2016-01-01

    Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers. PMID:27355938

  15. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    Science.gov (United States)

    Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.

    1994-01-01

    Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400??C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H2S, CO2, CH4, and Corganic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The ??34Scdt values of dissolved H2S varied from -10.9 to +4.3??? during seawater-sediment interaction at 325 and 400??C and from -16.5 to -9.0??? during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375??C. In the absence of seawater SO4, H2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO4, reduction of SO4 contributes directly to H2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO4 reduction. Requisite acidity for the reduction of SO4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH4 was characterized by ??13Cpdb values ranging between -20.8 and -23.1???, whereas ??13Cpdb values for dissolved Corganic ranged between -14.8 and -17.7%. Mass balance calculations indicate that ??13C values for organically derived CO2 were ??? - 14.8%. Residual solid sedimentary organic C showed small (??? 0.7???) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor hydrothermal systems

  16. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France

    Directory of Open Access Journals (Sweden)

    M. C. Pierret

    2014-03-01

    Full Text Available This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U activity ratios (AR determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U implying (234U/238U AR It appears that the (234U/238U AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating

  17. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit

    Science.gov (United States)

    Yan, Xue-long; Chen, Bin

    2014-11-01

    The Houxianyu borate deposit in northeastern China is one of the largest boron sources of China, hosted mainly in the Paleoproterozoic meta-volcanic and sedimentary rocks (known as the Liaohe Group) that are characterized by high boron concentrations. The borate ore-body has intimate spatial relationship with the Mg-rich carbonates/silicates of the Group, with fine-grained gneisses (meta-felsic volcanic rocks) as main country rocks. The presence of abundant tourmalinites and tourmaline-rich quartz veins in the borate orebody provides an opportunity to study the origin of boron, the nature of ore-forming fluids, and possible mineralization mechanism. We report the chemical and boron isotopic compositions of tourmalines from the tourmaline-rich rocks in the borate deposit and from the tourmaline-bearing fine-grained gneisses. Tourmalines from the fine-grained gneisses are chemically homogeneous, showing relatively high Fe and Na and low Mg, with δ11B values in a narrow range from +1.22‰ to +2.63‰. Tourmalines from the tourmaline-rich rocks, however, commonly show compositional zoning, with an irregular detrital core and a euhedral overgrowth, and have significantly higher Mg, REE (and more pronounced positive Eu anomalies), V (229-1852 ppm) and Sr (208-1191 ppm) than those from the fine-grained gneisses. They show varied B isotope values ranging from +4.51‰ to +12.43‰, which plot intermediate between those of the terrigenous sediments and arc rocks with low boron isotope values (as represented by the δ11B = +1.22‰ to +2.63‰ of the fine-grained gneisses of this study) and those of marine carbonates and evaporates with high boron isotope values. In addition, the rim of the zoned tourmaline shows notably higher Mg, Ti, V, Sn, and Pb, and REE (particularly LREEs), but lower Fe, Co, Cr, Ni, Zn, Mn, and lower δ11B values than the core. These data suggest that (1) the sources of boron of the borate ore-body are mainly the Paleoproterozoic meta-volcanic and

  18. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions

    Science.gov (United States)

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3- contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3- pollution activities via an unsupervised learning algorithm based on δ15N- and δ18O-NO3- and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3- contamination via a decision tree model. When a combination of δ15N-, δ18O-NO3- and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO42 - and Cl- variables. The NO3- and the δ15N- and δ18O-NO3- variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3- concentrations and isotopic values. Although only the SO42 - and Cl- were selected as important discriminating variables, concentration data alone could not identify the specific NO3- sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3- contamination, an integrated approach should be set-up by combining N and O isotopes of NO3- with land-uses and physico-chemical properties, especially in areas with complex agricultural activities.

  19. Disturbance versus preservation of U-Th-Pb ages in monazite during fluid-rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France)

    Science.gov (United States)

    Didier, A.; Bosse, V.; Boulvais, P.; Bouloton, J.; Paquette, J.-L.; Montel, J.-M.; Devidal, J.-L.

