WorldWideScience

Sample records for chemical interaction induced

  1. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    Science.gov (United States)

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  2. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    OpenAIRE

    Tonni Grube Andersen; Nintemann, Sebastian J.; Magdalena Marek; Halkier, Barbara A.; Alexander Schulz; Meike Burow

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently ...

  3. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization.

    Science.gov (United States)

    Andersen, Tonni Grube; Nintemann, Sebastian J; Marek, Magdalena; Halkier, Barbara A; Schulz, Alexander; Burow, Meike

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently of the investigated interactions and thus alleviate these issues. We incorporated our reporters into the widely used split ubiquitin-, bimolecular fluorescence complementation (BiFC)- and Förster resonance energy transfer (FRET)- based methods and investigated different protein-protein interactions in yeast and plants. We demonstrate the functionality of this concept by the analysis of weakly interacting proteins from specialized metabolism in the model plant Arabidopsis thaliana. Our results illustrate that chemically induced dimerization can function as a built-in control for split-based systems that is easily implemented and allows for direct evaluation of functionality. PMID:27282591

  4. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    Science.gov (United States)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  5. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation.

    Science.gov (United States)

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2017-01-01

    In order to elucidate the heat-induced wheat gluten gel formation mechanism, changes in chemical interactions and protein conformation were investigated during gelation. The contribution of ionic and hydrogen bonds were found to decrease from 0.746 and 4.133g/L to 0.397 and 2.733g/L, respectively, as the temperature increased from 25 to 90°C. Moreover, the free SH content remarkably decreased from 37.91 to 19.79μmol/g during gelation. Ultraviolet absorption spectra and intrinsic fluorescence spectra suggested that wheat gluten unfolded during the heating process. In addition, wheat gluten gels treated at 80 and 90°C exhibited a "steric hindrance" effect, which can be attributed to the formation of aggregates. Fourier transform infrared spectra suggested that the random coil content increased at low temperatures (40 and 50°C), whereas the content of intermolecular β-sheets due to protein aggregation increased from 38.10% to 44.28% when the gelation temperature was 90°C. PMID:27507490

  6. Interactive Chemical Reactivity Exploration

    OpenAIRE

    Haag, Moritz P.; Vaucher, Alain C.; Bosson, Mael; Redon, Stephane; Reiher, Markus

    2014-01-01

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. ...

  7. Interactive Chemical Reactivity Exploration

    CERN Document Server

    Haag, Moritz P; Bosson, Mael; Redon, Stephane; Reiher, Markus

    2014-01-01

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.

  8. Chemical interaction between undamaged plants

    OpenAIRE

    Glinwood, Robert; Ninkovic, Velemir; Pettersson, Jan

    2011-01-01

    Most research on plant–plant chemical interactions has focussed on events following herbivore or pathogen attack. However, undamaged plants also interact chemically as a natural facet of their behaviour, and this may have consequences for insects that use the plants as hosts. In this review, the links between allelopathy and insect behaviour are outlined. Findings on how chemical interactions between different plant species and genotypes affect aphid herbivores and their natural e...

  9. Hydrophobic interactions and chemical reactivity

    OpenAIRE

    Otto, Sijbren; Engberts, Jan B.F.N.

    2003-01-01

    This perspective describes how kinetic studies of organic reactions can be used to increase our understanding of hydrophobic interactions. In turn, our understanding of hydrophobic interactions can be used as a tool to influence chemical reactions.

  10. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  11. Laser-induced chemical reactions

    International Nuclear Information System (INIS)

    A classical model for the interaction of laser radiation with a molecular system is derived. This model is used to study the enhancement of a chemical reaction via a collision induced absorption. It was found that an infrared laser will in general enhance the rate of a chemical reaction, even if the reactants are infrared inactive. Results for an illustrative analytically solvable model are presented, as well as results from classical trajectory studies on a number of systems. The collision induced absorption spectrum in these systems can be written as the Fourier transform of a particular dipole correlation function. This is used to obtain the collision induced absorption spectrum for a state-selected, mono-energetic reactive collision system. Examples treated are a one-dimensional barrier problem, reactive and nonreactive collisions of H + H2, and a modified H + H2 potential energy surface which leads to a collision intermediate. An extension of the classical model to treat laser-induced electronically nonadiabatic collision processes is constructed. The model treats all degrees of freedom, molecular, electronic and radiation, in a dynamically consistent framework within classical mechanics. Application is made to several systems. Several interesting phenomena are discovered including a Franck-Condon-like effect causing maxima in the reaction probability at energies much below the classical threshold, laser de-enhancement of chemical reactions and an isotope effect. In order to assess the validity of the classical model for electronically nonadiabatic process (without a laser field), a model problem involving energy transfer in a collinear atom-diatom system is studied, and the results compared to the available quantum mechanical calculation. The calculations are in qualitative agreement

  12. Chemical mechanisms of the interaction between radiation and chemical carcinogens

    International Nuclear Information System (INIS)

    There is evidence to suggest that ionizing radiation and chemical carcinogens can act synergistically to produce deleterious biological effects. In addition, many carcinogens undergo metabolic activation in vivo. This activation, initiated by biochemical redox reactions, can be simulated chemically, electrochemically, photochemically and radiation chemically. The principal reactive species formed by the action of ionizing radiation on aqueous solutions of macromolecules and mammalian cells, are hydroxyl radicals and superoxide anions. Pulse and steady-state radiolysis studies of model chemical systems have established that these species can 'activate' chemical carcinogens by a radical oxidation process, and that the resulting activated carcinogens can subsequently react with nucleophilic sites on DNA and other potential target macromolecules. Rate constants for some of the fast reactions involved in the radiation activation of carcinogens and in the subsequent carcinogen-DNA interactions have been determined, together with the yields of radiation-induced covalent DNA-carcinogen binding. A redox models for radiation-induced chemical carcinogenesis is proposed which describes a possible mechanism of action involving free radical species generated in the aqueous cellular milieu, which diffuse to and react with carcinogens located within the micro-environment of the cell. Preliminary experiments suggest that protection against radiation and chemical carcinogenesis can be achieved by radical scavenging or by competitive free radical inhibition

  13. Inducible chemical defences in animals

    OpenAIRE

    Heyttyey, Attila; Tóth, Zoltán; Buskirk, Josh

    2014-01-01

    Phenotypic plasticity is extremely widespread in the behaviour, morphology and life-history of animals. However, inducible changes in the production of defensive chemicals are described mostly in plants and surprisingly little is known about similar plasticity in chemical defences of animals. Inducible chemical defences may be common in animals because many are known to produce toxins, the synthesis of toxins is likely to be costly, and there are a few known cases of animals adjusting their t...

  14. Chemical and isotopic characterization of water-rock interactions in shales induced by the intrusion of a basaltic dike: A natural analogue for radioactive waste disposal

    International Nuclear Information System (INIS)

    Disposal of nuclear waste in deep geological formations is expected to induce thermal fluxes for hundreds of years with maximum temperature reaching about 100-150 deg. C in the nearfield argillaceous environment. The long-term behavior of clays subjected to such thermal gradients needs to be perfectly understood in safety assessment considerations. In this respect, a Toarcian argillaceous unit thermally disturbed by the intrusion of a 1.1-m wide basaltic dike at the Perthus pass (Herault, France), was studied in detail as a natural analogue. The thermal imprint induced by the dike was evaluated by a mineralogical, chemical and K-Ar study of the <2 μm clay fraction of shale samples collected at increasing distance from the basalt. The data suggest that the mineral composition of the shales was not significantly disturbed when the temperature was below 100-150 deg. C. Closer to the dike at 150-300 deg. C, changes such as progressive dissolution of chlorite and kaolinite, increased content of the mixed layers illite-smectite with more illite layers, complete decalcification and subsequent increased content of quartz, were found. At the eastern contact with the dike, the mineral and chemical compositions of both the shales and the basalt suggest water-rock interactions subsequent to the intrusion with precipitation of palagonite and renewed but discrete deposition of carbonate. A pencil cleavage developed in the shales during the dike emplacement probably favored water circulation along the contact. Strontium isotopic data suggest that the fluids of probable meteoric origin, reacted with Bathonian and Bajocian limestones before entering the underlying Toarcian shales. By analogy with deep geological radioactive waste repositories, the results report discrete mineralogical variations of the clays when subjected to temperatures of 100-150 deg. C that are expected in deep storage conditions. Beyond 150 deg. C, significant mineralogical changes may alter the physical and

  15. Characterizing Molecular Interactions in Chemical Systems

    OpenAIRE

    Guenther, David; Alvarez-Boto, Roberto; Contreras-Garcia, Julia; Piquemal, Jean-Philip; Tierny, Julien

    2014-01-01

    Interactions between atoms have a major influence on the chemical properties of molecular systems. While covalent interactions impose the structural integrity of molecules, noncovalent interactions govern more subtle phenomena such as protein folding, bonding or self assembly. The understanding of these types of interactions is necessary for the interpretation of many biological processes and chemical design tasks. While traditionally the electron density is analyzed to interpret the quantum ...

  16. Chemical Force Microscopy of Chemical and Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  17. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  18. The local transformation of the chemical structures induced in polymer by heavy ion-beam irradiation: the characterization of ion in the interaction with material-

    International Nuclear Information System (INIS)

    The local transformations of the chemical structure induced in low density polyethylene (LDPE) by ion-beams with different characteristics are investigated by using micro-FT-IR system. On irradiation by heavier ions than H+, the remarkable LET effect is found in the transformation of the trans-vinylene and the end-vinyl groups. This can not be found on irradiation by H+. Moreover, an importance of the charge number in calculation of the stopping power is pointed out. (author)

  19. Chemical ecology of insects and tritrophic interactions

    International Nuclear Information System (INIS)

    This paper reviews the chemical ecology of insects to explain the role of semiochemicals in plant-herbivore, herbivore-carnivore and plant-carnivore interactions. The semiochemical, mediating tritrophic interactions may be produced by plants, herbivores or their natural enemies (carnivores). Some semiochemicals attract the herbivores and carnivores and mediate interaction among them, while on the other hand some repel them. The semiochemicals are used by heribivores, parasites and predators as cues to locate food, host or prey. The same chemicals are also used for defensive purpose by some herbivores against their natural enemies as they are sequestered through their bodies. (author)

  20. Chemical interaction of fuel and cladding tubes

    International Nuclear Information System (INIS)

    It was attempted to take up the behavior of nuclear fuel in cores and summarize it by the expert committee on the irradiation behavior of nuclear fuel from fiscal 1978 to fiscal 1980 from the following viewpoints. The behavior of nuclear fuel in cores has been treated separately according to each reactor type, accordingly this point is reconsidered. The clearly understood points and the uncertain points are discriminated. It is made more easily understandable for people in other fields of atomic energy. This report is that of the group on the chemical interaction, and the first report of this committee. The chemical interaction as the behavior of fuel in cores is in the unseparable relation to the mechanical interaction, but this relation is not included in this report. The chemical interaction of fuel and cladding tubes under irradiation shows different phenomena in LWRs and FBRs, and is called SCC and FCC, respectively. But this point of causing the difference must be understood to grasp the behavior of fuel. The mutual comparison of oxide fuels for FBRs and LWRs, the stress corrosion cracking of zircaloy tubes, and fuel-cladding chemical interaction in FBRs are reported. (Kako, I.)

  1. Prediction of cancer drugs by chemical-chemical interactions.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Cancer, which is a leading cause of death worldwide, places a big burden on health-care system. In this study, an order-prediction model was built to predict a series of cancer drug indications based on chemical-chemical interactions. According to the confidence scores of their interactions, the order from the most likely cancer to the least one was obtained for each query drug. The 1(st order prediction accuracy of the training dataset was 55.93%, evaluated by Jackknife test, while it was 55.56% and 59.09% on a validation test dataset and an independent test dataset, respectively. The proposed method outperformed a popular method based on molecular descriptors. Moreover, it was verified that some drugs were effective to the 'wrong' predicted indications, indicating that some 'wrong' drug indications were actually correct indications. Encouraged by the promising results, the method may become a useful tool to the prediction of drugs indications.

  2. High fluence implantation in glasses: chemical interactions

    International Nuclear Information System (INIS)

    Results will be given on chemical interactions in amorphous SiO2 implanted with reactive and non-reactive species. Samples were implanted with nitrogen, silicon, titanium and silver; a set of samples already implanted with these elements (excluding those implanted with nitrogen) has been subjected to a second implant with nitrogen ions, at the dose of 2x1017 ions cm-2, at different energies. Samples have been characterized by secondary ion mass spectrometry, X-ray photoelectron spectroscopy, nuclear techniques and optical absorption measurements. Radiation damage and chemical effects have been discriminated; precipitation of the implanted species, as well as chemical compound formation in the interaction both between the implanted species and the host matrix and between the implanted species themselves have been detected. (orig.)

  3. Study of chemical interaction induced by ionizing radiation poly(dimethylsiloxane-g-ethylene oxide) in the poly(n-vinyl-2-pyrrolidone) and agar membrane

    International Nuclear Information System (INIS)

    Membrane composed by poly(N-vinyl-2-pyrrolidone) (PVP) and agar was formulated with and without poly(dimethylsiloxane-g-ethylene oxide) (SEO) irradiated with electron beam with doses between 10-50 kGy. The radiolytic behaviour of each component, PVP, agar and SEO, was studied when irradiated by gamma ray, in the absence and presence of air and water, by electron paramagnetic resonance (EPR) at 77 K. The chemical interaction of SEO with PVP/agar membrane was investigated by: infrared spectroscopy, energy dispersive X-ray fluorescence, dynamic-mechanical analysis, scanning electron microscopy, gel and swelling analysis. The cytotoxicity of the PVP/agar/SEO membrane was evaluated by cellular suppression. The membrane radicals from PVP (φNC.) and from water (H., OH. and H2O) was observed by EPR at 77K. The agar radicals formed by hydrogen abstraction of C1 and C3 of β-D-galactose and/or C1 and C4 of α-L-galactose, reacted primarily with water radicals in despite of they also took part in the membrane by chemical bond. The radicals from SEO (.CH2∼, .Si∼, .O∼) participated in the inter and intramolecular crosslinking as co-crosslinker by polymeric bridge. The co-crosslinked action depended on its concentration associated to PVP concentration. The presence op acrylates increases the tensile break of the PVP/agar/SEO membrane significantly. (author)

  4. Interacting Induced Dark Energy Model

    CERN Document Server

    Bahrehbakhsh, Amir F

    2016-01-01

    Similar to the idea of the brane world scenarios, but based on the approach of the induced matter theory, for a non--vacuum five--dimensional version of general relativity, we propose a model in which the conventional matter sources considered as all kind of the matter (the baryonic and dark) and the induced terms emerging from the extra dimension supposed to be as dark energy. Then we investigate the FLRW type cosmological equations and illustrate that the model is capable to explain respectively the deceleration and then acceleration eras of the universe expansion with an interacting term between the matter and dark energy.

  5. Chemical reaction due to stronger Ramachandran interaction

    Indian Academy of Sciences (India)

    Andrew Das Arulsamy

    2014-05-01

    The origin of a chemical reaction between two reactant atoms is associated with the activation energy, on the assumption that, high-energy collisions between these atoms, are the ones that overcome the activation energy. Here, we show that a stronger attractive van der Waals (vdW) and electron-ion Coulomb interactions between two polarized atoms are responsible for initiating a chemical reaction, either before or after the collision. We derive this stronger vdW attraction formula exactly using the quasi one-dimensional Drude model within the ionization energy theory and the energy-level spacing renormalization group method. Along the way, we expose the precise physical mechanism responsible for the existence of a stronger vdW interaction for both long and short distances, and also show how to technically avoid the electron-electron Coulomb repulsion between polarized electrons from these two reactant atoms. Finally, we properly and correctly associate the existence of this stronger attraction with Ramachandran’s `normal limits’ (distance shorter than what is allowed by the standard vdW bond) between chemically nonbonded atoms.

  6. Laser Induced Surface Chemical Epitaxy

    Science.gov (United States)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  7. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer

    OpenAIRE

    Chen, Lei; Yang, Jing; Zheng, Mingyue; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then...

  8. Can the hydrophilicity of functional monomers affect chemical interaction?

    Science.gov (United States)

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts. PMID:24284259

  9. Chemical bond cleavage induced by electron heating

    International Nuclear Information System (INIS)

    Gas emissions from titanium-metalloid compounds (titanium nitride and oxide) have been investigated to understand the effects of a microwave field on chemical reactions. We employed a high vacuum system (PO2 = 10−6 Pa) to observe in situ reductions. For titanium oxides, H-field heating significantly differed from conventional one in terms of oxygen emissions. For titanium nitride, the emissions were also induced by microwave heating. These tendencies were observed at temperatures above 1000 °C. A quantum chemical interpretation is provided to explain the emissions of the gases, and the experimental data is in good agreement with results predicted using the electronic energy band structure.

  10. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  11. THE INTERACTIVE DECISION COMMITTEE FOR CHEMICAL TOXICITY ANALYSIS.

    Science.gov (United States)

    Kang, Chaeryon; Zhu, Hao; Wright, Fred A; Zou, Fei; Kosorok, Michael R

    2012-01-01

    We introduce the Interactive Decision Committee method for classification when high-dimensional feature variables are grouped into feature categories. The proposed method uses the interactive relationships among feature categories to build base classifiers which are combined using decision committees. A two-stage or a single-stage 5-fold cross-validation technique is utilized to decide the total number of base classifiers to be combined. The proposed procedure is useful for classifying biochemicals on the basis of toxicity activity, where the feature space consists of chemical descriptors and the responses are binary indicators of toxicity activity. Each descriptor belongs to at least one descriptor category. The support vector machine, the random forests, and the tree-based AdaBoost algorithms are utilized as classifier inducers. Forward selection is used to select the best combinations of the base classifiers given the number of base classifiers. Simulation studies demonstrate that the proposed method outperforms a single large, unaggregated classifier in the presence of interactive feature category information. We applied the proposed method to two toxicity data sets associated with chemical compounds. For these data sets, the proposed method improved classification performance for the majority of outcomes compared to a single large, unaggregated classifier. PMID:24415822

  12. Efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    KAERI and INP (Poland) have been carried out parallel study and joint experiments on the major topics according to MOU about their cooperative project. Major experimental techniques were TSH assay, comet assay, and synergism assay. The research consisted of the following workscopes. 1) Application of TSH bioindicator for studying the biological efficiency of radiation, 2) Relative biological efficiency of californium-252 neutrons in the induction of gene and lethal mutations in TSH cells normal and enriched with boron compound, 3) Effect of pesticide on radiation-induced mutations in TSH cells, 4) Interaction of radiation with pesticide on DNA damage in human peripheral blood lymphocytes, 5) Radiomodifying effect of boron and gadolinium compounds in human peripheral blood lymphocytes, 6) Mathematical description of synergistic interactions, 7) General regularities of synergistic interactions, and 8) Determinant of synergistic interaction between radiation, heat and chemicals in cell killing. Both institutes have established wide variety of research techniques applicable to various radiation research through the cooperation. The results of research can make the role of fundamental basis for the better relationship between Korea and Poland

  13. Rhizosphere chemical dialogues: plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Badri, D.V.; van der Lelie, D.; Weir, T. L.; Vivanco, J. M.

    2009-12-01

    Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemical communication that exists between plants and microorganisms and the biological processes they sustain.

  14. Interacting Induced Dark Energy Model

    OpenAIRE

    Bahrehbakhsh, Amir F.

    2016-01-01

    Similar to the idea of the brane world scenarios, but based on the approach of the induced matter theory, for a non--vacuum five--dimensional version of general relativity, we propose a model in which the conventional matter sources considered as all kind of the matter (the baryonic and dark) and the induced terms emerging from the extra dimension supposed to be as dark energy. Then we investigate the FLRW type cosmological equations and illustrate that the model is capable to explain respect...

  15. Predicting Anatomical Therapeutic Chemical (ATC classification of drugs by integrating chemical-chemical interactions and similarities.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available The Anatomical Therapeutic Chemical (ATC classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1 alimentary tract and metabolism; (2 blood and blood forming organs; (3 cardiovascular system; (4 dermatologicals; (5 genitourinary system and sex hormones; (6 systemic hormonal preparations, excluding sex hormones and insulins; (7 anti-infectives for systemic use; (8 antineoplastic and immunomodulating agents; (9 musculoskeletal system; (10 nervous system; (11 antiparasitic products, insecticides and repellents; (12 respiratory system; (13 sensory organs; (14 various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2(nd-level, 3(rd-level, 4(th-level, and 5(th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels.

  16. Slime mould interactions with chemicals and materials

    Science.gov (United States)

    de Lacy Costello, Benjamin

    2015-03-01

    At first sight a seemingly jumbled selection of images, what links all these together? It is an assessment of how P. polycephalum interacts with a synthetic human-made environment and how this can give indications of its natural environmental interactions but more importantly how these can be harnessed to give tangible outcomes in functional material synthesis and biologically inspired computing...

  17. PIXE and PIXE-induced XRF for chemical specification

    International Nuclear Information System (INIS)

    Wavelength dispersive X-ray spectra with fine structures in the PIXE and PIXE-induced XRF spectra have been proved to be very much useful for chemical specification of condensed matters. The fine structures have been reproduced theoretically by introducing molecular orbital calculations, the shake-off and resonant orbital rearrangement (ROR) processes, together with the direct Coulomb interaction between projectiles and target atoms, and the self-absorption of emitted X-rays through the targets. Comparison between observed and theoretical spectra is given here for F and S atoms

  18. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  19. Simulation of chemical kinetics in sodium-concrete interactions

    International Nuclear Information System (INIS)

    Sodium-concrete interaction is a key safety-related issue in safety analysis of liquid metal cooled fast breeder reactors (LMFBRs). The chemical kinetics model is a key component of the sodium-concrete interaction model. Conservation equations integrated in sodium-concrete interaction model cannot be solved without a set of relationships that couple the equations together, and this may be done by the chemical kinetics model. Simultaneously, simulation of chemical kinetics is difficult due to complexity of the mechanism of chemical reactions between sodium and concrete. This paper describes the chemical kinetics simulation under some hypotheses. The chemical kinetics model was integrated with the conservation equations to form a computer code. Penetration depth, penetration rate, hydrogen flux, reaction heat, etc. can be provided by this code. Theoretical models and computational procedure were recounted in detail. Good agreements of an overall transient behavior were obtained in a series of sodium-concrete interaction experiment analysis. Comparison between analytical and experimental results showed that the chemical kinetics model presented in this paper was creditable and reasonable for simulating the sodium-concrete interactions. (authors)

  20. Simulation of chemical kinetics in sodium-concrete interactions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sodium-concrete interaction is a key safety-related issue in safety analysis of liquid metal cooled fast breeder reactors (LMFBRs). The chemical kinetics model is a key component of the sodium-concrete interaction model. Conservation equations integrated in sodium-concrete interaction model cannot be solved without a set of relationships that couple the equations together, and this may be done by the chemical kinetics model. Simultaneously,simulation of chemical kinetics is difficult due to complexity of the mechanism of chemical reactions between sodium and concrete. This paper describes the chemical kinetics simulation under some hypotheses. The chemical kinetics model was integrated with the conservation equations to form a computer code. Penetration depth, penetration rate,hydrogen flux, reaction heat, etc. can be provided by this code. Theoretical models and computational procedure were recounted in detail. Good agreements of an overall transient behavior were obtained in a series of sodium-concrete interaction experiment analysis. Comparison between analytical and experimental results showed that the chemical kinetics model presented in this paper was creditable and reasonable for simulating the sodium-concrete interactions.

  1. Acute and subacute chemical-induced lung injuries: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  2. Acute and subacute chemical-induced lung injuries: HRCT findings

    International Nuclear Information System (INIS)

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals

  3. Statistically designed experiments to screen chemical mixtures for possible interactions

    NARCIS (Netherlands)

    Groten, J.P.; Tajima, O.; Feron, V.J.; Schoen, E.D.

    1998-01-01

    For the accurate analysis of possible interactive effects of chemicals in a defined mixture, statistical designs are necessary to develop clear and manageable experiments. For instance, factorial designs have been successfully used to detect two-factor interactions. Particularly useful for this purp

  4. Chemically induced compaction bands in geomaterials

    Science.gov (United States)

    Stefanou, Ioannis; Sulem, Jean

    2013-04-01

    Compaction bands play an important role in oil production and may provide useful information on various geological processes. Various mechanisms can be involved at different scales: the micro scale (e.g. the grain scale), the meso scale (e.g. the Representative Element Volume) and the macro scale (e.g. the structure). Moreover, hydro-chemo-mechanical couplings might play an important role in triggering instabilities in the form of compaction bands. Compaction bands can be seen as an instability of the underneath mathematical problem leading to localization of deformation [1,2,3]. Here we explore the conditions of compaction banding in quartz-based geomaterials by considering the effect of chemical dissolution and precipitation [4,5]. In due course of the loading process grain crushing affects the residual strength, the porosity and the permeability of the material. Moreover, at the micro-level, grain crushing results in an increase of the grain specific surface, which accelerates the dissolution [6]. Consequently, the silica is removed more rapidly from the grain skeleton and the overall mechanical properties are degraded due to chemical factors. The proposed model accounts for these phenomena. In particular, the diffusion of the diluted in the water silica is considered through the mass balance equation of the porous medium. The reduction of the mechanical strength of the material is described through a macroscopic failure criterion with chemical softening. The grain size reduction is related to the total energy input [7]. A grain size and porosity dependent permeability law is adopted. These degradation mechanisms are coupled with the dissolution/precipitation reaction kinetics. The obtained hydro-chemo-mechanical model is used to investigate the conditions, the material parameters and the chemical factors inducing compaction bands formation. References [1] J.W. Rudnicki, and J.R. Rice. "Conditions for the Localization of Deformation in Pressure

  5. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  6. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    SudinBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy”. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  7. Molecular effects: interactions with chemicals and viruses

    International Nuclear Information System (INIS)

    Research focused upon an understanding of the cellular responses to the molecular effects of ionizing radiation should be an essential program component in the Federal Strategy for Research into the Biological Effects of Ionizing Radiation. Although we know that DNA is a principal target molecule for some highly significant biological effects of ionizing radiation, we need to learn which other target substances such as membrane components may also be important. Most of the emphasis should continue to be on DNA effects and highest priority should be assigned to the identification of the complete spectrum of products produced in DNA. Once the lesions are known we can proceed to determine how these behave as blocks to replication and transcription or as modulators on the fidelity of these crucial processes. Considerable work should be done on the repair of these lesions. High priority should be given to the search for mutants in mammalian cell systems with evident defects in the processing of specific lesions. Viruses should provide important tools for the research in this area, as probes for host cell repair responses and also for the isolation of mutants. Furthermore, it is important to consider the interaction of viruses and ionizing radiation with regard to possible modulating effects on repair processes and tumorigenesis. Finally we must consider the important problem of the modification of repair responses by environmental factors

  8. Chemical interactions in multimetal/zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  9. Chemical modification studies of the streptokinase-plasminogen interaction

    International Nuclear Information System (INIS)

    The streptokinase (SK) interaction with human plasminogen (Pg) was investigated by differential chemical modification. In separate experiments, available lysine residues in both free streptokinase and streptokinase in complex with Pg were trace labeled by reaction with high specific activity [3H]-acetic anhydride at a reagent-to-lysine molar ratio of 0.5%. The [3H]-acetyl-SK from the complex was reisolated. Both the free and complex forms of 3H-acetyl-SK were then each mixed with uniformly and quantitatively modified [14C]-acetyl-SK in a 3H/14C isotopic ratio of ten-to-one. Each of the SK forms was fragmented by reaction with CNBr. These CNBr fragments, which were purified by Sephadex G-75 chromatography, were further cleaved by proteases to produce peptides containing a minimum number of lysines. After the isolation of peptides by reversed-phase HPLC, the 3H/14C ratios of lysines were individually determined. By comparison of the 3H/14C ratio's in the free-SK and complex-SK it was found that the majority of lysines did not change its reactivities in free or complex forms. However, several lysines were relatively unreactive in the SK complexed with Pg as compared to that in free SK. This suggests that these residues are either in the complex binding interface or they were less reactive as a result of conformational change induced by complex formation

  10. Short distance expansion for fluctuation induced interactions

    Science.gov (United States)

    Emig, Thorsten; Bimonte, Giuseppe

    Fluctuation induced interactions become most prominent in close to proximity to surfaces. Examples include van der Waals and Casimir forces, heat transfer, and spectral shifts for atoms and molecules. In many situations, the surfaces are curved or structured which makes the computation of the interaction in general complicated. Here we present a versatile and powerful approach to this problem which is based on a derivative expansion. It applies to distances much smaller than the radii of surface curvature. Explicit results include orientational effects for anisotropic particles, thermal effects, and spectral modifications.

  11. Species interactions and chemical stress: combined effects of intraspecific and interspecific interactions and pyrene on Daphnia magna population dynamics.

    Science.gov (United States)

    Viaene, Karel P J; De Laender, Frederik; Rico, Andreu; Van den Brink, Paul J; Di Guardo, Antonio; Morselli, Melissa; Janssen, Colin R

    2015-08-01

    Species interactions are often suggested as an important factor when assessing the effects of chemicals on higher levels of biological organization. Nevertheless, the contribution of intraspecific and interspecific interactions to chemical effects on populations is often overlooked. In the present study, Daphnia magna populations were initiated with different levels of intraspecific competition, interspecific competition, and predation and exposed to pyrene pulses. Generalized linear models were used to test which of these factors significantly explained population size and structure at different time points. Pyrene had a negative effect on total population densities, with effects being more pronounced on smaller D. magna individuals. Among all species interactions tested, predation had the largest negative effect on population densities. Predation and high initial intraspecific competition were shown to interact antagonistically with pyrene exposure. This was attributed to differences in population structure before pyrene exposure and pyrene-induced reductions in predation pressure by Chaoborus sp. larvae. The present study provides empirical evidence that species interactions within and between populations can alter the response of aquatic populations to chemical exposure. Therefore, such interactions are important factors to be considered in ecological risk assessments. PMID:25772479

  12. Nonlocality-induced front interaction enhancement

    OpenAIRE

    Gelens, Lendert; Gomila, Damià; Van der Sande, Guy; Matías, Manuel A.; Colet, Pere

    2011-01-01

    We demonstrate that nonlocal coupling strongly influences the dynamics of fronts connecting two equivalent states. In two prototype models we observe a large amplification in the interaction strength between two opposite fronts increasing front velocities several orders of magnitude. By analyzing the spatial dynamics we prove that way beyond quantitative effects, nonlocal terms can also change the overall qualitative picture by inducing oscillations in the front profile. This lead...

  13. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essenti

  14. Mechanisms of chemical-induced porphyrinopathies

    Energy Technology Data Exchange (ETDEWEB)

    Silbergeld, E.K. Fowler, B.A.

    1987-01-01

    This book contains 45 selections. Some of the titles are: Genetic Regulation of the Heme Pathway; Porphyrins in Urine as an Indication of Exposure to Chlorinated Hydrocarbons; Mechanisms of PCB-induced Porphyria and Yusho Disease; and Lead-Induced Abnormalities of Porphyrin Metabolism: The Relationship with Iron Deficiency.

  15. Melatonin Prevents Chemical-Induced Haemopoietic Cell Death

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2014-04-01

    Full Text Available Melatonin (MEL, a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.

  16. Radiation-induced chemical evolution of biomolecules

    International Nuclear Information System (INIS)

    Chemical evolution in glycilglycine (Gly2) films irradiated with 146 nm vacuum ultraviolet light was studied. It is found that quantum efficiency of chemical evolution from Gly2 to glycilglycilglycine (Gly3) is smaller than that to glycilglycilglycilglycine (Gly4) due to the multiple step of reaction. Furthermore, we have carried out measurement of soft X-ray natural circular dichroism spectra for serine and alanine films in the energy region of oxygen 1s transition and we report the splitting of 1s→π* transitions.

  17. Induced Pairing Interaction in Neutron Star Matter

    Science.gov (United States)

    Lombardo, U.; Schulze, H.-J.; Zuo, W.

    2013-01-01

    The three superfluid phases supposed to occur in neutron stars are reviewed in the framework of the generalized BCS theory with the induced interaction. The structure of neutron stars characterized by beta-stable asymmetric nuclear matter in equilibrium with the gravitational force discloses new aspects of the pairing mechanism. Some of them are discussed in this report, in particular the formation in dense matter of Cooper pairs in the presence of three-body forces and the interplay between repulsive and attractive polarization effects on isospin T = 1 Cooper pairs embedded into the neutron and proton environment. Quantitative estimates of the energy gaps are reported and their sensitivity to the medium effects, i.e., interaction and polarization, is explored.

  18. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  19. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    International Nuclear Information System (INIS)

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  20. Collagen-curcumin interaction - A physico-chemical study

    Indian Academy of Sciences (India)

    N Nishad Fathima; R Saranya Devi; K B Rekha; Aruna Dhathathreyan

    2009-07-01

    Curcumin is a widely used therapeutic agent with a wide spectrum of biological and physiological applications like wound healing and interacts with the skin protein, collagen. This work reports the effect of curcumin on various physico-chemical properties of collagen. The results suggest that significant changes in viscosity and surface tension occur on collagen interacting with curcumin. Secondary structure analysis using circular dichroism shows that curcumin does not alter the triple helical structure of collagen. Increasing concentration of curcumin resulted in aggregation of the protein. Further, curcumin imparts high level of thermal stability to collagen with shrinkage temperature of collagen increasing from 60 to 90°C.

  1. Kinetics of chemical interactions between zirconium alloys and stainless steels

    International Nuclear Information System (INIS)

    The chemical interaction kinetics of reactor core component zirconium alloys and stainless steels at high temperatures was examined. Interaction of as-received and preoxidized Zr1%Nb with X18H10T stainless steel used in WWER type nuclear reactors, and also that of Zircaloy-4 and AISI-316 stainless steel, for comparison, were investigated. The reaction rate measurements were supplemented with post-test metallographical examinations. Results are presented and evaluated, and compared with literature data. (author). 14 refs., 31 figs., 8 tabs

  2. Chemical and biological rhizosphere interactions in low zinc soils

    OpenAIRE

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essential factor for normal healthy growth and reproduction of plants. Zinc deficiency is, however, a global problem in crop production due to low Zn bioavailability in soils to plants. The bioavailable Zn fraction in soils is controlled ...

  3. Plasma propellant interactions in an electrothermal-chemical gun

    OpenAIRE

    Taylor, M. J.

    2009-01-01

    This Thesis covers work conducted to understand the mechanisms underpinning the operation of the electrothermal-chemical gun. The initial formation of plasma from electrically exploding wires, through to the development of plasma venting from the capillary and interacting with a densely packed energetic propellant bed is included. The prime purpose of the work has been the development and validation of computer codes designed for the predictive modelling of the elect roth...

  4. Chemical interaction matrix between reagents in a Purex based process

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague, France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (authors)

  5. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  6. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  7. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  8. Approaches to the evaluation of chemical-induced immunotoxicity.