    2013-06-01

    Monazite is extensively used to date crustal processes and is usually considered to be resistant to diffusive Pb loss. Nevertheless, fluid-assisted recrystallisation is known to be capable of resetting the monazite chronometer. This study focuses on chemical and isotopic disturbances in monazite grains from two microgranite intrusions in the French Central Massif (Charron and Montasset). Petrologic data and oxygen isotopes suggest that both intrusions have interacted with alkali-bearing hydrothermal-magmatic fluids. In the Charron intrusion, regardless of their textural location, monazite grains are sub-euhedral and cover a large domain of compositions. U-Pb chronometers yield a lower intercept age of 297 ± 4 Ma. An inherited component at 320 Ma is responsible for the scattering of the U-Th-Pb ages. The Montasset intrusion was later affected by an additional F-rich crustal fluid with crystallisation of Ca-REE-fluorocarbonates, fluorite, calcite and chloritisation. Pristine monazite is chemically homogeneous and displays 208Pb/232Th and 206Pb/238U concordant ages at 307 ± 2 Ma. By contrast, groundmass monazite shows dissolution-recrystallisation features associated with apatite and thorite precipitation (Th-silicate) and strong chemical reequilibration. 208Pb/232Th ages are disturbed and range between 270 and 690 Ma showing that the Th/Pb ratio is highly fractionated during the interaction with fluids. Apparent U-Pb ages are older due to common Pb incorporation yielding a lower intercept age at 312 ± 10 Ma, the age of the pristine monazite. These results show that F-rich fluids are responsible for Th mobility and incorporation of excess Pb, which thus strongly disturbed the U-Th-Pb chronometers in the monazite.

  20. Evolution of Fe Species during the Synthesis of Over-Exchanged Fe/ZSM5 Obtained by Chemical Vapor Deposition of FeCl3

    OpenAIRE

    Koningsberger, D.C.; Battiston, A.A.; Bitter, J.H.; Groot, F.M.F. de; Overweg, A.R.; Stephan, O; Bokhoven, J.A. van; Kooyman, P.J.

    2003-01-01

    The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl{3} was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, }5{}7{Fe Mossbauer spectroscopy, }2{}7{Al NMR, EELS, HR-TEM, XRD, N{2} physisorption, and FTIR spectroscopy) were applied in order to correlate the changes occurring in the local environment of the Fe atoms with migration and aggregation phenomena of iron at micro- and macroscopic scale. Mononuclea...

  1. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3

    OpenAIRE

    Battiston, AA; Bitter, JH; de Groot, FMF; Overweg, AR; Stephan, O; van Bokhoven, JA; Kooyman, PJ; van der Spek, C.; Vanko, G.; Koningsberger, DC

    2003-01-01

    The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, Fe-57 Mossbauer spectroscopy, Al-27 NMR, EELS, HR-TEM, XRD, N-2 physisorption, and FTIR spectroscopy) were applied in order to correlate the changes occurring in the local environment of the Fe atoms with migration and aggregation phenomena of iron at micro- and macroscopic scale. Mononuclear isolate...

  2. Absence of oxygen isotope fractionation/exchange of (hemi-) cellulose-derived sugars during litter decomposition and soil organic matter formation

    NARCIS (Netherlands)

    M. Zech; R. A. Werner; D. Juchelka; K. Kalbitz; B. Buggle; B. Glaser

    2012-01-01

    Aiming at developing a novel tool for palaeoclimate research, we recently proposed a new method for determining the oxygen isotope composition of monosaccharides (Zech, M., Glaser, B., 2009. Compound-specific δ18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and

  3. High-precision Mg isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS - implications for the relative and absolute Mg isotope composition of the bulk silicate Earth

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Paton, Chad; Larsen, Kirsten Kolbjørn;

    2011-01-01

    We report novel methods for the chemical purification of Mg from silicate rocks by ion-exchange chromatography, and high-precision analysis of Mg-isotopes by high-resolution multiple collector inductively coupled plasma source mass spectrometry (HR-MC-ICPMS). Using these methods, we have measured...

  4. Isotopic and chemical analyses of a temperate firn core from a Chinese alpine glacier and its regional climatic significance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mt. Yulong is the southernmost currently glacier-covered area in Eurasia, including China. There are 19 sub-tropical temperate glaciers on the mountain, controlled by the south-western monsoon climate. In the summer of 1999, a firn core, 10. 10 m long, extending down to glacier ice, was recovered in the accumulation area of the largest glacier, Baishui No. 1. Periodic variations of climatic signals above 7. 8 m depth were apparent, and net accumulation of four years was identified by the annual oscillations of isotopic and ionic composition. The boundaries of annual accumulation were confirmed by higher values of electrical conductivity and pH, and by dirty refreezing ice layers at the levels of summer surfaces. Calculated mean annual net accumulation from 1994/1995 to 1997/1998 was about 900 mm water equivalent. The amplitude of isotopic variations in the profile decreased with increasing depth, and isotopic homogenization occurred below 7. 8 m as a result of meltwater percolation. Variations of δ18O above 7. 8 m showed an approximate correlation with the winter climatic trend at Li Jiang Station, 25 km away. Concentrations of Ca2+ and Mg2+ were much higher than those of Na+ and K+ , indicating that the air masses for precipitation were mainly from a continental source, and that the core material accumulated during the winter period. The close correspondence of C1- and Na+ indicated their common origin. Very low concentrations of SO2-4 and NO3- suggest that pollution caused by human activities is quite low in the area. The mean annual net accumulation in the core and the estimated ablation indicate that the average annual precipitation above the glacier's equilibrium line is 2400 - 3150 mm, but this needs to be confirmed by long term observation of mass balance.

  5. Carbon dioxide and helium dissolved gases in groundwater at central Tenerife Island, Canary Islands: chemical and isotopic characterization

    Science.gov (United States)

    Marrero-Diaz, Rayco; López, Dina; Perez, Nemesio M.; Custodio, Emilio; Sumino, Hirochika; Melián, Gladys V.; Padrón, Eleazar; Hernandez, Pedro A.; Calvo, David; Barrancos, José; Padilla, Germán; Sortino, Francesco

    2015-10-01

    Seismic-volcanic unrest was detected between 2004 and 2005 in the central and northwest zones of Tenerife Island (Canary Islands, Spain). With the aim of strengthening the program of geochemical and seismic-volcanic surveillance, a study of the origin, characteristics, and spatial distribution of dissolved carbon dioxide (CO2) and helium (He) gases in the volcanic aquifer of central Tenerife Island and around Teide volcano was carried out. This work also improves the hydrogeological and hydrogeochemical conceptual model of groundwater flow. Dissolved CO2 concentrations in sampled groundwater are several orders of magnitude higher than that of air-saturated water (ASW) suggesting a significant contribution of non-atmospheric CO2, mainly magmatic, confirmed through measurement of isotopic compositions (δ13CTDIC) and total dissolved inorganic carbon (TDIC) concentrations. A vertical stratification of dissolved CO2 and δ13CTDIC values was observed in the volcanic aquifer at the eastern region of Las Cañadas Caldera. Stratification seems to be controlled by both degree of magmatic CO2-water interaction and CO2 degassing and the original δ13Cco2(g) isotopic composition. The highest dissolved helium (4He) concentrations in groundwater seem to be related to radiogenic contributions resulting from water-rock interactions, and increase with residence time, instead of with endogenous magmatic inputs. Isotopic systematics show that the dissolved gases in groundwater of central Tenerife are variable mixtures of CO2-3He-rich fluids of volcanic-hydrothermal origin with both organic and atmospheric components. The results suggest that the eastern area of Las Cañadas Caldera, the South Volcanic Ridge, and the Teide summit cone are the areas most affected by degassing of the volcanic-hydrothermal system, and they are therefore the most suitable zones for future geochemical monitoring.