    OpenAIRE

    Krzystyniak, K; Tryphonas, H; Fournier, M

    1995-01-01

    The immune system plays a crucial role in maintaining health; however, accumulating evidence indicates that this system can be the target for immunotoxic effects caused by a variety of chemicals including the environmental pollutants of polychlorinated biphenyls, chlorinated dibenzo-p-dioxins, pesticides, and heavy metals. Adverse chemical-induced immunomodulation, which is studied within the discipline of immunotoxicology, may be expressed either as immunosuppression/immunodepression or immu...

  9. Systematic Mapping of Chemical-Genetic Interactions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Bray, Walter; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; Lokey, R Scott; St Onge, Robert P

    2016-01-01

    Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines. PMID:27587783

  10. Variational principles in chemical equilibria: Complex chemical systems with interacting subsystems

    CERN Document Server

    Zilbergleyt, B

    2010-01-01

    The goal of the paper is to derive a revised condition of global equilibrium in complex chemical systems as variational principle in formalism of recently developed discrete thermodynamics (DTD) of chemical equilibria. In classical approach the problem of complex equilibrium is solved by minimization of the system Gibbs’ free energy subject to logistic constraints. DTD demands any isolated system to comprise smaller subentities, which individual equilibria are based on the balance of internal and external thermodynamic forces, acting against them. The internal forces are equal to the subsystems thermodynamic affinities, while external forces originate from subsystems mutual interactions. Those interactions impose additional constraints on the mother system Gibbs’ free energy minimum. Basic expression of discrete thermodynamics, being multiplied by subsystems deviations from their “true” thermodynamic equilibria, is naturally identical to d’Alembert’s principle. A thermodynamic ve...

  11. Chemical changes induced by ultrasound in iron

    Science.gov (United States)

    Albertini, G.; Calbucci, V.; Cardone, F.; Petrucci, A.; Ridolfi, F.

    2014-03-01

    The focus of this work is a careful chemical investigation of structural damage produced by the exposure of an iron bar to pressure waves generated using an ultrasound machine (called the R-1-S reactor). In addition to the emission of neutron bursts, the ultrasound treatment caused the appearance of zones of macroscopic damage (˜1 mm in size) on the exterior of the bar. Reflected-light optical and environmental scanning electron microscopy (ESEM) has shown that these external damage zones are characterized by microcraters and are covered by a thin layer of cracked amorphous material. Under back scattered electron (BSE) observation, this material shows a lower brightness than the intact ferrite surface. In addition, a zone with a high density of deformed cavities (˜1300 per mm2) with irregular walls and a maximum size of 10 μm was found inside the bar. These deformed microcavities are partially filled with a material composed of a chaotic assemblage of submicron-sized (most likely amorphous) particles. A careful compositional investigation of the chaotic material inside the microcavities using the semi-quantitative data obtained with the ESEM X-ray Energy Dispersive System (EDS) has shown that it is primarily composed of carbon, manganese and chromium. These elements are also found in lower amounts within the intact ferrite matrix. In contrast, the damaged surface surrounding the craters is characterized by elements not found in the ferrite at all (i.e., O, Cl, K, Cu); elements the presence of which cannot be attributed to the occurrence of non-metallic inclusions or to contamination during fabrication. These results are also difficult to explain using the generally accepted laws of physics; however, they do appear to agree with a recent theory predicting the deformation of the local spacetime and the violation of the Local Lorentz Invariance. Such a violation should occur following the collapse of micron-sized discontinuities internal to the materials

  12. Cosmic rays interactions and the abundances of the chemical elements

    International Nuclear Information System (INIS)

    Our Galaxy is the largest nuclear interaction experiment which we know, because of the interaction between cosmic ray particles and the interstellar material. Cosmic rays are particles, which have been accelerated in the Galaxy or in extragalactic space. Cosmic rays come as protons, electrons, heavier nuclei, and their antiparticles. Up to energies up to some tens of TeV of particle energy it is possible to derive chemical abundances of cosmic rays. It has been proposed that cosmic ray particles can be attributed to three main sites of origin and acceleration, a) supernova shocks in the interstellar medium, b) supernova shocks in a stellar wind of the predecessor star, and c) powerful radio galaxies. This proposal leads to quantitative tests, which are encouraging so far. Quantitative models for transport and interaction appear to be consistent with the data. Li, Be, B are secondary in cosmic rays, as are many of the odd-Z elements, as well as the sub-Fe elements. At very low energies, cosmic ray particles are subject to ionization losses, which produce a steep low energy cutoff; all particles below the cutoff are moved into the thermal material population, and the particles above it remain as cosmic rays. This then changes the chemical abundances in the interstellar medium, and is a dominant process for many isotopes of Li, Be, B. With a quantitative theory for the origin of cosmic rays proposed, it appears worthwhile to search for yet better spallation cross sections, especially near threshold. With such an improved set of cross sections, the theory of the interstellar medium and its chemical abundances, both in thermal and in energetic particles, could be taken a large step forward. (author)

  13. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  14. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  15. Interaction of bacteria and a chemically patterned surface

    Science.gov (United States)

    Jalali, Maryam; Molaei, Mehdi; Sheng, Jian

    2012-11-01

    We are investigating the mechanisms involved in the interactions between bacteria and chemically patched oil-water interface. Using micro-fabrication and soft-lithography, we have engineered a chemically patterned solid surface to mimic the real interfacial environment. Arrays of 2D geometries whose characteristic size ranges from 10 μm to 100 μm are patterned onto a glass substrate and subsequently functionalized using Octadecyltrichlorosilane (OTS). The photoresist covering geometries is further removed after functionalization. Consequently, a chemically patterned surface with alternating hydrophobic and hydrophilic regions is produced as the substrate for microfluidics. The effects of this surface on bacteria attachment and detachment are evaluated in-situ. The growth rates of biofilm are quantified by measuring the morphology of bacterial colony. To elucidate hydrodynamic mechanism involved, bacteria swimming characteristics, such as swimming velocity, angle, tumbling frequency and dispersion, is measured within a microfluidics with a patterned substrate using 3D digital holographic microscopy. Comparative studies on smooth swimming and tumbling capable strains over such surfaces will also be presented. GoMRI.

  16. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    Science.gov (United States)

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics. PMID:26905738

  17. Biological efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes

  18. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and...... displacements). As these phenomena usually arise from species adsorption, adsorbate modification or surface reconstruction, they are surface-related by nature and thus require some dedicated mechanical modeling. The accompanying mechanical modeling proposed herein is intended to represent the chemical part of...... drawn from the energy balance in the accompanying model, highlighting the role of surface functionalization parameters in micromechanical sensors engineering....

  19. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c). However, the quark-gluon plasma (QGP) system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations

  20. Mechanism of Interaction between Ionizing Radiation and Chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals. Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland

  1. The role of van der Waals interactions in chemical reactions

    International Nuclear Information System (INIS)

    We are studying the role of van der Waals interactions in the chemical reactions from the theoretical view point, especially, a case related to the tunnel effect. The fist case that the cumulative reaction probability depends on the tunnel effect was increased by the van der waals force. This case was proved by theoretical calculation of the reaction rate constant of the reaction: Mu + F2 → MuF + F. The second case was that a van der Waals well was so deep that pseudo bound state was observed in the reaction: F + H2 → HF + H. A van der Waals complex such as AB(v=j=0)...C was excited to the resonance state of AB(vij)...C and A...BC(v,j) by laser, than the resonance state proceeded to AB + C (predissociation) or A + BC(pre-reaction). We succeeded for the first time to calculate theoretically the pre-reaction by the real three dimentional potential curve. The pre-reaction can be observed only the case that the tunnel probability is larger than the non-adiabatic transition probability. The chemical reactions in solid were explained, too. (S.Y.)

  2. Mechanism of Interaction between Ionizing Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, B. H.; Shin, H. S. (and others)

    2008-03-15

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals{sup .} Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland.

  3. Keratin expression in chemically induced mouse lung adenomas.

    OpenAIRE

    Gunning, W T; Goldblatt, P. J.; Stoner, G D

    1992-01-01

    Chemically induced mouse lung tumors exhibit distinctive growth patterns, characterized by an alveolar or solid appearance, a papillary appearance, or a combination of the two. Lung tumors induced in strain A/J mice by either benzo(a)pyrene (BP) or by N-nitrosoethylurea (ENU) were examined for expression of low- and high-molecular-weight cytokeratins. Simple cytokeratins (low molecular weight) were found in all epithelial cells of the normal mouse lung and in all tumor types, whereas higher-m...

  4. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  5. Species interactions and chemical stress combined effects of intraspecific and interspecific interactions and pyrene n Daphnia magna populations dynamics

    NARCIS (Netherlands)

    Viaene, K.P.J.; Laender, de F.; Rico, A.; Brink, van den P.J.; Guardo, Di A.; Morselli, M.; Janssen, C.R.

    2015-01-01

    Species interactions are often suggested as an important factor when assessing the effects of chemicals on higher levels of biological organization. Nevertheless, the contribution of intraspecific and interspecific interactions to chemical effects on populations is often overlooked. In the present s

  6. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    Science.gov (United States)

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement. PMID:24001050

  7. Interaction-Induced Enhancement and Oscillations of the Persistent Current

    OpenAIRE

    Stafford, C. A.; Wang, D. F.

    1997-01-01

    The persistent current $I$ in integrable models of multichannel rings with both short- and long-ranged interactions is investigated. $I$ is found to oscillate in sign and increase in magnitude with increasing interaction strength due to interaction-induced correlations in the currents contributed by different channels. For sufficiently strong interactions, the contributions of all channels are found to add constructively, leading to a giant enhancement of $I$. Numerical results confirm that t...

  8. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    Science.gov (United States)

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-04-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer. PMID:26849843

  9. Interaction of chemical species with biological regulation of the metabolism of essential trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, W. [Center of Life and Food Sciences, Technische Univ. Muenchen, Freising (Germany)

    2002-02-01

    Variations in the chemical speciation of dietary trace elements can result in the provision of different amounts of these micronutrients to the organism and might thus induce interactions with trace-element metabolism. The chemical species of Zn, Fe, Cu, and Mn can interact with other components of the diet even before reaching the site of absorption, e.g. by formation of poorly soluble complexes with phytic acid. This might considerably modify the amount of metabolically available trace elements; differences between absorptive capacity per se toward dietary species seems to be less important. Homeostasis usually limits the quantities of Zn, Fe, Cu, and Mn transported from the gut into the organism, and differences between dietary species are largely eliminated at this step. There is no homeostatic control of absorption of Se and I, and organisms seem to be passively exposed to influx of these micronutrients irrespective of dietary speciation. Inside the organism the trace elements are usually converted into a metabolically recognizable form, channeled into their biological functions, or submitted to homeostatically controlled excretion. Some dietary species can, however, be absorbed as intact compounds. As long as the respective quantities of trace elements are not released from their carriers, they are not recognized properly by trace element metabolism and might induce tissue accumulation, irrespective of homeostatic control. (orig.)

  10. Interaction of cationic dye/surfactants with Klebsiella K18 capsular polysaccharides: Physico-chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Ranendu Kumar, E-mail: rknath1959@gmail.com [Department of Chemistry, Tripura University, Suryamaninagar, Tripura-799130 (India); Singh, Th. Charanjit [Department of Chemistry, D.D.M. College, Khowai, Tripura-799 202 (India); Dasgupta, Satwati [Department of Chemistry, Tripura University, Suryamaninagar, Tripura-799130 (India); Mitra, Asish [Department of Chemistry, MBB College, Agartala, Tripura-799001 (India); Panda, Amiya Kumar [Department of Chemistry, University of North Bengal, P.O. North Bengal University, Dt: Darjeeling, West Bengal-734013 (India)

    2010-05-10

    Physico-chemical studies on the interaction of capsular polysaccharide (SPS) isolated from Klebsiella K18, with cationic dyes and surfactants have been reported. SPS is an integral component of gram-negative bacteria and having glucuronic acid as the potential anionic site, induced strong metachromasy (blue shift {approx} 110 nm) in the cationic dye pinacyanol chloride (PCYN). Reversal of metachromasy was observed upon addition of co-solvents which provides a qualitative measurement of stability and nature of metachromatic compound associated with PCYN-SPS interaction. Thermodynamic parameters such as association constant, changes in free energy, enthalpy and entropy of dye-polymer interaction, were evaluated which revealed the nature of interaction. Studies on fluorescence quenching of acridine orange (AO) was also performed. The interaction of SPS with cationic and cationic-non-ionic mixed surfactant systems have been studied by turbidimetry, spectrophotometry, spectrofluorometry and viscosity measurements. The studies could provide an understanding on the effects of the surfactants on binding with the polymer. The binding was found to be electrostatic in origin and also hydrophobic in nature to a certain extent.

  11. Interaction of cationic dye/surfactants with Klebsiella K18 capsular polysaccharides: Physico-chemical studies

    International Nuclear Information System (INIS)

    Physico-chemical studies on the interaction of capsular polysaccharide (SPS) isolated from Klebsiella K18, with cationic dyes and surfactants have been reported. SPS is an integral component of gram-negative bacteria and having glucuronic acid as the potential anionic site, induced strong metachromasy (blue shift ∼ 110 nm) in the cationic dye pinacyanol chloride (PCYN). Reversal of metachromasy was observed upon addition of co-solvents which provides a qualitative measurement of stability and nature of metachromatic compound associated with PCYN-SPS interaction. Thermodynamic parameters such as association constant, changes in free energy, enthalpy and entropy of dye-polymer interaction, were evaluated which revealed the nature of interaction. Studies on fluorescence quenching of acridine orange (AO) was also performed. The interaction of SPS with cationic and cationic-non-ionic mixed surfactant systems have been studied by turbidimetry, spectrophotometry, spectrofluorometry and viscosity measurements. The studies could provide an understanding on the effects of the surfactants on binding with the polymer. The binding was found to be electrostatic in origin and also hydrophobic in nature to a certain extent.

  12. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    Science.gov (United States)

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-01-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. PMID:27587778

  13. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800...

  14. Electrophobic Interaction Induced Impurity Clustering in Metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Bo; Wang, Jin-Long; Jiang, Wei; Lu, Guang-Hong; Aguiar, Jeffery A.; Liu, Feng

    2016-10-15

    We introduce the concept of electrophobic interaction, analogous to hydrophobic interaction, for describing the behavior of impurity atoms in a metal, a 'solvent of electrons'. We demonstrate that there exists a form of electrophobic interaction between impurities with closed electron shell structure, which governs their dissolution behavior in a metal. Using He, Be and Ar as examples, we predict by first-principles calculations that the electrophobic interaction drives He, Be or Ar to form a close-packed cluster with a clustering energy that follows a universal power-law scaling with the number of atoms (N) dissolved in a free electron gas, as well as W or Al lattice, as Ec is proportional to (N2/3-N). This new concept unifies the explanation for a series of experimental observations of close-packed inert-gas bubble formation in metals, and significantly advances our fundamental understanding and capacity to predict the solute behavior of impurities in metals, a useful contribution to be considered in future material design of metals for nuclear, metallurgical, and energy applications.

  15. Chemical modification of polyurethanes by radiation-induced grafting

    International Nuclear Information System (INIS)

    Basic methods of radiation-induced modification of polyurethanes for biomedical applications and of their characterization are briefly described. The most important works found in literature on radiation grafting of polyurethanes are discussed. The radiation grafting of polyetherurethane films and tubings by the preswelling method using various monomers and their physico-chemical characterization are discussed in detail with respect to the antithrombogenic properties of the materials. Novel applications for radiation-modified polyurethanes as drug delivery systems or antiinfectious materials are briefly mentioned. 52 references

  16. Fluctuation-Induced Interaction between Randomly Charged Dielectrics

    OpenAIRE

    Naji, Ali; Dean, David S.; Sarabadani, Jalal; Horgan, Ron R.; Podgornik, Rudolf

    2009-01-01

    Monopolar charge disorder effects are studied in the context of fluctuation-induced interactions between neutral dielectric slabs. It is shown that quenched bulk charge disorder gives rise to an additive contribution to the net interaction force which decays as the inverse distance between the slabs and may thus completely mask the standard Casimir--van der Waals force at large separations. By contrast, annealed (bulk or surface) charge disorder leads to a net interaction force whose large-di...

  17. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  18. Study on the key problems of interaction between microwave and chemical reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoqing; HUANG Kama

    2007-01-01

    Microwave has been found as an efficient heating method in chemical industry.However,in present days the interaction between microwave and chemical reactions has not been deeply understood,which restricts a wider application of high power microwave in chemical industry.In this Paper,the key problems of interaction between microwave and chemical reaction are investigated,such as complex effective permittivity of chemical reaction,simulation of microwave heating on chemical reaction and non-thermal effect of microwave,which will enhance further knowledge of the mechanism of interaction between microwave and chemical reaction.Moreover,such an analysis is beneficial for handling with difficulties in application of microwave chemical industry.

  19. Supergravity Induced Interactions on Thick Branes

    CERN Document Server

    Yilmaz, Nejat Tevfik

    2014-01-01

    The gravity coupling of the symmetric space sigma model is studied in the solvable Lie algebra parametrization. The corresponding Einstein's equations are derived and the energy-momentum tensor is calculated. The results are used to derive the dynamical equations of the warped 5D geometry for localized bulk scalar interactions in the framework of thick brane world models. The Einstein and scalar field equations are derived for flat brane geometry in the context of minimal and non-minimal gravity-bulk scalar couplings.

  20. Complex phase behavior induced by repulsive interactions

    Science.gov (United States)

    Velasco; Mederos; Navascues; Hemmer; Stell

    2000-07-01

    For a solid in which the interactions have a hard core plus a simple soft repulsive tail we show, using a perturbation theory, that the possible stable crystalline structures give rise to a rich phase behavior. We find two concomitant critical points each corresponding to phase transitions separating bcc and fcc structures, respectively, and the occurrence of a transition between fcc and bcc phases without change in density. This novel phenomenology may be relevant to the behavior of some metallic systems, colloids, and to water. PMID:10991174

  1. Ordering transitions induced by Coulomb interactions

    International Nuclear Information System (INIS)

    We briefly review recent progress in treating phase transitions to ordered states driven by Coulomb interactions. Wigner crystallization of the one-component plasma, in the degenerate Fermi limit and in the classical limit, is the foremost example and developments in its theory are discussed in some detail. Attention is also given to quasi-twodimensional realizations of the plasma model in the laboratory. The usefulness of these ideas in relation to freezing and ordering transitions is illustrated with reference to alkali metals, elemental and polar semiconductors, and various types of ionic systems (molten salts, colloidal suspensions and astrophysical plasmas). (author). 70 refs, 5 figs

  2. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  3. A crowdsourcing workflow for extracting chemical-induced disease relations from free text.

    Science.gov (United States)

    Li, Tong Shu; Bravo, Àlex; Furlong, Laura I; Good, Benjamin M; Su, Andrew I

    2016-01-01

    Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available athttps://github.com/SuLab/crowd_cid_relexDatabase URL:https://github.com/SuLab/crowd_cid_relex. PMID:27087308

  4. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Institute of Scientific and Technical Information of China (English)

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  5. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1 chemical interaction between drugs, (2 protein interactions between drugs’ targets, and (3 target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

  6. Analysis of thermal-chemical interactions at the ceramic mould – molten nickel alloy interface

    OpenAIRE

    J. Śleziona; J. Michalska; F. Binczyk

    2010-01-01

    A model of thermal-chemical interactions at the ceramic mould – molten nickel alloy interface was described. Studies were carried out on mould coated with a layer of modifier based on zirconium silicate and cobalt aluminate. The thermodynamic calculations indicated thepossibility of chemical reactions taking place between the chemically active nickel alloy constituents (Al, Ti, Hf, Ta and Nb) andcomponents of the modifying coating. The result of such interactions is possible formation on the ...

  7. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Background Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. Methodology/Principal Findings A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant–pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. Conclusions/Significance The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of

  8. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    Science.gov (United States)

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  9. Light-induced chemical vapour deposition painting with titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P

    2003-03-15

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  10. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  11. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  12. Ion beam induced conductivity in chemically vapor deposited diamond films

    International Nuclear Information System (INIS)

    Polycrystalline diamond films deposited by the microwave plasma chemical vapor deposition (CVD) technique onto quartz substrates have been irradiated with 100 keV C and 320 keV Xe ions at room temperature and at 200 degree C. The dose dependence of the electrical conductivity measured in situ exhibited complicated, nonmonotonic behavior. High doses were found to induce an increase of up to ten orders of magnitude in the electrical conductivity of the film. The dose dependence of the conductivity for the CVD films was found to be very similar to that measured for natural, type IIa, single-crystal diamonds irradiated under identical conditions. This result suggests that the conduction mechanism in ion beam irradiated polycrystalline CVD diamond films is not dominated by grain boundaries and graphitic impurities as one might have expected, but rather is determined by the intrinsic properties of diamond itself

  13. Measurement-induced continuous-variable quantum interactions

    International Nuclear Information System (INIS)

    We propose feasible implementations of basic continuous-variable (CV) interactions (squeezer, parametric amplifier, and quantum nondemolition interaction) between light modes without the requirement for in-line nonlinear couplings in a strongly pumped optical medium. The method is based entirely on linear optics, homodyne detection, and off-line squeezed ancillary states and therefore represents the CV analog of the measurement-induced nonlinearity approach, previously used in single-photon qubit experiments to probabilistically implement a controlled-NOT gate

  14. Cosmic string interactions induced by gauge and scalar fields

    OpenAIRE

    Kabat, Daniel; Sarkar, Debajyoti

    2012-01-01

    We study the interaction between two parallel cosmic strings induced by gauge fields and by scalar fields with non-minimal couplings to curvature. For small deficit angles the gauge field behaves like a collection of non-minimal scalars with a specific value for the non-minimal coupling. We check this equivalence by computing the interaction energy between strings at first order in the deficit angles. This result provides another physical context for the "contact terms" which play an importan...

  15. Protected Rabi oscillation induced by natural interactions among physical qubits

    OpenAIRE

    Kokubun, Naoaki; Shimizu, Akira

    2007-01-01

    For a system composed of nine qubits, we show that natural interactions among the qubits induce the time evolution that can be regarded, at discrete times, as the Rabi oscillation of a logical qubit. Neither fine tuning of the parameters nor switching of the interactions is necessary. Although straightforward application of quantum error correction fails, we propose a protocol by which the logical Rabi oscillation is protected against all single-qubit errors. The present method thus opens a s...

  16. Charged impurity-induced scatterings in chemical vapor deposited graphene

    Science.gov (United States)

    Li, Ming-Yang; Tang, Chiu-Chun; Ling, D. C.; Li, L. J.; Chi, C. C.; Chen, Jeng-Chung

    2013-12-01

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  17. CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system

    CERN Document Server

    Li, Jianfu

    2015-01-01

    The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.

  18. Induced conditional mutants for studying host/pathogen interactions

    International Nuclear Information System (INIS)

    In the genetic analyses of the naturally occurring variability affecting the interactions between host and parasite, there is one basic pattern which almost always emerges. This pattern, called gene-for-gene relations, illustrates the complementary nature of the genic systems in host and parasite. This pattern seems to hold whether the genes affect final infection type, slow disease development, or whatever naturally occurring differences affect interactions between host and parasite. The simplest explanation for gene-for-gene interactions is that specific recognition occurs for incompatible host/parasite interactions. Compatible relations can be considered to be the result of no specific interactions of the complementary genes. The gene-for-gene relationship can, therefore, be best rationalized as having evolved after the evolution of a basic compatibility between host and parasite. Conditional lethal (high-temperature-sensitive) mutants have been induced in two pathogens in an effort to identify genes affecting basic compatibility. (author)

  19. Multiple peaks of species abundance distributions induced by sparse interactions

    CERN Document Server

    Obuchi, Tomoyuki; Tokita, Kei

    2016-01-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self interaction $u$, we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of $u$ below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all spe...

  20. On self-induced transparency in laser-plasma interactions

    NARCIS (Netherlands)

    Goloviznin, V. V.; Schep, T. J.

    1999-01-01

    We study fully relativistic nonlinear one-dimensional equations describing steady-state solutions for an electromagnetic wave interacting with a plasma in the self-induced transparency regime. In addition to the well-known solution that corresponds to the transmission of the electromagnetic wave int

  1. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed

    OpenAIRE

    Rasher, Douglas B; Hay, Mark E.

    2014-01-01

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemica...

  2. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    aggregation, inactivation, and structural changes of α-CT as has been similarly shown to occur for many other proteins. These instabilities correlate with an increase in protein structural dynamics as a result of moisture exposure. In this work, we present a novel methodology to stabilize proteins against structural perturbations in the solid-state since chemical glycosylation was effective in decreasing and/or preventing the traditionally observed moisture-induced aggregation and inactivation. It is suggested that the stabilization provided by these chemically attached glycans comes from the steric hindrance that the sugars conveys on the protein surface therefore preventing the interaction of the protein internal electrostatics with that of the water molecules and thus reducing the protein structural dynamics upon moisture exposure.

  3. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies

    CERN Document Server

    Mühlbach, Adrian H; Reiher, Markus

    2015-01-01

    The inherently high computational cost of iterative self-consistent-field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to thirty percent as a consequence of a reduced number of SCF iterations.

  4. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Science.gov (United States)

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides. PMID:24216132

  5. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.

    Science.gov (United States)

    Mühlbach, Adrian H; Vaucher, Alain C; Reiher, Markus

    2016-03-01

    The inherently high computational cost of iterative self-consistent field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to 30% as a consequence of a reduced number of SCF iterations. PMID:26788887

  6. Aggregation in charged nanoparticles solutions induced by different interactions

    Science.gov (United States)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  7. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    Science.gov (United States)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  8. Thermodynamic properties of Cu–Zr melts: The role of chemical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kulikova, T.V.; Majorova, A.V.; Shunyaev, K.Yu. [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Ryltsev, R.E., E-mail: rrylcev@mail.ru [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Ural Federal University, Mira str. 19, 620002 Ekaterinburg (Russian Federation)

    2015-06-15

    General statistical model is applied to analyze the role of chemical interaction in associated systems. We show that, at certain conditions, chemical interaction between associates may be not essential above a distectic point and so the model of ideal associated solutions is a good approximation for describing high temperature properties of associated system with chemical interaction. Within the frames of such conception, we calculate thermodynamic properties of Cu–Zr system in liquid state. The enthalpies of formation of Cu–Zr intermetallic compounds were redefined by using matching procedure taking into account the additive manifestation of chemical interaction. We conclude that simple model which is free of adjusting parameters allows us to calculate thermodynamic properties of Cu–Zr melts with quite good accuracy.

  9. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Directory of Open Access Journals (Sweden)

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  10. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures.

    Science.gov (United States)

    Krishnan, Kannan; Haddad, Sami; Béliveau, Martin; Tardif, Robert

    2002-12-01

    The available data on binary interactions are yet to be considered within the context of mixture risk assessment because of our inability to predict the effect of a third or a fourth chemical in the mixture on the interacting binary pairs. Physiologically based pharmacokinetic (PBPK) models represent a potentially useful framework for predicting the consequences of interactions in mixtures of increasing complexity. This article highlights the conceptual basis and validity of PBPK models for extrapolating the occurrence and magnitude of interactions from binary to more complex chemical mixtures. The methodology involves the development of PBPK models for all mixture components and interconnecting them at the level of the tissue where the interaction is occurring. Once all component models are interconnected at the binary level, the PBPK framework simulates the kinetics of all mixture components, accounting for the interactions occurring at various levels in more complex mixtures. This aspect was validated by comparing the simulations of a binary interaction-based PBPK model with experimental data on the inhalation kinetics of m-xylene, toluene, ethyl benzene, dichloromethane, and benzene in mixtures of varying composition and complexity. The ability to predict the kinetics of chemicals in complex mixtures by accounting for binary interactions alone within a PBPK model is a significant step toward the development of interaction-based risk assessment for chemical mixtures. PMID:12634130

  11. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    Science.gov (United States)

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  12. Chemically induced skin carcinogenesis: Updates in experimental models (Review).

    Science.gov (United States)

    Neagu, Monica; Caruntu, Constantin; Constantin, Carolina; Boda, Daniel; Zurac, Sabina; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2016-05-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  13. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Previous studies of radiation induced chemical reactions of CO-H2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH3) and radical scavenger (O2) on the products yields were also carried out on the CO-H2-CH4 mixture. (author)

  14. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  15. CHEMICALLY MODIFIED ZEOLITES: SURFACES AND INTERACTION WITH Cs AND Co

    Directory of Open Access Journals (Sweden)

    Pavel Dillinger

    2007-06-01

    Full Text Available Inorganic exchangers, including zeolites, have interesting properties such as resistance to decomposition in the presence of ionizing radiation or to high temperatures, what make them applicable for the purification of low and middle polluted radioactive waste waters. The research was focused on model radioactive waste effluents and the investigated metals were cobalt (Co and cesium (Cs. The performance of natural zeolite of clinoptilolite type and zeolite chemically modified with NaOH solutions was determined by studying their surface and sorption properties using volumetric method and static radioindicator method. The measurements of zeolite´s surfaces showed the double increase of the specific surface along with an increase of mesopore’s diameter. The reason is the extraction of silicon from zeolite caused by NaOH solution what creates secondary mesoporous structure. The radioactive tracer technique was used to evaluate sorption properties of zeolites and the best sorbent was selected based on KD, μ, Γ and S values. The sorption abilities of natural and chemically modified zeolites for Cs uptake were comparable. The uptake of Co with natural zeolite was negligible and it increased up to 14 times for modified zeolites depending on the concentration of treated NaOH solution.

  16. Chemical Changes Induced by Irradiation in Meats and Meat Components

    International Nuclear Information System (INIS)

    The acceptability of meats preserved by irradiation has been hampered by the formation of an irradiation flavour and odour. This flavour and odour is believed to be due to the volatile chemical compounds produced by radiation impact on the protein and lipid molecules. The analysis of the volatile compounds has been accomplished, employing programmed cryogenic temperature gas chromatography for separation of the complex mixtures obtained, and rapid scanning mass spectrometry for identification of the individually separated components. Comprehensive analyses of the volatiles from irradiated ground beef, pork, mutton, lamb, and veal, as well as the volatile irradiation degradation products of several amino acids and proteins, animal fats, methyl esters of fatty acids, and triglycerides have been made. The results of the analysis of the irradiated component meat substances are compared with those obtained from the irradiation of meat itself, and of separate meat fractions, thus establishing the contribution of each fraction to the total. Mechanisms are postulated for the formation of the volatile components from each fraction and for interactions among intermediates from different fractions. (author)

  17. Nuclear hyperfine interactions and chemical bonding in high TC superconductors

    International Nuclear Information System (INIS)

    Nuclear quadrupole resonances of Cu63 and Fe57 Moessbauer spectroscopy of the high temperature superconductor YBa2Cu3O7-γ e described together with synchrotron radiation studies of the copper oxidation states in this material. The Moessbauer spectra of 57Fe in the two distinct crystallographic sites of the Cu atoms in YBa2Cu3O7-γ are very similar from the quadrupole coupling point of view although exhibiting markedly different values for the isomer shift. The role of oxygen vacancies in the hyperfine interactions is discussed. (author)

  18. Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle

    CERN Document Server

    Wirth, Roland

    2016-01-01

    We present the first ab initio calculations for $p$-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a Similarity Renormalization Group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the Importance-Truncated No-Core Shell Model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-$p$-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon binding energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the $\\Sigma$ hyperons from the hypernuclear system, i.e., a suppression of the $\\Lambda$-$\\Sigma$ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle ...

  19. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    OpenAIRE

    Farrell, Michael R; Rogers, Lynette K.; Liu, Yusen; Welty, Stephen E.; Tipple, Trent E.

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. ...

  20. Conformational transformations induced by the charge-curvature interaction

    OpenAIRE

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W. J.

    2005-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacter...

  1. Combination of high-performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Gervais, P-C; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A avenue de la faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W; Wehlack, C [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany); Kieffer, J, E-mail: ulrich.mueller@uni.l [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI (United States)

    2010-08-15

    A combination of infrared spectroscopy and high-performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight into the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions.

  2. Interaction of chemical cues from fish tissues and organophosphorous pesticides on Ceriodaphnia dubia survival

    International Nuclear Information System (INIS)

    Cladocera are frequently used as test organisms for assessing chemical and effluent toxicity and have been shown to respond to stimuli and cues from potential predators. In this study, the interactive effects of visual and chemical cues of fish and two organophosphorous pesticides on survival of Ceriodaphnia dubia were examined. A significant chemical cue (homogenized Pimephales promelas) and malathion interaction was observed on C. dubia survival (P = 0.006). Chemical cue and 2.82 μg/L malathion resulted in a 76.0% reduction in survival compared to malathion alone (P < 0.01). Furthermore, potentiation of malathion toxicity varied based on the source of chemical cues (i.e., epithelial or whole body). It is unclear in this study whether these chemical cues elicited a predation-related stress in C. dubia. Future research should examine the mechanism of this interaction and determine what role, if any, stress responses by C. dubia might play in the interaction. - Potentiation of organophosphorous pesticide toxicity to Ceriodaphnia dubia by fathead minnow (Pimephales promelas) chemical cues was observed

  3. The relationship between chemically-induced meiotic delay and aneuploidy in mouse oocytes and zygotes

    Energy Technology Data Exchange (ETDEWEB)

    Mailhes, J.B.; Marchetti, F. [Louisiana State Univ. Medical Center, Shreveport, LA (United States)

    1993-12-31

    Aneuploidy is a relatively common genetic disorder that results in human morbidity and mortality. Approximately 30% of embryonic and fetal deaths and 3.45 per thousand livebirths are associated with an abnormal number of chromosomes. Unfortunately, very little is known about the etiology and mechanism of chromosome missegregation. This situation dictates that considerable research be directed toward understanding the causes of aneuploidy. Although several hypotheses have been advanced for the etiology of aneuploidy, there still exists a paucity of information about the direct cuases and mechanisms of aneuploidy production. Without such specific knowledge, there is little hope of reducing the incidence of aneuploidy in humans. Some progress has been made. We now know that various chemicals can induce aneuploidy by interacting with certain cellular organelles, especially components of the spindle apparatus. These results have been demonstrated in various organisms and cell types both in vivo and in vitro. Since the ultimate objective of aneuploidy research is to obtain information that can be used to reduce the aneuploidy burden in humans, we have concentrated our research efforts on studying chemically-induced aneuploidy in mammalian germ cells and zygotes.

  4. Interactions between concentrations of chemical elements in human femoral heads.

    Science.gov (United States)

    Brodziak-Dopierala, Barbara; Kwapulinski, Jerzy; Kusz, Damian; Gajda, Zbigniew; Sobczyk, Krzysztof

    2009-07-01

    Environmental and occupational exposure to various metals has been a major public health concern and the subject of many studies. With the development of industry and transportation, environmental pollution has markedly worsened. As a result, metals are now ubiquitous and are absorbed into the body with food, drinking water, and polluted air. Exposure to these elements leads to numerous health problems, affecting almost every system of the human body, including the skeletal system. Bone is a specific research material that is difficult to obtain, therefore chemical analyses of metal concentrations in this tissue are rarely found in the literature. Nevertheless, bone, due to its long regeneration period, can serve as a biomarker of a long-term metal accumulation resulting from environmental or occupational exposure. Our study was conducted on bone samples harvested from inhabitants of the Upper Silesia region during hip replacement surgery. Femoral heads removed during surgery were sectioned into slices and further subdivided into samples comprising articular cartilage, cortical bone, and trabecular bone. Concentrations of 12 trace elements were measured with an atomic absorption spectrophotometry method. We found significant correlation between concentrations of these metal elements in the samples of cortical bone. This is determined not only by the physiological functions of these metals in hydroxyapatite, but also by the specific mineral structure of the bone tissue. PMID:18776997

  5. Non-covalent interactions and physico-chemical properties of small biological systems : theoretical approaches

    OpenAIRE

    Riffet, Vanessa

    2014-01-01

    The three-dimensional structure and physico-chemical properties of biomolecules such as peptides are not only governed by their elementary composition but also various non-covalent intra-and inter-molecular interactions. The characterization, measurement and effects of these interactions are currently at the center of many researches at the interface between biology and physical chemistry. In this context, the aim of our thesis is a better understanding of these interactions in biomolecules a...