  6. Assessing the suitability of Scarisoara cave ice for glaciochemical research: a coupled chemical and water isotopic approach

    Directory of Open Access Journals (Sweden)

    Daniel VERES

    2014-11-01

    Full Text Available Lacustrine sediments are excellent sources of palaeoenvironmental and palaeoclimatic information because they usually provide continuous and high-resolution records. In centraleastern Europe however lacustrine records that extend beyond the Holocene are rather sparse.Palaeomagnetic records from this region are also insufficiently explored, and usually associated with terrestrial deposits such as loess. In this context, the lacustrine record of Lake Sf. Ana, a volcanic crater lake in the East Carpathians, Romania, provides an important archive for reconstructing past paleomagnetic secular variation in the region from early Holocene to late Marine Isotope Stage (MIS 3.

  7. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos;

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X-...... by the electrical conductivity relaxation technique, from which the surface exchange coefficient was determined. (C) 2008 The Electrochemical Society.......Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X...

  8. Method for heavy-water production by H2S--H2O chemical exchange process

    International Nuclear Information System (INIS)

    The invention discloses a heavy water production stage in a bithermal H2S gas H2O liquid exchange plant wherein the cold tower is operated under temperature and pressure conditions such that H2S in the liquid phase is formed and is maintained in the separation units (sieve trays or plates) of the cold tower. It has been found that the presence of liquid H2S acts as an efficient anti-foaming agent

  9. Chemical and Isotopic Constraints on Groundwater Surface Water Interaction in a Wetland Terrain with Implications on Sustainable Agriculture: A Case Study of the Sanjiang Plain, North East China

    International Nuclear Information System (INIS)

    The Sanjiang Plain in Northeast China is one of the main grain production areas in the country and is supporting a rich biological diversity. However, the wetlands and forest lands have shrunk to one fifth of their original size in the last five decades because of increasing population and land reclamation for agriculture. Identification of the extent of coupling between groundwater and surface water connections is essential to improving agricultural water management in the area. Using a multi-tracer approach involving water chemistry and stable and radio isotopes (2H, 18O, 3H, 13C, 14C), integrated with data on groundwater regime, demonstrated that it is possible to delineate the mechanism of hydraulic and chemical interactions of groundwater with various surface water sources including rivers, ponds and paddy rice fields of a wetland terrain. Regional variations in hydrogeology are main factors controlling groundwater recharge and regime. Results showed that the evaporative isotopic signature in surface water can be used as a good indicator to study mixing between groundwater and surface water. Groundwater in the confined quaternary aquifer with ages over 50 years that are depleted in heavy isotopes is recharged by lateral flow from nearby mountains. This groundwater is in general not affected by changes in the wetlands and/or rice fields and therefore is less vulnerable to the pollution from fertilizer application, however, with limited yield. On the contrary, the unconfined quaternary aquifer is recharged by rainfall or riverbank infiltration at localities near the rivers. It is more likely for the aquifer to be affected by nutrients released from intensive fertilizer applications, though its yield is rather abundant. It is suggested that surface water should be utilized together with groundwater in order to ensure sustainable water supply for irrigation in the region. (author)

  10. Isotope ratio mass spectrometry in oceanic studies

    International Nuclear Information System (INIS)

    Isotope ratio mass spectrometry (IRMS) is an important and well established method in many scientific fields as analytical chemistry (isotope dilution MS), physical chemistry, nuclear sciences and technology, environmental, agricultural, geological isotope dating, archaeometric, cosmic, bioavailability and nutrition studies, food authentication and adulteration control, elucidation of chemical reaction mechanism, isotope effect studies on chemical reactions and isotope enrichment/separation processes. This paper is aimed to provide a brief summary of IRMS contribution to sea and oceanic studies

  11. Optimized Chemical Separation and Measurement by TE TIMS Using Carburized Filaments for Uranium Isotope Ratio Measurements Applied to Plutonium Chronometry.