  6. Initial analyses of the relationship between 'Thresholds' of toxicity for individual chemicals and 'Interaction Thresholds' for chemical mixtures

    International Nuclear Information System (INIS)

    The inter-relationship of 'Thresholds' between chemical mixtures and their respective component single chemicals was studied using three sets of data and two types of analyses. Two in vitro data sets involve cytotoxicity in human keratinocytes from treatment of metals and a metal mixture [Bae, D.S., Gennings, C., Carter, Jr., W.H., Yang, R.S.H., Campain, J.A., 2001. Toxicological interactions among arsenic, cadmium, chromium, and lead in human keratinocytes. Toxicol. Sci. 63, 132-142; Gennings, C., Carter, Jr., W.H., Campain, J.A., Bae, D.S., Yang, R.S.H., 2002. Statistical analysis of interactive cytotoxicity in human epidermal keratinocytes following exposure to a mixture of four metals. J. Agric. Biol. Environ. Stat. 7, 58-73], and induction of estrogen receptor alpha (ER-α) reporter gene in MCF-7 human breast cancer cells by estrogenic xenobiotics [Gennings, C., Carter, Jr., W.H., Carney, E.W., Charles, G.D., Gollapudi, B.B., Carchman, R.A., 2004. A novel flexible approach for evaluating fixed ratio mixtures of full and partial agonists. Toxicol. Sci. 80, 134-150]. The third data set came from PBPK modeling of gasoline and its components in the human. For in vitro cellular responses, we employed Benchmark Dose Software (BMDS) to obtain BMD01, BMD05, and BMD10. We then plotted these BMDs against exposure concentrations for the chemical mixture and its components to assess the ranges and slopes of these BMD-concentration lines. In doing so, we consider certain BMDs to be 'Interaction Thresholds' or 'Thresholds' for mixtures and their component single chemicals and the slope of the line must be a reflection of the potency of the biological effects. For in vivo PBPK modeling, we used 0.1x TLVs, TLVs, and 10x TLVs for gasoline and six component markers as input dosing for PBPK modeling. In this case, the venous blood levels under the hypothetical exposure conditions become our designated 'Interaction Thresholds' or 'Thresholds' for gasoline and its component single

  7. Chemical and mechanical interactions of interstitials with vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; Chitwood, L.D.; DeVan, J.H. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Oxidation studies of V-4Cr-4Ti were conducted in air and reduced oxygen partial pressures (10{sup 4}, 10{sup -5} and 10{sup -6} torr). Reaction rates were determined by weight change measurements and chemical analyses. Mechanical properties after the exposures were determined by room temperature tensile tests. In air at 400 and 500{degrees}C, oxide films form on the surface. Initially, rates are high but decrease with time reaching similiar values to those found in oxygen partial pressures at 10{sup -4}, 10{sup -5}, and 10{sup -6} torr. At 400{degrees}C, oxygen pick-up followed a logarithmic function of time and was confined to regions near the surface. Little change in room temperature tensile properties was noted for oxygen increase up to 1500 ppm. Thermal cycling specimens from 400{degrees}C to room temperature up to 14 times had no apparent effect on oxidation rate or tensile properties. At 500{degrees}C, oxygen pick-up appeared to follow a parabolic relation with time. Rates were {approx} 10 times those at 400{degrees}C and correspondingly larger oxygen increases occurred when compared with the 400{degrees}C tests after similiar time periods. This resulted in a significant decrease in total elongation after 240 h. At reduced oxygen partial pressures, rates were measured for times <100 h. Data are relatively sparse but generally show a slightly higher initial rate before slowing. At 400{degrees}C increases to {approx}200 ppm oxygen were found with no effect on room temperature elongation. At 500{degrees}C increase in oxygen of 2400 ppm after 50h/10{sup -5} torr resulted in a decrease of around 25% in room temperature elongation. By comparison, exposure to air at 500{degrees}C for 12 h caused nearly the same results.

  8. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces. PMID:26381847

  9. Chemogasdynamic processes during a laser-induced interaction of silica with methane

    International Nuclear Information System (INIS)

    A laser plume was initiated on the surfaces of laser targets, made of silica and silicate glasses, located in a flowing gaseous CH4 - Ar mixture at atmospheric pressure and exposed to cw laser radiation of the 10.6 μm wavelength. An investigation was made of the dependence of the composition of the products of chemical reduction reactions, induced by the laser radiation, on the composition of the gaseous mixture. The method of deposition on the walls of a tube enclosing the resultant flow revealed spatial separation of the products. (interaction of laser radiation with matter. laser plasma)

  10. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  11. Studies of chemical interactions between chlorosulphonated polyethylene and nit rile rubber

    Directory of Open Access Journals (Sweden)

    Marković Gordana

    2005-01-01

    Full Text Available Highly polar rubbers interact with each other through their active functional groups via condensation or substitution reactions at high temperature. Chlorosulphonated polyethylene (CSM rubber is a highly reactive rubber, the reactivity of with is due to the -SO2CI groups. When CSM reacts with nit rile rubber (NBR, a chemical reaction takes place between the two rubbers at high temperature. Fourier transform infrared (FTIR studies support that CSM/NBR (50/50 w/w isothermally induces a self cross-linking blend, when cross-linking takes place via the acrylonitrile groups of NBR and the SO2CI groups or the insitu generated allyl chloride moieties of CSM. There is a loss of some -CN groups during cross-linking. This may be due to an attack on the -CN groups by HCI (produced during the heating of CSM in the presence of inherent moisture in the polymers. Amid type of linkage is formed due to cross-linking.

  12. Chemically and temperature-induced phase transformations of metal vanadates

    Science.gov (United States)

    Patridge, Christopher James

    Metal vanadates contain a diverse family of compounds due to the facile accessibility of different vanadium oxidation states and local coordination environments. Though these systems present a number of applications in catalysis and electronics, there may exist untapped physical phenomena that only reveal themselves when scaling these materials to nanoscale dimensions. Finite-size effects result from a number of factors including surface energy structural instabilities, nanostructure "self-purification," and physical constraints on mechanistic or conductive pathways. The MxV2O 5 bronze materials possess non-stoichiometry and this interesting property has hindered synthetic techniques to procure perfect crystalline material which is needed to expose the true physical properties. Through hydrothermal synthesis methods, pseudo one---dimensional nanostructures of Mx V2O5 display fascinating new properties and may be model systems for studying fundamentals associated with correlated electron dynamics in solid-state physics. Electron microscopy and powder X-ray diffraction reveal the near-perfect crystalline nanostructures. X-ray absorption spectroscopy studies show strong evidence for the localization of electron density and long-range crystal structure alignment of the nanowires. Single-nanowire electron transport measurements for the beta'-CuxV2O5 and the delta-KxV2O5 data shows novel temperature-induced reversible metal---insulator transition (MIT) near room temperature. The unprecedented magnitude (˜105) and discontinuous nature of the MIT suggests a mechanism closely associated with correlated electron motion. Additionally, the MIT can be induced by voltage ramping. The simultaneous temperature/voltage studies of single-nanowire transport support the existence of a critical threshold to overcome in order to facilitate instability in the insulating phase and transition to a metallic phase for the delta-KxV2O5 bronze. The MIT transition magnitudes of several

  13. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of...... two laser beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  14. Interaction-induced pair hyperpolarizabilities by spherical irreducible tensors

    Science.gov (United States)

    Bancewicz, Tadeusz

    1999-10-01

    Starting from the electrostatic part of the intermolecular multipole interaction energy we derived irreducible spherical tensor formulas for the first-order long-range, interaction-induced first and second pair hyperpolarizabilities ΔβLM and ΔγLM for arbitrary shape monomers. For atoms a general relation is obtained for the dipolei-2k-pole hyperpolarizability tensor Z(i+k) of arbitrary order, between its irreducible spherical components Z00[((((11)a11)a2…)ai-21)kk] and the Cartesian counterpart Zzz…z(i+k). For isotropic systems the expressions for Δβzzz and Δγzzzz are in full agreement with the Cartesian tensor results of Buckingham, Concannon and Hands [J. Phys. Chem. 98, 10455 (1994)] and Li et al. [J. Chem. Phys. 105, 10954 (1996)]. Our irreducible spherical tensor results for ΔβLM and ΔγLM are very desirable when dealing with molecular rotations, e.g., in spectral line shape calculations of interaction-induced hyper-Rayleigh and/or hyper-Raman light scattering. Finally we show how our spherical tensor formula for ΔβLM can be used for calculation of, one molecule forbidden, hyper-Rayleigh and hyper-Raman (A1 vibration) pair hyperpolarizability Δβzzz for molecules of octahedral symmetry Oh.

  15. INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS

    International Nuclear Information System (INIS)

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed

  16. Induced biochemical interactions in immature and biodegraded heavy crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L.; Zhou, W.M.

    1998-11-01

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  17. INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS

    Energy Technology Data Exchange (ETDEWEB)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

    1998-10-27

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  18. Quintessence interacting dark energy from induced matter theory of gravity

    CERN Document Server

    Reyes, L M

    2009-01-01

    In the context of the induced matter theory of gravity, we investigate the possibility of deriving a 4D quintessential scenario where an interaction between dark energy and dark matter is allowed, and the dark energy component is modeled by a minimally coupled scalar field. Regarding the Ponce de Leon metric, we found that it is possible to obtain such scenario on which the energy densities of dark matter and dark energy, are both depending of the fifth extra coordinate. We obtain that the 4D induced scalar potential for the quintessence scalar field, has the same algebraic form to the one found by Zimdahl and Pavon in the context of usual 4D cosmology.

  19. Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture

    Science.gov (United States)

    Borek, Bartłomiej; Shajahan, T. K.; Gabriels, James; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Pacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured invitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium. Exposure of those cultures to a potassium channel blocker, E-4031, leads to emergence of peripheral pacemakers that compete with each other and with the central pacemaker. Waves emitted by faster pacemakers break up over the slower pacemaker to form reentrant waves. Similar dynamics are observed in a modified FitzHugh-Nagumo model of heterogeneous excitable media with two distinct sites of pacemaking. These findings elucidate a mechanism of pacemaker-induced reentry in excitable media.

  20. Synchronized Intermittent Motion Induced by the Interaction between Camphor Disks

    Science.gov (United States)

    Suematsu, Nobuhiko J.; Tateno, Kurina; Nakata, Satoshi; Nishimori, Hiraku

    2015-03-01

    A new mode of collective motion was discovered in a system of camphor disks floating on the water surface in a circular chamber. The mode was induced by tuning the number of the disks. A single or few disks are known to continuously move on the water surface. Conversely, when many disks are present, motion comes to a stop and the disks form ordered spatial patterns by repulsive interaction. Here we found the third mode that emerged at an intermediate disk number, in which inactive and active motion phases alternated non-periodically. This new mode exhibited synchronization as the disk number increased.

  1. Quintessence interacting dark energy from induced matter theory of gravity

    OpenAIRE

    Reyes, L. M.; Aguilar, Jose Edgar Madriz

    2009-01-01

    In the context of the induced matter theory of gravity, we investigate the possibility of deriving a 4D quintessential scenario where an interaction between dark energy and dark matter is allowed, and the dark energy component is modeled by a minimally coupled scalar field. Regarding the Ponce de Leon metric, we found that it is possible to obtain such scenario on which the energy densities of dark matter and dark energy, are both depending of the fifth extra coordinate. We obtain that the 4D...

  2. Effective interactions between concentration fluctuations and charge transfer in chemically ordering liquid alloys

    International Nuclear Information System (INIS)

    The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li4Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs

  3. CD-REST: a system for extracting chemical-induced disease relation in literature.

    Science.gov (United States)

    Xu, Jun; Wu, Yonghui; Zhang, Yaoyun; Wang, Jingqi; Lee, Hee-Jin; Xu, Hua

    2016-01-01

    Mining chemical-induced disease relations embedded in the vast biomedical literature could facilitate a wide range of computational biomedical applications, such as pharmacovigilance. The BioCreative V organized a Chemical Disease Relation (CDR) Track regarding chemical-induced disease relation extraction from biomedical literature in 2015. We participated in all subtasks of this challenge. In this article, we present our participation system Chemical Disease Relation Extraction SysTem (CD-REST), an end-to-end system for extracting chemical-induced disease relations in biomedical literature. CD-REST consists of two main components: (1) a chemical and disease named entity recognition and normalization module, which employs the Conditional Random Fields algorithm for entity recognition and a Vector Space Model-based approach for normalization; and (2) a relation extraction module that classifies both sentence-level and document-level candidate drug-disease pairs by support vector machines. Our system achieved the best performance on the chemical-induced disease relation extraction subtask in the BioCreative V CDR Track, demonstrating the effectiveness of our proposed machine learning-based approaches for automatic extraction of chemical-induced disease relations in biomedical literature. The CD-REST system provides web services using HTTP POST request. The web services can be accessed fromhttp://clinicalnlptool.com/cdr The online CD-REST demonstration system is available athttp://clinicalnlptool.com/cdr/cdr.html. Database URL:http://clinicalnlptool.com/cdr;http://clinicalnlptool.com/cdr/cdr.html. PMID:27016700

  4. Genome-wide Mapping of Cellular Protein-RNA Interactions Enabled by Chemical Crosslinking

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Li; Jinghui Song; Chengqi Yi

    2014-01-01

    RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains one of the most fundamental and important chal-lenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we com-pare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audi-ence and also urge for the development of new methods to study RNA RBP interactions.

  5. Linking tumor mutations to drug responses via a quantitative chemical-genetic interaction map

    OpenAIRE

    Maria M. Martins; Zhou, Alicia Y.; Corella, Alexandra; Horiuchi, Dai; Yau, Christina; Rakshandehroo, Taha; Gordan, John D; Levin, Rebecca S.; Johnson, Jeff; Jascur, John; Shales, Mike; Sorrentino, Antonio; Cheah, Jaime; Clemons, Paul A.; Shamji, Alykhan F.

    2014-01-01

    There is an urgent need in oncology to link molecular aberrations in tumors with therapeutics that can be administered in a personalized fashion. One approach identifies synthetic-lethal genetic interactions or dependencies that cancer cells acquire in the presence of specific mutations. Using engineered isogenic cells, we generated a systematic and quantitative chemical-genetic interaction map that charts the influence of 51 aberrant cancer genes on 90 drug responses. The dataset strongly pr...

  6. Induced electric fields and plasmonic interactions between a metallic nanotube and a thin metallic film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We have numerically simulated the induced electric fields and the plasmonic interactions of a metallic nanotube near a thin metallic film. Our study shows that the energies and intensities of the plasmon resonances depend strongly on the aspect ratio (the ratio of the inner to outer radius) of the nanotube as well as the separation between the center of the nanotube and the upper surface of the metallic film and the thickness of the film. The enhancement of the induced electric field of this system reaches as high as 10 4 orders of magnitude and its field distribution is characterized by waveguide-mode resonance. The report proposes that these phenomena can be applied to designing surface enhanced spectroscopies such as surface enhanced Raman spectroscopy for efficient chemical and biological sensing.

  7. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  8. Comparison of Skeletal Effects of Ovariectomy Versus Chemically Induced Ovarian Failure in Mice

    OpenAIRE

    Wright, Laura E; Christian, Patricia J.; Rivera, Zelieann; Van Alstine, William G.; L Funk, Janet; L Bouxsein, Mary; Hoyer, Patricia B.

    2008-01-01

    Bone loss associated with menopause leads to an increase in skeletal fragility and fracture risk. Relevant animal models can be useful for evaluating the impact of ovarian failure on bone loss. A chemically induced model of menopause in which mice gradually undergo ovarian failure yet retain residual ovarian tissue has been developed using the chemical 4-vinylcyclohexene diepoxide (VCD). This study was designed to compare skeletal effects of VCD-induced ovarian failure to those associated wit...

  9. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants. PMID:27129320

  10. Experimental studies of thermal and chemical interactions between molten aluminum and water

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, A.A.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The possibility of rapid physical and chemical aluminum/water interactions during a core melt accident in a noncommercial reactor (e.g., HFIR, ATR) has resulted in extensive research to determine the mechanism by which these interactions occur and propagate on an explosive time scale. These events have been reported in nuclear testing facilities, i.e., during SPERT 1D experiment, and also in aluminum casting industries. Although rapid chemical reactions between molten aluminum and water have been subject of many studies, very few reliable measurements of the extent of the chemical reactions have thus far been made. We have modified an existing 1-D shock tube facility to perform experiments in order to determine the extent of the explosive thermal/chemical interactions between molton aluminum and water by measuring important physical quantities such as the maximum dynamic pressure and the amount of the generated hydrogen. Experimental results show that transient pressures greater than 69 MPa with a rise time of less than 125 {mu}sec can occur as the result of the chemical reaction of 4.2 grams of molton aluminum (approximately 15% of the total mass of the fuel of 28 grams) at 980 C with room temperature water.

  11. Interactions between bacterial surface and nanoparticles govern the performance of "chemical nose" biosensors.

    Science.gov (United States)

    Verma, Mohit S; Wei, Shih-Chung; Rogowski, Jacob L; Tsuji, Jackson M; Chen, Paul Z; Lin, Chii-Wann; Jones, Lyndon; Gu, Frank X

    2016-09-15

    Rapid and portable diagnosis of pathogenic bacteria can save lives lost from infectious diseases. Biosensors based on a "chemical nose" approach are attracting interest because they are versatile but the governing interactions between bacteria and the biosensors are poorly understood. Here, we use a "chemical nose" biosensor based on gold nanoparticles to explore the role of extracellular polymeric substances in bacteria-nanoparticle interactions. We employ simulations using Maxwell-Garnett theory to show how the type and extent of aggregation of nanoparticles influence their colorimetric response to bacteria. Using eight different species of Gram-positive and Gram-negative bacteria, we demonstrate that this "chemical nose" can detect and identify bacteria over two orders of magnitude of concentration (89% accuracy). Additionally, the "chemical nose" differentiates between binary and tertiary mixtures of the three most common hospital-isolated pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa (100% accuracy). We demonstrate that the complex interactions between nanoparticles and bacterial surface determine the colorimetric response of gold nanoparticles and thus, govern the performance of "chemical nose" biosensors. PMID:27108254

  12. Ion-beam-induced epitaxial crystallization of implanted and chemical vapor deposited amorphous silicon

    Science.gov (United States)

    La Ferla, A.; Priolo, F.; Spinella, C.; Rimini, E.; Baroetto, F.; Ferla, G.

    1989-03-01

    The dependence of ion-beam enhanced epitaxial growth of amorphous Si layers on impurities either dissolved in the film or present at the film-substrate interface is considered. In the case of ion implanted layers, electrically active dopants, like B, P, As at concentrations above 1 × 10 20/cm 3, enhance the rate by a factor of 2 with respect to the undoped layer. The enhancement shows also a weak dependence on the dopant concentration. Inert impurities, like Ar, which prevent pure thermal regrowth, do not show any appreciable influence on the ion-beam-induced growth rate. Chemical vapor deposited Si layers with a thin native interfacial oxide layer can also be epitaxially regrown under ion irradiation. A critical fluence is needed before the interfacial oxide breaks down and broadens, allowing the epitaxial crystallization to take place. This process is characterized by an activation energy of 0.44 eV. The complex phenomenon of ion-beam-induced crystallization involves a dynamical interaction between production and annealing of point defects. The presence of electrically active dopants probably influences the lifetime of point defects. Impurities which prevent thermal regrowth are instead dissolved by ballistic effects and/or radiation-enhanced mixing.

  13. On the Use of Interactive Texts in Undergraduate Chemical Reaction Engineering Courses: A Pedagogical Experience

    Science.gov (United States)

    Asensio, Daniela A.; Barassi, Francisca J.; Zambon, Mariana T.; Mazza, Germán D.

    2010-01-01

    This paper describes the results of a pedagogical experience carried out at the University of Comahue, Argentina, with an interactive text (IT) concerning Homogeneous Chemical Reactors Analysis. The IT was built on the frame of the "Mathematica" software with the aim of providing students with a robust computational tool. Students'…

  14. Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning.

    Science.gov (United States)

    Wildenhain, Jan; Spitzer, Michaela; Dolma, Sonam; Jarvik, Nick; White, Rachel; Roy, Marcia; Griffiths, Emma; Bellows, David S; Wright, Gerard D; Tyers, Mike

    2015-12-23

    The structure of genetic interaction networks predicts that, analogous to synthetic lethal interactions between non-essential genes, combinations of compounds with latent activities may exhibit potent synergism. To test this hypothesis, we generated a chemical-genetic matrix of 195 diverse yeast deletion strains treated with 4,915 compounds. This approach uncovered 1,221 genotype-specific inhibitors, which we termed cryptagens. Synergism between 8,128 structurally disparate cryptagen pairs was assessed experimentally and used to benchmark predictive algorithms. A model based on the chemical-genetic matrix and the genetic interaction network failed to accurately predict synergism. However, a combined random forest and Naive Bayesian learner that associated chemical structural features with genotype-specific growth inhibition had strong predictive power. This approach identified previously unknown compound combinations that exhibited species-selective toxicity toward human fungal pathogens. This work demonstrates that machine learning methods trained on unbiased chemical-genetic interaction data may be widely applicable for the discovery of synergistic combinations in different species. PMID:27136353

  15. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  16. ELM-Induced Plasma Wall Interactions in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D L; Boedo, J A; Yu, J H; Brooks, N H; Fenstermacher, M E; Groth, M; Hollmann, E M; Lasnier, C J; McLean, A G; Moyer, R A; Stangeby, P C; Tynan, G R; Wampler, W R; Watkins, J G; West, W P; Wong, C C; Zeng, L; Bastasz, R J; Buchenauer, D; Whaley, J

    2008-05-14

    Intense transient fluxes of particles and heat to the main chamber components induced by edge localized modes (ELMs) are of serious concern for ITER. In DIII-D, plasma interaction with the outboard chamber wall is studied using Langmuir probes and optical diagnostics including a fast framing camera. Camera data shows that ELMs feature helical filamentary structures localized at the low field side of the plasma and aligned with the local magnetic field. During the nonlinear phase of an ELM, multiple filaments are ejected from the plasma edge and propagate towards the outboard wall with velocities of 0.5-0.7 km/s. When reaching the wall, filaments result in 'hot spots'--regions of local intense plasma-material interaction (PMI) where the peak incident particle and heat fluxes are up to 2 orders of magnitude higher than those between ELMs. This interaction pattern has a complicated geometry and is neither toroidally nor poloidally symmetric. In low density/collisionality H-mode discharges, PMI at the outboard wall is almost entirely due to ELMs. In high density/collisionality discharges, contributions of ELMs and inter-ELM periods to PMI at the wall are comparable. A Midplane Material Evaluation Station (MiMES) has been recently installed in order to conduct in situ measurements of erosion/redeposition at the outboard chamber wall, including those caused by ELMs.

  17. Galvano-rotational effect induced by electroweak interactions in pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Maxim [Institute of Physics, University of São Paulo, CP 66318, CEP 05314-970 São Paulo, SP (Brazil); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), 142190 Troitsk, Moscow (Russian Federation); Physics Faculty, National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation)

    2015-05-21

    We study electroweakly interacting particles in rotating matter. The existence of the electric current along the axis of the matter rotation is predicted in this system. This new galvano-rotational effect is caused by the parity violating interaction between massless charged particles in the rotating matter. We start with the exact solution of the Dirac equation for a fermion involved in the electroweak interaction in the rotating frame. This equation includes the noninertial effects. Then, using the obtained solution, we derive the induced electric current which turns out to flow along the rotation axis. We study the possibility of the appearance of the galvano-rotational effect in dense matter of compact astrophysical objects. The particular example of neutron and hypothetical quark stars is discussed. It is shown that, using this effect, one can expect the generation of toroidal magnetic fields comparable with poloidal ones in old millisecond pulsars. We also briefly discuss the generation of the magnetic helicity in these stars. Finally we analyze the possibility to apply the galvano-rotational effect for the description of the asymmetric neutrino emission from a neutron star to explain pulsars kicks.

  18. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  19. Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma.

    Directory of Open Access Journals (Sweden)

    Vanessa De Vooght

    Full Text Available BACKGROUND: The development of occupational asthma is the result of interactions between environmental factors and individual susceptibility. We assessed how our model of chemical-induced asthma is influenced by using different mouse strains. METHODOLOGY/PRINCIPAL FINDINGS: On days 1 and 8, male mice of 7 different strains (BALB/c, BP/2, A/J, C57Bl/6, DBA/2, CBA and AKR were dermally treated with toluene-2,4-diisocyanate (TDI (0.3% or vehicle (acetone/olive oil, AOO, 2:3 on each ear (20 microl. On day 15, they received an oropharyngeal instillation of TDI (0.01% or AOO (1:4. Airway reactivity to methacholine, total and differential cell counts in bronchoalveolar lavage (BAL and total serum IgE and IgG(2a levels were measured. Lymphocyte subpopulations in auricular lymph nodes and in vitro release of cytokines by ConA stimulated lymphocytes were assessed. In TDI-sensitized and challenged mice, airway hyper-reactivity was only observed in BALB/c, BP/2, A/J and AKR mice; airway inflammation was most pronounced in BALB/c mice; numbers of T-helper (CD4(+, T-activated (CD4(+CD25(+, T-cytotoxic (CD8(+ and B- lymphocytes (CD19(+ were increased in the auricular lymph nodes of BALB/c, BP/2, A/J and CBA mice; elevated concentrations of IL-4, IL-10, IL-13 and IFN-gamma were detected in supernatant of lymphocytes from BALB/c, BP/2, A/J, C57Bl/6 and CBA mice cultured with concanavaline A, along with an increase in total serum IgE. CONCLUSION: The used mouse strain has considerable and variable impacts on different aspects of the asthma phenotype. The human phenotypical characteristics of chemically-induced occupational asthma were best reproduced in Th2-biased mice and in particular in BALB/c mice.

  20. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research

    OpenAIRE

    Liu, Yewei; YIN Ting; Feng, Yuanbo; Cona, Marlein Miranda; Huang, Gang; Liu, Jianjun; Song, Shaoli; Jiang, Yansheng; Xia, Qian; Swinnen, Johannes V; Bormans, Guy; Himmelreich, Uwe; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-spe...

  1. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  2. IR Laser-induced Chemical Vapour Deposition of Polyselenocarbosilane Films

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Díaz, L.; Pola, Josef

    - : -, 2006, s. 1-2. [Reunión Nacional de Espectroscopia (RNE) y IV Congresso Ibérico de Espectroscopia (CIE) /20./. Ciúdad Real (ES), 10.09.2006-14.09.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : chemical vapour deposition Subject RIV: CH - Nuclear ; Quantum Chemistry

  3. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    Directory of Open Access Journals (Sweden)

    Richard A. Farrell

    2009-08-01

    Full Text Available The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry and graphoepitaxy (topographical alignment but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed.

  4. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    Science.gov (United States)

    Farrell, Richard A.; Fitzgerald, Thomas G.; Borah, Dipu; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP) systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry) and graphoepitaxy (topographical alignment) but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed. PMID:19865513

  5. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks

    Science.gov (United States)

    Mukhopadhyay, Sumit; Liu, H.-H.; Spycher, N.; Kennedy, B. M.

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  6. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described. - Highlights: • Development of the interaction chamber for LIBS applications • Example of automated chemical mapping of lead in a chalcopyrite sample • Example of LIBS measurement of fluorine in underpressure • Overview of chamber benefits

  7. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    Directory of Open Access Journals (Sweden)

    Amir Azimi, Javad Aminian

    2015-01-01

    Full Text Available Computational Fluid Dynamics (CFD study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results using the Eddy Dissipation Concept (EDC combustion model as well as the experimental data available in the literature. Results show that global chemical mechanisms provide acceptable predictions of temperature and major species fields in flameless mode with much lower computational costs comparing with the detailed chemical mechanisms. However, incorporation of detailed chemical mechanisms with proper combustion models is crucial to account for finite-rate chemistry effects and accurately predict net production of minor species.

  8. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2013-11-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  9. Chemical products induce resistance to Xanthomonas perforans in tomato

    Directory of Open Access Journals (Sweden)

    Adriana Terumi Itako

    2015-09-01

    Full Text Available The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM (0.025 g.L−1, fluazinam (0.25 g.L−1, pyraclostrobin (0.08 g.L−1, pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1, copper oxychloride (1.50 g.L−1, mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1, and oxytetracycline (0.40 g.L−1 on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  10. Interaction-induced localization of mobile impurities in ultracold systems

    Science.gov (United States)

    Li, Jian; An, Jin; Ting, C. S.

    2013-11-01

    The impurities, introduced intentionally or accidentally into certain materials, can significantly modify their characteristics or reveal their intrinsic physical properties, and thus play an important role in solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the extended and localized impurity states, and also explains the essential features obtained from several previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold systems associated with the extended and localized impurities, including the formation of the impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the future studies on ultracold mobile impurities.

  11. Noise-induced multistability in chemical systems: Discrete versus continuum modeling.

    Science.gov (United States)

    Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon

    2015-04-01

    The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes. PMID:25974443

  12. Organic semiconductor/gold interface interactions: from physisorption on planar surfaces to chemical reactions with metal nanoparticles.

    Science.gov (United States)

    Ligorio, Giovanni; Nardi, Marco Vittorio; Christodoulou, Christos; Koch, Norbert

    2015-08-24

    The interaction of gold nanoparticles (AuNPs) with prototypical organic semiconductors used in optoelectronics, namely, tris(8-hydroxyquinoline)aluminium (Alq3 ) and 4,4-bis[N-(1-naphthyl)-N-phenylamino]diphenyl (α-NPD), is investigated in situ by X-ray photoelectron spectroscopy (XPS). These AuNPs-on-molecule experiments are compared with the reversed molecule-on-Au cases. The molecules-on-Au systems show only weak interactions, and the evolution of the XP spectra is dominated by final-state effects. In contrast, in the AuNPs-on-molecules cases, both initial-state effects and final-state effects occur. Spectral features arising for both molecules and metal indicate charge transfer and the formation of organometallic complexes (initial-state effects). The energy shift in the metal emission underlines the size-induced nanometric nature of the molecule/Au interaction (final-state effects). Consequently, the chemical interaction between metals and organic semiconductors likely depends strongly on the deposition sequence in general. PMID:26137864

  13. Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation

    Institute of Scientific and Technical Information of China (English)

    祝星; 杜云鹏; 王华; 魏永刚; 李孔斋; 孙令玥

    2014-01-01

    Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature pro-grammed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1-0.5 was able to produce syngas with high selectivity in high-temperature range (800-900 °C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation oc-curred at beginning following with selective oxidation later. Ce1-xFexO2-δ oxygen carriers (x≤0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selec-tivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe* activated CeO2 and Ce3+ activated iron oxides (FeOm), and those chemical interaction greatly enhanced the oxygen mobility and se-lectivity.

  14. Ionizing radiation induces heritable disruption of epithelial cell interactions

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization

  15. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  16. DEVELOPMENT OF INTERACTIVE E-BOOK BASED ON CHEMICAL REPRESENTATION REFER TO CURRICULUM 2013

    Directory of Open Access Journals (Sweden)

    L. Tania

    2015-11-01

    Full Text Available This research aimed to develop an interactive e-book based representations of chemistry; describes the characteristics of the interactive e-book developed; the teachers responses in content suitability with curriculum and graphics aspects; and student responses in readibility aspects. The method used was research and development. The characteristics of interactive e-book: it was developed referring to the core competencies (KI and basic competence (KD in the curriculum 2013, allowed active interaction between students and e-book, completed with pictures, animations or videos in three levels of the chemical representation. Teachers’ responses to the content suitability and graphic aspects were very good with the percentage of each 98.46% and 97.5%. The students’ responses in readibility aspects was very good with percentage of 88.5%.

  17. Chemical consequences of laser-induced breakdown in molecular gases

    Czech Academy of Sciences Publication Activity Database

    Babánková, Dagmar; Civiš, Svatopluk; Juha, Libor

    2006-01-01

    Roč. 30, č. 2-3 (2006), s. 75-88. ISSN 0079-6727 R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk LC528; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : laser spark * laser-induced dielectric breakdown * laser-plasma chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.500, year: 2006

  18. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    Energy Technology Data Exchange (ETDEWEB)

    Bezares Roder, Nils Manuel

    2010-07-01

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous

  19. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    International Nuclear Information System (INIS)

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous relation between

  20. Spin Manipulation in Graphene by Chemically Induced Pseudospin Polarization

    Science.gov (United States)

    Van Tuan, Dinh; Roche, Stephan

    2016-03-01

    Spin manipulation is one of the most critical challenges to realize spin-based logic devices and spintronic circuits. Graphene has been heralded as an ideal material to achieve spin manipulation, but so far new paradigms and demonstrators are limited. Here we show that certain impurities such as fluorine adatoms, which locally break sublattice symmetry without the formation of strong magnetic moment, could result in a remarkable variability of spin transport characteristics. The impurity resonance level is found to be associated with a long-range sublattice pseudospin polarization, which by locally decoupling spin and pseudospin dynamics provokes a huge spin lifetime electron-hole asymmetry. In the dilute impurity limit, spin lifetimes could be tuned electrostatically from 100 ps to several nanoseconds, providing a protocol to chemically engineer an unprecedented spin device functionality.

  1. Chemical interaction in uranium-plutonium mixed oxide fuel pins for LMFBR

    International Nuclear Information System (INIS)

    A review is made on the current understanding and problems of chemical interaction between uranium-plutonium mixed oxide and stainless steel cladding for LMFBR fuel pins. The oxygen potential of the fuel was considered as one of the key factors that influences the interaction and the methods of its measurement, its change with irradiation, effect of oxygen redistribution and measured values of irradiated fuel are described. The mechanisms of conventional intergranular and matrix attacks and more recent cladding component chemical transport (CCCT), which was proposed by GE and has been often observed in highly irradiated fuel pins, are explained. Finally, description is given on a statistical analysis of the attack depth and method of inhibiting the cladding. (author)

  2. Chemical interactions of reactor core materials up to very high temperatures

    International Nuclear Information System (INIS)

    The paper describes which chemical interactions may occur in a LWR fuel rod bundle containing (Ag, In, Cd) absorber rods or (Al2O3/B4C) burnable poison rods with increasing temperature up to the complete melting of the components and the formed reaction products. The kinetics of the most important chemical interactions has been investigated and the results are described. In most cases the reaction products have lower melting points or ranges than the original components. This results in a relocation of liquefied components often far below their melting points. There exist three distinct temperature regimes in which liquid phases can form in the core in differently large quantities. These temperature regimes are described in detail. The phase relations in the important ternary (U, Zr, O) system have been extensively studied. The effect of steel constituents on the phase relations is given in addition. All the considerations are focused on PWR conditions only. (orig.)

  3. Experimental studies of thermal and chemical interactions between molten aluminum and nuclear dispersion fuels with water

    International Nuclear Information System (INIS)

    Because of the possibility of rapid physical and chemical molten fuel-water interactions during a core melt accident in noncommercial or experimental reactors, it is important to understand the interactions that might occur if these materials were to contact water. An existing vertical 1-D shock tube facility was improved and a gas sampling device to measure the gaseous hydrogen in the upper chamber of the shock tube was designed and built to study the impact of a water column driven downward by a pressurized gas onto both molten aluminum (6061 alloy) and oxide and silicide depleted nuclear dispersion fuels in aluminum matrices. The experiments were carried out with melt temperatures initially at 750 to 1,000 C and water at room temperature and driving pressures of 0.5 and 1 MPa. Very high transient pressures, in many cases even larger than the thermodynamic critical pressure of the water (∼ 20 MPa), were generated due to the interactions between the water and the crucible and its contents. The molten aluminum always reacted chemically with the water but the reaction did not increase consistently with increasing melt temperature. An aluminum ignition occurred when water at room temperature impacted 28.48 grams of molten aluminum at 980.3 C causing transient pressures greater than 69 MPa. No signs of aluminum ignition were observed in any of the experiments with the depleted nuclear dispersion fuels, U3O8-Al and U3Si2-Al. The greater was the molten aluminum-water chemical reaction, the finer was the debris recovered for a given set of initial conditions. Larger coolant velocities (larger driving pressures) resulted in more melt fragmentation but did not result in more molten aluminum-water chemical reaction. Decreasing the water temperature also resulted in more melt fragmentation and did not suppress the molten aluminum-water chemical reaction

  4. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  5. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    OpenAIRE

    Amir Azimi, Javad Aminian

    2015-01-01

    Computational Fluid Dynamics (CFD) study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS) equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR) combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results usi...

  6. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  7. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    International Nuclear Information System (INIS)

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets

  8. Potentiation of chemically induced lung fibrosis by thorax irradiation

    International Nuclear Information System (INIS)

    Intraperitoneal injection of butylated hydroxytoluene (BHT) causes epithelial cell death, followed 2 to 4 days later by extensive proliferation of type II alveolar cells in mouse lung. Five to 8 days after BHT, most dividing cells are capillary endothelial cells or interstitial cells. In animials that were exposed to 200 rad thorax irradiation immediately or 1 day after BHT, lung hydroxyproline was increased 2 weeks later. The response was dose dependent, and the interaction between BHT and thorax irradiation was synergistic. Light microscopy showed abnormal accumulation of collagen in the alveolar septa. Lung hydroxyproline was not increased in animals that were irradiated 6 days after BHT, compared to animals treated with BHT alone. We concluded that fibrosis develops if lung is damaged by a blood-borne agent and radiation to the thorax occurs at a time when it may compromise alveolar reepithelialization. Exposure to x-rays during proliferation of capillary endothelial cells or interstitial cells does not enhance development of fibrosis

  9. Hygienic grooming is induced by contact chemicals in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aya Yanagawa

    2014-07-01

    Full Text Available In social insects, grooming is considered as a behavioral defense against pathogen and parasite infections since it contributes to remove microbes from their cuticle. However, stimuli which trigger this behavior are not well characterized yet. We examined if activating contact chemoreceptive sensilla could trigger grooming activities in Drosophila melanogaster. We monitored the grooming responses of decapitated flies to compounds known to activate the immune system e.g. dead Escherichia coli (Ec and lipopolysaccharides (LPS, and to tastants such as quinine, sucrose, and salt. LPS, quinine and Ec were quite effective in triggering grooming movements when touching the distal border of the wings and the legs, while sucrose had no effect. Contact chemoreceptors are necessary and sufficient to elicit such responses, as grooming could not be elicited by LPS in poxn mutants deprived of external taste sensilla, and as grooming was elicited by light when a channel rhodopsin receptor was expressed in bitter-sensitive cells expressing Gr33a. Contact chemoreceptors distributed along the distal border of the wings respond to these tastants by an increased spiking activity, in response to quinine, Ec, LPS, sucrose and KCl. These results demonstrate for the first time that bacterial compounds trigger grooming activities in D. melanogaster, and indicate that contact chemoreceptors located on the wings participate to the detection of such chemicals.

  10. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. PMID:25407640

  11. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    CERN Document Server

    Christensen, Anders S; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O and S are presented. The RMSD interaction energy is improved from 6.07 kcal/mol to 1...

  12. Chemical and radiation-induced mutagenesis of the rat liver chromosomes

    International Nuclear Information System (INIS)

    It was shown that radiation and chemical mutagenesis in rat liver cells is determined chiefly by long-lived premutational potential changes. The intensification of intrachromosomal processes under the action of an inducer of gene activity - phenobarbital - does not modify the yield of chromosome aberrations, both under the action of radiation and under the action of an alkylating agent -dipin. The facts obtained support the hypothesis that the chemical nature of the premutational changes differs from the primary molecular damages to DNA. (author)

  13. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger;

    2011-01-01

    the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used in...... experimental pain models to provoke peripheral and central sensitization. In patients with symptoms elicited by odorous chemicals capsaicin-induced secondary hyperalgesia and temporal summation were assessed as markers for abnormal central nociceptive processing together with neurogenic inflammation (flare)....

  14. Chemically-induced Jahn-Teller ordering on manganite surfaces

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J. D.; Tsymbal, Evgeny Y.; Fuchigami, K.; Shen, Jian; Snijders, P. C.; Ward, T. Z.; Jesse, Stephen; Kalinin, Sergei V.; Baddorf, A. P.

    2014-03-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields, and establish their coupling to electronic properties. Here we demonstrate that measuring the sub 30 pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunneling microscopy (STM) allows the physical order parameter fields to be visualized in real space on the single atom level. Here, this local crystallographic analysis is applied to the in-situ grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. Research was supported by MSED and CNMS, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  15. Revealing halogen bonding interactions with anomeric systems: an ab initio quantum chemical studies.

    Science.gov (United States)

    Lo, Rabindranath; Ganguly, Bishwajit

    2015-02-01

    A computational study has been performed using MP2 and CCSD(T) methods on a series of O⋯X (X=Br, Cl and I) halogen bonds to evaluate the strength and characteristic of such highly directional noncovalent interactions. The study has been carried out on a series of dimeric complexes formed between interhalogen compounds (such as BrF, BrCl and BrI) and oxygen containing electron donor molecule. The existence and consequences of the anomeric effect of the electron donor molecule has also been investigated through an exploration of halogen bonding interactions in this halogen bonded complexes. The ab initio quantum chemical calculations have been employed to study both the nature and directionality of the halogen molecules toward the sp(3) oxygen atom in anomeric systems. The presence of anomeric nO→σ*CN interaction involves a dominant role for the availability of the axial and equatorial lone pairs of donor O atom to participate with interhalogen compounds in the halogen-bonded complexes. The energy difference between the axial and equatorial conformers with interhalogen compounds reaches up to 4.60 kJ/mol, which however depends upon the interacting halogen atoms and its attaching atoms. The energy decomposition analysis further suggests that the total halogen bond interaction energies are mainly contributed by the attractive electrostatic and dispersion components. The role of substituents attached with the halogen atoms has also been evaluated in this study. With the increase of halogen atom size and the positive nature of σ-hole, the halogen atom interacted more with the electron donor atom and the electrostatic contribution to the total interaction energy enhances appreciably. Further, noncovalent interaction (NCI) studies have been carried out to locate the noncovalent halogen bonding interactions in real space. PMID:25522359

  16. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  17. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.

    Science.gov (United States)

    Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A

    2016-07-14

    We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation. PMID:27268431

  18. Preparation Of Polystyrene Nanoparticles Using Both GAMMA Radiation And Chemical Induced Emulsion Polymerization

    International Nuclear Information System (INIS)

    Polystyrene nanoparticles were synthesized by radiation-induced polymerization and chemical emulsion polymerization. Compared with the chemical emulsion polymerization, the radiation process easily prepared the polystyrene (PS) nanoparticles at room temperature and without the pollutant of chemical initiator. The effects of various polymerization parameters in both systems such as total dose for radiation polymerization, monomer concentration, sodium dodecyl sulfate (SDS) stabilizer content on the particle size and size distribution were systematically investigated. The diameter of a polymer particle and its distribution were measured on a Marvern Zetasizer. Monomer conversion was studied gravimetric ally and the structure of PS was analyzed by Differential Scanning Calorimeter (DSC) and Fourier Transform Infrared (FT-IR) Spectrophotometer

  19. Mutagenic efficiency of radiations and chemical mutagens in inducing viable mutations in rice

    International Nuclear Information System (INIS)

    Studies were undertaken to compare the effectiveness and efficiency of radiations (gamma rays and fast neutrons) and chemical mutagens (EMS and NMU) in inducing viable mutations in rice. Radiations were more effective than chemical mutagens, the most effective being fast neutrons. Mutagenic efficiency when estimated on the basis of lethality was higher for radiations but when based on sterility was higher for chemical mutagens. Fast neutrons, more effective than gamma rays, were less efficient. NMU was more effective but less efficient than EMS. (author)

  20. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  1. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  2. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin

    OpenAIRE

    Jiang, Haibo; Xiong, Siqi; Xia, Xiaobo

    2014-01-01

    Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chas...

  3. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  4. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (KD) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the KD value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1H–15N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (koff). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, koff ∼ 3,000 s−1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for koff from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise koff values over a wide range, from 100 to 15,000 s−1. The validity of line shape analysis for koff values approaching intermediate exchange (∼100 s−1), may be facilitated by more accurate KD measurements from NMR-monitored chemical shift

  5. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  6. Determination of temperature and transverse flow velocity at chemical freeze-out in relativistic nuclear interactions

    International Nuclear Information System (INIS)

    We propose a parameter-free method to determine the temperature of a thermalized state in relativistic nuclear interactions, using the experimental μq/T and μs/T values, obtained from strange particle ratios. The hadron gas formalism and strangeness neutrality are employed to relate the quark-chemical potential μq and μs to the temperature and thus determine its value at chemical freeze-out. This temperature, together with the inverse slope parameter from mT distributions, enable the determination of the transverse flow velocity of the fireball matter, thus disentangling the thermal and flow effects. We study several nucleus-nucleus interactions from AGS and SPS and obtain the temperature, transverse flow velocity, and quark-chemical potentials. Extrapolating the systematics we predict the values of these quantities for ongoing and future experiments at AGS, SPS, and RHIC. We discuss the possibility of reaching the conditions for quark deconfinement and QGP formation and give distinct and identifiable signature. copyright 1996 The American Physical Society

  7. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  8. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    Science.gov (United States)

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  9. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2015-06-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN is fed online interactively into a two-moment cloud scheme (WDM6 and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48% enhancements of TS scoring for 6 h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  10. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    International Nuclear Information System (INIS)

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D7 is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements

  11. Chemical interactions of beryllium with lithium-based oxides and stainless steel

    International Nuclear Information System (INIS)

    The chemical compatibility of Be with Li2SiO3, Li4SiO4 and stainless steel (AISI 316) was investigated in the temperature range between 600 and 900degC with maximum annealing times of 1000 h. Beryllium is of interest as a neutron multiplier material in a fusion reactor. First chemical interactions in the Be/Li2SiO3 and Be/Li4SiO4 systems occur at 650degC. The compatibility of Be with Li2SiO3 seems to be sufficient up to 650degC, whereas that with Li4SiO4 is sufficient even up to 700degC. At higher temperatures the silicide reaction products LixSiy become liquid which results in a strong local attack and penetration into the lithium silicates. Be interacts with stainless steel locally already at 600degC. The compatibility behavior in the Be/Li-silicate/stainless steel system under isothermal conditions is therefore determined by the Be/steel interactions. (orig.)

  12. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships.

    Science.gov (United States)

    Jia, Dan; Huang, Qilin; Xiong, Shanbai

    2016-04-01

    Partial least squares regression (PLSR) was applied to evaluate and correlate chemical interactions (-NH2 content, S-S bonds, four non-covalent interactions) with gel properties (dynamic rheological properties and cooking loss (CL)) of black carp actomyosin affected by microbial transglutaminase (MTGase) at suwari and kamaboko stages. The G' and CL were significantly enhanced by MTGase and their values in kamaboko gels were higher than those in suwari gels at the same MTGase concentration. The γ-carboxyamide and amino cross-links, catalyzed by MTGase, were constructed at suwari stage and contributed to the network formation, while disulfide bonds were formed not only in suwari gels but also in kamaboko gels, further enhancing the gel network. PLSR analysis revealed that 86.6-90.3% of the variation of G' and 91.8-94.4% of the variation of CL were best explained by chemical interactions. G' mainly depended on covalent cross-links and gave positive correlation. CL was positively correlated with covalent cross-links, but negatively related to non-covalent bonds, indicating that covalent bonds promoted water extrusion, whereas non-covalent bonds were beneficial for water-holding. PMID:26593605

  13. Galaxy pairs in cosmological simulations: effects of interactions on colours and chemical abundances

    CERN Document Server

    Perez, M J; Lambas, D G; Scannapieco, C; Tissera, P B; Lambas, Diego G.; Rossi, Maria E. De; Scannapieco, Cecilia; Tissera, Patricia B.

    2006-01-01

    We perform an statistical analysis of galaxies in pairs in a Lambda-CDM scenario by using the chemical GADGET-2 of Scannapieco et al. (2005) in order to study the effects of galaxy interactions on colours and metallicities. We find that galaxy-galaxy interactions can produce a bimodal colour distribution with galaxies with significant recent star formation activity contributing mainly to blue colours. In the simulations, the colours and the fractions of recently formed stars of galaxies in pairs depend on environment more strongly than those of galaxies without a close companion, suggesting that interactions play an important role in galaxy evolution. If the metallicity of the stellar populations is used as the chemical indicator, we find that the simulated galaxies determine luminosity-metallicity and stellar mass-metallicity relations which do not depend on the presence of a close companion. However, in the case of the luminosity-metallicity relation, at a given level of enrichment, we detect a systematic d...

  14. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice.

    Science.gov (United States)

    Han, Mi Hwa; Yoon, Won Kee; Lee, Hyunju; Han, Sang-Bae; Lee, Kiho; Park, Song-Kyu; Yang, Kyu-Hwan; Kim, Hwan Mook; Kang, Jong Soon

    2007-12-15

    Irritant contact dermatitis (ICD) is a non-allergic local inflammatory reaction of a skin and one of the most frequent occupational health problems. Silymarin has been clinically used in Europe for a long time to treat liver diseases and also known to have anti-cancer and anti-inflammatory activities. In the present study, we report that topical application of silymarin reduces chemical-induced ICD. Topical application of 2,4-dinitrochlorobenzene (DNCB) induced an ear swelling in BALB/c mice and silymarin suppressed DNCB-induced increase in ear thickness. Prophylactic and therapeutic application of silymarin showed similar effect on DNCB-induced increase in ear thickness and skin water content. In addition, phobor ester- or croton oil-induced increase in ear thickness was also inhibited by silymarin treatment. Silymarin also blocked neutrophil accumulation into the ear induced by these irritants. Further study demonstrated that DNCB-induced tumor necrosis factor-alpha (TNF-alpha) expression in mouse ear was suppressed by silymarin. DNCB-induced expression of KC, one of the main attractors of neutrophil in mice, and adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and E-selectin in mouse ear were also inhibited by silymarin. Moreover, TNF-alpha-induced expression of cytokines, such as TNF-alpha and IL-1beta, and a chemokine, IL-8, were suppressed by silymarin treatment in human keratinocyte cell line, HaCaT. Silymarin also blocked TNF-alpha- and DNCB-induced NF-kappaB activation in HaCaT. Collectively, these results demonstrate that topically applied silymarin inhibits chemical-induced ICD in mice and this might be mediated, at least in part, by blocking NF-kappaB activation and consequently inhibiting the expression of cytokines and adhesion molecules. PMID:17996674

  15. Epithelial-mesenchymal interaction during photodynamic therapy-induced photorejuvenation.

    Science.gov (United States)

    Kim, Sue Kyung; Koo, Gi-Bang; Kim, You-Sun; Kim, You Chan

    2016-09-01

    Recently, several clinical studies reported that the photodynamic therapy (PDT) has photorejuvenation effects on the aged skin. Previously, our group introduced evidence of direct effect of PDT on cultured fibroblast (FB). PDT directly stimulated FBs and induced collagen synthesis through activation of extracellular signal-regulated kinase. In this study, we investigated indirect effect of PDT on the human dermal FB during photorejuvenation focused on the epithelial-mesenchymal interaction between keratinocyte (KC) and FB. The "low-level PDT" condition was used for PDT therapy to the cultured KC. Various kinds of cytokines in the supernatants of KC were evaluated by enzyme-linked immunosorbent assay. FBs were stimulated with the KC-conditioned medium (KCM) taken after PDT. The mRNA level of matrix metalloproteinases (MMPs), transforming growth factor (TGF)-β and collagen type Iα in the FB, was determined by real-time polymerase chain reaction. Clinical phtorejuvenation effect was also evaluated from nine patients who had PDT to treat actinic keratoses. Among the FB-stimulating cytokines, a significant elevation of interleukin (IL)-1α, IL-6, and tumor necrosis factor-α level in KCM was noted after PDT compared with controls. After stimulating FB with KCM, the mRNA of MMP-1 was decreased and the mRNA of collagen type Iα was increased compare to control. Clinically, fine wrinkles significantly reduced after PDT. However, coarse wrinkles were not recovered significantly. In conclusion, increased collagen synthesis may be mediated not only by direct effect of PDT on FB but also by indirect effect of PDT on FB through cytokines from KC, such as IL-1α, IL-6, and tumor necrosis factor-α. PMID:27383261

  16. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  17. A review on chemical effects in aqueous solution induced by plasma with glow discharge

    International Nuclear Information System (INIS)

    Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE

  18. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  19. Study of chemical interaction induced by ionizing radiation poly(dimethylsiloxane-g-ethylene oxide) in the poly(n-vinyl-2-pyrrolidone) and agar membrane; Estudo da interacao quimica do poli(dimetilsiloxano-g-oxido de etileno) na membrana de poli(n-vinil-2-pirrolidona) e agar induzida com radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Aurea de Souza

    1999-07-01

    Membrane composed by poly(N-vinyl-2-pyrrolidone) (PVP) and agar was formulated with and without poly(dimethylsiloxane-g-ethylene oxide) (SEO) irradiated with electron beam with doses between 10-50 kGy. The radiolytic behaviour of each component, PVP, agar and SEO, was studied when irradiated by gamma ray, in the absence and presence of air and water, by electron paramagnetic resonance (EPR) at 77 K. The chemical interaction of SEO with PVP/agar membrane was investigated by: infrared spectroscopy, energy dispersive X-ray fluorescence, dynamic-mechanical analysis, scanning electron microscopy, gel and swelling analysis. The cytotoxicity of the PVP/agar/SEO membrane was evaluated by cellular suppression. The membrane radicals from PVP ({phi}NC.) and from water (H., OH. and H{sub 2}O) was observed by EPR at 77K. The agar radicals formed by hydrogen abstraction of C{sub 1} and C{sub 3} of {beta}-D-galactose and/or C{sub 1} and C{sub 4} of {alpha}-L-galactose, reacted primarily with water radicals in despite of they also took part in the membrane by chemical bond. The radicals from SEO (.CH{sub 2}{approx}, .Si{approx}, .O{approx}) participated in the inter and intramolecular crosslinking as co-crosslinker by polymeric bridge. The co-crosslinked action depended on its concentration associated to PVP concentration. The presence op acrylates increases the tensile break of the PVP/agar/SEO membrane significantly. (author)

  20. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    Science.gov (United States)

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  1. Micro structural evaluation of fuel clad chemical interaction for metallic fuels for fast reactor

    International Nuclear Information System (INIS)

    The neutronic performance of metal fuel based on binary U-Pu alloy or ternary U-Pu-Zr alloys are better than conventional uranium plutonium mixed oxide or high density carbide ceramic fuel. The growing energy demand in India needs faster growth of nuclear power and warrants introduction of fast reactors based on metallic fuels because of higher breeding ratio and lower doubling time. Two design concepts have been proposed: one based on sodium bonded ternary alloy fuel of U-Pu-Zr ( 2-10 wt%) in modified T91 cladding material and the other is U-Pu binary alloy mechanically bonded to modified T91 cladding material with 'Zircaloy', as a liner between the fuel alloy and the clad. The Zircaloy liner act as a barrier in reducing the fuel clad chemical interaction. It also helps in transfer of heat from the fuel to the clad. Fuel clad chemical interaction is a serious issue limiting the life of a fuel pin as a result of formation of low temperature eutectic between the fuel and components of the cladding material. The eutectic reaction temperature between T91 and Uranium were estimated by dilatometry, differential thermal analysis and high temperature microscopy. Diffusion couple experiments were also carried out between U/Zr/T91 and U/T91 by isothermal annealing of the couples between 550 deg C to 750 deg C for times up to 1500 hrs. to find out the extent of chemical interaction. These studies were supported by metallographic examination, micro hardness measurement, XRD, SEM/EDAX and EPMA. The eutectic temperature was found to be higher than the estimated fuel clad interface temperature under the reactor operating condition. The paper highlights the results of these studies and attempts to analyze them in the light of performance. The outcome of these studies has been useful to the fuel designer in optimizing the design features and predicting the in-reactor fuel behavior. (author)

  2. Chemical interactions of B4C pellets with Zr1%Nb and stainless steels

    International Nuclear Information System (INIS)

    Chemical interactions between B4C absorber material and X18H10T stainless steel absorber cladding of WWER type nuclear reactor, together with those between B4C and Zr1%Nb guide tube were investigated in the temperature range of 800-1200 and 1200-1600 deg C, respectively. After annealing, the specimens where exposed to metallograhical testing. The results show that the reaction obeys parabolic law, and the growth rate of the reaction layers can be described by an Arrhenius correlation. (author). 5 refs., 20 figs., 3 tabs

  3. Chemical prevention of light-induced degradation in amorphous silicon films

    Science.gov (United States)

    Kobayashi, Hikaru; Kasama, Yoshiko; Fujinaga, Tetsushi; Takahashi, Masao; Koinuma, Hideomi

    2002-07-01

    The most serious problem for hydrogenated amorphous silicon (a-Si:H) solar cells is light induced-degradation due to the formation of defect states. A simple room temperature chemical method, i.e. the immersion of a-Si:H in crown-ether-containing KCN solutions under a positive bias, has been found to prevent light-induced deterioration of a-Si:H films. The prevention is attributed to the selective reaction of cyanide ions (CN -) with defect and defect precursor states. The inclusion of crown-ether completely prevents contamination of a-Si:H by K + ions, and the applied positive bias enhances inward migration of CN - ions. The experimental results suggest that this chemical reaction is useful to block the light-induced degradation of a-Si:H solar cells and systems.

  4. A new database for food safety: EDID (Endocrine disrupting chemicals Diet Interaction Database)

    International Nuclear Information System (INIS)

    Diet is a significant source of exposure to endocrine disrupting chemicals (EDC); health risks cannot be excluded, in particular long-term effects in vulnerable groups such as children. However, food safety assessment must also consider the effects of natural food components modulating the endocrine system. The scientific evidence on the complex interactions between EDC and food components is still limited. The new EDC-Diet Interactions Database (EDID) within the ISS EDC area (www.iss.it/inte/) aims to stimulate further research in the field of food toxicology: a database on international literature's studies, either on experimental systems and on animal population and humans, easy to consult and periodically updated. Examples of studies contained in EDID are provided concerning EDC with iodine, vitamins and phyto estrogens

  5. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    CERN Document Server

    Ahmed, Ashour; Kühn, Oliver

    2013-01-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < original soil < soil+3 HWE < soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  6. Capsaicin-induced neurogenic inflammation in the skin in patients with symptoms induced by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger; Serup, Jørgen; Elberling, Jesper

    2011-01-01

    Intradermal injection of capsaicin induces the axonal release of neuropeptides, vasodilatation and flare, e.g. neurogenic inflammation. The spatial profile of neurogenic inflammation in the skin has been studied in various experimental models. Polarization spectroscopy imaging introduced recently...

  7. Investigation of the chemical interactions of cyanogen with proteins: a novel coupling reagent for proteins and dipeptides

    International Nuclear Information System (INIS)

    The organic chemistry of cyanogen has been extensively studied however its interaction with biological molecules remains ambiguous. Therefore, it was the purpose of this research to study the effects of cyanogen on amino acids, peptides, and proteins. As a result, the first direct evidence for cyanogen-induced amide bond formation was revealed. Furthermore, evidence suggests that cyanogen induces the formation of intramolecular ε(δ-glutamyl) lysine and ε(β-aspartyl) lysine crosslinks in penicillinase. Cyanogen-modified penicillinase was determined to be more stable to thermal denaturation than the native protein although it had virtually the same UV and CD spectra as the latter. A radioactive-labelling experiment indicated that covalent incorporation of 14C2N2 was not involved in the modification of penicillinase. Furthermore, cyanogen treatment of penicillinase resulted in 50% inactivation of the enzyme in 8 minutes and 97% inactivation in 30 minutes. Chemical modifications of cyanogen-modified penicillinase determined that 5-6 lysines and 5 carboxylic acid residues were blocked as a result of cyanogen treatment of the protein. Finally, amino acid analysis of cyanogen-modified penicillinase enzymatic hydrolyzates revealed two new peaks corresponding chromatographically to the same region where ε(δ-glutamyl) lysine and ε(β-aspartyl) lysine crosslinks have been resolved in the past

  8. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  9. Direct spatiotemporal analysis of femtosecond laser-induced plasma-mediated chemical reactions

    International Nuclear Information System (INIS)

    Localized, micron to millimetre-scale plasmas resulting from the fleeting interaction between ultrashort laser pulses and matter have been studied extensively in inert atmospheres. In spite of recent interest in reactive plasmas as a nanofabrication tool, ultrashort pulsed laser ablation in reactive gas atmospheres has undergone little study. In this study, we develop a methodology combining time-resolved optical emission spectroscopy and spectrally filtered time-gated fast photography to directly observe and analyse plasma-mediated chemical reactions that occur when laser ablation is performed in reactive gases. Specifically, we compare the ablation of silicon dioxide in an atmosphere of xenon difluoride gas to its ablation in nitrogen and xenon atmospheres. We show that when xenon difluoride molecules are collisionally driven into an excited state by the silicon plasma produced during laser-induced decomposition of the solid substrate, the gas undergoes dissociation. The resulting fluorine radicals react spontaneously with the silicon plasma to produce volatile fluorinated silicon compounds. In particular, mass spectroscopy shows that the primary reaction byproduct is SiF2 with small amounts of SiF and SiF4. The high spatial and temporal resolution of our methodology reveals a slowly expanding plume having an atomic silicon core with a XeF∗ shell that persists for less than 300 ns. As the silicon is fluorinated, the optical emission due to excited silicon is quenched. The absence of a silicon signal after 300 ns establishes this as the upper limit of the reaction lifetime given the conditions of the experiment. (letter)

  10. Electromagnetically Induced Transparency in strongly interacting Rydberg Gases

    OpenAIRE

    Ates, C.; Sevinçli, S.; Pohl, T.

    2011-01-01

    We develop an efficient Monte-Carlo approach to describe the optical response of cold three-level atoms in the presence of EIT and strong atomic interactions. In particular, we consider a "Rydberg-EIT medium" where one involved level is subject to large shifts due to strong van der Waals interactions with surrounding Rydberg atoms. We find excellent agreement with much more involved quantum calculations and demonstrate its applicability over a wide range of densities and interaction strengths...

  11. Electromagnetically Induced Transparency in strongly interacting Rydberg Gases

    CERN Document Server

    Ates, C; Pohl, T

    2011-01-01

    We develop an efficient Monte-Carlo approach to describe the optical response of cold three-level atoms in the presence of EIT and strong atomic interactions. In particular, we consider a "Rydberg-EIT medium" where one involved level is subject to large shifts due to strong van der Waals interactions with surrounding Rydberg atoms. We find excellent agreement with much more involved quantum calculations and demonstrate its applicability over a wide range of densities and interaction strengths. The calculations show that the nonlinear absorption due to Rydberg-Rydberg atom interactions exhibits universal behavior.

  12. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  13. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets.

    OpenAIRE

    Goldsmith, H L; Bell, D N; Braovac, S; Steinberg, A.; McIntosh, F

    1995-01-01

    Both chemical and physical effects of red cells have been implicated in the spontaneous aggregation of platelets in sheared whole blood (WB). To determine whether the chemical effect is due to ADP leaking from the red cells, a previously described technique for measuring the concentration and size of single platelets and aggregates was used to study the shear-induced aggregation of platelets in WB flowing through 1.19-mm-diameter polyethylene tubing in the presence and absence of the ADP scav...

  14. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  15. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, M.J. (Univ. of Dayton, OH (USA)); Cross, J.W. (Sogetal, Inc., Hayward, CA (USA))

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  16. Tribochemical interaction between nanoparticles and surfaces of selective layer during chemical mechanical polishing

    International Nuclear Information System (INIS)

    Nanoparticles have been widely used in polish slurries such as those in the chemical mechanical polishing (CMP) process. For understanding the mechanisms of CMP, an atomic force microscope (AFM) is used to characterize polished surfaces of selective layers, after a set of polishing experiments. To optimize the CMP polishing process, one needs to get information on the interaction between the nano-abrasive slurry nanoparticles and the surface of selective layer being polished. The slurry used in CMP process of the solid surfaces is slurry with large nanoparticle size colloidal silica sol nano-abrasives. Silica sol nano-abrasives with large nanoparticle are prepared and characterized by transmission electron microscopy, particles colloidal size, and Zeta potential in this paper. The movement of nanoparticles in liquid and the interaction between nanoparticles and solid surfaces coating with selective layer are very important to obtain an atomic alloy smooth surface in the CMP process. We investigate the nanoparticle adhesion and removal processes during CMP and post-CMP cleaning. The mechanical interaction between nanoparticles and the wafer surface was studied using a microcontact wear model. This model considers the nanoparticle effects between the polishing interfaces during load balancing. Experimental results on polishing and cleaning are compared with numerical analysis. This paper suggests that during post-CMP cleaning, a combined effort in chemical and mechanical interaction (tribochemical interactions) would be effective in removal of small nanoparticles during cleaning. For large nanoparticles, more mechanical forces would be more effective. CMP results show that the removal rate has been improved to 367 nm/min and root mean square (RMS) of roughness has been reduced from 4.4 to 0.80 nm. Also, the results show that the silica sol nano-abrasives about 100 nm are of higher stability (Zeta potential is −65 mV) and narrow distribution of nanoparticle

  17. Dominance from the perspective of gene-gene and gene-chemical interactions.

    Science.gov (United States)

    Gladki, Arkadiusz; Zielenkiewicz, Piotr; Kaczanowski, Szymon

    2016-02-01

    In this study, we used genetic interaction (GI) and gene-chemical interaction (GCI) data to compare mutations with different dominance phenotypes. Our analysis focused primarily on Saccharomyces cerevisiae, where haploinsufficient genes (HI; genes with dominant loss-of-function mutations) were found to be participating in gene expression processes, namely, the translation and regulation of gene transcription. Non-ribosomal HI genes (mainly regulators of gene transcription) were found to have more GIs and GCIs than haplosufficient (HS) genes. Several properties seem to lead to the enrichment of interactions, most notably, the following: importance, pleiotropy, gene expression level and gene expression variation. Importantly, after these properties were appropriately considered in the analysis, the correlation between dominance and GI/GCI degrees was still observed. Strikingly, for the GCIs of heterozygous strains, haploinsufficiency was the only property significantly correlated with the number of GCIs. We found ribosomal HI genes to be depleted in GIs/GCIs. This finding can be explained by their high variation in gene expression under different genetic backgrounds and environmental conditions. We observed the same distributions of GIs among non-ribosomal HI, ribosomal HI and HS genes in three other species: Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens. One potentially interesting exception was the lack of significant differences in the degree of GIs between non-ribosomal HI and HS genes in Schizosaccharomyces pombe. PMID:26613610

  18. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    Science.gov (United States)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  19. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  20. Asymptotic Safety of the CARTAN Induced Four-Fermion Interaction?

    Science.gov (United States)

    Mielke, Eckehard W.

    2015-01-01

    The difference between Einstein's general relativity and its Cartan extension is analyzed within the scenario of asymptotic safety. In particular, the four-fermion interaction is studied which distinguishes the Einstein-Cartan theory from its Riemannian limit.

  1. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons

    International Nuclear Information System (INIS)

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  2. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    Science.gov (United States)

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  3. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    We study the TiO2 (Ti4+) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO2 sample is characterized by the appearance of a lower Ti oxidation state, Ti2O3 (Ti3+), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  4. Chemical changes induced on a TiO{sub 2} surface by electron bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L.I. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Passeggi, M.C.G. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina)], E-mail: mpggih@intec.unl.edu.ar; Ferron, J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, (S3000AOM) Santa Fe (Argentina)

    2007-09-14

    We study the TiO{sub 2} (Ti{sup 4+}) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO{sub 2} sample is characterized by the appearance of a lower Ti oxidation state, Ti{sub 2}O{sub 3} (Ti{sup 3+}), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form.

  5. Separating chemical and excluded volume interactions of polyethylene glycols with native proteins: Comparison with PEG effects on DNA helix formation.

    Science.gov (United States)

    Shkel, Irina A; Knowles, D B; Record, M Thomas

    2015-09-01

    Small and large PEGs greatly increase chemical potentials of globular proteins (μ2), thereby favoring precipitation, crystallization, and protein-protein interactions that reduce water-accessible protein surface and/or protein-PEG excluded volume. To determine individual contributions of PEG-protein chemical and excluded volume interactions to μ2 as functions of PEG molality m3 , we analyze published chemical potential increments μ23  = dμ2/dm3 quantifying unfavorable interactions of PEG (PEG200-PEG6000) with BSA and lysozyme. For both proteins, μ23 increases approximately linearly with the number of PEG residues (N3). A 1 molal increase in concentration of PEG -CH2 OCH2 - groups, for any chain-length PEG, increases μBSA by ∼2.7 kcal/mol and μlysozyme by ∼1.0 kcal/mol. These values are similar to predicted chemical interactions of PEG -CH2 OCH2 - groups with these protein components (BSA ∼3.3 kcal/mol, lysozyme ∼0.7 kcal/mol), dominated by unfavorable interactions with amide and carboxylate oxygens and counterions. While these chemical effects should be dominant for small PEGs, larger PEGS are expected to exhibit unfavorable excluded volume interactions and reduced chemical interactions because of shielding of PEG residues in PEG flexible coils. We deduce that these excluded volume and chemical shielding contributions largely compensate, explaining why the dependence of μ23 on N3 is similar for both small and large PEGs. PMID:25924886

  6. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2.

    Science.gov (United States)

    El Ali, Zeina; Gerbeix, Cédric; Hemon, Patrice; Esser, Philipp R; Martin, Stefan F; Pallardy, Marc; Kerdine-Römer, Saadia

    2013-07-01

    Allergic contact dermatitis (ACD) is induced by low-molecular weight electrophilic chemicals and metal ions. Chemical contact sensitizers trigger reactive oxygen species production and provoke electrophilic stress, leading to the accumulation of the transcription factor nuclear-related factor 2 (Nrf2) in innate immune cell types. The objective of this work was to identify the role of Nrf2 in the regulation of ACD. We used the local lymph node assay (LLNA) and the mouse ear swelling test (MEST) to study the role of Nrf2 in both the sensitization and elicitation phase in nrf2 knockout (nrf2(-/-)) and wild-type (nrf2(+/+)) mice. Five chemicals were used: two compounds known to react with cysteine residues, 2,4-dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA); one sensitizer known to exhibit mixed reactivity to cysteine and lysine residues, isophorone diisocyanate; and one reacting specifically with lysine residues, trimellitic anhydride and croton oil, a well-known irritant. In the MEST assay, DNCB (1 and 2%) induced a significant increase in ear thickness in nrf2(-/-) compared with nrf2(+/+) mice, suggesting a role for Nrf2 in the control of the inflammatory process. When DNCB was used at 0.25 and 0.5% or when mice were treated with CinA, inflammation was found only in nrf2(-/-) mice. In the LLNA, all chemical sensitizers induced an increase of lymphocyte proliferation in nrf2(-/-) compared with nrf2(+/+) mice for the same chemical concentration. These results reveal an important role for Nrf2 in controlling ACD and lymphocyte proliferation in response to sensitizers. PMID:23564646

  7. Influence of duration of exposition in the Chernobyl zone on spontaneous and chemically induced mutagenesis

    International Nuclear Information System (INIS)

    The cycle of researches according to influence of an exposition of laboratory mice of line Af in a zone of Chernobyl disaster on spontaneous and chemically induced mutagenesis has been performed. The frequency of micronucleated erythrocytes in the mouse bone marrow was increase in term of an exposition in a zone of Chernobyl disaster with 1 till 4 months in comparison with the control. (authors)

  8. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle; Hoffmann, Patrik

    2005-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  9. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle

    2003-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  10. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  11. Shock-induced solid-state chemical reactivity studies using time-resolved radiation pyrometry

    International Nuclear Information System (INIS)

    Time-resolved radiation pyrometry has been used to study materials which undergo solid-state chemical reactions due to shock loading. Shock-induced chemical reactivity in solids is fundamentally different than that in high explosives and other energetic materials because, if no volatiles are present, the reaction products end up in the condensed, rather than the vapor, state. Bulk property changes accompanying the solid-state reactions may therefore be too small to be observable with wave profile or shock-velocity measurements. However, some solid-state reactions, such as that between metallic nickel and aluminum, are exothermic enough to give rise to a measurable increase in temperature, so pyrometry can be used to detect the reactions. Unfortunately, these measurements are complicated by the large temperature increases generated by other sources. Possible mechanisms for generation of these high temperatures, and their effect on the chemical reaction, are suggested

  12. Blood chemical changes and renal histological alterations induced by gentamicin in rats

    Science.gov (United States)

    Alarifi, Saud; Al-Doaiss, Amin; Alkahtani, Saad; Al-Farraj, S.A.; Al-Eissa, Mohammed Saad; Al-Dahmash, B.; Al-Yahya, Hamad; Mubarak, Mohammed

    2011-01-01

    Gentamicin is an effective widely used antibiotic, but the risk of nephrotoxicity and oxidative damage limit its long-term use. Hence, the current study aims to elucidate such hazardous effects. To achieve the study aim male Wistar albino rats (Rattus norvegicus) were exposed to gentamicin to investigate the resultant blood chemical changes and renal histological alterations. In comparison with control rats, gentamicin produced outstanding tubular, glomerular and interstitial alterations that included degeneration, necrosis, cytolysis and cortical tubular desquamation together with mesangial hypercellularity, endothelial cell proliferation and blood capillary congestion. Compared with control animals significant blood chemical changes (P < 0.05) including free radicals, ALT, AST, ALP, serum creatinine and serum urea were recorded in gentamicin-injected animals. The findings revealed that exposure to gentamicin can induce significant histological alterations in the kidney as well as remarkable blood chemical changes that might indicate marked renal failure. PMID:23961168

  13. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  14. Parameter-free determination of actual temperature at chemical freeze-out in nuclear interactions

    International Nuclear Information System (INIS)

    We propose a method to determine the actual temperature at chemical freeze-out in relativistic nucleus-nucleus collisions, using the experimental μq/T and μs/T values, obtained from strange particle ratios. We employ the Hadron Gas formalism, assuming only local thermal equilibration, to relate the quarkchemical potential and temperature. This relation constrains the allowed values of μq/T, μs/T and T, enabling the determination of the actual temperature. Comparison of the inverse slope parameter of the mT-distributions with the actual temperature determines the transverse flow velocity of the fireball matter. Knowledge of these quantities is essential in determining the EoS of nuclear matter and in evaluating interactions with regard to a possible phase transition to QGP. copyright 1995 American Institute of Physics

  15. Electronic inhomogeneities in graphene: the role of the substrate interaction and chemical doping

    Directory of Open Access Journals (Sweden)

    G. Rubio-Bollinger

    2012-09-01

    Full Text Available We probe the local inhomogeneities of the electronicproperties of graphene at the nanoscale usingscanning probe microscopy techniques. First, wefocus on the study of the electronic inhomogeneitiescaused by the graphene-substrate interaction ingraphene samples exfoliated on silicon oxide. Wefind that charged impurities, present in the graphenesubstrateinterface, perturb the carrier densitysignificantly and alter the electronic properties ofgraphene. This finding helps to understand theobserved device-to-device variation typically observedin graphene-based electronic devices. Second, weprobe the effect of chemical modification in theelectronic properties of graphene, grown by chemicalvapour deposition on nickel. We find that both thechemisorption of hydrogen and the physisorption ofporphyrin molecules strongly depress theconductance at low bias indicating the opening of abandgap in graphene, paving the way towards thechemical engineering of the electronic properties ofgraphene.

  16. Vaporization of chemical species and the production of aerosols during a core debris/concrete interaction

    International Nuclear Information System (INIS)

    The equilibrium chemical composition within gas bubbles sparging through isothermal molten corium-concrete mixtures has been evaluated theoretically. A series of sensitivity calculations gives some insight into a number of factors which are of importance in determining the radionuclide and non-radioactive releases during core-concrete interaction. The degree of mixing or layering of the pool has turned out to be of paramount importance in determining the magnitudes of the releases. The presence of unoxidized zirconium in the melt tends to enhance the release of a number of species and the type of concrete used for the base mat can have a significant effect. The predictions can be sensitive to the thermodynamic data used in the calculations. The vaporization of various species into the gas bubbles can require large amounts of heat; the loss of this heat from the melt can have an effect on the extent of the vaporization

  17. Thermo-chemical-mechanical couplings in uranium dioxide - Application to pellet cladding interaction

    International Nuclear Information System (INIS)

    Nuclear fuels under power transient undergo high thermal and mechanical stresses, as well as deep chemical modifications. All experimental observations report a large increase of the central pellet temperature, a strong evolution in the cracking network in the pellet and a significant fission product release, of which some, like iodine, are corrosive towards the zirconium cladding. The stress on the cladding at the inter-pellet plane due to the pellet thermal expansion, associated to the corrosive fission product release, can lead to clad failures, resulting from a stress corrosion cracking mechanism. The thermal, mechanical and chemical properties of the UO2 irradiated fuel are closely dependent and play a major role on the behavior of the material during a power transient. Thus, the fission product speciation and the amount of fission gas releases are highly controlled by these thermo-chemical-mechanical couplings. In addition, it is known from recent experimental observations that the temperature gradient is high enough to make it possible an oxygen radial redistribution inside the fuel pellet. This strongly affects the chemical equilibria in the fuel and thus the fission gas release. The aim of this work is to model at the pellet scale the chemical, thermal and mechanical coupled changes of the UO2 fuel during a power transient scenario and to evaluate the consequences on the fuel behavior. The final objective is to obtain an evaluation of the iodine release source term to be used in I-SCC modelling codes dedicated to Pellet-Clad-Interaction studies. A detailed thermochemical analysis of the irradiated fuel, using the thermochemical fuel code ANGE, is developed in a first step in order to identify the main phases (condensed, solid solution, gas) formed in an irradiated UO2 fuel during a power transient. Then, the coupling between the thermochemical fuel code ALCYONE (developed at CEA) and ANGE is implemented: a radial (with 1D calculations) and tri

  18. How soil organic matter composition controls hexachlorobenzene–soil-interactions: Adsorption isotherms and quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ashour A., E-mail: ashour.ahmed@uni-rostock.de [University of Rostock, Institute of Physics, D-18051 Rostock (Germany); University of Cairo, Faculty of Science, Department of Chemistry, 12613 Giza (Egypt); University of Rostock, Interdisciplinary Faculty, Department of Life, Light and Matter, D-18051 Rostock (Germany); Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [University of Rostock, Institute of Physics, D-18051 Rostock (Germany); University of Rostock, Interdisciplinary Faculty, Department of Life, Light and Matter, D-18051 Rostock (Germany); Aziz, Saadullah G., E-mail: saziz@kau.edu.sa [King Abdulaziz University, Faculty of Science, Chemistry Department, Jeddah 21589 (Saudi Arabia); Hilal, Rifaat H., E-mail: rhilal@kau.edu.sa [University of Cairo, Faculty of Science, Department of Chemistry, 12613 Giza (Egypt); King Abdulaziz University, Faculty of Science, Chemistry Department, Jeddah 21589 (Saudi Arabia); Leinweber, Peter, E-mail: peter.leinweber@uni-rostock.de [University of Rostock, Soil Science, D-18051 Rostock (Germany); University of Rostock, Interdisciplinary Faculty, Department of Life, Light and Matter, D-18051 Rostock (Germany)

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil + 3 HWE and soil + 6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < original soil < soil + 3 HWE < soil + 6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure–activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB–SOM interactions. - Highlights: • Conduction of adsorption experiment of different soil samples on HCB. • Development of a new SOM model for the study of the HCB

  19. How soil organic matter composition controls hexachlorobenzene–soil-interactions: Adsorption isotherms and quantum chemical modeling

    International Nuclear Information System (INIS)

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil + 3 HWE and soil + 6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < original soil < soil + 3 HWE < soil + 6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure–activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB–SOM interactions. - Highlights: • Conduction of adsorption experiment of different soil samples on HCB. • Development of a new SOM model for the study of the HCB

  20. Isotopic and geochemical studies of fluid-rock interactions and the chemical evolution of the oceans

    Energy Technology Data Exchange (ETDEWEB)

    Derry, L.A.

    1989-01-01

    The isotopic compositions of Sr and Nd, and the abundances of rare earth elements (REE) are used to study various types of fluid-rock interactions in the Earth's crust. The isotopic compositions of Sr and Nd and REE patterns in marine chemical sediments of Precambrian age are used to estimate the relative importance of continental weathering versus submarine hydrothermal activity in determining the chemical mass balance of the Precambrian oceans. Major and trace element abundances and Sr and Nd isotopes are used to quantify the degree of interaction of a carbonatite fluid-magmatic system with felsic crust, and to constrain the isotopic characteristics of the mantle source region. The isotopic composition of Sr is reported from a well characterized sequence of Upper Proterozoic carbonates from Svalbard and east Greenland. A simple model of carbonate recycling and isotopic mass balance calculations illustrate that sedimentary recycling can have a strong influence on Sr in the oceans. REE patterns from Precambrian banded iron formations (BIFs) are very similar to modern metalliferous sediments, and imply that the overall REE pattern of Precambrian seawater was similar to today. The mantle-like {var epsilon}{sub Nd} values and positive Eu anomalies imply that the source of the REE in the BIFs was submarine hydrothermal activity. The implications of a large hydrothermal flux of reduced Fe on the redox controls of the Precambrian atmosphere are explored, and a testable hypothesis is developed. The mass balance of Eu in the oceans is affected by preferential scavenging at hydrothermal sites. Data from the Cherry Hill, CA mineralizing system imply a complex plumbing system and a long residence time for the water. Isotopic data from the Fen alkaline complex, Norway, define mixing trends between mantle derived magmas or magmatic fluids and old crust.

  1. Atomic Interaction Effects on Electromagnetically Induced Transparency and Slow Light in Ultracold Bose Gas

    Institute of Scientific and Technical Information of China (English)

    胡正峰; 杜春光; 李代军; 李师群

    2002-01-01

    We investigate electromagnetically induced transparency and slow group velocity of light in ultracold Bose gas with a two-photon Raman process. The properties of electromagnetically induced transparency and light speed can be changed by controlling the atomic interaction. Atomic interaction can be used as a knob to control the optical properties of atomic media. This can be realized in experiment by using the Feshbach resonance technique.

  2. Nitric oxide in the hippocampal cortical area interacts with naloxone in inducing pain

    OpenAIRE

    Hafeshjani, Zahra K.; Manizheh Karami; Masoomeh Biglarnia

    2012-01-01

    Objective: Role of nitric oxide (NO) in reversing morphine anti-nociception has been shown. However, the interaction between NO and naloxone-induced pain in the hippocampus is unknown. The present study aimed to investigate the involvement of molecule NO in naloxone-induced pain and its possible interaction with naloxone into cortical area 1 (CA1) of hippocampus. Materials and Methods: Male Wistar rats (250-350 g), provided by Pasteur Institute of Iran, were housed two per cage with food ...

  3. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  4. Interactions between structural and chemical biomimetism in synthetic stem cell niches

    International Nuclear Information System (INIS)

    Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect. (paper)

  5. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants.

    Science.gov (United States)

    Wild, Edward; Jones, Kevin C

    2009-07-15

    The increasing use of nanomaterials in almost all sectors of society (e.g., health or energy to agriculture and transport) has generated a need for innovative detection methods for nanomaterials, to enable their continued development, environmental and toxicological monitoring, and risk assessment. In vivo nanoparticle visualization is needed to support applications in drug delivery to plant biology where real-time monitoring is essential. Techniques are sought that do not require the addition of molecular tags or nanotags to enhance detection, because these may modify the surface properties or behavior of the nanomaterials. Here two-photon excitation microscopy coupled with plant nanomaterial, or chemical autofluorescence is used to detect and visualize multiwalled carbon nanotubes (MWCNTs), titanium dioxide, and cerium dioxide in living wheat tissues. The potential of the technique to track chemical-nanomaterial interactions in living tissues is then demonstrated, using phenanthrene as a model compound. MWCNTs were observed to pierce wheat root cell walls and enhance the transport of phenanthrene into the living cells. The ability of this technique to monitor real-time in vivo nanomaterial behavior and its potential applications and limitations for use in various disciplines is highlighted. PMID:19708355

  6. Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors

    Science.gov (United States)

    Kuenemann, Mélaine A.; Labbé, Céline M.; Cerdan, Adrien H.; Sperandio, Olivier

    2016-04-01

    Protein-protein interactions (PPIs) play vital roles in life and provide new opportunities for therapeutic interventions. In this large data analysis, 3,300 inhibitors of PPIs (iPPIs) were compared to 17 reference datasets of collectively ~566,000 compounds (including natural compounds, existing drugs, active compounds on conventional targets, etc.) using a chemoinformatics approach. Using this procedure, we showed that comparable classes of PPI targets can be formed using either the similarity of their ligands or the shared properties of their binding cavities, constituting a proof-of-concept that not only can binding pockets be used to group PPI targets, but that these pockets certainly condition the properties of their corresponding ligands. These results demonstrate that matching regions in both chemical space and target space can be found. Such identified classes of targets could lead to the design of PPI-class-specific chemical libraries and therefore facilitate the development of iPPIs to the stage of drug candidates.

  7. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions.

    Science.gov (United States)

    Reches, Meital; Gazit, Ehud

    2007-07-01

    Novel architectures with nanometric dimensions hold an immense promise as building blocks for future nanotechnological applications. Biological nanostructures are of special interest due to their biocompatibility and because they allow the utilization of biochemical recognition interfaces. The ability to decorate bio-nanostructures with functional groups is highly important in order to utilize them in several applications including ultrasensitive sensors, drug delivery systems, and tissue engineering. Peptide-based nanostructures have a distinct advantage over other assemblies because they can be easily modified with chemical and biological elements. Aromatic dipeptide nanotubes (ADNT) are formed by the self-assembly of a very simple building block, the diphenylalanine peptide. These nanotubes have remarkable chemical and mechanical properties and their utilization in various applications has previously been demonstrated. Here we report on the chemical modification of ADNT with biotin moieties, in order to enable the selective decoration of the tubes with avidin-labeled species. First, ADNT were prepared in aqueous solution by self-assembly of the dipeptide building blocks. Next, they were modified using N-hydroxysuccinimido-biotin. The level of biotinylation was assessed by the interaction of the tubes with gold-labeled strepavidin and ultrastructural analysis by electron microscopy. The ability of the modified assemblies to serve as a generic functional platform was demonstrated by avidin-mediated conjugation. Avidin was added as a molecular linker to allow the decoration with biotin-labeled quantum dots. The efficient decoration was again probed by the imaging of the modified tubes using laser confocal microscopy. Taken together, we demonstrated the ability to decorate ADNT using a generic avidin-biotin adaptor. This decoration should lead to the integration and utilization of the tubes in various applications. PMID:17663236

  8. Photo-induced isomerization and chemical reaction dynamics in superfluid helium droplets

    Science.gov (United States)

    Merritt, Jeremy; Douberly, Gary; Miller, Roger

    2008-03-01

    Near threshold photo-induced isomerization and photo-induced chemical reactions have long been sough after as sensitive probes of the underlying potential energy surface. One of the most important questions asked is how the initially bright quantum state couples to the reaction coordinate, and thus relates to energy transfer in general. Helium droplets have now allowed us to stabilize entrance channel clusters behind very small reaction barriers such that vibrational excitation may result in reaction. Through two examples, namely the isomerization of the 2 binary complexes of HF-HCN Douberly et al. PCCP 2005, 7,463, and the induced reaction of the gallium-HCN complex Merritt et al. JPCA 2007, DOI:10.1021/jp074981e we will show how the branching ratios for reaction and predissociation can determined and the influence of the superfluid He solvent.

  9. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications.

    Science.gov (United States)

    Christensen, Anders S; Kubař, Tomáš; Cui, Qiang; Elstner, Marcus

    2016-05-11

    Semiempirical (SE) methods can be derived from either Hartree-Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247

  10. Improved models for the simulation of severe LWR accidents - processes during quenching and chemical interactions

    International Nuclear Information System (INIS)

    In the Core Degradation Project, the contributions of the IKE mainly concerns the improvements and extensions of models, basic versions of which have been developed in the frame of the national BMBF - project KESS. In this project detailed models have been developed to simulate the main processes in the core during a severe accident in light water reactors. The first part of this report is focused on the interacting processes during quenching, like the embrittlement of the fuel rod cladding and of the refreezed melt, the oxidation of the cladding and the crust as well as the cooling effect due to the rapid vaporization. The improved and extended models have been implemented in the code system KESS and as a frist step of the validation the integral bundle experiment CORA-13 has been used. The second part of this report is directed to the chemical interaction between the fuel rod cladding and the Inconel grid spacer. Hereby, a basic diffusion model has been developed and applied to specific bundle conditions to take into account the time of failure of the grid spacer. (orig.)

  11. Structural, energetic and electrical properties of boron nitride nanotubes interacting with DMMP chemical agent

    International Nuclear Information System (INIS)

    Highlights: • ab initio DFT calculations were used for interaction of DMMP with BNNTs. • Full structural optimization was performed for several possible active sites. • Electronic structure of the energetically favorable complexes was analyzed. • The stability of the most stable complex was evaluated at ambient condition. • First-principles calculations showed that DMMP is strongly bound to the small diameter BNNTs. - Abstract: The adsorption of DMMP as an intoxicating chemical warfare agent onto the boron nitride nanotube has been investigated by using density functional theory calculations. Several active sites were considered for both interacting systems and full structural optimization was performed to accurately find the energetically favorable state. It is found that DMMP molecule prefers to be adsorbed strongly on the top site above the B atom of a (5, 0) BNNT with a binding energy of about −103.24 kJ mol−1 and an O–B binding distance of 1.641 Å. We have performed a comparative investigation of BNNTs with different diameters and the results indicate that the DMMP adsorption ability for the side wall of the tubes significantly decreases for higher diameters BNNTs. Furthermore, the adsorption properties of DMMP molecule onto the BNNT have been investigated using the ab initio MD simulation at room temperature. Our result showed that BNNTs facilitates the DMMP detection at ambient conditions for practical applications

  12. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    International Nuclear Information System (INIS)

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI's commonly called 'vapor explosions') could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI's, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U3O8-Al, and U3Si2-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water

  13. Interactions between ingredients in IMX-101: Reactive Chemical Processes Control Insensitive Munitions Properties

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wiese-Smith, Deneille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Highley, Aaron M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Behrens, Richard [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kay, Jeffrey J [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-03-01

    Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) measurements have been conducted on a new Insensitive Munitions (IM) formulation. IMX-101 is the first explosive to be fully IM qualified under new NATO STANAG guidelines for fielded munitions. The formulation uses dinitroanisole (DNAN) as a new melt cast material to replace TNT, and shows excellent IM performance when formulated with other energetic ingredients. The scope of this work is to explain this superior IM performance by investigating the reactive processes occurring in the material when subjected to a well-controlled thermal environment. The dominant reactive processes observed were a series of complex chemical interactions between the three main ingredients (DNAN, NQ, and NTO) that occurs well below the onset of the normal decomposition process of any of the individual ingredients. This process shifts the thermal response of the formulations to a much lower temperature, where the kinetically controlled reaction processes are much slower. This low temperature shift has the effect of allowing the reactions to consume the reactive solids (NQ, NTO) well before the reaction rates increase and reach thermal runaway, resulting in a relatively benign response to the external stimuli. The main findings on the interaction processes are presented.

  14. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  15. HM{sup +}–RG complexes (M = group 2 metal; RG = rare gas): Physical vs. chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Joe P.; Dodson, Hannah; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Breckenridge, W. H. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-04-21

    Previous work on the HM{sup +}–He complexes (M = Be–Ra) has been extended to the cases of the heavier rare gas atoms, HM{sup +}–RG (RG = Ne–Rn). Optimized geometries and harmonic vibrational frequencies have been calculated using MP2 theory and quadruple-ζ quality basis sets. Dissociation energies for the loss of the rare gas atom have been calculated at these optimized geometries using coupled cluster with single and double excitations and perturbative triples, CCSD(T)theory, extrapolating interaction energies to the basis set limit. Comparisons are made between the present data and the previously obtained helium results, as well as to those of the bare HM{sup +} molecules; furthermore, comparisons are made to the related M{sup +}–RG and M{sup 2+}–RG complexes. Partial atomic charge analyses have also been undertaken, and these used to test a simple charge-induced dipole model. Molecular orbital diagrams are presented together with contour plots of the natural orbitals from the quadratic configuration with single and double excitations (QCISD) density. The conclusion is that the majority of these complexes are physically bound, with very little sharing of electron density; however, for M = Be, and to a lesser extent M = Mg, some evidence for chemical effects is seen in HM{sup +}–RG complexes involving RG atoms with the higher atomic numbers.

  16. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum-chemical

  17. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    OpenAIRE

    Mingyue Zhao; Lihui Lu; Song Lei; Hua Chai; Siyuan Wu; Xiaoju Tang; Qinxue Bao; Li Chen; Wenchao Wu; Xiaojing Liu

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardi...

  18. Engineering interaction-induced topological insulators in a √{3 }×√{3 } substrate-induced honeycomb superlattice

    Science.gov (United States)

    Venderbos, Jörn W. F.; Manzardo, Marco; Efremov, Dmitry V.; van den Brink, Jeroen; Ortix, Carmine

    2016-01-01

    We consider a system of spinless fermions on the honeycomb lattice with substrate-induced modulated electrostatic potentials tripling the unit cell. The resulting non-Abelian S U (2 ) gauge fields act cooperatively to realize a quadratic band crossing point (QBCP). Using a combination of mean-field theory and renormalization group techniques, we show that in the QBCP regime, arbitrarily weak repulsive electronic interactions drive the system into the quantum anomalous Hall state. This proves that substrate-induced local voltages are an effective knob to induce the spontaneous formation of a topological quantum phase.

  19. Light-matter interaction induces a shadow vortex.

    Science.gov (United States)

    Barboza, R; Bortolozzo, U; Clerc, M G; Davila, J D; Kowalczyk, M; Residori, S; Vidal-Henriquez, E

    2016-05-01

    By sending a light beam on a homeotropic nematic liquid-crystal cell subjected to a voltage with a photosensitive wall, a stable matter vortex can be induced at the center of the beam. When the applied voltage is decreased, the vortex disappears from the illuminated region; however, the system shows a stationary molecular texture. Based on a forced Ginzburg-Landau amplitude equation, we show that the vortex with a core of exponentially suppressed amplitude always remains in a shadow region below instability threshold and that the observed texture is induced by its phase distribution. This is a different type of vortex phase singularity solution. Numerical simulations and experimental observations show a quite fair agreement. PMID:27300814

  20. Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.

    Directory of Open Access Journals (Sweden)

    Brian J Belmont

    Full Text Available Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis-elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs, which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically-inducible RNA-protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i the Tet Repressor protein (TetR genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii a target transcript containing genetically encoded TetR-binding RNA aptamers. TetR-fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.

  1. Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction

    OpenAIRE

    O'Mahony, D. Shane; Liles, W. Conrad; William A Altemeier; Dhanireddy, Shireesha; Frevert, Charles W.; Liggitt, Denny; Martin, Thomas R.; Matute-Bello, Gustavo

    2006-01-01

    Introduction Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunctio...

  2. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    OpenAIRE

    Ko, Seung Hwan; Lee, Daeho; Pan, Heng; Ryu, Sang-Gil; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2010-01-01

    Short pulsed laser-induced single acoustic wave generation, propagation, interaction within a water-filled internal channel are experimentally and numerically studied. A large-area, short-duration, single-plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid–solid interface and propagated at the speed of sound in water. Laser flash Schlieren photography was used to visualize the transient interaction of the plane acousti...

  3. Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction

    Science.gov (United States)

    Qin, Wu; Yin, Xiao; Zhi-Ming, Zhang

    2016-01-01

    We propose a scheme for entangling two nanomechanical oscillators by Coulomb interaction in an optomechanical system. We find that the steady-state entanglement of two charged nanomechanical oscillators can be obtained when the coupling between them is stronger than a critical value which relies on the detuning. Remarkably, the degree of entanglement can be controlled by the Coulomb interaction and the frequencies of the two charged oscillators. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009, and 11574092), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholar and Innovative Research Team in University, China (Grant No. IRT1243).

  4. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  5. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  6. Deciphering Noncovalent Interactions Accompanying 7,7,8,8-Tetracyanoquinodimethane Encapsulation within Biphene[n]arenes: Nucleus-Independent Chemical Shifts Approach.

    Science.gov (United States)

    Lande, Dipali N; Rao, Soniya S; Gejji, Shridhar P

    2016-07-18

    Binding of novel biphene[n]arene hosts to antiaromatic 7,7,8,8-tetracyanoquinodimethane (TCNQ) are investigated by DFT. Biphene[4]arene favors the inclusion complex through noncovalent interactions, such as hydrogen bonding, π-π stacking, C-H⋅⋅⋅π, and C-H⋅⋅⋅H-C dihydrogen bonding. Donor-acceptor complexation renders aromatic character to the guest through charge transfer. The formation of TCNQ anionic radicals through supramolecular π stacking significantly influences its chemical and photophysical behavior. Electron density reorganization consequent to encapsulation of TCNQ reflects in the shift of characteristic vibrations in the IR spectra. The accompanying aromaticities arising from the induced ring currents are analyzed by employing nucleus-independent chemical shifts based profiles. PMID:27028656

  7. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    International Nuclear Information System (INIS)

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  8. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    OpenAIRE

    Shih-Shin Liang; Tsu-Nai Wang; Eing-Mei Tsai

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, whi...

  9. Self-organized subwavelength ripple by nanosecond laser induced chemical vapor deposition

    International Nuclear Information System (INIS)

    Polymeric hydrogenated amorphous carbon (α-C:H) thin films were prepared by laser induced chemical vapor deposited method using a KrF excimer laser (λ = 248 nm, Ofwhm = 25 ns) with different laser intensities. Field emission scanning electron microscopy and atomic force microscopy were used to investigate the surface morphology of the films. It was found that the surface morphologies were affected by the laser intensity significantly. Self-organized subwavelength fine ripples perpendicular to the laser beam polarization with periodicities of about 200 nm were observed and a reasonable explanation was proposed for the formation of the ripples. Raman spectroscopy and Fourier transform infrared spectroscopy were used to study the structure of the α-C:H films. The results suggested that there was oxygen in the films, which came from the ambient contamination and the incomposited impurities during and after deposition. The relationships between the composition and chemical bond types were discussed in detail. - Highlights: • Polymeric α-C:H thin films prepared by laser induced CVD with the laser wavelength of 248 nm • Fine ripples with periodicities of about 200 nm observed on the surface of the films • Composition and chemical bonds studied by Raman and Fourier transform infrared spectroscopy

  10. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.

    Science.gov (United States)

    Asaoka, Yoshiji; Togashi, Yuko; Mutsuga, Mayu; Imura, Naoko; Miyoshi, Tomoya; Miyamoto, Yohei

    2016-04-01

    Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy. PMID:26776450

  11. Chemical cues from kingsnakes do not cause inducible defenses in house mice

    Institute of Scientific and Technical Information of China (English)

    W.Wallace STARKE III; Michael H.FERKIN

    2012-01-01

    Many rodents exhibit inducible defenses when exposed to chemical cues from mammalian predators.These responses may include delays in sexual maturation,smaller adult body size and decreases in litter size and pup weight.We exposed the hybrid juvenile offspring of field-caught and lab-descended house mice Mus musculus to the chemical cues of mouse-fed or chick-fed kingsnakes,Lampropeltis getula,for 20 days after weaning,to examine the effects of ophidian predator cues on prey development.We hypothesized that these cues would elicit inducible defenses such as alteration of growth rates,and/or the timing of reproductive development in mice.Once mature,the reproductive effort of the mice might also be impacted by producing smaller litter sizes or lighter pups or not reproducing at all.We found no effect of kingsnake cues on any of the measures.These findings support the hypothesis that inducible defenses may have evolved as a strategy to deal with specific predators.

  12. Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them

    Science.gov (United States)

    Korlyukov, A. A.

    2015-04-01

    The review is devoted to analysis and generalization of the results of (i) quantum chemical studies on the structure, chemical bonding and intermolecular interactions in coordination compounds of tetravalent silicon, germanium and tin in crystals, in solutions and in the gas phase and (ii) experimental investigations of the electron density distribution in these systems. The bibliography includes 147 references. In memoriam of Corresponding Member of the Russian Academy of Sciences M Yu Antipin (1951 - 2013), Academician of the Russian Academy of Sciences M G Voronkov (1921 - 2014) and Dr. S P Knyazev, Lomonosov Moscow University of Fine Chemical Technology (1949 - 2012).

  13. Placental toxicology: tobacco smoke, abused drugs, multiple chemical interactions, and placental function.

    Science.gov (United States)

    Sastry, B V

    1991-01-01

    There are increasing numbers of reports on the tobacco smoking and ingestion of abused drugs (e.g. morphine, cocaine) by pregnant women and the effects of the substances on the developing fetus and newborn infant. The passage of drugs and chemicals from the mother to the fetus is influenced by the placental transport and metabolism of the substances. Further, these drugs and chemicals affect the nutrient transport systems in the placenta. The three major drugs of abuse-nicotine, morphine and cocaine-depress both active amino-acid uptake by human placental villi and transplacental amino-acid transport by reason of the drugs' influence on placental cholinergic and opiate systems. Part of this depression (10-16%) is not reversible. Nicotine blocks the cholinergic receptor and thus blocks acetylcholine (ACh)-facilitated amino-acid transport. Morphine stimulates opiate kappa receptors and depresses ACh release. Cocaine blocks Ca2+ influx and thus blocks ACh release. ACh causes dilation of blood vessels and maintains placental blood flow by the activation of endothelial muscarinic receptors. By interfering with ACh release and placental blood flow, the three drugs of abuse may depress the diffusion of amino acids and other nutrients from the trophoblast into the placental circulation. Three regulatory systems are delineated for amino-acid uptake by the placenta: placental ACh, phospholipid N-methyltransferase, and the gammaglutamyl cycle. These systems operate in concert with one another and are dependent on cellular formation of adenosine 5'-triphosphate (ATP). Placental hypoxia induced by carbon monoxide and other tobacco gases depresses the energy-dependent processes and thus the ATP levels of placental cells. Maternal tobacco smoking and drug abuse cause placental insufficiencies for amino-acid transport, which may partially explain the fetal intrauterine growth retardation caused by these substances. Part of the amino-acid deficits may be compensated for by the

  14. Towards understanding how geographic, hydrologic, and chemical processes interact to produce trends in groundwater quality

    Science.gov (United States)

    Starn, J. J.; Green, C. T.; Hinkle, S. R.; Chapelle, F. H.; Lindsey, B.; Thiros, S.

    2009-12-01

    The purpose of this study is to develop methods and guidelines to help understand how geographic (land use and resource development), hydrologic (directions and rates of groundwater flow), and chemical processes (reaction rates) interact to explain historical changes in the distribution of natural and anthropogenic constituents in and across major aquifer systems and how these factors might affect groundwater quality in the coming decades. This study will include contribute to the understanding of how geologic heterogeneity and data/model uncertainty affect the quality of predictions made using large-scale groundwater models. An ancillary purpose is to make recommendations for sampling USGS National Water-Quality Assessment Program water-quality networks to enhance the detection and understanding of incipient groundwater quality trends. This study is in the early stages of development. Although the study encompasses work at multiple sites, this presentation will focus on an effort in the Salt Lake Valley, Utah. Groundwater quality is spatially variable in this basin-fill aquifer, primarily as a result of rock-water interaction and variations in recharge water quality. Recharge water quality is influenced by human activities (such as the use of de-icing chemicals) that tend to contribute water with relatively high dissolved solids and by natural processes (such as the infiltration of meteoric water from adjacent mountains) that tend to contribute water with relatively low dissolved solids. Human activities and natural processes are not stationary, and changes in water-quality distribution over time are expected; documented changes in groundwater quality include local increases in nitrate, sulfate, chloride, and total dissolved solids. These changes affect the public-water supply that is pumped from the deeper part of the basin-fill aquifer and should be considered in the future management of that supply. An existing groundwater flow model was recalibrated using more

  15. Chemical ordering in magnetic FePd/Pd(001) epitaxial thin films induced by annealing

    International Nuclear Information System (INIS)

    Chemically disordered FePd epitaxial layers are grown at room temperature by molecular beam epitaxy on a Pd(001) buffer layer and then annealed in order to induce the chemically ordered L10 (AuCu I) structure. Contrary to what is observed in the case of ordering during growth above room temperature, the ordered structure appears here with the three possible variants of the L10 phase. The ratio of the three different variant volumes is set by the residual epitaxial strain in the layer before annealing. It thus explains that for long annealing times, the long-range order parameter associated with the L10 variant with c along the (100) growth direction saturates at a value close to 0.65, and never reaches unity. Magnetic consequences of the ordering are studied

  16. Chemical effects induced by low-energy particle beams in fluorozirconate glasses

    International Nuclear Information System (INIS)

    The modification of the chemical structure of fluorozirconate glasses (ZBLAN) with Ar ion and atom beams of low energy (2-10keV) has been studied in comparison with the damage produced in the starting polycrystalline ZrF4 and BaF2. A variety of reduced chemical states of Zr is produced in ZrF4 as well as in ZBLAN glasses, including metallic Zr0State. A strong enhancement of the amount of the metallic Zr formed under irradiation is observed in ZBLAN, while it is present only as trace in the irradiated pure ZrF4 samples. The reported effect is tentatively attributed to the presence of Ba ions in the glass network which could prompt the self-trapping of radiation-induced defects at the Zr sites, involving their progressive reduction

  17. Fluctuation Induced Structure in Chemical Reaction with Small Number of Molecules

    Science.gov (United States)

    Suzuki, Yasuhiro

    We investigate the behaviors of chemical reactions of the Lotka-Volterra model with small number of molecules; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We model it by using Abstract Rewriting System on Multisets, ARMS; ARMS is a stochastic method of simulating chemical reactions and it is based on the reaction rate equation. We confirmed that the magnitude of fluctuations on periodicity of oscillations becomes large, as the number of involved molecules is getting smaller; and these fluctuations induce another structure, which have not observed in the reactions with large number of molecules. We show that the underling mechanism through investigating the coarse grained phase space of ARMS.

  18. On the velocity and chemical-potential dependence of the heavy-quark interaction in N=4 SYM plasmas

    CERN Document Server

    Avramis, S D; Zoakos, D; Avramis, Spyros D.; Sfetsos, Konstadinos; Zoakos, Dimitrios

    2006-01-01

    We consider the interaction of a heavy quark-antiquark pair moving in N=4 SYM plasma in the presence of non-vanishing chemical potentials. Of particular importance is the maximal length beyond which the interaction is practically turned off. We propose a simple phenomenological law that takes into account the velocity dependence of this screening length beyond the leading order and in addition its dependence on the R-charge. Our proposal is based on studies using rotating D3-branes.

  19. Changes in ultraweak luminescence from living fish induced by three chemicals

    International Nuclear Information System (INIS)

    Ultraweak luminescence is a ubiquitous phenomenon in biological systems, which differs from bioluminescence of luciferin-luciferase. This low-intensity emission is inherently associated with the following important process such as oxidative metabolism, cell division, carcinogenesis, photosynthesis, and cell death. In general, ultraweak luminescence may be classified as two kinds, namely spontaneous and induced. Zebra fish is a recommended specimen for toxicity and toxicological test. The purpose of this, the changes before and after the treatment with three chemicals: uranium oxides, sodium azide or cyclophosphamide and their correlations between the dose and effect

  20. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    OpenAIRE

    Steven Haenen; Jeroen A.J. Vanoirbeek; Vanessa De Vooght; Liliane Schoofs; Benoit Nemery; Elke Clynen; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mi...

  1. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    Tonneau, D.; Auvert, G.; Pauleau, Y.

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  2. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  3. A Modular Approach to Triazole-Containing Chemical Inducers of Dimerisation for Yeast Three-Hybrid Screening

    Directory of Open Access Journals (Sweden)

    Nicholas J. Westwood

    2013-09-01

    Full Text Available The yeast three-hybrid (Y3H approach shows considerable promise for the unbiased identification of novel small molecule-protein interactions. In recent years, it has been successfully used to link a number of bioactive molecules to novel protein binding partners. However despite its potential importance as a protein target identification method, the Y3H technique has not yet been widely adopted, in part due to the challenges associated with the synthesis of the complex chemical inducers of dimerisation (CIDs. The development of a modular approach using potentially “off the shelf” synthetic components was achieved and allowed the synthesis of a family of four triazole-containing CIDs, MTX-Cmpd2.2-2.5. These CIDs were then compared using the Y3H approach with three of them giving a strong positive interaction with a known target of compound 2, TgCDPK1. These results showed that the modular nature of our synthetic strategy may help to overcome the challenges currently encountered with CID synthesis and should contribute to the Y3H approach reaching its full potential as an unbiased target identification strategy.

  4. Spatial multistability induced by cross interactions of confined polariton modes

    Science.gov (United States)

    Ouellet-Plamondon, C.; Sallen, G.; Morier-Genoud, F.; Oberli, D. Y.; Portella-Oberli, M. T.; Deveaud, B.

    2016-02-01

    We demonstrate the occurrence of spatial multistability using laterally confined microcavity exciton-polaritons. By coherently exciting with a blue detuned laser a series of confined polariton modes, we investigate the effects of multistability on the transmitted laser beam as a function of the excitation power. At each threshold of the hysteresis loop, a switching of the mode profile of the laser beam is associated with a significant energy jump of each of the confined polariton modes in the mesa. A simulation of this behavior is achieved with a multimode generalization of the Gross-Pitaevskii equations in the exciton photon basis. The mechanism behind the spatial multistability is identified as a repulsive cross interaction between polaritons in different modes.

  5. Surface interactions induced by polyelectrolytes, dendrimers, and dendronized polymers

    OpenAIRE

    Popa, Ionel

    2010-01-01

    Dans cette thèse, les interactions de surfaces induites par des polyélectrolytes linéaires, des dendrimères et des polymères dendronizés ont été étudiées. Les études ont été menées avec la microscopie à force atomique (AFM) et complétées par la réflectométrie. Première, l'influence de la force ionique sur l'adsorption de polyélectrolytes linéaires et du dendrimères sur des surfaces de silice planaires est étudiée. Les plateaux d'adsorption augmentent fortement avec la force ionique. Après, le...

  6. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  7. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective

    DEFF Research Database (Denmark)

    Muller, A.; Jacobsen, Helene; Healy, E.;

    2006-01-01

    such effects is then performed and correlated with the general classification criteria used for this endpoint. This review intends to give guidance when carrying out an assessment for classification for this endpoint and to allow for better transparency in the decision-making process on when to......Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure......! Whilst the general classification criteria for this endpoint are outlined in Annex VI of this Directive, they do not provide specific information to assess haemolytic anaemia. This review produced by the EU Working Group on Haemolytic Anaemia provides a toxicological assessment of haemolytic anaemia and...

  8. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  9. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents.

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W; Battelli, Lori A; Kashon, Michael L; Ma, Qiang

    2016-02-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genome-wide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  10. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W.; Battelli, Lori A.; Kashon, Michael L.

    2016-01-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genomewide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  11. Uranium(VI) interaction with pyrite (FeS{sub 2}). Chemical and spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N.; Descostes, M. [CEA Saclay, DEN/DANS/DPC/SECR/Lab. de Mesures et Modelisation de la Migration des Radionucleides, Gif-sur-Yvette (France); Miserque, F.; Schlegel, M. [CEA Saclay, DEN/DANS/DPC/SCP/Lab. de Reactivite aux Surfaces et Interfaces, Gif-sur-Yvette (France); Simoni, E. [Inst. de Physique Nucleaire d' Orsay, Univ. Paris Sud, Orsay (France)

    2006-07-01

    The mechanism of uranium(VI) interaction with pyrite was studied by solution chemistry and X-ray photoelectron spectroscopy (XPS). Natural pyrite was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). After equilibration in 10{sup -2}molL{sup -1} NaNO{sub 3}, pyrite was reacted with uranium(VI) by the batch method in an anoxic glove box (P{sub O{sub 2}} < 1 ppm) at ambient temperature. The reaction products of uranium, iron and sulphur were characterized (oxidation state, chemical environment) by XPS. Quantitative analysis revealed that only a few atomic percent of uranium is retained at the pyrite surface. The U4f core level binding energies are consistent with the coexistence of an uranium(VI) species and of uranium in a reduced form. No sulphur oxidation products were observed by XPS, but spectral decomposition of the Fe2p lines revealed the presence of iron(III) oxide or (oxy)hydroxide. These results seem to point to a redox reaction between uranium(VI) and pyrite. (orig.)

  12. Stabilization of Protein-Protein Interactions in chemical biology and drug discovery.

    Science.gov (United States)

    Bier, David; Thiel, Philipp; Briels, Jeroen; Ottmann, Christian

    2015-10-01

    More than 300,000 Protein-Protein Interactions (PPIs) can be found in human cells. This number is significantly larger than the number of single proteins, which are the classical targets for pharmacological intervention. Hence, specific and potent modulation of PPIs by small, drug-like molecules would tremendously enlarge the "druggable genome" enabling novel ways of drug discovery for essentially every human disease. This strategy is especially promising in diseases with difficult targets like intrinsically disordered proteins or transcription factors, for example neurodegeneration or metabolic diseases. Whereas the potential of PPI modulation has been recognized in terms of the development of inhibitors that disrupt or prevent a binary protein complex, the opposite (or complementary) strategy to stabilize PPIs has not yet been realized in a systematic manner. This fact is rather surprising given the number of impressive natural product examples that confer their activity by stabilizing specific PPIs. In addition, in recent years more and more examples of synthetic molecules are being published that work as PPI stabilizers, despite the fact that in the majority they initially have not been designed as such. Here, we describe examples from both the natural products as well as the synthetic molecules advocating for a stronger consideration of the PPI stabilization approach in chemical biology and drug discovery. PMID:26093250

  13. Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories

    Science.gov (United States)

    Bertron, A.; Ranaivomanana, H.; Jacquemet, N.; Erable, B.; Sablayrolles, C.; Escadeillas, G.; Albrecht, A.

    2013-07-01

    This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium, ammonium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+). The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  14. Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Sablayrolles C.

    2013-07-01

    Full Text Available This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite and cations (calcium, potassium, ammonium and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  15. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    Science.gov (United States)

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-01

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination. PMID:27171137

  16. Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories

    International Nuclear Information System (INIS)

    This study investigates the fate of nitrate and organic acids at the bitumen concrete-steel interface within a repository storage cell for long-lived, intermediate level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium, ammonium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+). The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium. (authors)

  17. Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions

    International Nuclear Information System (INIS)

    In the field of nuclear fuel disposal, bentonite has been selected as the principal sealing and buffer material for placement around waste canisters, forming both a mechanical and chemical barrier between the radioactive waste and the surrounding ground water. Ion exchange and mineral alteration processes were investigated in a laboratory study of the long-term interaction between compacted Na-bentonite (Volclay MX-80) and ground water solutions, conducted under simulated nuclear fuel disposal conditions. The possible alteration of montmorillonite into illite has been a major object of the mineralogical study. However, no analytical evidence was found, that would indicate the formation of this non-expandable clay type. Apparently, the change of montmorillonite from Na- to Ca-rich was found to be the major alteration process in bentonite. In the water, a concentration decrease in Ca, Mg, and K, and an increase in Na, HCO3 and SO4 were recorded. The amount of calcium ions available in the water was considered insufficient to account for the recorded formation of Ca-montmorillonite. It is therefore assumed that the accessory Ca-bearing minerals in bentonite provide the fundamental source of these cations, which exchange with sodium during the alteration process. (38 refs.)

  18. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    International Nuclear Information System (INIS)

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective

  19. Chemical residue interactions and effects in soil-plant-animal systems

    International Nuclear Information System (INIS)

    A range of ongoing studies is reported. They deal with interactions between two chemical residues in soils, plants or animals and factors which indirectly affect the appearance and biological significance of the residues. The metabolic inhibitors (KCN or DNE) increased penetration of 14C-lindane into pea root cells but decreased translocation into green tissue. Lindane at low concentrations stimulated plant development. The effects of plant nutritional status on 14C-Dyfonate (a phosphonodithioate insecticide) behaviour in pea plants were studied. Potassium, calcium or magnesium deficiency reduced uptake by the root system. Triazine herbicides and 2,4-D apparently enhanced the toxicity of certain insecticides to insects. Experiments with perfused rat liver confirmed the important role of this organ in the degradation of organophosphorus insecticides. Conditions of application and the presence of microflora were shown to be imported factors in the persistence of insecticide residues in soil. Granular application of phorate provided for greater insecticidal persistence than application as an emulsifiable concentrate. (author)

  20. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  1. Aqueous suspension of anise "Pimpinella anisum" protects rats against chemically induced gastric ulcers

    Institute of Scientific and Technical Information of China (English)

    Ibrahim A Al Mofleh; Abdulqader A Alhaider; Jaber S Mossa; Mohammed O Al-Soohaibani; Syed Rafatullah

    2007-01-01

    AIM:To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise,"Pimpinella anisum L." on experimentally-induced gastric ulceration and secretion in rats.METHODS:Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol,0.2 mol/L NaOH,25% NaCl and indomethacin.Anti-secretory studies were undertaken using pylorusligated Shay rat technique.Levels of gastric non-protein sulfhydryls(NP-SH)and wall mucus were estimated and gastric tissue was also examined histologically.Anise aqueous suspension was used in two doses(250 and 500 mg/kg body weight)in all experiments.RESULTS:Anise significantly inhibited gastric mucosal damage induced by necrotizing agents and indomethacin.The anti-ulcer effect was further confirmed histologically.In pylorus-ligated Shay rats,anise suspension significantly reduced the basal gastric acid secretion,acidity and completely inhibited the rumenal ulceration.On the other hand,the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration.CONCLUSION:Anise aqueous suspension possesses significant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions.The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or through its anti-secretory and antioxidative properties.

  2. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  3. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  4. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    Science.gov (United States)

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  5. A Framework for Assessing Chemical/Nonchemical Interactions: A Case Study of Lead and Psychosocial Stress

    Science.gov (United States)

    Chemical and nonchemical stressors may contribute to negative health consequences in certain individuals. Nonchemical stressors include poverty, crowding, noise, and exposure to violence. Research has suggested that some nonchemical stressors may alter chemical toxicity. We propo...

  6. MODELING A MIXTURE: PBPK/PD APPROACHES FOR PREDICTING CHEMICAL INTERACTIONS.

    Science.gov (United States)

    Since environmental chemical exposures generally involve multiple chemicals, there are both regulatory and scientific drivers to develop methods to predict outcomes of these exposures. Even using efficient statistical and experimental designs, it is not possible to test in vivo a...

  7. Analysis and modelling of the chemical interactions between Inconel grid spacers and Zircaloy cladding of LWR fuel rods; formation of liquid phases due to chemical interactions

    International Nuclear Information System (INIS)

    The experimental results show that the interactions obey parabolic rate laws at the examined temperatures of 1000, 1100 and 1200degC, with or without preoxidized Zircaloy. The fundamental difference of the experiments with preoxidized Zircaloy (oxide layer thickness ≤ 100μm) compared to as-received Zircaloy is the time delay of the start of the interaction between Inconel and Zircaloy. Two models will be presented to describe the experimental results: a) the DISOL code, which is able to simulate the oxidation of Zircaloy up to a given oxide layer thickness and then the dissolution of the ZrO2 layer by the Zircaloy, and b) the solid/solid interaction model that is able to describe the kinetics of the Inconel/Zircaloy interaction. The simple relations obtained as a result of this work can be introduced as modules in SFD code systems to describe the behavior of the core with increasing temperature. Comparison between the experimental results and the code predictions shows a good agreement. (orig.)

  8. Pressure-induced phase and chemical transformations of lithium peroxide (Li2O2).

    Science.gov (United States)

    Dunuwille, Mihindra; Kim, Minseob; Yoo, Choong-Shik

    2016-08-28

    We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (13, 23, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li(+)+(LiO2)3 (3-). This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes. PMID:27586935

  9. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    The chemical reaction behavior between Zircaloy-4 and 1.4919 (AISI 316) stainless steel, which are used in absorber assemblies of Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR), has been studied in the temperature range 1000 - 1400 C. Zircaloy was used in the as-received, pre-oxidized and oxygen-containing condition. The maximum temperature was limited by the fast and complete liquefaction of the reaction couple as a result of eutectic chemical interactions. Liquefaction of the components occurs below their melting point. The effect of oxygen dissolved in Zircaloy plays an important role in the interaction; oxide layers on the Zircaloy surface delay the chemical interactions with stainless steel but cannot prevent them. Oxygen dissolved in Zircaloy reduces the reaction rates and shift the liquefaction temperature to slightly higher levels. The interaction experiments at the examined temperatures with or without pre-oxidized Zircaloy can be described by parabolic rate laws. The Arrhenius equations for the various conditions of interactions are given. (orig.)

  10. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light

    Science.gov (United States)

    Wu, Tong; Wang, Rongyao; Zhang, Xiangdong

    2015-12-01

    Whether or not chiral interaction exists between the optical orbital angular momentum (OAM) and a chiral molecule remains unanswered. So far, such an interaction has not been observed experimentally. Here we present a T-matrix method to study the interaction between optical OAM and the chiral molecule in a cluster of nanoparticles. We find that strong interaction between the chiral molecule and OAM can be induced by the excitation of plasmon resonances. An experimental scheme to observe such an interaction has been proposed. Furthermore, we have found that the signal of the OAM dichroism can be either positive or negative, depending on the spatial positions of nanocomposites in the cross-sections of OAM beams. The cancellation between positive and negative signals in the spatial average can explain why the interaction has not been observed in former experiments.

  11. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light.

    Science.gov (United States)

    Wu, Tong; Wang, Rongyao; Zhang, Xiangdong

    2015-01-01

    Whether or not chiral interaction exists between the optical orbital angular momentum (OAM) and a chiral molecule remains unanswered. So far, such an interaction has not been observed experimentally. Here we present a T-matrix method to study the interaction between optical OAM and the chiral molecule in a cluster of nanoparticles. We find that strong interaction between the chiral molecule and OAM can be induced by the excitation of plasmon resonances. An experimental scheme to observe such an interaction has been proposed. Furthermore, we have found that the signal of the OAM dichroism can be either positive or negative, depending on the spatial positions of nanocomposites in the cross-sections of OAM beams. The cancellation between positive and negative signals in the spatial average can explain why the interaction has not been observed in former experiments. PMID:26656892

  12. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice com...

  13. Extraction of chemical-induced diseases using prior knowledge and textual information.

    Science.gov (United States)

    Pons, Ewoud; Becker, Benedikt F H; Akhondi, Saber A; Afzal, Zubair; van Mulligen, Erik M; Kors, Jan A

    2016-01-01

    We describe our approach to the chemical-disease relation (CDR) task in the BioCreative V challenge. The CDR task consists of two subtasks: automatic disease-named entity recognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs) from Medline abstracts. For the DNER subtask, we used our concept recognition tool Peregrine, in combination with several optimization steps. For the CID subtask, our system, which we named RELigator, was trained on a rich feature set, comprising features derived from a graph database containing prior knowledge about chemicals and diseases, and linguistic and statistical features derived from the abstracts in the CDR training corpus. We describe the systems that were developed and present evaluation results for both subtasks on the CDR test set. For DNER, our Peregrine system reached anF-score of 0.757. For CID, the system achieved anF-score of 0.526, which ranked second among 18 participating teams. Several post-challenge modifications of the systems resulted in substantially improvedF-scores (0.828 for DNER and 0.602 for CID). RELigator is available as a web service athttp://biosemantics.org/index.php/software/religator. PMID:27081155

  14. Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures

    CERN Document Server

    Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.

  15. Final state interactions in electron induced trinucleon breakup reactions

    International Nuclear Information System (INIS)

    This thesis presents an exact analysis of the electromagnetic breakup process of a trinucleon system. The one-photon exchange mechanism is reviewed. The relevant components of the nuclear current are discussed and the off-shell one-body current matrix elements are derived to accommodate the evaluation of the trinucleon nuclear structure functions. The Faddeev equations are introduced. To facilitate the numerical evaluations the unitary pole expansion (UPE) is employed to describe a local S-wave spin-dependent interaction in a series of separable potential terms. The UPE convergence properties for the trinucleon bound state as well as for the N-N and N-d scattering observables are investigated. In view of the electromagnetic two-body and three-body breakup analysis the half off-shell wave functions for 3N→Nd and 3N→3N scattering are calculated. The nuclear structure functions of the electromagnetic two-body breakup structure functions of the electromagnetic two-body breakup processes are derived and exactly calculated. Results are presented and discussed for several kinetamic configurations. The nuclear response functions of the trinucleon breakup processes are calculated for a momentum transfer Q = 400 MeV/c. The results are compared with recent experimental data for the longitudinal and transverse response of both trinucleon systems. The three-body contributions to the response functions result from an essentially fourfold numerical integration of the invariant electromagnetic three-body breakup amplitude. A detailed derivation of this amplitude is presented and the treatment of the subsequent integration is discussed. An extension is formulated to include D-state components in the trinucleon bound state as well as in the disconnected final state components for the two-body breakup process. One kinematic situation is studied with the D-state extension. For the three-body breakup processes only the PWIA response is determined with the D-state component in the

  16. Effect of Electrostatic Interaction on the Characteristics of Compound-induced Soy Protein Isolates Gels

    Directory of Open Access Journals (Sweden)

    Ping Du

    2015-06-01

    Full Text Available The effect of electrostatic interaction on the state of water in compound-induced soy protein isolate gels was investigated in this study. The state of water in SPI gels was analyzed using Differential Scanning Calorimetry (DSC and Thermogravimetry (TG. Meanwhile Texture Profile Analysis (TPA was used to analyze the texture properties of SPI gels with different electrostatic interactions. Furthermore, the interactive mechanism at microscopic and molecular level was investigated by means of Scanning Electron Microscopy (SEM, Raman spectrum and Circular Dichroism (CD spectrum. The results showed that the Equilibrium Water Content (EWC reduced, gel hardness reduced and gel pore size became smaller with improved electrostatic interaction in compound-induced SPI gels. EWC exhibited the positive correlation with hardness (r = 0.978, p<0.05 and springiness (r = 0.953, p<0.05 of the compound-induced SPI gels. Electrostatic interaction of compound-induced SPI gels seems to point toward its important role in defining their state of water, texture properties and gel structure.

  17. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na2SeO3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  18. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-03-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo(a)pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 ..mu..M Na/sup 2/SeO/sup 3/ (selenium) or with 7 ..mu..M ..cap alpha..-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism.

  19. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (plasma irradiation, and the high transfection efficiency of 53% is realized together with the high cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  20. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    Science.gov (United States)

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. PMID:24809668

  1. Fate of Carbofuran and Interaction with Agricultural Chemicals in a Soil-Crop-Water System

    International Nuclear Information System (INIS)

    Full text: The fate, movement, and metabolism of 14C-(ring)-carbofuran and its interaction with agricultural chemicals was studied in a soil-corn-water system. Movement of carbofuran through soils occurred under both percolating and non-percolating conditions. Under percolating conditions 49.13% of applied 14C leached through the soil into the aquaria. Thus, less 14C-residues were recovered from percolated soils than from nonpercolated soils, 25.85 and 57.90% of applied C, respectively. The control corn contained more than twice as much 14C-residues as the corn grown under percolating conditions, 22.16 and 10.78% of applied C, respectively. 14C-(ring)-carbofuran residues added to aquaria containing a layer of lake mud rapidly disappeared from the water and the majority became bound to the lake mud or was metabolized by the Elodea plants to water-soluble or bound 14C-residues. After 3 weeks incubation 14C-residues associated with the water, lake mud, Elodea plants and guppies were 2.14, 19.17, 3.65, and 0.19% of applied 14C, respectively. Initially, the percolated water containing 14C-residues was toxic to both guppies and Aedes aegypti Linnaeus larvae. However, guppies and Aedes larvae introduced after 9 days incubation survived for the remainder of the experiment. This indicated that toxic 14C-residues had either degraded to non-toxic compounds or were no longer associated with the water. (author)

  2. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  3. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating

  4. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  5. Exposure to Gulf War Illness chemicals induces functional muscarinic receptor maladaptations in muscle nociceptors.

    Science.gov (United States)

    Cooper, B Y; Johnson, R D; Nutter, T J

    2016-05-01

    Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. PMID:27058124

  6. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    International Nuclear Information System (INIS)

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury

  7. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  8. Ab initio study of chemical bond interactions between covalently functionalized carbon nanotubes via amide, ester and anhydride linkages

    Science.gov (United States)

    Ben Doudou, Bessem; Chen, Jun; Vivet, Alexandre; Poilâne, Christophe

    2016-03-01

    In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT-SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.

  9. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    DEFF Research Database (Denmark)

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny; Wengel, Jesper; Kool, Eric T; Wang, Dong

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open...... remains elusive. Here we employed synthetic nucleotide analogues as 'chemical mutation' tools coupling with α-amanitin transcription inhibition assay to systematically dissect the key chemical interactions and structural signatures governing the substrate-coupled TL closure in Saccharomyces cerevisiae Pol...

  10. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  11. Electrostatic interaction effects on tension-induced pore formation in lipid membranes

    Science.gov (United States)

    Karal, Mohammad Abu Sayem; Levadnyy, Victor; Tsuboi, Taka-aki; Belaya, Marina; Yamazaki, Masahito

    2015-07-01

    We investigated the effects of electrostatic interactions on the rate constant (kp) for tension-induced pore formation in lipid membranes of giant unilamellar vesicles under constant applied tension. A decrease in salt concentration in solution as well as an increase in surface charge density of the membranes increased kp. These data indicate that kp increases as the extent of electrostatic interaction increases. We developed a theory on the effect of the electrostatic interactions on the free energy profile of the membrane containing a prepore and also on the values of kp; this theory explains the experimental results and fits the experimental data reasonably well in the presence of weak electrostatic interactions. Based on these results, we conclude that a decrease in the free energy barrier of the prepore state due to electrostatic interactions is the main factor causing an increase in kp.

  12. Conformational transformations induced by the charge-curvature interaction: Mean-field approach

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W.J.

    2006-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving ...

  13. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.;

    Glass exhibits a significant change in microstructure and properties when subjected to high pressure, since the short- and intermediate-range structures of a glass are tunable through compression. Understanding the link between the microscopic structure and macroscopic properties of glasses under...... high pressure is important, since the glass structures frozen-in under elevated pressure may give rise to properties unattainable under ambient pressure. Chemical strengthening of glass through K+-for-Na+ ion exchange is currently receiving significant interest due to the increasing demand for stronger...... and more damage resistant glasses. However, the interplay among isostatic compression, pressure-induced changes in alkali diffusivity, compressive stress generated through ion exchange, and the resulting mechanical properties are poorly understood. In this work, we employ a specially designed gas...

  14. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Science.gov (United States)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  15. Chemical modifications induced in bisphenol A polycarbonate by swift heavy ions

    International Nuclear Information System (INIS)

    The chemical modifications in bisphenol A polycarbonate induced by swift heavy ion irradiation are analyzed in situ by means of Fourier transform infrared (FTIR) spectroscopy. Four beams (13C, 20Ne, 48Ca, 129Xe) with energy of a few MeV/amu have been used. Irradiations were performed under vacuum with electronic stopping power in the range from 1.6 to 86 MeV mg-1 cm2. Deposited doses are less than or equal to 1 MGy. The FTIR spectra obtained after the irradiation exhibit an overall reduction of the intensities of the virgin PC typical vibration bands and the appearance of new bands. The analysis of the destruction and the new vibration bands points out that the energy deposition mechanisms are quite different depending on electronic stopping power

  16. In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Cong; Wu, Xingwei; Zhang, Chenfei; Ding, Hongbin; Hu, Jiansheng; Luo, Guang-Nan

    2014-09-01

    Lithium conditioning can significantly improve the plasma confinement of EAST tokamak by reducing the amount of hydrogen and impurities recycled from the wall, but the details of this mechanism and approaches that reduce the concentrations of hydrogen and impurities recycle still remain unclear. In this paper, we studied lithiated tungsten via a cascaded-arc plasma simulator. An in situ laser-induced breakdown spectroscopy (LIBS) diagnostic system has been developed to chemically image the three-dimensional distribution of lithium and impurities on the surface of lithiated tungsten co-deposition layer for the first time. The results indicate that lithium has a strong ability to draw hydrogen and oxygen. The impurity components from the co-deposition processes present more intensity on the surface of co-deposition layer. This work improves the understanding of lithiated tungsten mechanism and is useful for using LIBS as a wall-diagnostic technique for EAST.

  17. In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cong; Wu, Xingwei; Zhang, Chenfei [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Ding, Hongbin, E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Hu, Jiansheng; Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2014-09-15

    Lithium conditioning can significantly improve the plasma confinement of EAST tokamak by reducing the amount of hydrogen and impurities recycled from the wall, but the details of this mechanism and approaches that reduce the concentrations of hydrogen and impurities recycle still remain unclear. In this paper, we studied lithiated tungsten via a cascaded-arc plasma simulator. An in situ laser-induced breakdown spectroscopy (LIBS) diagnostic system has been developed to chemically image the three-dimensional distribution of lithium and impurities on the surface of lithiated tungsten co-deposition layer for the first time. The results indicate that lithium has a strong ability to draw hydrogen and oxygen. The impurity components from the co-deposition processes present more intensity on the surface of co-deposition layer. This work improves the understanding of lithiated tungsten mechanism and is useful for using LIBS as a wall-diagnostic technique for EAST.

  18. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  19. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    Science.gov (United States)

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  20. Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb0.95La0.05Zr0.54Ti0.46O3 thin films

    Science.gov (United States)

    Batra, Vaishali; Ramana, C. V.; Kotru, Sushma

    2016-08-01

    We report the effect of post deposition annealing temperature (Ta = 550 and 750 °C) on the surface morphology, chemical bonding and structural development of lanthanum doped lead zirconate titanate (Pb0.95La0.05Zr0.54Ti0.46O3; referred to PLZT) thin films prepared using chemical solution deposition method. Atomic force microscopy demonstrates formation of nanocrystallites in the film annealed at Ta = 750 °C. X-ray photoelectron spectroscopy (XPS) analyses indicate that the binding energies (BE) of the Pb 4f, Zr 3d, and Ti 2p doublet experience a positive energy shift at Ta = 750 °C, whereas the BE of O 1s and La 3d doublet show a negative shift with respect to the BE of the films annealed at Ta = 750 °C. Thermal induced crystallization and chemical modification is evident from XPS results. The Ar+ sputtering of the films reveals change in oxidation state and chemical bonding between the constituent atoms, with respect to Ta. Raman spectroscopy used to study phonon-light interactions show shift in longitudinal and transverse optical modes with the change in Ta, confirming the change in phase and crystallinity of these films. The results suggest annealing at Ta = 750 °C yield crystalline perovskite PLZT films, which is essential to obtain photovoltaic response from devices based on such films.

  1. The Chemopreventive Effect of Tamoxifen Combined with Celecoxib on DMBA chemically-Induced Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Xiaoxu Liu; Huafeng Kang; Xijing Wang; Zhijun Dai; Fengjie Xue; Xinghuan Xue

    2007-01-01

    Objective: To investigate the chemopreventive effect of tamoxifen combined with a COX-2 selective inhibitor, celecoxib, on breast cancer in rats chemically induced by 7,12-dimethylben (a)anthracene (DMBA). Methods:DMBA was irrigated into the stomaches of SD female rats to build breast cancer model. A total of 120 rats were divided into four groups: control group, tamoxifen group, celecoxib group and combined group. The incidence rate, latent period, number and volume of breast cancer were detected and analyzed. Results:The tumor incidence rate of tamoxifen group (48.15%, 13/27) and celecoxib group (50.00%,14/28) were lower than that of control group (85.71%, 24/28), but higher than that of combined group (21.43%, 6/28). The tumor's latent period of tamoxifen group (97.54±1.85 d) and celecoxib group (96.79±2.89 d) were longer than that of control group (89.50±5.99 d), but shorter than that of combined group (103.67±3.39 d). The average tumor number of tamoxifen group (1.77±0.73) and celecoxib group (1.71±0.61) were less than that of control group (3.50±1.62), but more than that of combined group ( 1.17±0.42 ). The average tumor volume of tamoxifen group (1.78±0.71 cm3) and celecoxib group (2.05±1.04 cm3) were smaller than that of control group (6.42±3.96 cm3), but bigger than that of combined group (0.71±0.96 cm3) (P < 0.05 respectively).Conclusion:Celecoxib and tamoxifen are effective drugs in preventing the occurrence of rat breast cancer chemically induced by DMBA. Furthermore, combination of them has better chemopreventive effect.

  2. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  3. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators

    CERN Document Server

    Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-01-01

    The nonlinear propagation of optical pulses in dielectric waveguides and resonators provides a laboratory to investigate a wide range of remarkable interactions. Many of the resulting phenomena find applications in optical systems. One example is dispersive wave generation, the optical analog of Cherenkov radiation. These waves have an essential role in fiber spectral broadeners that are routinely used in spectrocopy and metrology. Dispersive waves form when a soliton pulse begins to radiate power as a result of higher-order dispersion. Recently, dispersive wave generation in microcavities has been reported by phase matching the waves to dissipative Kerr cavity (DKC) solitons. Here, it is shown that spatial mode interactions within a microcavity can also be used to induce dispersive waves. These interactions are normally avoided altogether in DKC soliton generation. The soliton self frequency shift is also shown to induce fine tuning control of the dispersive wave frequency. Both this mechanism and spatial mo...

  4. Fluctuation-induced forces between atoms and surfaces: the Casimir-Polder interaction

    CERN Document Server

    Intravaia, F; Antezza, M

    2010-01-01

    Electromagnetic fluctuation-induced forces between atoms and surfaces are generally known as Casimir-Polder interactions. The exact knowledge of these forces is rapidly becoming important in modern experimental set-ups and for technological applications. Recent theoretical and experimental investigations have shown that such an interaction is tunable in strength and sign, opening new perspectives to investigate aspects of quantum field theory and condensed-matter physics. In this Chapter we review the theory of fluctuation-induced interactions between atoms and a surface, paying particular attention to the physical characterization of the system. We also survey some recent developments concerning the role of temperature, situations out of thermal equilibrium, and measurements involving ultra-cold atoms.

  5. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    International Nuclear Information System (INIS)

    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10-12- 10-9 s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl radicals react

  6. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada); Waker, A.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Prestwich, W.V. [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada)

    1998-02-01

    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10{sup -12}- 10{sup -9} s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl

  7. INTERACTION-MEDIATED GROWTH OF CARBON NANOTUBES ON ACICULAR SILICA-COATED α-Fe CATALYST BY CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    Qixiang Wang; Guoqing Ning; Fei Wei; Guohua Luo

    2003-01-01

    Multi-walled carbon nanotubes (MWNTs) with 20 nm outer diameter were prepared by chemical vapor deposition of ethylene using ultrafine surface-modified acicular α-Fe catalyst particles. The growth mechanism of MWNTs on the larger catalyst particles are attributed to the interaction between the Fe nanoparticles with the surface-modified silica layer. This interaction-mediated growth mechanism is illustrated by studying the electronic, atomic and crystal properties of surface-modified catalysts and MWNTs products by characterization with X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), thermal gravimetric analysis (TGA) and Raman spectra.

  8. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  9. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    International Nuclear Information System (INIS)

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys, hence promoting FCCI

  10. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  11. Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy

    Science.gov (United States)

    Jin, Feng; Trivedi, Sudhir B.; Yang, Clayton S.; Brown, Ei E.; Kumi-Barimah, Eric; Hommerich, Uwe H.; Samuels, Alan C.

    2016-05-01

    Conventional laser induced breakdown spectroscopy (LIBS) mostly uses silicon-based detectors and measures the atomic emission in the UV-Vis-NIR (UVN) region of the spectrum. It can be used to detect the elements in the sample under test, such as the presence of lead in the solder for electronics during RoHS compliance verification. This wavelength region, however, does not provide sufficient information on the bonding between the elements, because the molecular vibration modes emit at longer wavelength region. Measuring long-wave infrared spectrum (LWIR) in a LIBS setup can instead reveal molecular composition of the sample, which is the information sought in applications including chemical and explosive detection and identification. This paper will present the work and results from the collaboration of several institutions to develop the methods of LWIR LIBS for chemical/explosive/pharmaceutical material detection/identification, such as DMMP and RDX, as fast as using a single excitation laser pulse. In our latest LIBS setup, both UVN and LWIR spectra can be collected at the same time, allowing more accurate detection and identification of materials.

  12. Secondary Metabolome Variability and Inducible Chemical Defenses in the Mediterranean Sponge Aplysina cavernicola.

    Science.gov (United States)

    Reverter, M; Perez, T; Ereskovsky, A V; Banaigs, B

    2016-01-01

    Secondary metabolites play a crucial role in marine invertebrate chemical ecology. Thus, it is of great importance to understand factors regulating their production and sources of variability. This work aimed to study the variability of the bromotyrosine derivatives in the Mediterranean sponge Aplysina cavernicola, and also to better understand how biotic (reproductive state) and abiotic factors (seawater temperature) could partly explain this variability. Results showed that the A. cavernicola reproductive cycle has little effect on the variability of the sponges' secondary metabolism, whereas water temperature has a significant influence on the production level of secondary metabolites. Temporal variability analysis of the sponge methanolic extracts showed that bioactivity variability was related to the presence of the minor secondary metabolite dienone, which accounted for 50 % of the bioactivity observed. Further bioassays coupled to HPLC extract fractionation confirmed that dienone was the only compound from Aplysina alkaloids to display a strong bioactivity. Both dienone production and bioactivity showed a notable increase in October 2008, after a late-summer warming episode, indicating that A. cavernicola might be able to induce chemical changes to cope with environmental stressors. PMID:26757731

  13. Influence of physical, chemical and inducer treatments on menaquinone-7 biosynthesis by Bacillus subtilis MTCC 2756

    Directory of Open Access Journals (Sweden)

    Alka Puri

    2015-06-01

    Full Text Available Effects of physical and chemical treatment on nutrient mobility, their utilization for menaquinone-7 (MK-7 biosynthesis; growth of microbial cells has been investigated in the present research. Bacillus subtilis MTCC 2756 fermented medium was supplied with 1-naphthol and hypoxanthine resulted in a significant increase in MK-7 production. Ultrasonication, electric shock, heat shock, and tween 80 were used for inducer uptake by Bacillus subtilis and menaquinone-7 production. Induction of Bacillus subtilis (at 16 hours of fermentation using 1-naphthol (2 mg/ml, along with tween 80 (0.1% was found to increase the MK-7 production by 3 fold i.e. 14.4 µg/ml as compared to the untreated fermentation medium. The ultrasonicated (ultrasonic power 33 W, treatment time 4 min and frequency 36 KHz microbial cells yielded higher biomass and 2.5 fold increase in the MK-7 production i.e.10.3 µg/ml than control. 1-naphthol along with physical or chemical treatment is required for maximum MK-7 production by Bacillus subtilis.

  14. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    Science.gov (United States)

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA. PMID:26196040

  15. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: Insights from the quasi-chemical approximation

    OpenAIRE

    Richard A Goldstein

    2007-01-01

    We investigate the mechanisms used by proteins to maintain thermostability throughout a wide range of temperatures. We use the quasi-chemical approximation to estimate interaction strengths for psychrophiles, mesophiles, thermophiles, and hyperthermophiles. Our results highlight the importance of core packing in thermophilic stability. Although we observed an increase in the number of charged residues, the contribution of salt bridges appears to be relatively modest by comparison. We observed...

  16. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    OpenAIRE

    Liu Yang; Qiang Han; Shuya Cao; Feng Huang; Molin Qin; Chenghai Guo; Mingyu Ding

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical an...

  17. Chemical modification of polycarbonate induced by 1.4 GeV Ar ions

    International Nuclear Information System (INIS)

    Polycarbonate foil stacks were irradiated with 1.4 GeV Ar ions at room temperature. The induced modifications in chemical structure were studied by Fourier transform infrared (FTIR) and ultraviolet/visible absorption (UV/VIS) spectroscopies. FTIR measurements reveal that material degradation through bond breaking are the main effects. Significant reduction in absorbance of the typical infrared bands is observed at energy densities higher than 8x1022 eV/cm3. Alkyne end groups are produced by the irradiations and the electronic energy loss threshold for production of the alkyne end group is found to be below 0.61 keV/nm. UV/VIS measurements indicate a shifting of the absorption edge from ultraviolet towards visible and a strong increase of absorbance in the ultraviolet and visible regions. The irradiation induced changes in absorbance at wavelengths of 380, 450 and 500 nm follow roughly linear relationship with fluence and scale rather good with the square of electronic energy loss. The results are briefly discussed

  18. Modulatory influence of Phyllanthus niruri on oxidative stress, antioxidant defense and chemically induced skin tumors.

    Science.gov (United States)

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Goyal, Pradeep Kumar

    2011-01-01

    The present study evaluates the modulatory potential of Phyllanthus niruri on chemically induced skin carcinogenesis, and its influence on oxidative stress and the antioxidant defense system. Oral administration of P. niruri extract (PNE), during peri- (Gr. III), post- (Gr. IV), or peri- and post- (Gr. V) initiational stages of 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil–induced papillomagenesis considerably reduced tumor burden to 4.20, 4.00, and 3.33(positive control value 6.20); cumulative number of papillomas to 21, 16, and 10, respectively, (positive control value 62); and incidence of mice bearing papillomas to 50, 40, and 30%, respectively (positive control value 100%), but significantly increased the average latent period to 10.14, 10.62, and 11.60, and inhibition of tumor multiplicity to 66, 74,and 83%, respectively. Enzyme analysis of skin and liver showed a significant (p ≤ 0.05, ≤ 0.01, ≤ 0.001) elevation in antioxidant parameters such as superoxide dismutase, catalase, glutathione, and vitamin C in PNE-treated groups (Gr. III–V) when compared with the carcinogen-treated control (Gr. II). The elevated level of lipid peroxidation in the carcinogen-treated positive control group was significantly (p ≤ 0.05, ≤ 0.01, ≤ 0.001) inhibited by PNE administration. These results indicate that P. niruri extract has potentiality to reduce skin papillomas by enhancing antioxidant defense system. PMID:21609315

  19. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Inflammatory bowel disease (IBD), the most important being Crohn's disease and ulcerative colitis, results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract. Although the pathogenesis of IBD remains unclear, it is widely accepted that genetic, environmental, and immunological factors are involved. Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses. To investigate the etiology of IBD, animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD. Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described. In this manuscript, we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis (e.g. dextran sodium sulfate-, 2,4,6-trinitrobenzene sulfonic acid-, oxazolone-, acetic acid-, and indomethacin-induced models). We also summarize some regulatory and pathogenic factors demonstrated by these models that can, hopefully, be exploited to develop future therapeutic strategies against IBD.

  20. Identification of Differently Expressed Genes in Chemical Carcinogen-induced Rat Bladder Cancers

    Institute of Scientific and Technical Information of China (English)

    Guangfu CHEN; Franky L. CHAN; Xu ZHANG; Peter S.F. CHAN

    2009-01-01

    Possible altered gene expression patterns in bladder turnout carcinogenesis in rat bladder cancers induced by BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine] was examined by cDNA microarray analysis of gene expression profiles.Thirty Sprague-Dawley rats were given drinking water containing 0.05% BBN ad libitum for 24 to 28-weeks.Equal numbers of control rats were given tap water without BBN.After treatment,the rat bladders were excised for RNA extraction and histopathological examinations.Total RNAs were extracted from rat transitional cell carcinoma (TCC) tissues and micro-dissected normal rat bladder epithelia.The atlas glass rat microarray was used,which included oligonucleotides of 1081 rat genes.Some of the up-regulated genes in rat bladder TCCs were further confirmed by Northern blotting.Our results showed that the transcriptions of 30 genes were significantly elevated in the rat bladder TCCs,and these included fly proto-oncogene,Lipocortin 2,COX Ⅳ,COX Ⅴ a,and cathepsin D.Also,15 genes were significantly down-regulated in the rat bladder TCCs and they included B7.1,TNFrl,APOAI and VHL.The resuits of cDNA microarray analysis demonstrated that normal rat bladder epithelia and bladder TCC exhibited different and specific gene statement profiles.The increased expressions of the identified genes may play an important role in the chemically induced bladder carcinogenesis.

  1. Combination of high performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    OpenAIRE

    Müller, Ulrich; Philipp, Martine; Gervais, P. C.; Possart, Prof Dr Wulff; Wehlack, C.; Kieffer, J.; Sanctuary, Roland; Krüger, Jan-Kristian

    2010-01-01

    A combination of infrared spectroscopy and high performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight in the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, ...

  2. Classical ab initio van der Waals interactions from many-body dispersion and multipole machine learning models trained in chemical space

    CERN Document Server

    Bereau, Tristan; von Lilienfeld, O Anatole

    2015-01-01

    Accurate predictions of van der Waals forces require faithful models of dispersion, permanent and induced multipole-moments, as well as penetration and repulsion. We introduce a universal combined physics- and data-driven model of dispersion and multipole-moment contributions, respectively. Atomic multipoles are estimated "on-the-fly" for any organic molecule in any conformation using a machine learning approach trained on quantum chemistry results for tens of thousands of atoms in varying chemical environments drawn from thousands of organic molecules. Globally neutral, cationic, and anionic molecular charge states can be treated with individual models. Dispersion interactions are included via recently-proposed classical many-body potentials. For nearly one thousand intermolecular dimers, this approximate van der Waals model is found to reach an accuracy similar to that of state-of-the-art force fields, while bypassing the need for parametrization. Estimates of cohesive energies for the benzene crystal confi...

  3. Micro-optical characterization of biomolecules and chemical interactions using half-coated fluorescent particle

    Science.gov (United States)

    Choi, Jaehyuck

    We introduce new experimental technologies and theories for the measurements of very weak intermolecular forces and of the torsional spring modulus of a ds-DNA by using half-coated fluorescent nanoparticle. Compared to current measurement techniques these new methodologies provide a number of advantages. For the measurement of intermolecular forces, our method is able to characterize very weak noncovalent intermolecular forces in the femto-newton range, which has been considered very difficult even with existing state-of-art techniques such as AFM (atomic force microscopy) or optical tweezers. Also the molecular systems under investigation with our technique do not experience any deformation of their structures thus maintain their physical properties. This is due to that our technique uses only Brownian force resulting from thermal agitation of the fluidic environments as the only power source. This is very important because it is well known that applying external forces stronger than the forces to measure while the molecular systems are being investigated could disturb the systems themselves. Therefore the interaction forces could have been already affected during the measurement, which does not allow us to acquire their pure intrinsic properties. For the measurement of torsional spring modulus of ds-DNA molecule, we propose a method to measure the torsional modulus value isolated from other undesirable side effects resulting from bending or buckling of the DNA chain. Up to now torsional elastic properties of DNA have been investigated by applying an external torque around the axis of a vertically stretched DNA. A DNA under stretch, while torque is applied, can avoid the formation of plectoneme caused by molecular buckling. However, an applied stretching force may cause overestimate of the intrinsic DNA torsional modulus via elastic coupling between twisting, bending and stretching. Therefore, the reported results from the existing methods may deviate from the

  4. Spin chemical potential bias induced surface current evidenced by spin pumping into the topological insulator B i2T e3

    Science.gov (United States)

    Abdulahad, Faris Basheer; Lin, Jin-Han; Liou, Yung; Chiu, Wen-Kai; Chang, Liang-Juan; Kao, Ming-Yi; Liang, Jun-Zhi; Hung, Dung-Shing; Lee, Shang-Fan

    2015-12-01

    A spin chemical potential bias can induce a spin-polarized current by the exchange interaction of a ferromagnet with the spin-momentum locking surface states of the topological insulators. We carried out our ferromagnetic resonance experiment in a NiFe /B i2T e3 heterostructure. Apart from the enhanced Gilbert damping constant, we observed strong enhancement of the effective magnetic field at low temperatures. The enhanced field decreased exponentially with increasing temperature at an energy scale of 2.5 meV, representing the strength of the exchange coupling. We attribute the enhanced field to the induced spin-polarized current in the surface states of B i2T e3 .

  5. H-2 restriction of the T cell response to chemically induced tumors: evidence from F1 → parent chimeras

    International Nuclear Information System (INIS)

    It has been well established that T cells that react to tumor antigen on virus-induced tumors must share H-2D or H-2K specificities with the tumor. It has been impossible to perform similar studies with chemically induced tumors because each chemically induced tumor expresses a unique tumor antigen that cannot be studied in association with other H-2 types. This study provies evidence that H-2 recognition is also necessary for recognition of chemically induced tumors. We have found that F1 → parent chimeras preferentially recognize chemically induced tumors of parental H-2 type. C3H/HeJ and C57BL/6 mice were lethally irradiated and restored with (C3H x C57BL/6) F1 hybrid bone marrow. The F1 → C3H chimera but not the F1 → C57BL/6 chimera was able to respond to a C3H fibrosarcoma in mixed lymphocyte-tumor cell culture and also to neutralize the tumor in an in vivo tumor neutralization assay. On the other hand, the F1 → C57BL/6 chimera but not the F1 → C3H chimera was able to kill the C57BL/6 lymphoma EL4 in an in vitro cytotoxicity assay. Both chimeras were tolerant to C3H and C57BL/6 alloantigens but could respond normally to Con A and to BALB/c spleen cells in mixed lymphocyte cultures and cytotoxicity assay

  6. Nonlinear theory of laser-induced dipolar interactions in arbitrary geometry

    CERN Document Server

    Shahmoon, Ephraim

    2013-01-01

    Polarizable dipoles, such as atoms, molecules or nanoparticles, subject to laser radiation, may attract or repel each other. We derive a general formalism in which such laser-induced dipole-dipole interactions (LIDDI) in any geometry and for any laser strength are described in terms of the resonant dipole-dipole interaction (RDDI) between dipoles dressed by the laser. Our expressions provide a physically clear and technically simple route towards the analysis of LIDDI in a general geometry. This approach can treat both mechanical and internal-state interactions between the dipoles. Our general results reveal LIDDI effects due to nonlinear dipole-laser interactions, unaccounted for by previous treatments of LIDDI. We discuss, via several simple approaches, the origin of these nonlinear effects and their absence in previous works.

  7. Improving sensitivity of laser-induced breakdown spectroscopy using laser plasmas interaction

    Science.gov (United States)

    Il'in, Alexey A.; Golik, Sergey S.; Nagorny, Ivan G.; Bulanov, Alexey V.

    2006-11-01

    Laser plasmas interaction and spectral characteristics of plasma were investigated at a laser breakdown in a normal atmosphere with the purpose of improving laser-induced breakdown spectroscopy sensitivity. Colliding plasmas interaction was investigated depending on mechanism of absorption wave of laser radiation and distance between foci. Laser supported detonation wave, breakdown wave and fast wave of ionization are absorption wave observed in experiment. It was shown that seed electrons for cascade breakdown in front of fast wave of ionization is occurred due to oxygen molecules photoionization. Molecular emission and collapse of intensity of plasma continuum during the initial moments of laser plasma expansion were registered. The line/continuum ratio was essentially increased in case of laser plasmas interaction. Thus laser plasmas interaction improves sensitivity of LIBS.

  8. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    OpenAIRE

    Qidi Zhu; Yulong Song; Gaisheng Zhang; Lan Ju; Jiao Zhang; Yongang Yu; Na Niu; Junwei Wang; Shoucai Ma

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther tra...

  9. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, D. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Mercader, C.; Quere, S.; Hairault, L. [CEA, DAM, Le Ripault, F-37260 Monts (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Methivier, C. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Pradier, C.M., E-mail: claire-Marie.pradier@upmc.fr [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Measurements of interactions by Quartz Crystal Microbalance. Black-Right-Pointing-Pointer AFM and CFM measurements, tip functionalisation. Black-Right-Pointing-Pointer Surface nano-imaging. - Abstract: By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  10. Binding of bisphenol A and acrylamide to BSA and DNA: insights into the comparative interactions of harmful chemicals with functional biomacromolecules.

    Science.gov (United States)

    Zhang, Ya-Lei; Zhang, Xian; Fei, Xun-Chang; Wang, Shi-Long; Gao, Hong-Wen

    2010-10-15

    The interactions between bisphenol A (BPA)/acrylamide (AA) and bovine serum albumin (BSA)/deoxyribonucleic acid (DNA) was investigated by the equilibrium dialysis, fluorophotometry, isothermal titration calorimetry (ITC) and circular dichroism (CD). The bindings of BPA and AA to BSA and DNA responded to the partition law and Langmuir isothermal model, respectively. The saturation mole number of AA was calculated to be 24 per mol BSA and 0.26 per mol DNA-P. All the reactions were spontaneous driven by entropy change. BPA stacked into the aromatic hydrocarbon groups of BSA and between adjacent basepairs of DNA via the hydrophobic effect. The interactions of AA with BSA and DNA induced the formation of hydrogen bond and caused changes of their secondary structures. At normal physiological condition, 0.100 mmol/l BPA reduced the binding of vitamin B(2) to BSA by more than 70%, and 2.8 mmol/l AA by almost one half. This work provides an insight into non-covalent intermolecular interaction between organic contaminant and biomolecule, helping to elucidate the toxic mechanism of harmful chemicals. PMID:20673609

  11. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results. PMID:26105141

  12. Laser-induced chemical reactions. [H + H/sub 2/; F + H/sub 2/; H + HF; Cl + H/sub 2/; H + HCl; H + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Orel, A.E.

    1980-12-01

    A classical model for the interaction of laser radiation with a molecular system is derived. This model is used to study the enhancement of a chemical reaction via a collision induced absorption. It was found that an infrared laser will in general enhance the rate of a chemical reaction, even if the reactants are infrared inactive. Results for an illustrative analytically solvable model are presented, as well as results from classical trajectory studies on a number of systems. The collision induced absorption spectrum in these systems can be written as the Fourier transform of a particular dipole correlation function. This is used to obtain the collision induced absorption spectrum for a state-selected, mono-energetic reactive collision system. Examples treated are a one-dimensional barrier problem, reactive and nonreactive collisions of H + H/sub 2/, and a modified H + H/sub 2/ potential energy surface which leads to a collision intermediate. An extension of the classical model to treat laser-induced electronically nonadiabatic collision processes is constructed. The model treats all degrees of freedom, molecular, electronic and radiation, in a dynamically consistent framework within classical mechanics. Application is made to several systems. Several interesting phenomena are discovered including a Franck-Condon-like effect causing maxima in the reaction probability at energies much below the classical threshold, laser de-enhancement of chemical reactions and an isotope effect. In order to assess the validity of the classical model for electronically nonadiabatic process (without a laser field), a model problem involving energy transfer in a collinear atom-diatom system is studied, and the results compared to the available quantum mechanical calculation. The calculations are in qualitative agreement.

  13. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    International Nuclear Information System (INIS)

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics

  14. Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).

    Science.gov (United States)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe

  15. Chemically induced renormalization phenomena in Pb-based relaxor ferroelectrics under high pressure

    International Nuclear Information System (INIS)

    The pressure-induced phase transition sequence in PbSc0.5Ta0.5O3 (PST) and PbSc0.5Nb0.5O3 (PSN) heavily doped with homo- and heterovalent cations on the A- or B-site of the perovskite-type structure (ABO3) was analysed by in situ synchrotron x-ray diffraction and Raman spectroscopy up to pressures of 25 GPa. We focused on the structural phenomena occurring above the first pressure-induced phase transition at pc1 from a relaxor state to a non-polar rhombohedral phase with antiphase tilting of the BO6 octahedra. The samples studied were PST doped with Nb5+ and Sn4+ on the B-site, PST doped with Ba2+ and La3+ on the A-site and PSN doped with Sr2+ and La3+ on the A-site. All of them exhibit a second pressure-induced phase transition at pc2, similar to pure PST and PSN. The second transition involves the development of either order of antiparallel Pb2+ displacements and complementary a+b−b− octahedral tilts, or a−b−b− (0 ≤ a 5+ for Ta5+ as well as the coupled substitution of Sn4+ for Sc3+ + Ta5+ on the octahedral B sites increases the second critical pressure. The doping by Nb5+ also reduces the length of coherence of antipolar Pb2+ order developed at pc2. The isovalent substitution of the larger Ba2+ for Pb2+ on the A-site suppresses the antipolar Pb2+ order due to the induced local elastic stresses and thus significantly increases pc2. The substitution of smaller cations for Pb2+ on the A-site generally favours the development of long-range order of antiparallel Pb2+ displacements because of the chemically enhanced a−a−a− octahedral tilts. However, this ordering is less when the dopant is aliovalent, due to the charge imbalance on the A-site. For all of the relaxors studied here, the dynamic compressibility estimated from the pressure derivative of the wavenumber of the soft mode associated with the first phase transition is larger in the pressure interval between pc1 and pc2 than above pc2. The dynamic compressibility of the phase above pc2

  16. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine

    DEFF Research Database (Denmark)

    Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar

    2007-01-01

    among their amplitudes. It is valuable for the design and condition monitoring to count on these characteristics. A CFD model is an appropriate tool to determine the force and its characteristics. However it is time consuming and needs highly qualified human resources while usually these results are...... result of the analysis and after it is carried out in one of the units, the vibration levels are reduced The vibration induced by the RSI is predicted considering the sequence of interaction and different amplitudes in the interactions between the same moving blade and different stationary blades, giving...

  17. Cluster of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction

    CERN Document Server

    Clavería, Viviana; Thiébaud, Marine; Abkarian, Manouk; Coupier, Gwennou; Misbah, Chaouqi; John, Thomas; Wagner, Christian

    2016-01-01

    We present experiments on RBCs that flow through microcapillaries under physiological conditions. We show that the RBC clusters form as a subtle imbrication between hydrodynamics interaction and adhesion forces because of plasma proteins. Clusters form along the capillaries and macromolecule-induced adhesion contribute to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes the only predominant mechanism. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles captures the transition between adhesive and non-adhesive clusters at different flow velocities.

  18. Contribution of Instanton Induced Interaction for Penta-quarks in MIT Bag Model

    CERN Document Server

    Shinozaki, T; Takeuchi, S; Shinozaki, Tetsuya; Oka, Makoto; Takeuchi, Sachiko

    2004-01-01

    Roles of instanton induced interactions (III) in the masses of pentaquark baryons, Theta^+ (J=1/2 and 3/2) and Xi^{--}, and a dibaryon, H, are discussed using the MIT bag model. It is shown that the two-body terms in III give a strong attraction mainly due to the increase of the number of pairs in multi-quark systems. In contrast, the three-body $u$-$d$-$s$ interaction is repulsive. It is found that III lowers the mass of negative-parity Theta^+ as much as 100 MeV from the mass predicted by the bag model without III.

  19. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating

  20. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    Science.gov (United States)

    Shao, Guo-yun; Tang, Zhan-duo; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-07-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu-Jona-Lasinio (PNJL) model with an explicit chemical potential dependence of Polyakov loop potential (μ PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the μ -dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of u , d quarks in the hadron-quark coexisting phase, and analyze the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and properties of the mixed phase would bring relevant information on the expected chemical potential dependence of the Polyakov loop contribution.

  1. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    Energy Technology Data Exchange (ETDEWEB)

    Dutrow, Barbara

    2008-08-13

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  2. Evaluation of sensitivity for positive tone non-chemically and chemically amplified resists using ionized radiation: EUV, x-ray, electron and ion induced reactions

    Science.gov (United States)

    Oshima, Akihiro; Oyama, Tomoko Gowa; Washio, Masakazu; Tagawa, Seiichi

    2013-03-01

    The different exposure sources induce a different energy deposition in resist materials. Linear energy transfer (LET) effect for resist sensitivity is very important issue from the viewpoint of radiation induced chemical reactions for high-volume nanofabrication. The sensitivities of positive tone non-chemically (non-CA, ZEP) and chemically amplified (CA, UV-3) resist materials are evaluated using various ionized radiation such as EUV, soft X-rays, EB and various ion beams. Since the notations of sensitivity of resist vary with exposure sources, in order to evaluate systematically, the resist sensitivity were estimated in terms of absorbed dose in resist materials. Highly-monochromated EUV and soft X-rays (6.7 nm - 3.1 nm) from the BL27SU of the SPring-8, high energy ion beams (C6+, Ne10+, Mg12+, Si14+ , Ar18+, Kr36+ and Xe54+) with 6 MeV/u from MEXP of HIMAC, EB from low energy EB accelerator (Hamamatsu Photonics, EB-engine®, 100 kV) and EB lithography system (30 keV and 75keV) were used for the exposure. For non-CA and CA resist materials, it was found that LET effects for sensitivity would be hardly observed except for heavier ion beams. Especially, in the case of the high energy ion beam less than Si14+ with 6 MeV/u, it is suggested that the radiation induced chemical reaction would be equivalent to EUV, soft X-ray and EB exposure. Hence, it indicates that the resist sensitivity could be systematically evaluated by absorbed dose in resist materials.

  3. Development of new materials and structures based on managed physical-chemical factors of local interaction

    Science.gov (United States)

    Urakov, A. L.

    2016-04-01

    The paper states that assigning certain physical and chemical characteristics to pills and medical drugs solutions can substitute for the development of new drugs (which is essentially equivalent to the creation of new medicines). It is established that the purposeful change of physical and chemical characteristics of the standard ("old") materials (in other words, the known substances) is fundamental for the production of solid and liquid medicines, which allows us to get "new" structures and materials. The paper shows that assigning new physical and chemical properties to "old" materials and their further usage for the production of tablets and solutions from the "old" and well-known medicines can turn even very "old" medicine into very "novel" (moreover, even very fashionable) one with unprecedented (fantastic) pharmacological activity and new mechanisms of action.

  4. Influence of the Chemical Interactions on the Removal Rate of Different Salts in Electrokinetic Desalination Processes

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.;

    2011-01-01

    Electrokinetic desalination techniques have been successfully applied for the prevention of salt-induced deterioration problems of masonry and other construction materials. A mathematical model for electrochemical desalination treatments is described, based on the Poisson-Nernst-Planck system of ...

  5. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    International Nuclear Information System (INIS)

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe2* excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N0, where N is the number of produced or decomposed molecule, and N0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10-4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  6. Classification of chemical substances, reactions, and interactions: The effect of expertise

    Science.gov (United States)

    Stains, Marilyne Nicole Olivia

    2007-12-01

    This project explored the strategies that undergraduate and graduate chemistry students engaged in when solving classification tasks involving microscopic (particulate) representations of chemical substances and microscopic and symbolic representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention while classifying, identifying the patterns of reasoning that they follow, and comparing the performance of students with different levels of preparation in the discipline. In general, our results suggest that advanced levels of expertise in chemical classification do not necessarily evolve in a linear and continuous way with academic training. Novice students had a tendency to reduce the cognitive demand of the task and rely on common-sense reasoning; they had difficulties differentiating concepts (conceptual undifferentiation) and based their classification decisions on only one variable (reduction). These ways of thinking lead them to consider extraneous features, pay more attention to explicit or surface features than implicit features and to overlook important and relevant features. However, unfamiliar levels of representations (microscopic level) seemed to trigger deeper and more meaningful thinking processes. On the other hand, expert students classified entities using a specific set of rules that they applied throughout the classification tasks. They considered a larger variety of implicit features and the unfamiliarity with the microscopic level of representation did not affect their reasoning processes. Consequently, novices created numerous small groups, few of them being chemically meaningful, while experts created few but large chemically meaningful groups. Novices also had difficulties correctly classifying entities in chemically meaningful groups. Finally, expert chemists in our study used classification schemes that are not necessarily traditionally taught in classroom

  7. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes. PMID:18814656

  8. Photo-induced modifications of the substrate-adsorbate interaction in K-loaded porous glass

    International Nuclear Information System (INIS)

    The effects of visible and infrared light on potassium atoms embedded in a nanoporous glass matrix are investigated. Photodesorption by visible light enhances the atomic mobility and causes the formation of metallic nanoparticles. Two different populations of metastable clusters with absorption bands in the near-infrared and infrared are grown as a consequence of illumination. Atoms can move between the two groups through sequences of adsorption/desorption events at the pore surface. Irradiation with infrared light, instead, does not significantly enhance the atomic diffusion inside the pores. However, it induces relevant modifications of the substrate, thus changing its interaction with the assembled clusters. Consequently, infrared light alters the dynamics of the system, affecting also the evolution of non-resonant nanoparticles populations, even after the illumination sequence. These results provide new insights on the photo-induced modifications of the substrate-adsorbate interaction in nano-sized confined systems. (paper)

  9. Do chemical gradients within soil aggregates reflect plant/soil interactions?

    Science.gov (United States)

    Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike

    2016-04-01

    -specific: On P-rich study sites the results reveal a significant depletion of citric acid-extractable PO4 and P on aggregate surfaces in subsoil horizons, while at the other study sites a slight enrichment at the aggregate surfaces could be observed. Total P concentrations show no distinct gradients within topsoil aggregates, but a slight P enrichment at the surface of subsoil aggregates at the P-rich site. A strong correlation with the total Al concentrations may indicate a P speciation change within aggregates (e.g., due to acidification processes). These results were also confirmed by P K-edge XANES spectra of aggregate core and shell samples of the P-rich site: In the aggregate shells of topsoil as well as subsoil aggregates, organic P forms are most dominant (82 and 80 %, respectively) than in the aggregate interior (54 and 66%, respectively). Moreover, P in the shell seems to be completely associated to Al, whereas some of the P in the aggregate interior is bound to Fe and/or Ca. Overall, our results show that plant/soil interactions impact on small-scale distribution and bioavailability of nutrients by root uptake and root-induced aggregate engineering.

  10. Numerical simulation of the interaction of transport, diffusion and chemical reactions in an urban plume

    Science.gov (United States)

    Vogel, Bernhard; Vogel, Heike; Fiedler, Franz

    1994-01-01

    A model system is presented that takes into account the main physical and chemical processes on the regional scale here in an area of 100x100 sq km. The horizontal gridsize used is 2x2 sq km. For a case study, it is demonstrated how the model system can be used to separate the contributions of the processes advection, turbulent diffusion, and chemical reactions to the diurnal cycle of ozone. In this way, typical features which are visible in observations and are reproduced by the numerical simulations can be interpreted.

  11. Study of the chemical interactions of actinide cations in solution at macroscopic concentrations

    International Nuclear Information System (INIS)

    The aim of this work was to study the interactions of pentavalent neptunium in dodecane-diluted tributyl phosphate with other metallic cations, especially uranium VI and ruthenium present in reprocessing solutions. Pentavalent neptunium on its own was shown to exist in several forms complexed by water and TBP and also to dimerise. In the complex it forms with uranium VI the interaction via the neptunyl oxygen is considerably enhanced in organic solution. Dibutyl phosphoric acid strengthens the interaction between neptunium and uranium. The Np V-ruthenium interaction reveals the existence of a new cation-cation complex; the process takes place in two successive stage and leads to the formation, reinforced and accelerated by HDBP, of a highly to the formation, reinforced and accelerated by HDBP, of a highly stable complex. These results contribute towards a better knowledge of the behaviour of neptunium in the reprocessing operation

  12. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha

    International Nuclear Information System (INIS)

    The cellular protein hypoxia-inducible factor 1 alpha (HIF-1α) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1α was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1α-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1α to occur. HIF-1α controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.

  13. Evaluation of Yield and Chemical Characteristics of some Peanut Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    This study was conducted to evaluate some promising mutants in peanut for yielding ability over three generation (M5, M6 and M7) and to evaluate yield attributes as will as chemical characteristics of these mutants in M7 generation induced by 100 Gy gamma radiation. The obtained results showed that the increase of yield / plot over three generation as a percentage of control was 5% for mutant 7, 10.2 % for mutant 10; 22% for mutant 9 and 22.9% for mutant 8. This increase in yield may be due to increase of one or more of yield attributes for most mutant lines. The significant increase for. No .of pods and seeds/ plant, weight of pods and seeds/ plant and 100- seed weight in M7 as compared to the control. For saturated fatty acid composition, results revealed that total saturated fatty acids ranged from 17.79% for mutant 8 to 21.75 for mutant 2 compared to 24.21% for control. Reduction of total saturated fatty acid was noticed for different mutants compared to that of the original variety. However, for total unsaturated fatty acids, results indicated that total unsaturated fatty acid composition ranged from 77.95% for mutant 9 to 82.09% for mutant 8 compared to 75.49% for control. Higher total unsaturated fatty acids for all mutant lines were obtained than that of the control, however, total saturated (TS)/ total unsaturated (TU) ratio was decreased for all mutants compared to control. The physical and chemical contents of Peanut oils showed that the refractive indices were ranged from 1.4620 to 1.4718 specific gravity were in range of 0.9146 to 0.9177. Acid value was range from 0.54 to 0.89% lodine value was ranged from 94.56 to 101.85. Saponification value was ranged from 185.2 to 190.7 and unsaponifiable matter was ranged from 0.98 to 1.33. The peroxide values ranged from 1.15 to 2.33 meq/kg oil. Also, fortified yoghurt made with replaced mutant peanut oil by 50% as milk fat substitute. Data showed that chemical composition and organolyptic properties had the

  14. Agonistic encounters and cellular angst: social interactions induce heat shock proteins in juvenile salmonid fish

    OpenAIRE

    Currie, Suzanne; LeBlanc, Sacha; Watters, M. Alexandrea; Gilmour, Kathleen M.

    2009-01-01

    Juvenile salmonid fish readily form dominance hierarchies when faced with limited resources. While these social interactions may result in profound behavioural and physiological stress, it is unknown if this social stress is evident at the level of the cellular stress response—specifically, the induction of stress or heat shock proteins (Hsps). Thus, the goal of our study was to determine if Hsps are induced during hierarchy formation in juvenile rainbow trout (Oncorhynchus mykiss). To this e...

  15. Enhancement of four-wave mixing induced by interacting dark resonances

    International Nuclear Information System (INIS)

    We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances

  16. The effect of instanton-induced interaction on -wave meson spectra in constituent quark model

    Indian Academy of Sciences (India)

    Bhavyashri; S Sarangi; Godfrey Saldanha; K B Vijaya Kumar

    2008-01-01

    The mass spectrum of the -wave mesons is considered in a non-relativistic constituent quark model. The full Hamiltonian used in the investigation includes the kinetic energy, the confinement potential, the one-gluon-exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good description of the mass spectrum is obtained. The respective role of III and OGEP in the P-wave meson spectrum is discussed.

  17. Transconductance fluctuations as a probe for interaction induced quantum Hall states in graphene

    OpenAIRE

    Lee, Dong Su; Skakalova, Viera; Weitz, R. Thomas; von Klitzing, Klaus; Smet, Jurgen H.

    2012-01-01

    Transport measurements normally provide a macroscopic, averaged view of the sample, so that disorder prevents the observation of fragile interaction induced states. Here, we demonstrate that transconductance fluctuations in a graphene field effect transistor reflect charge localization phenomena on the nanometer scale due to the formation of a dot network which forms near incompressible quantum states. These fluctuations give access to fragile broken-symmetry and fractional quantum Hall state...

  18. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  19. Inducing mutations in the mouse genome with the chemical mutagen ethylnitrosourea

    Directory of Open Access Journals (Sweden)

    S.M.G. Massironi

    2006-09-01

    Full Text Available When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s. Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s. Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives. Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc. This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.

  20. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    OpenAIRE

    Ahmed, Ashour; Leinweber, Peter; Kühn, Oliver

    2013-01-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < o...

  1. Chemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides

    Science.gov (United States)

    Paul, V.J.; Kuffner, I.B.; Walters, L.J.; Ritson-Williams, R.; Beach, K.S.; Becerro, M.A.

    2011-01-01

    Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemical inhibition) mediates interactions between 2 common brown macroalgae, Dictyota pulchella and D. pinnatifida, and the coral Porites astreoides at different life-history stages of the coral. D. pinnatifida significantly reduced larval survival and larval recruitment. The extracts of both D. pinnatifida and D. pulchella significantly reduced larval survival, and the extract of D. pulchella also negatively influenced larval recruitment. There was no measurable effect of the crude extracts from Dictyota spp. on the photophysiology of adult corals. Our results provide evidence that these Dictyota species chemically compete with P. astreoides by negatively affecting larval settlement and recruitment as well as the survival of larvae and new recruits. Macroalgae may perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral recruitment. ?? 2011 Inter-Research.

  2. Chemically-mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides

    Science.gov (United States)

    Paul, Valerie J.; Kuffner, Ilsa B.; Walters, Linda J.; Ritson-Williams, Raphael; Beach, Kevin S.; Becerro, Mikel A.

    2011-01-01

    Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemical inhibition) mediates interactions between 2 common brown macroalgae, Dictyota pulchella and D. pinnatifida, and the coral Porites astreoides at different life-history stages of the coral. D. pinnatifida significantly reduced larval survival and larval recruitment. The extracts of both D. pinnatifida and D. pulchella significantly reduced larval survival, and the extract of D. pulchella also negatively influenced larval recruitment. There was no measurable effect of the crude extracts from Dictyota spp. on the photophysiology of adult corals. Our results provide evidence that these Dictyota species chemically compete with P. astreoides by negatively affecting larval settlement and recruitment as well as the survival of larvae and new recruits. Macroalgae may perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral recruitment.

  3. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    Science.gov (United States)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  4. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    CERN Document Server

    Shao, Guo-yun; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-01-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential ($\\mu$PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the $\\mu$-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of $u, d$ quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and proper...

  5. Chemical Potential Dependence of the Dressed—Quark Propagator from an Effective Quark—Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; PINGJia-Lun; 等

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.

  6. Innovations in bonding to zirconia-based materials. Part II: focusing on chemical interactions

    NARCIS (Netherlands)

    M.N. Aboushelib; H. Mirmohamadi; J.P. Matinlinna; E. Kukk; H.F. Ounsi; Z. Salameh

    2009-01-01

    Objectives: The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and

  7. Effects of ion bombardment on chemical interactions at SiC surface and Al/SiC interfaces

    International Nuclear Information System (INIS)

    An investigation into the SiC surface and its interaction with aluminum, in particular, focusing on the effect of ion bombardment and adsorption of oxygen, is described. Stoichiometric and carbon rich and SiC surfaces were produced and analyzed in situ by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Cubic SiC shows preferential sputtering under Ar ion bombardment, leading to carbon rich surface, whereas high temperature annealing also causes carbon rich surface. Activity of these surfaces was compared with oxygen and aluminum adsorption. Stoichiometrically sputtered surface showed vastly increased oxygen affinity, whereas carbon-rich sputtered surfaces did not. Aluminum deposition caused significant Al-C interaction for the stoichiometric ion-bombarded surface. Aluminum carbide was induced catalytically upon heating in the presence of oxygen. Carbon-rich surfaces had, however, no significant interactions with as-deposited Al due to strong surface C-C bonds

  8. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    International Nuclear Information System (INIS)

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 α-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author)

  9. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  10. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Science.gov (United States)

    Mercier, D.; Mercader, C.; Quere, S.; Hairault, L.; Méthivier, C.; Pradier, C. M.

    2012-10-01

    By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  11. The investigation of chemical interaction and energy level alignment at Bepp2/Fe65Co35 interface

    Science.gov (United States)

    Wang, Zhen; Pan, Weiwei; Wang, Jinguo; Xu, Chunlong; Hou, Zhaoyang; Zuo, Yalu; Xi, Li

    2016-05-01

    In a bilayer system of Bepp2-FeCo, the element content variation and chemical states of the Bepp2-FeCo interface were investigated using X-ray and ultraviolet photoelectron spectroscopy with Ar ion etching. Chemical reaction was observed for Co and Fe with Bepp2 at the interface. Ultraviolet photoelectron spectroscopy results showed a downward energy shift of -1.0 eV at the interface. This behavior was attributed to the formation of an interface dipole layer. The hole injection barrier ΦpB was 2.0 eV, and the electronic injection barrier ΦnB was 0.6 eV. Moreover, only as the FeCo thickness is less than 3 nm, an uniaxial anisotropy can be induced on the organic layer with the investigation of magnetic optical Kerr effect, this can be used as a multi-function devices.

  12. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice.

    Science.gov (United States)

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography-diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  13. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    Directory of Open Access Journals (Sweden)

    Jian-Hong Ye

    2015-11-01

    Full Text Available Protective effect of Hedyotis diffusa (H. diffusa Willd against lipopolysaccharide (LPS-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemoattractant protein (MCP-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones.

  14. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text

    Science.gov (United States)

    Bravo, Àlex; Li, Tong Shu; Su, Andrew I.; Good, Benjamin M.; Furlong, Laura I.

    2016-01-01

    Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects. Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V PMID:27307137

  15. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text.

    Science.gov (United States)

    Bravo, Àlex; Li, Tong Shu; Su, Andrew I; Good, Benjamin M; Furlong, Laura I

    2016-01-01

    Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects.Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V. PMID:27307137

  16. A study on the improving efficiency for laser-induced chemical reaction process

    International Nuclear Information System (INIS)

    The laser-induced photoreaction process is a very useful technology in environmental aspects as well as atomic energy industry. In this study various factors which affect to the reaction process has been investigated for the increment of efficiency of reaction process. Palladium and silver have been chosen as samples for the reaction and the reaction processes have been monitored very carefully. For palladium nitric acid was identified as the best solvent for the reaction, while oxalic acid was the best reducing agent. As the concentration of the reducing agent increases, the reactivity of the samples were increased. When more laser energy was illuminated to the samples, reactivity increased, too. The wavelength of the laser beam used for the reaction was 3rd harmonic of Nd:YAG laser(355 nm). For silver case perchloric acid and ethanol were the best combination for the optimal reaction condition. As a result of the analysis of the reaction products, pure palladium and silver were the products, not any other forms of chemicals. (author). 12 refs., 3 tabs., 26 figs

  17. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  18. Heuristic model of chemically induced electron spin polarization in two dimensions

    International Nuclear Information System (INIS)

    Graphical abstract: Like its three-dimensional predecessor, and unlike previous 2D models, this model handles all singlet-triplet mixing rates (Q) and, as illustrated below, gives the time evolution of the polarization. - Abstract: A heuristic model of chemically induced electron spin polarization (CIDEP) that breaks the polarization mechanism into its component steps, with each step governed by an appropriate solution of the diffusion equation, is extended from a three to a two-dimensional system. The required solution of the 2D diffusion equation is provided by a relatively simple analytic approximation to the usual infinite series solution. The model yields the polarization and its time development for weak to strong singlet-triplet mixing in the radical pairs, whereas previous models are limited to very weak or very strong mixing. Its results agree with a variational solution of an integral equation of Monchick and are encouraging for observation of CIDEP in dimensionally restricted systems. The method also may be applicable to other diffusion-controlled, spin-dependent chemistry in spatially restricted environments.

  19. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    International Nuclear Information System (INIS)

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl2) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed

  20. Modification of tolerance of oats to crown rust induced by chemical mutagens

    International Nuclear Information System (INIS)

    Seeds of crown rust (Puccinia coronata) susceptible cultivated oats (Avena sativa) were treated with the mutagenic chemical ethyl methanesulphonate (EMS), and pure lines derived from these treated seeds were tested in later generations for the relative amount of reduction in yield and seed weight caused by crown rust infection. In the absence of crown rust, the yield of most of the treated lines was greatly reduced. The overall means of the treated lines for both yield and seed weight response to infection were significantly lower than the control, but 10 lines significantly exceeded the control for yield response and 15 exceeded it for seed weight response. Recurrent EMS treatment of once-treated lines rated as tolerant resulted in groups of lines that were more tolerant, on the average, than groups of lines from recurrently treated lines rated as susceptible. A few of the recurrently treated individual lines derived from tolerant parents had a higher degree of tolerance than their parental lines. EMS treatment of diploid (A. strigosa) and tetraploid (A. abyssinica) oats resulted in groups of lines showing significant genetic variance for response to crown rust, indicating that treatment had induced real genetic change. A few diploid lines were a little more tolerant than their control, but none of the tetraploid lines showed any consistent improvement. (author)

  1. Chemical reactions induced by oscillating external fields in weak thermal environments

    CERN Document Server

    Craven, Galen T; Hernandez, Rigoberto

    2015-01-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates pred...

  2. [Revision of th distribution of chromosome aberrations induced by chemical mutagens using the BUDR label].

    Science.gov (United States)

    Chebotarev, A N; Chernyshova, N A

    1990-08-01

    Cell distribution was analysed with the help of the BrDU label for the number of chromosome aberrations and breaks induced by one-center (thiophosphamide and phosphamide) and two-center (dipine and fotrine) mutagens at the stage G0 in the Ist mitosis of human lymphocytes harvested at different times of culturing (from 56 to 96 h). The comparison was made between the type of aberration distribution in cells and the dependence of their frequency on the harvesting point for various mutagens. Poisson aberration distribution in cells for two-center mutagens was found to correspond to their constant frequency observed at different times of harvesting. On the other hand, for one-center mutagens, a geometrical distribution of chromosome breaks corresponded to an exponential decrease in their frequency in time. It is suggested that two-center chemical mutagens and ionizing radiation cause largely short-live damages which are realized into chromosome aberrations rather quickly (during one cell cycle). One-center mutagens, however, cause such damages that the probability of their transformation into chromosome aberrations is decreasing rather slowly in time, under the exponential law, and their realization into chromosome aberrations can occur in subsequent cell cycle. PMID:2258036

  3. Preparation of intact chloroplasts by chemically induced lysis of the green alga Dunaliella marina.

    Science.gov (United States)

    Kombrink, E; Wöber, G

    1980-07-01

    A method for the isolation in high yield of intact chloroplasts from the unicellular green alga Dunaliella marina (Volvocales) is described. This procedure uses chemically induced lysis of cells with the polycationic macromolecules, DEAE-dextran (M=500,000) or poly-D,L-lysine (M=30,000-70,000). Reaction conditions were optimized with respect to obtaining a high yield of intact chloroplasts, after isopycnic centrifugation in a linear sucrose density gradient, by varying the concentration of polycation and the temperature and pH of incubation. Broken chloroplasts devoid of the stromal marker enzymes fructosebisphosphate phosphatase and ribulosebisphosphate carboxylase, but containing mitochondrial (fumarase) and microbody (catalase) contamination, were banded at a bouyant density of 1.18 g cm(-3). Intact chloroplasts, as indicated by their retention of alkaline fructosebisphosphate phosphatase and ribulosebisphosphate carboxylase, were found in 30% yield (chlorophyll in intact cells, 100%) at an equilibrium density of 1.24 g cm(-3). Contamination by cytoplasmic material (pyruvate kinase), mitochondria, and microbodies was less than 8% each. PMID:24306242

  4. Growth of titanium silicate thin films by photo-induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.M.; Fang, Q.; Zhang, J.-Y.; Wu, J.X.; Di, Y.; Chen, W.; Chen, M.L.; Boyd, Ian W

    2004-04-01

    Titanium silicate thin films have been grown on Si substrates by photo-induced chemical vapor deposition using 222-nm ultraviolet excimer lamps. Titanium tetraisopropoxide (TTIP) and tetraethoxysilane (TEOS) were used as precursors. TTIP and TEOS were dissolved together in cyclohexane and introduced into the photochemical reaction chamber through a droplet injector vaporizer. The composition of the film was controlled by changing the ratio of TTIP to TEOS in the precursor solution. High quality titanium silicate films with various Ti/Si ratios and low carbon content have been achieved as revealed by X-ray photoelectron spectroscopy measurements. The atomic percentage of Ti content in the grown silicate films is significantly larger than that in the precursor solution. The films were measured to be 30-80 nm in thickness and 1.91-2.31 in refractive index by ellipsometry. Both the growth rate and refractive index increase with increasing Ti percentage in the silicate films. The evolution of Fourier transform infrared spectra of the silicate films with solution composition shows that the Ti-O-Si absorption at approximately 920 cm{sup -1} becomes stronger, while the Ti-O absorption at approximately 430 cm{sup -1} becomes weaker with decreasing Ti percentage in the solution. A small feature at {approx}1035 cm{sup -1} related to Si-O-Si bonds is also observed in the SiO{sub 2}-rich Ti silicate film.

  5. Chemical protection against life shortening and radio-induced leukemias and cancers

    International Nuclear Information System (INIS)

    The advantage gained on the long term survival and the induction of leukemias and cancers in mice exposed to a single dose of ionizing radiation by a combination of radiochemical protectors, are examined. The results show clearly that chemical protective compounds protect mice against radiation-induced life-shortening, They demonstrate also that the obtained protection was improved by combination of various protectors acting in a supplementary manner. The optimum dose reduction factor obtained was 1.5 for AET and about 2 for a mixture of 5 radioprotectors. These dose reduction factors are lower than those offered with these two treatments against the acute effects of ionizing radiation. In addition, the dose effect curve for the long term survival obtained for irradiated untreated mice and for mice treated with a mixture of radioprotectors are not parallel. Thus, the dose reduction factors vary with the X-ray dose administered. The best protection was achieved for X-ray doses from 500 to 1000 R. After an exposure to 100 R (BALB/c+ mice) and 350 R (C5781 mice) of X-rays, the total incidence of leukemias and cancers was significantly lower in treated irradiated mice than in non treated mice

  6. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    Science.gov (United States)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  7. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    Science.gov (United States)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  8. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction.

    Directory of Open Access Journals (Sweden)

    Zhong Yao

    Full Text Available The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.

  9. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems

    CERN Document Server

    He, Rong-Qiang

    2016-01-01

    We propose a numerical method for explicitly constructing a complete set of local integrals of motion (LIOM) and definitely show the existence of LIOM for strongly many-body localized systems. The method starts with a complete set of maximally localized guessed LIOM, gradually deforms it into a complete set of true LIOM. By using this method we find that for strongly disordered and weakly interacting systems, there are two characteristic lengths in the LIOM. The first one is governed by disorder and is of Anderson-localization nature. The second one is induced by interaction but independent of the strength of interaction, showing a nonperturbative nature. We prove that the entanglement and correlation in any eigenstate extend not longer than twice the second length.

  10. Experiments on Interaction Between Current-Induced Vibration and Scour of Submarine Pipelines on Sandy Bottom

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhonghan; LIU Yubiao; LI Qingping; HUANG Qinghua; ZHU Farong

    2000-01-01

    In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model. A test model which can be testedin the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined.The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.

  11. Observation of atom wave phase shifts induced by van der Waals atom-surface interactions

    CERN Document Server

    Perreault, J D; Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wave-like (coherent) behaviour with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by quantum electrodynamics for a non-retarded van der Waals interaction. This experiment also demonstrates that atom-waves can retain their coherence even when atom-surface distances are as small as 10 nm.

  12. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  13. Out-of-pile experiments performed in the U.S. Fuel Cladding Chemical Interaction (FCCI) program

    International Nuclear Information System (INIS)

    Since 1972 a variety of out-of-pile experiments have been performed as part of the U.S. National Fuel-Cladding Chemical Interaction (FCCI) Program. In the present paper results from these experiments are presented together with descriptions of many of the experimental techniques employed to obtain them. Although the main emphasis of the paper is on experiments designed to characterize FCCI with Type-316-SS cladding, considerable attention is also paid to the following FCCI-related topics: thermodynamics of and phase equilibria in mixed oxide fuel and fission product compounds, fission product and cladding component thermo-transport, and chemical behavior of candidate oxygen-absorber materials (buffer/getters). Detailed interpretations of these results in terms of FCCI mechanisms are presented in a companion paper. (author)

  14. Surface chemical characteristics of coal fly ash particles after interaction with seawater under natural deep sea conditions

    International Nuclear Information System (INIS)

    The surface chemical characteristics of coal fly ash (CFA) before and after interaction with Mediterranean deep seawater was studied by X-ray photoelectron spectroscopy (XPS). Significantly lower values of Si, Ca, and S and higher values of Mg and Cl were found in the retrieved CFA as compared to fresh CFA. It is suggested that hydrolysis of the oxide matrixes results in an alkaline environment which rapidly leads to several chemical reactions. The two most important are (a) dissolution of the amorphous silicate and the calcium phases and (b) precipitation of Mg(OH)2-brucite. A depth profile of the retrieved CFA was measured by both line-shape analysis of the XPS spectra and by consecutive cycle of sputtering. The thickness of the brucite layer is estimated to be 1.3 nm

  15. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors

    Science.gov (United States)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.

    2008-12-01

    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  16. Chemical interactions of Zr1%Nb cladding with UO2 and steam

    International Nuclear Information System (INIS)

    Interactions between UO2 fuel pellets and Zr1%Nb cladding in WWER-type nuclear reactor were investigated in the temperature range of 1000-1600 deg C. Simultaneous external interactions between cladding material and the Ar+25%O2 mixture were also examined. Isothermal tests were performed at 1000, 1200 and 1400 deg C. Peak temperatures of the tests were as high as 1600 deg C. The annealed specimens were prepared for subsequent metallographical examinations. The results are in good agreement with published data for UO2/Zr reactions. (author). 4 refs., 16 figs

  17. An apparatus for conducting physical, chemical, or biological interaction between gases and solid particles

    DEFF Research Database (Denmark)

    2013-01-01

    The invention provides an apparatus for conducting interaction between gases and solid particles. The apparatus has a vertical hollow shaft with a vertical row of constrictions formed internally and defining a series of intercommunicating chambers in the shaft for guiding the gas and particles e.......g. in counter current to effect interaction there between, e.g. for transferring thermal energy. To enable redesign of the apparatus and to enable an improved match between need for capacity and size of the apparatus, the invention provides an apparatus where the shaft comprises a stack of separate...

  18. Studies on fuel-clad chemical interaction of U-10Zr alloy with T91 cladding

    International Nuclear Information System (INIS)

    Fuel-clad chemical compatibility has been recognized as one of the major concerns about the performance of metallic fuel since it limits the life of the fuel pin due to formation of low melting eutectic. The fuel-clad compatibility between U-10Zr and T91 was studied by diffusion couple experiments at normal operating and transient conditions. The diffusion reaction between these two was strongly retarded due to formation of a Zr-rich layer at the interface. (author)

  19. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    OpenAIRE

    Liu K; Lin X; Zhao J

    2013-01-01

    Kui Liu, Xialu Lin, Jinshun Zhao Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China Abstract: Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as a...

  20. The smell of change: warming affects species interactions mediated by chemical information

    Czech Academy of Sciences Publication Activity Database

    Sentis, Arnaud; Ramon-Portugal, F.; Brodeur, J.; Hemptinne, J.-L.

    2015-01-01

    Roč. 21, č. 10 (2015), s. 3586-3594. ISSN 1354-1013 Grant ostatní: European Social Fund(CZ) CZ.1.07/2.3.00/30.0049 Institutional support: RVO:60077344 Keywords : chemical communication * climate change * insects Subject RIV: EH - Ecology, Behaviour Impact factor: 8.044, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/gcb.12932/abstract

  1. Determination of substitutional-interstitial interaction from chemical potentials of interstitials in the steel matrix

    Czech Academy of Sciences Publication Activity Database

    Shan, Y. V.; Svoboda, Jiří; Fischer, F. D.; Kozeschnik, E.

    Zurich: Trans Tech Publications, 2014 - (Mishra, B.; Ionescu, M.; Chandra, T.), s. 645-650. ( Advanced Materials Research. 922). ISBN 978-3-03835-074-3. ISSN 1022-6680. [THERMEC 2013 - International Conference on Processing and Manufacturing of Advanced Materials: Processing, Fabrication, Properties, Applications /8/. Las Vegas (US), 02.12.2013-06.12.2013] Institutional support: RVO:68081723 Keywords : interstitial trapping * chemical potential * trapping enthalpy * carbon * nitrogen Subject RIV: BJ - Thermodynamics

  2. Chemical and mechanical signaling in epithelial spreading

    International Nuclear Information System (INIS)

    We propose a minimal mathematical model to explain long-range coordination of dynamics of multiple cells in epithelial spreading, which may be induced, under different conditions, by a chemical signal, or mechanically induced strain, or both. The model is based on chemo-mechanical interactions including a chemical effect of strain, chemically induced polarization and active traction, and interaction between polarized cells. The results, showing kinase concentration distribution and cell displacement, velocity, and stress fields, allow us to reproduce qualitatively available experimental data and distinguish between distinct dynamical patterns observed under conditions of injury or unconstraining. (paper)

  3. Chemical consequences of long-range orbital interaction in perhydronaphtalene-1,4 diol monosulfonate esters.

    NARCIS (Netherlands)

    Orru, R.V.A.

    1994-01-01

    In this thesis the base-induced reactions of perhydronaphthalene-1,4-diol monosulfonate esters are described. These compounds undergo smoothly, typical carbocationic processes upon treatment with sodium tert -amylate in refluxing benzene. The product outcome, product ratio, and (relative) rate of th

  4. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  5. Computerized tomography with X-rays: an instrument in the analysis physico-chemical between formations and drilling fluids interactions

    International Nuclear Information System (INIS)

    In this study it is demonstrated the applicability of the Computerized Tomography technique with x-rays to evaluate the reactivity degree between various drilling fluids and argillaceous sediments (Shales and Sandstones). The research has been conducted in the Rock-Fluid Interaction Pressure Simulator (RFIPS), where the possible physico-chemical alterations can be observed through successive tomography images, which are obtained during the flow of the fluid through the samples. In addition, it was noticed the formation of mud cake in Berea Sandstones samples in the RFIPS, though the Computerized Tomography with X-rays, when utilizing drilling fluids weighted with the baryte. (author)

  6. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols. - Highlights: ► Chemical specation of Cl in aerosol samples by high resolution PIXE spectroscopy. ► Fine structure of Kα and Kβ lines of reference compounds and APM samples was given. ► Kα spectra were well aligned with each other confirming the same Cl oxidation state. ► Pronounced chemical effects were observed in the Kβ spectra. ► We showed that chemical speciation of Cl was possible on thin aerosol samples

  7. Probabilistic Human Health Risk Assessment of Chemical Mixtures: Hydro-Toxicological Interactions and Controlling Factors

    Science.gov (United States)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2014-12-01

    Improper disposals of hazardous wastes in most industrial countries give rise to severe groundwater contamination problems that can lead to adverse health effects in humans. Therefore risk assessment methods play an important role in population protection by (1) quantifying the impact on human health of an aquifer contamination and (2) aiding the decision making process of to better manage our groundwater resources. Many reactive components such as chlorinated solvent or nitrate potentially experience attenuation processes under common geochemical conditions. Based on this, monitored natural attenuation has become nowadays an attractive remediation solution. However, in some cases, intermediate degradation products can constitute noxious chemical compounds before reaching a harmless chemical form. In these cases, the joint effect of advection-dispersion transport and the species-dependent kinetic reactions and toxicity will dictate the relative importance of the degradation byproducts to the total risk. This renders the interpretation of risk a non-trivial task. In this presentation, we quantify, through a probabilistic framework, the human health risk posed by a chemical mixture in a heterogeneous aquifer. This work focuses on a Perchloroethylene contamination problem followed by the first-order production/biodegradation of its daughter species Trichloroethylene, Dichloroethylene and Vinyl Chlorine that is known to be highly toxic. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme. A comparative description of human health risk metrics as a function of aquifer heterogeneity and contaminant injection mode is provided by means of a spatial characterization of the lower-order statistical moments and empirical probability density functions of both individual and total risks. Interestingly, we show that the human health risk of a chemical mixture is mainly controlled by a modified Damköhler number that express the joint effect

  8. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis.

    Science.gov (United States)

    Sasagawa, Shun; Shinya, Masahiro; Nakazawa, Kimitaka

    2014-01-01

    Recent studies have demonstrated that human quiet standing is a multijoint movement, whereby the central nervous system (CNS) is required to deal with dynamic interactions among the joints to achieve optimal motor performance. The purpose of this study was to investigate how the CNS deals with such interjoint interaction during quiet standing by examining the relationship between the kinetics (torque) and kinematics (angular acceleration) within the multi-degree of freedom system. We modeled quiet standing as a double-link inverted pendulum involving both ankle and hip joints and conducted an "induced acceleration analysis." We found that the net ankle and hip torques induced angular accelerations of comparable magnitudes to the ankle (3.8 ± 1.4°/s(2) and 3.3 ± 1.2°/s(2)) and hip (9.1 ± 3.2°/s(2) and 10.5 ± 3.5°/s(2)) joints, respectively. Angular accelerations induced by the net ankle and hip torques were modulated in a temporally antiphase pattern to one another in each of the two joints. These quantitative and temporal relationships allowed the angular accelerations induced by the two net torques to countercompensate one another, thereby substantially (∼70%) reducing the resultant angular accelerations of the individual joints. These results suggest that, by taking advantage of the interjoint interaction, the CNS prevents the net torques from producing large amplitudes of the resultant angular accelerations when combined with the kinematic effects of all other torques in the chain. PMID:24089399

  9. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  10. Modelling algae-duckweed interaction under chemical pressure within a laboratory microcosm.

    Science.gov (United States)

    Lamonica, Dominique; Clément, Bernard; Charles, Sandrine; Lopes, Christelle

    2016-06-01

    Contaminant effects on species are generally assessed with single-species bioassays. As a consequence, interactions between species that occur in ecosystems are not taken into account. To investigate the effects of contaminants on interacting species dynamics, our study describes the functioning of a 2-L laboratory microcosm with two species, the duckweed Lemna minor and the microalgae Pseudokirchneriella subcapitata, exposed to cadmium contamination. We modelled the dynamics of both species and their interactions using a mechanistic model based on coupled ordinary differential equations. The main processes occurring in this two-species microcosm were thus formalised, including growth and settling of algae, growth of duckweeds, interspecific competition between the two species and cadmium effects. We estimated model parameters by Bayesian inference, using simultaneously all the data issued from multiple laboratory experiments specifically conducted for this study. Cadmium concentrations ranged between 0 and 50 μg·L(-1). For all parameters of our model, we obtained biologically realistic values and reasonable uncertainties. Only duckweed dynamics was affected by interspecific competition, while algal dynamics was not impaired. Growth rate of both species decreased with cadmium concentration, as well as competition intensity showing that the interspecific competition pressure on duckweed decreased with cadmium concentration. This innovative combination of mechanistic modelling and model-guided experiments was successful to understand the algae-duckweed microcosm functioning without and with contaminant. This approach appears promising to include interactions between species when studying contaminant effects on ecosystem functioning. PMID:26922150

  11. Chemical and structural effects of invasive plants on herbivore-parasitoid/predator interactions in native communities

    NARCIS (Netherlands)

    Harvey, J.A.; Fortuna, T.

    2012-01-01

    The introduction and/or spread of exotic organisms into new habitats is considered a major threat to biodiversity. Invasive plants have been shown to negatively affect native communities, competing with and excluding other plants and disrupting a wide range of trophic interactions associated with th

  12. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  13. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    International Nuclear Information System (INIS)

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells

  14. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD

    Science.gov (United States)

    Chavan, Vivek; Kalsi, P. C.; Manchanda, V. K.

    2011-02-01

    The chemical or electrochemical etching is an essential step to enlarge the ion-induced latent tracks in solid state nuclear track detectors (SSNTDs). In these methods, above ambient temperatures (˜60 °C) and moderately high concentrations of alkali are required for about 1-2 h to enlarge the latent tracks. Microwave induced chemical etching method is reported to reduce the etching time for alpha tracks from 3 to 4 h to 25 min for CR-39 detector. In the present work, a room temperature-induced chemical etching employing ethanolamine as a new etchant has been investigated for the first time to enlarge the fission tracks in Lexan polycarbonate SSNTD. The tracks developed in the Lexan detectors etched at room temperature using ethanolamine are compared with those etched with routinely used chemical etching (CE) technique in 6 N NaOH at 60 °C. The bulk etch and track etch rates are also reported. The detection efficiency of RTCE method is determined and compared with that of CE method. The RTCE technique is found to be simple, fast and convenient.

  15. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Vivek [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalsi, P.C., E-mail: pckalsi@barc.gov.i [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Manchanda, V.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-02-11

    The chemical or electrochemical etching is an essential step to enlarge the ion-induced latent tracks in solid state nuclear track detectors (SSNTDs). In these methods, above ambient temperatures ({approx}60 {sup o}C) and moderately high concentrations of alkali are required for about 1-2 h to enlarge the latent tracks. Microwave induced chemical etching method is reported to reduce the etching time for alpha tracks from 3 to 4 h to 25 min for CR-39 detector. In the present work, a room temperature-induced chemical etching employing ethanolamine as a new etchant has been investigated for the first time to enlarge the fission tracks in Lexan polycarbonate SSNTD. The tracks developed in the Lexan detectors etched at room temperature using ethanolamine are compared with those etched with routinely used chemical etching (CE) technique in 6 N NaOH at 60 {sup o}C. The bulk etch and track etch rates are also reported. The detection efficiency of RTCE method is determined and compared with that of CE method. The RTCE technique is found to be simple, fast and convenient.

  16. In silico Screening of Chemical Libraries to Develop Inhibitors That Hamper the Interaction of PCSK9 with the LDL Receptor

    Science.gov (United States)

    Min, Dong-Kook; Lee, Hyun-Sook; Lee, Narae; Lee, Chan Joo; Song, Hyun Joo; Yang, Ga Eul; Yoon, Dojun

    2015-01-01

    Purpose Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) and promotes degradation of the LDLR. Inhibition of PCSK9 either by reducing its expression or by blocking its activity results in the upregulation of the LDLR and subsequently lowers the plasma concentration of LDL-cholesterol. As a modality to inhibit PCSK9 action, we searched the chemical library for small molecules that block the binding of PCSK9 to the LDLR. Materials and Methods We selected 100 chemicals that bind to PCSK9 where the EGF-AB fragment of the LDLR binds via in silico screening of the ChemBridge chemical library, using the computational GOLD algorithm analysis. Effects of chemicals were evaluated using the PCSK9-LDLR binding assay, immunoblot analysis, and the LDL-cholesterol uptake assay in vitro, as well as the fast performance liquid chromatography assay for plasma lipoproteins in vivo. Results A set of chemicals were found that decreased the binding of PCSK9 to the EGF-AB fragment of the LDLR in a dose-dependent manner. They also increased the amount of the LDLR significantly and subsequently increased the uptake of fluorescence-labeled LDL in HepG2 cells. Additionally, one particular molecule lowered the plasma concentration of total cholesterol and LDL-cholesterol significantly in wild-type mice, while such an effect was not observed in Pcsk9 knockout mice. Conclusion Our findings strongly suggest that in silico screening of small molecules that inhibit the protein-protein interaction between PCSK9 and the LDLR is a potential modality for developing hypercholesterolemia therapeutics. PMID:26256967

  17. Cytogenetic damages induced in vivo in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    The importance of various environmental exposures has been evident in variation in cancer incidence and mortality. Benzene is considered to be a human carcinogen, is clastogenic to rodents and humans, and it affects the immune response. Workers in various industrial plants, are exposed to benzene and benzene related compounds as a result of various activities in which benzene is processed, generated or used. Major sources of environmental exposure to benzene related compounds, continue to be active and passive smoking, auto exhaust, and driving or riding in automobiles. Benzene is of a particular interest, not only because of its known toxicity, but also because this was to be the parent compound and a model for extensive programs of metabolism of a variety of aromatic chemicals. Ionizing radiation is an unavoidable physical agent that is presented in environment, and public opinion is well aware against radiation risk and strongly against it. The aim of the presentation was comparison between cytogenetic damages induced in vivo by environmental chemicals with those of radiation. Results from biomonitoring survey on genotoxicity in human blood cells of benzene and benzene related compounds were compared to damages detected in lymphocytes of persons who had been accidentally exposed to gamma radiation. In the groups, that had been occupationally or environmentally exposed to benzene related compound, total aberration frequencies, or percent of aberrant cells ranged between 0 - 0.16 aberrations/cell or 16% of aberrant cells respectively. A multivariate regression analysis confirmed: (i) a significant association between cytogenetic damage and exposure to benzene related compound, (ii) a possible association between cytogenetic damage and cancer, (iii) a significant influence of smoking habit. In 1996 few persons were suspected of accidental exposure to gamma radiation. To estimate the absorbed doses, lymphocytes from their blood have been analyzed for the presence of

  18. Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K A; Hoffman, B; Saintillan, D; Shaqfeh, E G; Santiago, J G

    2008-05-05

    We present a theoretical and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rod-like particles in the presence of an externally applied electric field. In these systems, the electric field polarizes the particles and induces an electroosmosis flow relative to the surface of each particle. The simulations include the effect of the gravitational body force, buoyancy, far-field hydrodynamic interactions, near-field lubrication forces, and electric field interactions. The particles in the simulations and experiments were observed to experience repeated pairing interactions in which they come together axially with their ends approaching each other, slide past one another until their centers approach, and then push apart. These interactions were confirmed in measurements of particle orientations and velocities, pair distribution functions, and net dispersion of the suspension. For large electric fields, the pair distribution functions show accumulation and depletion regions consistent with many pairing events. For particle concentrations of 1e8 particles/mL and higher, dispersion within the suspension dramatically increases with increased field strength.

  19. Multi critical point structure for chiral phase transition induce by charge neutrality and vector interaction

    CERN Document Server

    Zhang, Zhao

    2010-01-01

    The combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition is investigated by considering neutral color superconductivity. Under the charge-neutrality constraint, the chiral condensate, diquark condensate and quark number densities are obtained in two-plus-one-flavor Nambu-Jona-Lasinio model with the so called Kobayashi-Maskawa-'t Hooft term. We demonstrate that multiple chiral critical-point structures always exist in the Nambu-Jona-Lasinio model within the self-consistent mean-field approximation, and that the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling.

  20. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.