    Science.gov (United States)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Prohaska, Thomas

    2016-06-21

    An optimized method is described for U/Pu separation and subsequent measurement of the amount contents of uranium isotopes by total evaporation (TE) TIMS with a double filament setup combined with filament carburization for age determination of plutonium samples. The use of carburized filaments improved the signal behavior for total evaporation TIMS measurements of uranium. Elevated uranium ion formation by passive heating during rhenium signal optimization at the start of the total evaporation measurement procedure was found to be a result from byproducts of the separation procedure deposited on the filament. This was avoided using carburized filaments. Hence, loss of sample before the actual TE data acquisition was prevented, and automated measurement sequences could be accomplished. Furthermore, separation of residual plutonium in the separated uranium fraction was achieved directly on the filament by use of the carburized filaments. Although the analytical approach was originally tailored to achieve reliable results only for the (238)Pu/(234)U, (239)Pu/(235)U, and (240)Pu/(236)U chronometers, the optimization of the procedure additionally allowed the use of the (242)Pu/(238)U isotope amount ratio as a highly sensitive indicator for residual uranium present in the sample, which is not of radiogenic origin. The sample preparation method described in this article has been successfully applied for the age determination of CRM NBS 947 and other sulfate and oxide plutonium samples. PMID:27240571

  12. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Travaglio, C. [INAF—Astrophysical Observatory Turin, Strada Osservatorio 20, I-10025 Pino Torinese (Turin) (Italy); Gallino, R. [B2FH Association, I-10025 Pino Torinese (Turin) (Italy); Rauscher, T. [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dauphas, N. [Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Röpke, F. K. [Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Hillebrandt, W., E-mail: travaglio@oato.inaf.it, E-mail: claudia.travaglio@b2fh.org [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching bei München (Germany)

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  13. A Collection of Chemical, Mineralogical, and Stable Isotopic Compositional Data for Green River Oil Shale from Depositional Center Cores in Colorado, Utah, and Wyoming

    Science.gov (United States)

    Tuttle, Michele L.W.

    2009-01-01

    For over half a century, the U.S. Geological Survey and collaborators have conducted stratigraphic and geochemical studies on the Eocene Green River Formation, which is known to contain large oil shale resources. Many of the studies were undertaken in the 1970s during the last oil shale boom. One such study analyzed the chemistry, mineralogy, and stable isotopy of the Green River Formation in the three major depositional basins: Piceance basin, Colo.; Uinta basin, Utah; and the Green River basin, Wyo. One depositional-center core from each basin was sampled and analyzed for major, minor, and trace chemistry; mineral composition and sulfide-mineral morphology; sulfur, nitrogen, and carbon forms; and stable isotopic composition (delta34S, delta15N, delta13C, and delta18O). Many of these data were published and used to support interpretative papers (see references herein). Some bulk-chemical and carbonate-isotopic data were never published and may be useful to studies that are currently exploring topics such as future oil shale development and the climate, geography, and weathering in the Eocene Epoch. These unpublished data, together with most of the U.S. Geological Survey data already published on these samples, are tabulated in this report.

  14. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    International Nuclear Information System (INIS)

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes 92Nb, 97, 98Tc, and 146Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and 13C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of 92Nb and 146Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  15. High-Performance Chemical Isotope Labeling Liquid Chromatography-Mass Spectrometry for Profiling the Metabolomic Reprogramming Elicited by Ammonium Limitation in Yeast.

    Science.gov (United States)

    Luo, Xian; Zhao, Shuang; Huan, Tao; Sun, Difei; Friis, R Magnus N; Schultz, Michael C; Li, Liang

    2016-05-01

    Information about how yeast metabolism is rewired in response to internal and external cues can inform the development of metabolic engineering strategies for food, fuel, and chemical production in this organism. We report a new metabolomics workflow for the characterization of such metabolic rewiring. The workflow combines efficient cell lysis without using chemicals that may interfere with downstream sample analysis and differential chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) for in-depth yeast metabolome profiling. Using (12)C- and (13)C-dansylation (Dns) labeling to analyze the amine/phenol submetabolome, we detected and quantified a total of 5719 peak pairs or metabolites. Among them, 120 metabolites were positively identified using a library of 275 Dns-metabolite standards, and 2980 metabolites were putatively identified based on accurate mass matches to metabolome databases. We also applied (12)C- and (13)C-dimethylaminophenacyl (DmPA) labeling to profile the carboxylic acid submetabolome and detected over 2286 peak pairs, from which 33 metabolites were positively identified using a library of 188 DmPA-metabolite standards, and 1595 metabolites were putatively identified. Using this workflow for metabolomic profiling of cells challenged by ammonium limitation revealed unexpected links between ammonium assimilation and pantothenate accumulation that might be amenable to engineering for better acetyl-CoA production in yeast. We anticipate that efforts to improve other schemes of metabolic engineering will benefit from application of this workflow to multiple cell types. PMID:26947805

  16. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  17. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation

    Science.gov (United States)

    Conaway, Christopher; Thomas, Randal B.; Saad, Nabil; Thordsen, James J.; Kharaka, Yousif K.

    2015-01-01

    This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ13C of dissolved organic carbon (δ13C-DOC) in natural water samples. Low-chloride matrix (ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.

  18. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    Science.gov (United States)

    Pomin, Vitor H

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  19. Cleaning chemical and mechanical of heat exchangers in french nuclear plants; Limpieza mecanica y quimica de intercambiadores de calor en centrales nucleares francesas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J. t.; Guerra, P.; Carreres, C.

    2013-03-01

    This project was carried out under the frame of the approval of LAINSA as a supplier of EDF in France. The inspection performed on systems called the moisture separator reheaters (GSS) of CPO series reactor of EDF nuclear power plants has shown evidence of significant clogging due to deposits of magnetite inside the tubes of tube bundle. The pressure drop between inlet and outlet of the heating was close to maximum design criterion. This effect could result in equipment damage and loss of plant productivity. The aim of the work was the design, development, approval and implementation of a procedure for un blocking the tubes of the GSS respecting the integrity of materials and ensuring the harmlessness of cleaning procedures. The procedure used was to completely remove magnetite deposits in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. The achieve these objectives we have developed a procedure that is basically a mechanical pre-cleaning of all tubes of the GSS in order to unblock tem, followed by a chemical cleaning where magnetite is dissolved and crawled out of the tube bundle. The main results were: -Corrosion less than 10 microns. 100-110 Kg of magnetite removed by heat exchanger. -Final pressure drop similar to that of new equipment. -Waste water: 70 m{sup 3} per exchanger, which were managed by an authorized waste management company. This procedure has been applied successfully in 14 GSS type heat exchangers in Fessenheim and Bugey nuclear power plants in France between 2009 and 2011. This project demonstrates that the long experience of LAINSA in the Spanish nuclear industry along with the knowledge and experience in chemical cleaning of SOLARCA, have served to successfully work demanding and mature markets such as the French nuclear market, solving the problem of deposits of magnetite with an effective and safe method for the treated

  20. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    Science.gov (United States)

    Pomin, Vitor H

    2016-09-07

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  1. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    Science.gov (United States)

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism.

  2. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    Science.gov (United States)

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism. PMID:27367175

  3. Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in southwest Ohio

    International Nuclear Information System (INIS)

    Highlights: ► Urban pollution study in a neighborhood adjacent to a coal-fired power plant. ► Pb isotopic compositions determined in street sediment and lichen samples. ► Geochemistry is consistent with Pb contamination from yellow road paint containing PbCrO4. - Abstract: Lead isotopic compositions were determined in street sediment and lichen samples to constrain the sources of metal pollution near a coal-fired power plant in SW Ohio. Previous studies of the street sediment found elevated levels of Cr, Cu and Ni, and extremely high levels of Pb and Zn. Although initial investigations suggested the presence of coal-derived pollution, Pb isotopes were employed to investigate the importance of additional sources. Highly variable concentrations of Pb in sieved (<38 μm) street sediment and lichen samples range from 130 to 1399 ppm and 11 to 53 ppm, respectively. Street sediment and lichen samples exhibit a strong positive correlation of 208Pb/204Pb vs. 206Pb/204Pb, 208Pb/206Pb vs. 207Pb/206Pb, 207Pb/206Pb vs. 206Pb/204Pb, and 207Pb/204Pb vs. 206Pb/204Pb consistent with Pb contamination from road paint containing PbCrO4 as a yellow pigment. Extremely high concentrations of Pb in road paint samples (812–6305 ppm) suggest road paint containing PbCrO4 is a major contributor to Pb levels in urban environments. Additional sources fro Zn and Cu beyond pollution derived from coal and road paint are proposed. Fine particulates containing potentially harmful metals in street sediment may be re-suspended in the air, as suggested by their presence in lichens, and pose a respiratory risk to human health. These metals may pose a risk to the greater environment, such as aquatic ecosystems subject to stormwater discharge from urban areas. This study is relevant and applicable to other urban settings, and prevention and remediation strategies for contaminated street sediment are recommended

  4. Accurate fast method with high chemical yield for determination of uranium isotopes ({sup 234}U, {sup 235}U, {sup 238}U) in granitic samples using alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, Laila A., E-mail: lailagurgus@yahoo.com; Farag, Nagdy M.; Salim, Adham K.

    2015-03-21

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St{sub 4} (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO{sub 4}+H{sub 2}SO{sub 4}+NH{sub 4}OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6. - Highlights: • Radiochemical technique for analysis uranium isotopes. • Alpha-particle spectrometry is performed after a radiochemical procedure. • Electrodeposition conditions for preparation of alpha uranium source. • Using {sup 232}U (t{sub 1/2}=70.6a, E{sub α}=5320.24 keV, intensity=69.1%) as an internal tracer makes it a highly reliable technique.

  5. A mechanism for macropore flow of old water : a combined hydrometric, soil physics, isotopic and chemical tracing approach

    International Nuclear Information System (INIS)

    Eleven storm runoff events were intensively monitored during 1987, in a small (3.8 ha) catchment in the Tawhai State Forest, Westland, New Zealand. Of the 6 events suitable for isotopic mass balance hydrograph separation, the volume fraction of pre-event water averaged 90% of stormflow volumes, and between 70 and 100% of hillslope subsurface flow. Soil physics analyses were conducted in valley-bottom near-stream, mid-slope hollow and upslope hollow locations. Tensiometric results showed that the unsaturated zone overlying near-stream groundwater was rapidly changed to positive matric potential due to the limited storage characteristics of the local soils. This response produced an early and steady increase in old water exfiltration into the stream channel. As rainfall depth increased above approximately 10 mm, contributions from mid-slope and upslope hollows dominated channel stormflow, and most of the subsurface water was delivered to first order channels via continuous pipes occurring at the mineral soil-bedrock interface. Limited storage effects augmented the development of a perched water-table in the mid-slope hollow, which was quickly dissipated by lateral pipeflow. Bypass flow down cracks was observed during some events with high (8 to 15 mm/hr) short-term rainfall intensity bursts. The relatively low frequency of high hourly rainfall intensities, however, ensures that bypassing is not a regular occurrence in the study catchment. Results from hillslope water injection experiments in various slope positions showed that input water isotopic signatures attained an old water status very quickly, due to mixing with a near-saturated soil matrix along crack and pipe walls. (author)

  6. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle

    Science.gov (United States)

    Burgess, Ray; Cartigny, Pierre; Harrison, Darrell; Hobson, Emily; Harris, Jeff

    2009-03-01

    In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda