WorldWideScience

Sample records for chemical industry zentraler

  1. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  2. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare

    2008-01-01

    per kilogram of desired product to illustrate in which processes the use of renewable resources lead to the most substantial reduction of CO2 emissions. The steps towards a renewable chemicals industry will most likely involve intimate integration of biocatalytic and conventional catalytic processes......The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple...

  3. Chemical and petrochemical industry

    Science.gov (United States)

    Staszak, Katarzyna

    2018-03-01

    The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.

  4. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  5. The chemical industry of Ukraine

    International Nuclear Information System (INIS)

    Novikov, I.N.

    1995-01-01

    This work deals with the chemical industry of Ukraine and more particularly with the restructuring proposed by the Ministry of Industry. After having presented some generalities the author focuses on the restructuring programme which includes the improvement of the fertilizers supply for agriculture, the development of facilities for basic organic synthesis, the increase of petroleum based chemicals production, the increase of consumer products production and the reorientation of the chemical industry to more accessible and alternative sources of raw materials such as black and brown coal, oil shale, coke, oil-refining gases, plant raw materials... (O.L.)

  6. Chemical products and industrial materials

    International Nuclear Information System (INIS)

    1995-12-01

    A compilation of all universities, industrial and governmental agencies in Quebec which are actively involved in research and development of chemical products and industrial materials derived from biomass products, was presented. Each entry presented in a standard format that included a description of the major research activities of the university or agency, the principal technologies used in the research, available research and analytical equipment, a description of the research personnel, names, and addresses of contact persons for the agency or university. Thirty entries were presented. These covered a wide diversity of activities including biotechnological research such as genetic manipulations, bioconversion, fermentation, enzymatic hydrolysis and physico-chemical applications such as bleaching, de-inking, purification and synthesis. tabs

  7. Applying industrial symbiosis to chemical industry: A literature review

    Science.gov (United States)

    Cui, Hua; Liu, Changhao

    2017-08-01

    Chemical industry plays an important role in promoting the development of global economy and human society. However, the negative effects caused by chemical production cannot be ignored, which often leads to serious resource consumption and environmental pollution. It is essential for chemical industry to achieve a sustainable development. Industrial symbiosis is one of the key topics in the field of industrial ecology and circular economy, which has been identified as a creative path leading to sustainability. Based on an extensively searching for literatures on linking industrial symbiosis with chemical industry, this paper aims to review the literatures which involves three aspects: (1) economic and environmental benefits achieved by chemical industry through implementing industrial symbiosis, (2) chemical eco-industrial parks, (3) and safety issues for chemical industry. An outlook is also provided. This paper concludes that: (1) chemical industry can achieve both economic and environmental benefits by implementing industrial symbiosis, (2) establishing eco-industrial parks is essential for chemical industry to implement and improve industrial symbiosis, and (3) there is a close relationship between IS and safety issues of chemical industry.

  8. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  9. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  10. An outline of the Dutch chemical industry and petrochemical industry

    International Nuclear Information System (INIS)

    Heesen, Th.J.; Terwoert, J.; Hoefnagels, F.

    1996-03-01

    An overview is given of the most important processes and products of the chemical and petrochemical industry in the Netherlands. Also attention is paid to the material balance and the energy balance of those industries. refs

  11. The future of the chemical industries

    International Nuclear Information System (INIS)

    Shinnar, R.

    1991-01-01

    As Lincoln, we first must ask where we are before we ask whither. I'd therefore like to define where our industry is and how it got there before we look at the challenges facing us. If we view the chemical and petroleum industries through the glass of macroeconomics, they look very healthy. Let's start with size. Table 1 shows that these two industries each provide about 10% of the total U.S. manufacturing output. This paper shows the fraction of the total GNP contributed by the chemical industry and by the petroleum industry and compares them with total manufacturing. The authors note that total manufacturing grew more slowly than the total GNP, whereas over the last 40 years, the chemical industry grew close to the rate of the GNP. For a large industry, this is the best we can hope for. The chemical industry is one of the very few major industries that has consistently maintained a positive trade balance

  12. Industrial chemical exposure: guidelines for biological monitoring

    National Research Council Canada - National Science Library

    Lauwerys, Robert R; Hoet, Perrine

    2001-01-01

    .... With Third Edition of Industrial Chemical Exposure you will understand the objectives of biological monitoring, the types of biological monitoring methods, their advantages and limitations, as well...

  13. Economic Aspects of the Chemical Industry

    Science.gov (United States)

    Koleske, Joseph V.

    Within the formal disciplines of science at traditional universities, through the years, chemistry has grown to have a unique status because of its close correspondence with an industry and with a branch of engineering—the chemical industry and chemical engineering. There is no biology industry, but aspects of biology have closely related disciplines such as fish raising and other aquaculture, animal cloning and other facets of agriculture, ethical drugs of pharmaceutical manufacture, genomics, water quality and conservation, and the like. Although there is no physics industry, there are power generation, electricity, computers, optics, magnetic media, and electronics that exist as industries. However, in the case of chemistry, there is a named industry. This unusual correspondence no doubt came about because in the chemical industry one makes things from raw materials—chemicals—and the science, manufacture, and use of chemicals grew up together during the past century or so.

  14. Education-industry partnership: the chemical industry experience

    International Nuclear Information System (INIS)

    Bricknell, D.J.

    1994-01-01

    The European Chemical Industry and the Nuclear Power Industry share similar problems and hopefully can share similar solutions to them. A recent survey of public opinion conducted on behalf of the chemical industry has shown that the general public knows little about the industry and does not trust it to behave responsibly. The industry is responding in two ways: firstly to demonstrate that it is a responsible member of the community by operating to the highest safety and environmental standards and by being open in its dealings with the public on such matters. Secondly the industry is working with the education system to ensure that the public has the opportunity to gain a good education in science, is able to make rational judgments about risks and benefits and is better able to understand and accept the role of the chemical industry in society

  15. Control in the Chemical Industry

    Science.gov (United States)

    Jones, R. G.

    1974-01-01

    Discusses various control techniques used in chemical processes, including measuring devices, controller functions, control valves, and feedforward and feedback actions. Applications of control to a real chemical plant are exemplified. (CC)

  16. International Trade of Croatian Chemical Industry Summary

    Directory of Open Access Journals (Sweden)

    Goran Buturac

    2009-07-01

    Full Text Available In this paper Croatian chemical industry in international trade is analyzed by applying k-means cluster method. The work is oriented toward the role and contribution of individual product groups in total trade patterns of chemical industry. The RCA indicator, GL index, RUV indicator and the share of individual chemical products in the total export of chemical industry are used as variables. The products at the fourdigit level of the SITC are used as objects. The cluster of chemical products in which Croatia has comparative advantages contributes significantly in export structure. At the same time this cluster consists of a few product types thus indicating strong export concentration of Croatian chemical industry. Regarding of the value of RUV indicator, Croatian chemical industry benefits most in the international trade with antibiotics and medicines that contain antibiotics. Beside fertilizers, these two products have the greatest share in the export structure. The great majority of the chemical products have the low level of intra-industry trade specialization.

  17. Transformation Leadership in Chemical Industry

    KAUST Repository

    Alsherehy, Fahad A.

    2018-01-16

    SABIC is a global leader in diversified chemicals headquartered in Riyadh, Saudi Arabia. It manufactures on a global scale in the Americas, Europe, Middle East and Asia Pacific, making distinctly different kinds of products: chemicals, commodity and high performance plastics, agri-nutrients and metals. The company has more than 35,000 employees worldwide and operates in more than 50 countries, with innovation hubs in five key geographies ヨ USA, Europe, Middle East, South East Asia and North East Asia.

  18. Transformation Leadership in Chemical Industry

    KAUST Repository

    Alsherehy, Fahad A.

    2018-01-01

    SABIC is a global leader in diversified chemicals headquartered in Riyadh, Saudi Arabia. It manufactures on a global scale in the Americas, Europe, Middle East and Asia Pacific, making distinctly different kinds of products: chemicals, commodity and high performance plastics, agri-nutrients and metals. The company has more than 35,000 employees worldwide and operates in more than 50 countries, with innovation hubs in five key geographies ヨ USA, Europe, Middle East, South East Asia and North East Asia.

  19. Beyond petrochemicals: The renewable chemicals industry

    DEFF Research Database (Denmark)

    Vennestrøm, P.N.R.; Osmundsen, Christian Mårup; Christensen, C.H.

    2011-01-01

    From petroleum to bioleum: Since biomass is a limited resource, it is necessary to consider its best use. The production of select chemicals from biomass, rather than its use as fuel, could effectively replace the use of petroleum in the chemical industry, but the inherent functionality of biomas...

  20. Job Relocation is High in Chemical Industry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    The chances of an employee being relocated are higher in the chemical and plastics industries than in U.S. business as a whole. But the benefits provided by chemical and plastics companies to employees shifted to other locations are generally better than average. (Author/BB)

  1. The modern alchemy: The chemical industry

    International Nuclear Information System (INIS)

    Valencia Giraldo, Asdrubal

    2002-01-01

    A brief history is presented on the development of chemistry from the antiquity, through alchemy, iatrochemistry, electrochemistry, atomic theory and the XVII, XVIII, XIX and X X centuries discoveries up to modern chemistry, fine chemistry, chemical engineering and the modern chemical industry with all of its consequences

  2. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  3. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  4. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  5. The chemical industry - friend to the environment?

    International Nuclear Information System (INIS)

    1992-01-01

    ''The Chemical Industry - Friend to the Environment?'' was a symposium organised by the North East Region committee of the Industrial Division of the Royal Society of Chemistry. This volume contains typescripts from all the lectures given at the symposium. The general public appreciate the material comforts the Chemical Industry provides, for example textiles, ceramics, steel, speciality chemicals, drugs, prosthetics etc. However, for many their comfort is spoiled by the chemical poisoning of the environment through slag heaps, beaches and countryside littered with non-biodegradable unsightly plastic containers, poor air quality through NO x , CO 2 and chlorofluorocarbon emissions, and of course, nuclear waste. The occasional spillage of hazardous chemicals through road, rail and sea accidents do nothing to improve the Industry's image. The majority of these topics were discussed, though no one presumed to know how to remove the problems entirely but many suggestions were put forward as to how this might be achieved. Of the 13 papers presented three were specifically concerned with recycling of plastics, 9 with the environmental impacts of chemicals and one, which is indexed separately, was concerned with radioactive discharges into the environment from the Sellafield reprocessing plant. (Author)

  6. Centralized radiation protection in the chemical industry

    International Nuclear Information System (INIS)

    Kistner, A.C.

    2006-01-01

    At Novartis the so-called ''ZSS'' department (''Zentraler Strahlenschutz'') respectively (''central radiation protection'') administrates all in-house data concerning radiation. When the time for a contemporary and thus more flexible software solution had come, the heterogenous company had many demands to be met - for example reorganizational ability, multi-client capability, device-specific scalability as well as customizability and individual data entries concerning all employees exposed to ionized radiation. A customized software-solution was then developed and build by Sirius Technologies AG from Basel. The application is composed modularly and therefore adapts well to miscellaneous data sets of various working areas, devices, radiation sources, factories, partners, approvals, isotopes etc. The conception even contains future enhancement and supplementation. (orig.)

  7. Nuclear techniques in coal and chemical industries

    International Nuclear Information System (INIS)

    Elbern, A.W.; Leal, C.A.

    1980-01-01

    The use of nuclear techniques for the determination of important parameters in industrial installations is exemplified; advantages of these techniques over other methods conventionally used are pointed out. The use of radiotracers in the study of physical and chemical phenomena occurring in the chemical industry is discussed. It is also shown that, using certain radioisotopes, it is possible to construct devices which enable, for example, the determination of the ash content in coal samples. These devices are economical and easy to be installed for the on-line control during coal transportation. (C.L.B.) [pt

  8. Research and chemical industry in 90's

    International Nuclear Information System (INIS)

    Trapasso, I.

    1992-01-01

    This paper examines the importance of research with respect to changes taking place within the chemical industry. Specific areas having a significant impact on the future evolution of the industry are identified. The chemical industry is highly R ampersand D intensive with respect to its overall sales volume, as well as, to R ampersand D levels in other industries; and R ampersand D has been a dominant factor influencing the restructuring, on a global scale, of this industry. In the 90's, the industry is expected to have a supply model which is based on the production of marketable high-technology products and integrated systems, developed through coordinated research in multi-disciplinary scientific fields. The optimum strategic and organizational strategies which are to be adopted by the industry during this decade are discussed with reference to the directions being taken by a large multi-national firm in developing strategies in various areas, e.g., new prime materials, environmental protection, pharmacology, and biotechnology. A look is given at recent developments in the sector of advanced polymers, with attention given to processes involving polymer genetics, new products with a wide range of applications and those offering a high level of environmental compatibility. A review of new materials development includes an assessment of prospects for biodegradable plastics based on natural carbohydrates

  9. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  10. Industrial emerging chemicals in the environment

    Directory of Open Access Journals (Sweden)

    Vojinović-Miloradov Mirjana B.

    2014-01-01

    Full Text Available In the recent time, considerable interest has grown concerning the presence of the emerging industrial chemicals, EmIC. They are contaminants that have possible pathway to enter to the environment and they are dominantly released by industrial and anthropogenic activities. EmIC are applied in different fields using as industrial chemicals (new and recently recognized, global organic contaminants (flame retardant chemicals, pharmaceuticals (for both human and animal uses, endocrine-modulating compounds, biological metabolites, personal care products, household chemicals, nanomaterial (energy storage products, lubricants, anticorrosive and agriculture chemicals and others that are applied to a wide variety of everyday items such as clothing, upholstery, electronics and automobile interiors. NORMAN (Network of reference laboratories for monitoring of emerging environmental pollutants has established an open, dynamic, list of emerging substances and pollutants. EmIC have been recently detected in the environment due to their long-term presence, pseudo-persistence and increased use. Improvements in sophisticated analytical methods and time integrative passive sampling have enabled the identification and quantification of EmIC, in very low concentrations (ppb, ppt and lower, which likely have been present in all environmental mediums for decades. Passive technology is an innovative technique for the time-integrated measurement of emerging contaminants in water, sediment, soil and air. Passive samplers are simple handling cost-effective tool that could be used in environmental monitoring programmes. These devices are now being considered as a part of an emerging strategy for monitoring a range of emerging industrial chemicals and priority pollutants in the aquatic environment. EmIC are substances that are not included in the routine monitoring programmes and whose fate, behaviour and (ecotoxicological effects are still not well understood. Emerging

  11. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  12. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  13. Carbon source in the future chemical industries

    Science.gov (United States)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  14. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  15. Using game theory to improve safety within chemical industrial parks

    CERN Document Server

    Reniers, Genserik

    2013-01-01

    Though the game-theoretic approach has been vastly studied and utilized in relation to economics of industrial organizations, it has hardly been used to tackle safety management in multi-plant chemical industrial settings. Using Game Theory for Improving Safety within Chemical Industrial Parks presents an in-depth discussion of game-theoretic modelling which may be applied to improve cross-company prevention and -safety management in a chemical industrial park.   By systematically analyzing game-theoretic models and approaches in relation to managing safety in chemical industrial parks, Using Game Theory for Improving Safety within Chemical Industrial Parks explores the ways game theory can predict the outcome of complex strategic investment decision making processes involving several adjacent chemical plants. A number of game-theoretic decision models are discussed to provide strategic tools for decision-making situations.   Offering clear and straightforward explanations of methodologies, Using Game Theor...

  16. The chemical industry of uranium in France

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1955-01-01

    The actual CEA program is concerned with the construction of two large graphite reactors, each of those containing at least one hundred tons of uranium metal with nuclear purity. The uranium for these two reactors will be regularly supplied by new resources discovered in France and Madagascar in the last five years. The working and treatment of such ore have led to the creation of an important french industry of which the general outline and principle are described. The operated ores have got different natures and concentration, individual characteristics are described for the main ores.The most high-grade ore are transported to a central plant in Bouchet near Paris; the low-grade ore are concentrated by physical methods or chemical processes of which principles and economy are studied with constancy. The acid processes are the only used until now, although the carbonated alkaline processes has been studied in France. The next following steps after the acid process until the obtention of uranium rich concentrate are described. The purification steps of uranium compounds to nuclear purity material are described as well as the steps to elaborate metal of which the purity grade will be specify. Finally, the economic aspects of uranium production difficulty will be considered in relation with technical progresses which we can expect to achieve in the future. (M.P.)

  17. Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection

    OpenAIRE

    Faulkner, David

    2017-01-01

    Despite their ubiquity in modern life, industrial chemicals are poorly regulated in the United States. Statutory law defines industrial chemicals as chemicals that are not foods, drugs, cosmetics, nor pesticides, but may be used in consumer products, and this distinction places them under the purview of the Toxic Substances Control Act (TSCA), which received a substantial update when the US congress passed a revision of the act in 2016. The revised law, the Frank R. Lautenberg Chemical Safety...

  18. Chemicals-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    International Nuclear Information System (INIS)

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Chemicals. Information on what works for the Chemicals industry, examples of successful partnerships, and benefits of partnering with OIT are included

  19. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Science.gov (United States)

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Computer integrated manufacturing in the chemical industry : Theory & practice

    NARCIS (Netherlands)

    Ashayeri, J.; Teelen, A.; Selen, W.J.

    1995-01-01

    This paper addresses the possibilities of implementing Computer Integrated Manufacturing in the process industry, and the chemical industry in particular. After presenting some distinct differences of the process industry in relation to discrete manufacturing, a number of focal points are discussed.

  1. Chemical industrial areas and their dynamic danger behaviour

    NARCIS (Netherlands)

    Reniers, Genserik L L; Audenaert, Amaryllis; Dullaert, W.; Soudan, K.

    2007-01-01

    Chemical industrial areas or so-called chemical clusters consist of various companies situated next to each other. Such areas are composed of hundreds of chemical installations exhibiting danger to a certain degree for initiating or continuing knock-on effects. In this paper, a methodology to model

  2. The U.S. Chemical Industry, the Products It Makes

    Science.gov (United States)

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  3. Milestones in 150 years of the chemical industry

    International Nuclear Information System (INIS)

    Morris, P.J.T.; Campbell, W.A.; Roberts, H.L.

    1991-01-01

    Milestones in 150 years of the Chemical Industry charts the history of the industry in its crucial role of meetings basic human needs. The book provides on overview of developments in the industry in the fields of health, clothing, energy, materials and information technology and sets the information in an historical context. It will be of interest to chemists in industry, academic, business and to the lay public. (author)

  4. Resilience of chemical industrial areas through attenuation-based security

    International Nuclear Information System (INIS)

    Reniers, G.L.L.; Sörensen, K.; Khan, F.; Amyotte, P.

    2014-01-01

    This paper investigates the possibility of attenuation-based security within chemical industrial areas. Representing chemical industrial areas as mathematical networks, we prove by case-study that the resilience to disaster of such areas may follow a power-law distribution. Furthermore, we examine what happens to the network when highly hazardous installations would be intelligently protected against malicious acts: the network disintegrates into separate smaller networks. Hence, islands are formed with no escalation danger in between. We conclude that it is possible to protect chemical industrial areas in such a way that they are more resilient against terrorism

  5. Vulnerability assessment of chemical industry facilities in South Korea based on the chemical accident history

    Science.gov (United States)

    Heo, S.; Lee, W. K.; Jong-Ryeul, S.; Kim, M. I.

    2016-12-01

    The use of chemical compounds are keep increasing because of their use in manufacturing industry. Chemical accident is growing as the consequence of the chemical use increment. Devastating damages from chemical accidents are far enough to aware people's cautious about the risk of the chemical accident. In South Korea, Gumi Hydrofluoric acid leaking accident triggered the importance of risk management and emphasized the preventing the accident over the damage reducing process after the accident occurs. Gumi accident encouraged the government data base construction relate to the chemical accident. As the result of this effort Chemical Safety-Clearing-house (CSC) have started to record the chemical accident information and damages according to the Harmful Chemical Substance Control Act (HCSC). CSC provide details information about the chemical accidents from 2002 to present. The detail informations are including title of company, address, business type, accident dates, accident types, accident chemical compounds, human damages inside of the chemical industry facilities, human damage outside of the chemical industry facilities, financial damages inside of the chemical industry facilities, and financial damages outside of the chemical industry facilities, environmental damages and response to the chemical accident. Collected the chemical accident history of South Korea from 2002 to 2015 and provide the spatial information to the each accident records based on their address. With the spatial information, compute the data on ArcGIS for the spatial-temporal analysis. The spatial-temporal information of chemical accident is organized by the chemical accident types, damages, and damages on environment and conduct the spatial proximity with local community and environmental receptors. Find the chemical accident vulnerable area of South Korea from 2002 to 2015 and add the vulnerable area of total period to examine the historically vulnerable area from the chemical accident in

  6. Creative research in the chemical industry

    Indian Academy of Sciences (India)

    These efforts have involved several collaborators including many from other institutions and offered multitudinous challenges calling for continuous creativity in industrial setups. I was fortunate to have had a conducive environment to be able to respond to these challenges. I attempt to offer the readers in the ensuing pages ...

  7. Biobased industrial chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.

    2011-01-01

    In dit onderzoek is op zoek gegaan naar routes om van glutaminezuur vier producten te maken die van waarde zijn voor de industrie, die nu uit olie gemaakt worden. Dat zijn grondstoffen voor allerlei soorten kunststof, zoals nylon en rubbers. Het onderzoek laat zien dat alle vier die producten

  8. Sublethal effects of industrial chemicals on fish fingerlings (Tilapia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-22

    Mar 22, 2010 ... Key words: Tilapia guineensis, industrial chemical, bioaccumulation, surfactants. ... product that has acceptable stability in oil pipelines. (Patton, 1995). .... assays were assessed with the two-factor ANOVA (analysis of.

  9. Membrane technology: in the chemical industry

    National Research Council Canada - National Science Library

    Nunes, S. P; Peinemann, K. V

    2001-01-01

    ... terephthalate) 15 22 23 32 37 5 5.1 5.2 5.3 5.4 Surface Modification of Membranes Chemical Oxidation 39 Plasma Treatment 40 Classical Organic Reactions 41 Polymer Grafting 41 39VI Contents 6 6.1 ...

  10. Accidents in chemical industry: are they foreseeable?

    NARCIS (Netherlands)

    Sonnemans, P.J.M.; Körvers, P.M.W.

    2006-01-01

    ‘Accidents recur,’ which is what Kletz [Kletz T. (1993). Lessons from disasters, how organisations have no memory and accidents recur. UK: Institution of Chemical Engineers] wrote in 1993. Indeed, despite all measures taken accidents may re-occur, but ‘disruptions’ in a process reoccur much more

  11. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  12. Employment in the U.S. Chemical Industry. Chemical Work Force Tops 1.1 Million.

    Science.gov (United States)

    Chemical and Engineering News, 1990

    1990-01-01

    The annual census of industrial employment, production workers, women, the workweek, scientists and engineers, chemical employment, wages, and productivity in the chemical industry is presented. Trends in the numbers of workers, productivity, and unit labor costs are illustrated in graphs. (CW)

  13. The Industrial Toxics Project: Targeting chemicals for environmental results

    International Nuclear Information System (INIS)

    Burch, W.M.

    1991-01-01

    In September, 1990, the Administrator of the US Environmental Protection Agency committed the Agency to a program of targeting chemicals for multi-media risk reduction activities through pollution prevention. The Industrial Toxics Project will place emphasis on obtaining voluntary commitments from industry to reduce releases of toxic chemicals to the air, water, and land with a goal of reducing releases nationwide by 33% by 1992 and 50% by 1995. An initial list of 18 chemicals have been selected based on recommendations from each Agency program. The chemicals selected are subject to reporting under the Toxic Chemical Release Inventory Program which will provide the basis for tracking progress. The chemicals are characterized by high production volume, toxicity and releases and present the potential for significant risk reduction through pollution prevention. This presentation will discuss the focus and direction of this new initiative

  14. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  15. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  16. Risk management programs in the chemical industry from Bhopal onward

    International Nuclear Information System (INIS)

    Cramer, J.J.; Greenberg, H.R.

    1992-01-01

    Chemical process safety has long been a consideration in industry but the tragedy at Bhopal in late 1984 resulted in significantly increased attention from industry, government, and the public. Whereas Bhopal had a major effect on regulations in the US, two earlier, highly publicized accidents affected regulations in the United Kingdom and Europe. A 1974 cyclohexane explosion at a chemical manufacturing plant in Flixborough, England, caused a number of fatalities, while a 1976 runaway reaction at a chemical works near Sevesco, Italy, contaminated surrounding farmland and water supplies with dioxin. Although the public's interest can be fickle, the residual concern from all these incidents has been sufficient to affect important regulatory and industry initiatives in the US and abroad. The development of the most important of the US initiatives are reviewed here. Common elements in various process safety management programs are noted and the latest regulatory developments reported. Application can be made to the nuclear industry

  17. News from Online: Industrial Chemicals and Polymers

    Science.gov (United States)

    Sweeney Judd, Carolyn

    1999-02-01

    of the American Chemical Society Divisions of Polymer Chemistry and Polymeric Materials: Science and Engineering and General Electric Corporation. The POLYED site, http:/ /chemdept.uwsp.edu/polyed/index.htm, is hosted by the University of Wisconsin at Stevens Point. This National Center for Polymer Education is another good place to go for information. More education is available at the Ziegler Research Group Home Page at http://www.chem.ucalgary.ca/groups/ziegler/index.html . Go to Metallocene as Olefin Polymerization Catalysis: An Introduction ( http://www.chem.ucalgary.ca/groups/ziegler/met_intro.html ) for historical accounts of metallocene and Ziegler-Natta catalysts. Movies are available here too. This Canadian site is well-documented and educational. Back at the University of Wisconsin-Madison, The Why Files site at http://whyfiles.news.wisc.edu helps bring important chemical and technology news to the public. Go to the archived files of October 1997 ( http://whyfiles.news.wisc.edu/shorties/catalyst.html ) to find information about the importance of low-temperature metallocene catalysts. The Why Files received funding from the National Science Foundation. Go here for science information in an easy-to-read format. One of the driving forces toward better catalysis is the attempt to reach 100% product, combining efficiency with lowered pollution. Companies can look to the Environmental Protection Agency for information: Environsense at http://es.epa.gov/ is pledged to offer "Common Sense Solutions to Environmental Problems". So where can we get these polymers? The American Chemical Society can help. Go to Chemcylopedia at http://pubs.acs.org/chemcy99/ for great information. Both purchasers and users of chemicals can benefit from this site. Searches can be made on the chemical or on the supplier. Information provided includes CAS Registry Numbers and special shipping requirements as well as potential applications. Do you remember that we started with paper? Let

  18. The Asia/Pacific chemical industry

    International Nuclear Information System (INIS)

    Tattum, L.

    1993-01-01

    The year of the Rooster may herald interesting change for the Asia/Pacific region. Local dynamics are shifting away from Japan, the traditional motor of the region, now in recession toward China, which is increasingly catching the imagination of investors. Japan's lead in major petrochemicals has eroded since restructuring of domestic industry. Ten years ago Japan was the location for 76% of Asian ethylene capacity, according to Chem Systems. It also held 89% of styrene capacity, 69% of polyolefins, and 62% of polyvinyl chloride (PVC). Today it accounts for only 46% of Asian ethylene, 53% of styrene, 40% of polyolefin, and 37% of PVC capacity. Another country to watch is Vietnam many companies are waiting for sanctions to lift on US investment. When they do, this country of rich oil reserves but per capita income of only $200, will look to petrochemicals as a source of foreign investment

  19. Occupational chemical exposures in artificial organic fiber industries

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  20. Coal chemical industry and its sustainable development in China

    International Nuclear Information System (INIS)

    Xie, Kechang; Li, Wenying; Zhao, Wei

    2010-01-01

    China is rich in coal resource, which is vital for energy security in this country. In early 21st century, the coal chemical industry in China will be oriented to the development of high efficiency, safety, cleanliness, and optimum utilization. In this review, the authors present an introduction to the utilization status of primary energy production and consumption in China. Since 2005, fundamental research studies, supported by the Ministry of Science and Technology of Chinese National Basic Research Program, have been carried out at Taiyuan University of Technology. The Ministry stresses that the new coal chemical industry should be developed in a sustainable manner to realize effective utilization of energy. Moreover, upgrading the high technology to improve actively the recycling processes of coal chemical engineering is of strategic importance to realize the modern coal chemical engineering.

  1. The chemical industry - a danger to nuclear power plants

    International Nuclear Information System (INIS)

    Voigtsberger, P.

    1976-01-01

    Nuclear power stations could contaminate large areas with radioactivity when destroyed by strong external influences. In Germany, authorities try to cope with this danger firstly by making certain demands on the strength of the reactor shell and secondly by imposing strict safety regulations on dangerous industrial plants in the surroundings of the reactor. In the case of chemical industry, this means: If a chemical plant and a nuclear reactor lie closely together, special stress is given to explosion pretection measures in the form of primary explosion protection, e.g. strong sealing of inflammable gases and liquids handled in the immediate neighbourhood of the reactor. (orig.) [de

  2. Chemical investigation of the effluents of selected chemical industries in NWFP (Pakistan)

    International Nuclear Information System (INIS)

    Jan, M.R.; Shah, J.; Shah, H.

    2002-01-01

    Samples of effluents were collected from the waste water drains of selected chemical industries, located at small industries estate Kohat Road Peshawar on monthly basis from November 1994 to October 1995. These samples were studied for physico chemical properties and heavy metals like Pb, Ag, Cu, Zn, Fe, Cr, Cd, Mn and Ni using spectroscopic techniques. The results of our investigation are presented and discussed. (author)

  3. Industrial hygiene survey. CF Chemicals, Inc., Bartow, Florida

    International Nuclear Information System (INIS)

    Stephenson, F.; Cassady, M.

    1977-10-01

    An industrial hygiene survey was conducted by NIOSH at CF Chemicals, Bartow, Florida on August 9-12, 1976 as part of a study of the phosphate industry. A description is given of the plant, and the medical, safety, and industrial hygiene programs. During the study, 8-hour time weighted averages were determined for exposure to arsenic, cadmium, chromium, vanadium, phosphoric acid, and sulfuric acid for workers involved in cleaning out phosphoric acid reactor vessels. General area samples were collected for fluorides, radon, and uranium. The results came within the OSHA standards except for two fluoride samples

  4. Industrial hygiene survey. IMC, Phosphate Chemical Complex, New Wales, Florida

    International Nuclear Information System (INIS)

    Stephenson, F.; Cassady, M.

    1977-10-01

    An industrial hygiene survey was conducted by NIOSH at IMC Phosphate Chemical Complex, New Wales, Florida, on June 7-11, 1976, as part of a study of the phosphate industry. Phosphate fertilizer manufacturing, the plant, and the medical, safety, and industrial hygiene programs are described. During the study 8-hour time weighted averages were determined for exposure to arsenic, cadmium, chromium, vanadium, phosphoric acid, and sulfuric acid for workers involved in cleaning out phosphoric acid reactor vessels. General area samples were collected for fluorides, radon, and uranium. Several samples were above the NIOSH recommended levels for arsenic and chromium

  5. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  6. Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?

    Science.gov (United States)

    Tolman, Chadwick A.; Parshall, George W.

    1999-01-01

    Describes major changes that have occurred in the chemical industry over the last 50 years including trends in the development of products and processes, changes in chemical manufacturing, the globalization of business, and modifications of research laboratory practices. Discusses implications for chemistry education and predictions for future…

  7. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  8. Radiation protection in the pharmaceutical-chemical industry

    International Nuclear Information System (INIS)

    Griesser, R.

    1992-01-01

    Some aspects of the use of ionizing radiation in research in the pharmaceutical and chemical industries will be discussed, the emphasis being placed on the handling of open radioactive materials in research laboratories. The compliance with official regulations and the preparation of company internal radiation protection regulations are described. 1 tab., 9 refs

  9. Near miss reporting in the chemical process industry: an overview

    NARCIS (Netherlands)

    Schaaf, van der T.W.

    1995-01-01

    The research programme described in this paper focuses on the human component of system failure in general, and more specifically on the design and implementation of information systems for registration and analysis of so called near misses (or: near accidents) in the chemical process industry. Its

  10. The chemical composition and industrial quality of Barite ...

    African Journals Online (AJOL)

    ... that the mineralization is of high industrial quality and compares favourably with the Azara barite deposits of the Benue Trough. The quality of the barite meets American Petroleum institute (API) requirements for use as drilling mud. KEYWORDS: Barite, mineralization, quality, chemical composition, southeastern Nigeria.

  11. Problems the chemical industry of Japan faces and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Shin' ichi

    1989-01-01

    Industry proceeds for the fiscal 1988 are expected to increase remarkably as they did in the previous year with 4.9% increase in revenue and 18.8% increase in profit (ordinary profit) from the previous year. The conditions of material industry are especially favorable and chemical industry is also expected to prosper as it did in the previous year. Problems this prospering chemical industry is facing are introduced in this report. Firstly, it is necessary to improve productivity by adopting more information and promoting factory automation in order to strengthen competition. The future of chemical industry depends on the introduction of information. Secondly, as demands of users are becoming more diversified, and cycles of products shorter, shortening of development terms is essential. It is necessary, therefore, to predict the demands of users in advance and seek after custom products. Thirdly, selection of product bases is required; it might be necessary to consider producing some product items abroad. Moreover, it is desirable to increase investments in investigation and pursue creativity putting much stress on basic investigations. 2 figs., 11 tabs.

  12. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  13. [Occupational digestive diseases in chemical industry workers of West Siberia].

    Science.gov (United States)

    Pomytkina, T E; Pershin, A N

    2010-01-01

    The high incidence of chronic digestive diseases is recorded in chemical industry workers exposed to the isolated action of noxious substances. The aim of the investigation was to make a hygienic assessment of the risk for occupational digestive diseases in chemical industry workers exposed to a combination of noxious drugs. The working conditions and the prevalence of digestive diseases were studied in 4120 workers engaged in chemical and auxiliary processes. Under the isolated action of noxious substances, the workers had an average of 35% increase in the incidence of digestive diseases than unexposed ones (p 4.0-11.1 and 3.5-10.7 times higher, respectively (p < 0.05) than in the unexposed subjects.

  14. CO2 emissions and reduction potential in China's chemical industry

    International Nuclear Information System (INIS)

    Zhu, Bing; Zhou, Wenji; Hu, Shanying; Li, Qiang; Griffy-Brown, Charla; Jin, Yong

    2010-01-01

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO 2 emissions in the processes of chemical production in China through calculating the amounts of CO 2 emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO 2 emissions by promoting average technology performances in this industry.

  15. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    Science.gov (United States)

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  16. Bentonite chemical modification for use in industrial effluents

    International Nuclear Information System (INIS)

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F.

    2010-01-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  17. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  18. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  19. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  20. Reactive formulations for a neutralization of toxic industrial chemicals

    Science.gov (United States)

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  1. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  2. [Exposure to hazardous chemical substances in furniture industry].

    Science.gov (United States)

    Pośniak, Małgorzata; Kowalska, Joanna; Makhniashvili, Ivan

    2005-01-01

    The aim of the study was to assess the exposure to organic solvents in plants of the furniture industry. Studies were conducted in five furniture plants. Hazardous chemicals present in the air at workposts were determined by capillary gas chromatography with mass spectrometry and flame ionization detection. The analysis of air samples collected at the workposts allowed to identify the following chemicals occurring during varnishing and cleaning of furniture surface elements: acetone, butan-2-one, ethyl, isobutyl and methoxypropyl acetate, 4-methylpentan-2-on, toluene, ethylbenzene and xylenes. Indices characteristic of combined exposure ranged from 0.13 to 1.67 and exceeded the limit value at 21% of workposts. The results of the study indicate that chemicals present at representative workposts during the furniture production are harmful to health of workers, especially those involved in varnishing and cleaning of furniture elements.

  3. EUROPEAN CHEMICAL INDUSTRY COMPETITIVENESS: HISTORICAL TRENDS AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    Dmytro Gladkykh

    2015-11-01

    Full Text Available The purpose of the paper is to analyze historical trends and development prospects of the European chemical industry competitiveness. It is concluded that the chemical industry is one of the EU’s most successful spheres, boasting €527 billion in sales in 2013, making it the second-largest global manufacture. Methodology. To explain the competitiveness of the EU chemical branch in the global market, it is proposed the constant-market share methodology to chemical exports coupled with econometric analysis. Results. The constant market share (CMS approach to assessing competitiveness, developed in the 1970 s for analysis of trade, is based on the principle that changes in the geographic and product structures of exports will affect a country’s export growth relative to that of the world, and that is way its global export market share. There were analyzed the EU biggest exporters (Germany, France, Italy, UK, Spain, Netherlands, Belgium, Poland, the USA, Japan; China, India, Saudi Arabia, Brazil. Practical implication. The analysis presents the results of competitiveness assessment in a different way, showing the average annual growth rate of EU and world chemical exports in the top section and then decomposing the gap between the two into that thanks to growth dynamics (structure effect and competitive effect. It is defined a lot of factors that are important to industrial competitiveness. On the cost side, in many industries labor is a large enough share of overall production costs that international differences in salaries can have a large bearing on competitiveness. Costs are also affected by a variety of government policies. It is also defined that innovation is one of the most important factors, which opens up new opportunities both in terms of new products and more efficient processes for manufacturing existing products. Value/originality. Given analysis helps to understand the causes and factors that have an impact on the European

  4. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    DEFF Research Database (Denmark)

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    In Germany, 19.6 % of the industrial final energy consumption (FEC) can be allocated to the chemical industry. Energy efficiency measures with focus on the chemical industry could thus significantly contribute to reaching the German goal of reducing greenhouse gas emissions by 80 % in 2050 compared...

  5. [The pharmaceutical industry in the industrial chemical group: the National Union of Chemical-Pharmaceutical Laboratories (1919-1936)].

    Science.gov (United States)

    Nozal, Raúl Rodríquez

    2011-01-01

    The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The 'Cámara Nacional de Industrias Químicas', in Barcelona, represented the national chemical industry to its ultimate assimilation by the 'Organización Sindical' in 1939. In this association, matters relating to pharmaceutical products -- which we will especially deal with in this work -- were managed by the 'Unión Nacional de Laboratorios Químico-Farmacéuticos', which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. this created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the 'Unión Farmacéutica Nacional'.

  6. Mercapturic acids as biomarkers of exposure to electrophilic chemicals: applications to environmental and industrial chemicals.

    NARCIS (Netherlands)

    de Rooij, B.M.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1998-01-01

    The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this

  7. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  8. Chemical production from industrial by-product gases: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  9. Nanotechnology in the Chemical Industry - Opportunities and Challenges

    International Nuclear Information System (INIS)

    Qian Qiuzhao; Boxman, Arthur; Chowdhry, Uma

    2003-01-01

    The traditional chemical industry has become a largely mature industry with many commodity products based on established technologies. Therefore, new product and market opportunities will more likely come from speciality chemicals, and from new functionalities obtained from new processing technologies as well as new microstructure control methodologies. It is a well-known fact that in addition to its molecular structure, the microstructure of a material is key to determining its properties. Controlling structures at the micro- and nano-levels is therefore essential to new discoveries. For this article, we define nanotechnology as the controlled manipulation of nanomaterials with at least one dimension less than 100nm.Nanotechnology is emerging as one of the principal areas of investigation that is integrating chemistry and materials science, and in some cases integrating these with biology to create new and yet undiscovered properties that can be exploited to gain new market opportunities. In this article market opportunities for nanotechnology will be presented from an industrial perspective covering electronic, biomedical, performance materials, and consumer products. Manufacturing technology challenges will be identified, including operations ranging from particle formation, coating, dispersion, to characterization, modeling, and simulation. Finally, a nanotechnology innovation roadmap is proposed wherein the interplay between the development of nanoscale building blocks, product design, process design, and value chain integration is identified. A suggestion is made for an R and D model combining market pull and technology push as a way to quickly exploit the advantages in nanotechnology and translate these into customer benefits

  10. Irradiation of starches for industrial uses: Chemical and physical effects

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.

    1999-01-01

    Corn and cassava starches have been irradiated with gamma doses from 10 to 180 kGy and pastes have been prepared by boiling the starches in water. The rheological properties of the pastes have been determined showing that the 10 kGy dose reduces sharply the viscosity of the aqueous pastes. The solubility of the irradiated starches has been also studied. The cassava starch irradiated with 180 kGy is soluble in boiling water and remains soluble at room temperature. After some considerations on the chemical effects of the irradiation it is concluded that the irradiation technique is suitable to replace the chemical treatment in many industrial applications of the starch. (author)

  11. How the chemical industry can benefit from PRA

    International Nuclear Information System (INIS)

    Guymer, P.; Kaiser, G.D.; Mc Kelvey, T.W.; Hannaman, G.W.

    1986-01-01

    Probabilistic Risk Assessment (PRA) is a method of quantifying the frequency of occurrence and the magnitude of the consequences of accidents in systems that contain hazardous materials such as radioactive fission products, and toxic, flammable or explosive chemicals. The frequency and the magnitude of the consequences are the basic elements of any definition or risk, which is often simply expressed as the product of frequency and magnitude, summed over all accident sequences. PRA is now a mature technique that has been used to estimate risk for a number of industrial facilities. In this paper the author gives examples of beneficial uses of PRA

  12. Survey on the Use of LCA in European Chemical Industry

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    1999-01-01

    During 1997 a questionnaire was sent to 40 European chemical manufacturers representing different positions in the supply chain. 25 companies (62.5%) responded, of which 23 had been involved in LCA to some degree. The questionnaire consisted of 30 questions divided into four parts dealing...... industry has taken up the LCA methodology and is testing its applicability for their purposes, although they still feel the methodology is a bit immature. The resources devoted to LCA depends to a great extent on the company's position in the supply chain and on the size of the company. Many of the LCA...

  13. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    Science.gov (United States)

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An operational centre for managing major chemical industrial accidents.

    Science.gov (United States)

    Kiranoudis, C T; Kourniotis, S P; Christolis, M; Markatos, N C; Zografos, K G; Giannouli, I M; Androutsopoulos, K N; Ziomas, I; Kosmidis, E; Simeonidis, P; Poupkou, N

    2002-01-28

    The most important characteristic of major chemical accidents, from a societal perspective, is their tendency to produce off-site effects. The extent and severity of the accident may significantly affect the population and the environment of the adjacent areas. Following an accident event, effort should be made to limit such effects. Management decisions should be based on rational and quantitative information based on the site specific circumstances and the possible consequences. To produce such information we have developed an operational centre for managing large-scale industrial accidents. Its architecture involves an integrated framework of geographical information system (GIS) and RDBMS technology systems equipped with interactive communication capabilities. The operational centre was developed for Windows 98 platforms, for the region of Thriasion Pedion of West Attica, where the concentration of industrial activity and storage of toxic chemical is immense within areas of high population density. An appropriate case study is given in order to illuminate the use and necessity of the operational centre.

  15. Evolution of nuclear chemical industry in France; Evolution de l'industrie chimique nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Fould, M H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The present characteristics can be summarized in one word: expansion. Impelled by the CEA, but also by such organisations as the Electricite de France and the Merchant Marine, the French nuclear effort for the years 1957-1961 reaches about 600 thousand millions francs; over half this sum will be spent by chemical industry on research, pilot installations, construction of plants and delivery. The aim is to work efficiently, quickly and profitably. This is achieved through close collaboration between the big state organisations and private industry. It is chiefly along the following lines that this large scale effort is carried on: - thorough chemical treatment of increasing tonnages of ores from the French Union, with the aim of producing pure, plentiful and cheap uranium. - careful preparation of nuclear fuels, economical and perfectly adapted to the various types of reactor in operation or under construction. - Further treatment of irradiated fuels to extract the plutonium completely, as well as the uranium and certain fission products. industrial manufacture of material of nuclear purity or corrosion resistant required by the technology of energy producing or research reactors. - Supply to the many foreign or French users of isotopes and radioactive tracers required by medicine, industry and agriculture in ever-increasing numbers. - Meticulous chemical treatment of gaseous or liquid effluent in strictly controlled stations in order that reactors and their annexes will be perfectly safe to use. This account shows the great extent of the effort laid out by a young, energetic chemical industry in full swing. Having made sure of its techniques and set up numerous installations it is fully in a position to confront the French atomic programme. In addition it is able and anxious to associate with the developments of foreign atomic industry, especially EURATOM and Eurochemic. (author) [French] Un mot en resume les caracteristiques presentes: l'expansion. Sous l

  16. The pharmaceutical industry in the industrial chemical group: The National Union of Chemical-Pharmaceutical Laboratories (1919-1936

    Directory of Open Access Journals (Sweden)

    Rodríguez Nozal, Raúl

    2011-12-01

    Full Text Available The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The Cámara Nacional de Industrias Químicas, in Barcelona, represented the national chemical industry to its ultimate assimilation by the Organización Sindical in 1939. In this association, matters relating to pharmaceutical products —which we will specially deal with in this work— were managed by the Unión Nacional de Laboratorios Químico-Farmacéuticos, which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. This created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the Unión Farmacéutica Nacional.

    El asociacionismo farmacéutico industrial, al igual que ocurriera con otras actividades empresariales, experimentó un notable auge durante la Dictadura de Primo de Rivera y la II República. La Cámara Nacional de Industrias Químicas, desde Barcelona, representó a la industria química nacional hasta su asimilación definitiva por la Organización Sindical franquista, en 1939. Dentro de esta asociación, los asuntos relacionados con los productos farmacéuticos, a los que prestaremos especial atención en este trabajo, fueron gestionados por la Unión Nacional de Laboratorios Químico- Farmacéuticos, que defendió los intereses de los productores de medicamentos industriales ante las autoridades gubernamentales, utilizando para ello recursos y mecanismos también manejados por otros grupos empresariales de presión. La inclusión de la farmacia industrial

  17. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  18. The patterns of energy use in the chemical industry

    International Nuclear Information System (INIS)

    Steinmeyer, D.

    1997-01-01

    This paper was sculpted from a report commissioned by the Department of Energy to assess the impact of proposed energy taxes on energy use by the US chemical industry. The discussion of energy taxes is eliminated here, however the broader discussion of the impact of energy prices on energy use is retained. The US chemical industry is currently the world leader by many important measures, such as technology contributions and employment. This leadership traces to a slate of advantages: science base, low cost energy, large market and economic/political stability. The focus of this paper is on the patterns of energy use: (1) There is an optimum economic trade of capital against energy. Industry optimizes this trade to lower its costs. For the large volume chemicals which dominate energy use, this tradable capital cost exceeds energy cost by a factor of 1.5. (2) The capital/energy trade follows clearly defined rules. The basic rules are rooted in thermodynamics. (3) An increase in energy prices would result in a drop in process energy use: a doubling of process energy prices would cut process energy use by approximately 1/3 but the capital cost would be in excess of $100 billion if driven into a short time span, such as 5 years. This is because of the long useful lifetime of capital facilities. (4) Process energy is about half the total energy use, with feedstock being the balance. Feedstock use is much less sensitive to price. Restated, the doubling of energy price will result in roughly a 1/6 reduction in total energy use. (5) Technology progress will also reduce energy use. This reduction is distinct from the impact of energy price. Technological progress will be at least as important in reducing energy use as will energy pricing, for the foreseeable future. (6) Technology progress can be sorted into two themes: (a) Learning curve improvements, which are almost inherent in the production process and the nature of competition; and (b) Breakthroughs that happen in a

  19. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  20. Chemical analysis for waste management in paint industries

    International Nuclear Information System (INIS)

    Nawaz, Z.; Naveed, S.; Shiekh, N.A.; Sagheer, K.

    2005-01-01

    The chemical analysis of paint industries waste has been carried out; the main emission sources are the heating of raw materials and lacquer. Also the waste from other applications and production contains high concentration of heavy metals, VOC's, COD, TDS with notable acidity and alkalinity. Based on the analysis it was observed that the major losses of production could be minimized. Further toxic effects of the waste material can be minimized. In this reference measures to minimize production losses should be adopted along with the proper management. These laboratory results also lead to the areas of emissions and waste production during manufacturing process. Solutions have been proposed for process development and integrated waste minimization. (author)

  1. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2001-01-01

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  2. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  3. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  4. A methodology for overall consequence modeling in chemical industry

    International Nuclear Information System (INIS)

    Arunraj, N.S.; Maiti, J.

    2009-01-01

    Risk assessment in chemical process industry is a very important issue for safeguarding human and the ecosystem from damages caused to them. Consequence assessment is an integral part of risk assessment. However, the commonly used consequence estimation methods involve time-consuming complex mathematical models and simple assimilation of losses without considering all the consequence factors. This lead to the deterioration of quality of estimated risk value. So, the consequence modeling has to be performed in detail considering all major losses with optimal time to improve the decisive value of risk. The losses can be broadly categorized into production loss, assets loss, human health and safety loss, and environment loss. In this paper, a conceptual framework is developed to assess the overall consequence considering all the important components of major losses. Secondly, a methodology is developed for the calculation of all the major losses, which are normalized to yield the overall consequence. Finally, as an illustration, the proposed methodology is applied to a case study plant involving benzene extraction. The case study result using the proposed consequence assessment scheme is compared with that from the existing methodologies.

  5. STANDARD CALCULATION PER PRODUCT IN THE CHEMICAL FERTILIZER INDUSTRY

    Directory of Open Access Journals (Sweden)

    Ion Ionescu

    2016-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. Research carried out has revealed that currently, the costing is organized in terms of using traditional methods and that it is necessary to organize and implement an accounting management based on the use of modern methods, namely the method of standard costs combined with the method of centres of costs. The major implications of the proposed system for the investigated field consist of determining a relevant cost-oriented management entity, highlighting the shortcomings of traditional methods of cost

  6. Calculation of the actual cost in the chemical fertilizer industry

    Directory of Open Access Journals (Sweden)

    Ion Ionescu

    2017-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. The research has highlighted the fact that, nowadays, the cost calculation is organized using traditional methods, which focus on the monthly determination of the actual unit cost per product (semi-fabric and that it is necessary to organize and implement a managerial accounting, based on the use of a modern method, namely the standard cost method combined with cost centre method. The major implications of the proposed system for the researched field are the monthly calculation of actual costs per cost centres, the calculation of the actual cost per product, as the final cost carrier, to be performed over longer periods of time, usually, quarterly.

  7. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1997-01-01

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  8. Potential applications of carbon dioxide in chemical industry; Moegliche Nutzungen von Kohlendioxid in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Arno; Neuberg, Stefan [Technische Univ. Dortmund (Germany)

    2009-10-15

    Up to now, the use of carbon dioxide as a renewable C. carbon source plays in the current public debate on CCS technology only a minor role. Though, the chemical utilization of the generally unreactive classified molecule provides same very interesting synthesis routes, which take place without toxic starting materials like phosgene. In this review a number of syntheses using CO{sub 2}, which are currently in development, will be briefly presented. Although most of them have only been investigated on laboratory or miniplant scale and require further development, they demonstrate the high potential of carbon dioxide in industrial syntheses far beyond the traditional applications such as urea or salicylic acid syntheses. Concepts for the synthesis of formic acid and a {delta}-lactone, as well as developments in photosynthesis will be presented. A crucial role in nearly all these conversions plays the catalytic activation of carbon dioxide. (orig.)

  9. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  10. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  11. Chemical, procedural and economical evaluation of carbon dioxide as feedstock in the chemical industry

    International Nuclear Information System (INIS)

    Otto, Alexander

    2015-01-01

    The utilisation of CO 2 as feedstock in the chemical industry represents an alternative to the geological storage, which is legally limited and socially debated. Generally, scientific publications about the utilisation of CO 2 in chemical reactions typically address the feasibility of the syntheses without paying attention to the CO 2 reduction potential or the economy in contrast to the conventional process of production. The aim of this doctoral thesis is to identify chemical reactions with CO 2 as feedstock, which have the potential to reduce CO 2 emissions. These reactions are evaluated concerning the industrial realization, CO 2 balance and economy compared to the conventional processes. To achieve this, 123 reactions from the literature were collected and evaluated with the help of selection criteria developed specifically for this application. The criteria consider both, the quantitative potential to reduce CO 2 and possible economical interests in these reactions. Additional to the process of the evaluation of the reactions, a CO 2 reduction potential of 1.33 % of the greenhouse gas emissions within the European Union could be calculated. For the chemicals formic acid, oxalic acid, formaldehyde, methanol, urea and dimethyl ether, which most fully satisfy the selection criteria, a direct comparison of the CO 2 based process with the conventional process is performed. By literature data, process designs, and simulations, it has been shown that the highest reductions of CO 2 emissions can be achieved for methanol with 1.43 kg CO2 /kg MeOH and dimethyl ether with 2.17 kg CO2 /kg DME , but only with the assumption that the necessary hydrogen for the CO 2 based reaction is produced by electrolysis operated with renewable energy. Overall, the CO 2 based production processes of methanol and dimethyl ether could reduce 0.059 % of the greenhouse gas emissions of the European Union (EU) if all conventional processes are substituted in the EU. Finally, for the CO 2

  12. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  13. Designing continuous safety improvement within chemical industrial areas

    NARCIS (Netherlands)

    Reniers, G.L.L.; Ale, B. J.M.; Dullaert, W.; Soudan, K.

    This article provides support in organizing and implementing novel concepts for enhancing safety on a cluster level of chemical plants. The paper elaborates the requirements for integrating Safety Management Systems of chemical plants situated within a so-called chemical cluster. Recommendations of

  14. Chemical reactor development : from laboratory synthesis to industrial production

    NARCIS (Netherlands)

    Thoenes, D.

    1998-01-01

    Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is

  15. Abstracts Book of 42. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1999-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important chemical forum of Polish chemists organised annually. The state of art of many fundamental and applied investigations have been presented and discussed. The following scientific sessions and microsymposia have been proposed: plenary session, analytical chemistry, inorganic chemistry, organic chemistry, chemistry and environment, chemistry and technology of polymers, chemistry didactics, electrochemistry, young scientists forum, chemical technology, chemical engineering, high energetics materials, computers in research and teaching of chemistry, structure modelling and polymer properties, silicon-organic compounds

  16. Abstracts Book of Jubilee Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2000-01-01

    Scientific Assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are most important chemical discussion forum organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as sections and symposia topics: organic chemistry, physical chemistry (chemical kinetics, catalysis, thermodynamics), membranes and membrane processes, biological chemistry, biotechnology, metalorganic compounds and complexes, polymer chemistry, crystallochemical study, spectroscopy in nowadays chemistry, supramolecular chemistry, chemistry and technology of coal, high-energetic materials, environment protection, didactics in chemistry, radiation chemistry, photochemistry, electrochemistry, chemistry and technology of carbohydrates, theoretical and computer chemistry, young scientists forum, history of chemistry

  17. Environmental profiles on chemicals (EPC): A substitution tool i.a. used in the textile industry

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, John; Laursen, Søren E.

    2002-01-01

    When dealing with cleaner technology and product development within industries using a lot of different chemicals, substitution is essential. In many cases substitution of hazardous chemicals with less hazardous ones will diminish the environmental impact from the industry in question. But among...... many different chemicals it can be difficult to prioritize and evaluate areas for substitution. The EPC-tool was thus developed and it has been used successfully within the Danish printing industry and the Polish textile industry. The EPC tool combines key emission and key consumption figures...... with hazard assessments of the chemicals used in production and thus creates an environmental profile of the industry, process or product in question. The preceding EPCs are used for pointing out hazardous chemicals used in relatively high quantities and therefore candidates for substitution. The EPCs created...

  18. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    Science.gov (United States)

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...... established in the pharmaceutical industry but is moving down the value chain toward bulk chemicals. Chemical engineers will have an essential role in the development of new processes where the need is for new design methods for effective implementation, just as much as new technology. Most interesting...

  20. Best practices in incident investigation in the chemical process industries with examples from the industry sector and specifically from Nova Chemicals

    International Nuclear Information System (INIS)

    Morrison, Lisa M.

    2004-01-01

    This paper will summarize best practices in incident investigation in the chemical process industries and will provide examples from both the industry sector and specifically from NOVA Chemicals. As a sponsor of the Center for Chemical Process Safety (CCPS), an industry technology alliance of the American Institute of Chemical Engineers, NOVA Chemicals participates in a number of working groups to help develop best practices and tools for the chemical process and associated industries in order to advance chemical process safety. A recent project was to develop an update on guidelines for investigating chemical process incidents. A successful incident investigation management system must ensure that all incidents and near misses are reported, that root causes are identified, that recommendations from incident investigations identify appropriate preventive measures, and that these recommendations are resolved in a timely manner. The key elements of an effective management system for incident investigation will be described. Accepted definitions of such terms as near miss, incident, and root cause will be reviewed. An explanation of the types of incident classification systems in use, along with expected levels of follow-up, will be provided. There are several incident investigation methodologies in use today by members of the CCPS; most of these methodologies incorporate the use of several tools. These tools include: timelines, sequence diagrams, causal factor identification, brainstorming, checklists, pre-defined trees, and team-defined logic trees. Developing appropriate recommendations and then ensuring their resolution is the key to prevention of similar events from recurring, along with the sharing of lessons learned from incidents. There are several sources of information on previous incidents and lessons learned available to companies. In addition, many companies in the chemical process industries use their own internal databases to track recommendations from

  1. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Science.gov (United States)

    2010-01-01

    ... examples of affected industries. 710.4 Section 710.4 Commerce and Foreign Trade Regulations Relating to... REGULATIONS (CWCR) § 710.4 Overview of scheduled chemicals and examples of affected industries. The following provides examples of the types of industries that may be affected by the CWCR (parts 710 through 729 of...

  2. Security risk assessment and protection in the chemical and process industry

    OpenAIRE

    Reniers, Genserik; van Lerberghe, Paul; van Gulijk, Coen

    2014-01-01

    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including...

  3. Review on Chemical treatment of Industrial Waste Water * OPSAHU

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    water is used and lot of wastewater generated from industries due their processes and washing purpose. A large ..... for coagulation–precipitation of cosmetic wastewater industry (Aloui ..... Gregor, J.E., Nokes, C.J., Fenton, E., 1997. Optimising ...

  4. Research on the competitiveness and development strategy of china's modern coal chemical industry

    Science.gov (United States)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  5. Globalization : the challenge of the 1990s for the chemical industry

    International Nuclear Information System (INIS)

    Wilcock, D.

    1992-01-01

    The challenges facing the chemical industry in Canada were discussed. In recent years, Canada has scored low in polls measuring public confidence in the chemical industry. The industry is also suffering from continuing recession, global competition, increased environmental demands and strict legislation. The impact of globalization, total quality management, free trade, environmental concerns, and government policies on the chemical industry were reviewed. In the view of this author (President and CEO of Dow Chemicals) globalization is not a matter of choice, it is an industry imperative. Survival in the globalized economy will require not only to be successful competitors, but even more importantly to be successful cooperators with other stakeholders, and successful in forming partnerships with customers

  6. A multi-attribute Systemic Risk Index for comparing and prioritizing chemical industrial areas

    International Nuclear Information System (INIS)

    Reniers, G.L.L.; Sörensen, K.; Dullaert, W.

    2012-01-01

    Measures taken to decrease interdependent risks within chemical industrial areas should be based on quantitative data from a holistic (cluster-based) point of view. Therefore, this paper examines the typology of networks representing industrial areas to formulate recommendations to more effectively protect a chemical cluster against existing systemic risks. Chemical industrial areas are modeled as two distinct complex networks and are prioritized by computing two sub-indices with respect to existing systemic safety and security risks (using Domino Danger Units) and supply chain risks (using units from an ordinal expert scale). Subsequently, a Systemic Risk Index for the industrial area is determined employing the Borda algorithm, whereby the systemic risk index considers both a safety and security network risk index and a supply chain network risk index. The developed method allows decreasing systemic risks within chemical industrial areas from a holistic (inter-organizational and/or inter-cluster) perspective. An illustrative example is given.

  7. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  8. Sustainable development - theory and practice of environmental consulting. Proceedings of a seminar of Zentrale Informationsstelle Umweltberatung Bayern. Vol. 11; Nachhaltige Entwicklung - Theorie und Praxis fuer die Umweltberatung. Seminarband der Zentralen Informationsstelle Umweltberatung Bayern. Bd. 11

    Energy Technology Data Exchange (ETDEWEB)

    Koller, U.; Behling, G.; Klemmer, A.; Haury, H.J. [comps.

    1998-12-31

    On 25/26 November, 1997, Zentrale Informationsstelle, Umweltberatung Bayern held its 11th seminar under the title ``Sustainable development - theory and practice of environmental consulting. Subjects related to the Agenda 21 were discussed in lectures and workshops. [Deutsch] Am 25. und 26. November 1997 veranstaltete die Zentrale Informationsstelle, Umweltberatung Bayern ihr elftes Seminar mit dem Thema ``Nachhaltige Entwicklung- Theorie und Praxis fuer die Umweltberatung``. In Fachvortraegen und Workshops wurden Themen zur Agenda 21 behandelt. (ABI)

  9. Profile of the chemicals industry in California: Californiaindustries of the future program

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry

  10. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  11. Progress of environmental management and risk assessment of industrial chemicals in China.

    Science.gov (United States)

    Wang, Hong; Yan, Zhen-Guang; Li, Hong; Yang, Ni-Yun; Leung, Kenneth M Y; Wang, Yi-Zhe; Yu, Ruo-Zhen; Zhang, Lai; Wang, Wan-Hua; Jiao, Cong-Ying; Liu, Zheng-Tao

    2012-06-01

    With China's rapid economic growth, chemical-related environmental issues have become increasingly prominent, and the environmental management of chemicals has garnered increased attention from the government. This review focuses on the current situation and the application of risk assessment in China's environmental management of industrial chemicals. The related challenges and research needs of the country are also discussed. The Chinese government promulgated regulations for the import and export of toxic chemicals in 1994. Regulations for new chemical substances came into force in 2003, and were revised in 2010 based on the concept of risk management. In order to support the implementation of new regulations, Guidance for Risk Assessment of Chemicals is under development in an attempt to provide the concepts and techniques of risk assessment. With increasing concern and financial support from Chinese government, China is embarking on the fast track of research and development in environmental management of industrial chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Carcinogenicity tests of certain environmental and industrial chemicals

    International Nuclear Information System (INIS)

    Weisburger, E.K.; Ulland, B.M.; Nam, J.; Gart, J.J.; Weisburger, J.H.

    1981-01-01

    Fourteen chemicals of varied uses were tested for carcinogenicity by oral administration in male and female Charles River CD rats. Under the conditions of the tests, propane sultone, propylene imine, and ethylenethiourea, in addition to the positive control N-2-fluorenylacetamide, were carcinogenic. Avadex, bis(2-chloroethyl) ether, the potassium salt of bis(2-hydroxyethyl) dithiocarbamic acid, ethylene carbonate, and semicarbazide hydrochloride were not carcinogenic under the test conditions. Dithiooxamide, glycerol alpha-monochlorohydrin, and thiosemicarbazide gave somewhat ambiguous results, though administered at high enough dose levels to be toxic. An inadequate number of animals survived treatments with sodium azide, sodium bisulfide, and vinylene carbonate, or the animals may not have received sufficiently high doses of the test chemicals to provide maximum test sensitivity. However, there were no indications that these three chemicals were carcinogenic under the test conditions

  13. the chemical composition and industrial quality of barite ...

    African Journals Online (AJOL)

    PROF EKWUEME

    important properties when considering the suitability of barite for non-drilling applications. Barite has various uses. For instance, high purity grades of barite with fine and well-sorted particles are used as fillers in marine and industrial paints, in brake lining/friction materials and in plastics. A specialized use of barite based on ...

  14. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  15. Factors Influencing the Spatial Distribution of Organochlorine Pesticides in Soils surrounding Chemical Industrial Parks

    NARCIS (Netherlands)

    Wang, G.; Lu, Y.L.; Wang, T.Y.; Zhang, X.; Han, J.Y.; Luo, W.; Shi, Y.J.; Li, J.; Jiao, W.T.

    2009-01-01

    Topsoil samples (n = 105) were collected to Study the distribution of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) residues in the vicinity of chemical industrial parks in Tianjin, China. The occurrence and distribution of target organochlorine pesticides (OCPs) were mapped

  16. Health Risk Assessment of Harmful Chemicals: Case Study in a Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    M. Motovagheh

    2011-01-01

    Full Text Available Background and aims In the most chemical process industries, workers are exposed to various chemicals and working with these chemicals without considering safety and health considerations can lead to different harmful symptoms. For deciding about control measures and reducing risk to acceptable level , it is necessary to assess the health risk of exposing to harmful chemicals by aid of specific risk assessment techniques in the process industries. The purpose of this study was to assess the health risks arising from the exposures to chemicals in a petrochemical industry.  methods A simple and applied method was used for health risk assessment of chemicals in a petrochemical industry. Firstly job tasks and work process were determined and then different chemicals in each tasks identified and risk ranking was calculated in each job task by aid of hazard and exposure rate.   Results The result showed that workers are exposed to 10 chemicals including Methyl ethyl ketone, Epichlorohydrin, Sulfuric acid, Phenol, Chlorobenzene, Toluene, Isopropanol, Methylene chloride, Chlorideric Acid and Acetone during their work in plant. From these chemicals, the highest risk level was for Epichlorohydrin in the jobs of tank and utility operations and maintenance workers. The next high risk level was for Epichlorohydrin in technical inspecting and Methyl ethyl ketone in Tank and utility operations operator.     Conclusion Hazard information and monitoring data of chemical agents in the chemical industries can be used for assessing health risks from exposures to chemicals and ranking jobs by their risk level. These data can be used for resource allocation for control measures and reducing risk level to acceptable level.    

  17. Public perception and attitude towards chemical industry park in Dalian, Bohai Rim.

    Science.gov (United States)

    He, Guizhen; Chen, Chunci; Zhang, Lei; Lu, Yonglong

    2018-04-01

    Recent decade has witnessed accelerating expansion of chemical industry and increasing conflicts between the local citizens, governmental authorities and project developers, especially in some coastal and port cities in China. Development and transformation of chemical industrial parks has been adopted as a national initiative recently. However, there is a paucity of research examining public perspectives on chemical industrial parks and their risks. Aiming to understand public perception, attitude, and response and the factors underlying the support/acceptance of chemical industry park, this paper investigated 418 residents neighboring to two chemical industrial parks, Dalian in Bohai Rim through face-to-face questionnaire survey. The results showed the knowledge of the respondents on the chemical industrial parks development was very limited. The respondents had complex perceptions on the environmental impacts, risks control, social-economic benefits, and problem awareness. The current levels of information disclosure and public participation were very low. The central governmental official (44.3%) was the most trustworthy group by the respondents. Only 5.5% and 23.2% of the respondents supported the construction of a new CIP nearby and far away their homes, whilst 13% thought new CIP project as acceptable. The spearman correlation analysis results showed a strong NIMBY effect (Not In My Backyard). Factor analysis results demonstrated five latent factors: knowledge, benefit, information, trust, and participation. Multiple linear regression analysis indicated how socio-demographic differences and five latent factors might impact on the support/acceptance of the chemical industrial parks. Education level, trust, information, and participation were significant predictors of public support/acceptance level. This study contributes to our limited knowledge and understanding of public sentiments to the chemical industry parks in China. Copyright © 2017 Elsevier Ltd

  18. Possibilities for recovery and prospects of the Serbian chemical industry in the light of sustainable development

    Directory of Open Access Journals (Sweden)

    Đukić Petar M.

    2014-01-01

    Full Text Available There are numerous dilemmas related to the meaning of common terms associated with modern economic sectors, and especially the ones concerning industry. Chemical industry is a typical example of a term which changes rapidly and qualitatively, exactly with the pace of changing of the very technology based on knowledge, procedure, processes, raw materials, energy, as well as on the products themselves and on the way of their use. Numerous difficulties caused by huge changes in global market, by transition of command economies towards market system, as well as by the latest global economic-financial crisis, have brought the chemical industry in modern Serbia to an unenviable position. We cannot generally claim that chemical industry is collapsing, but the recovery of the whole chemical industry, as well as of the industry in general, necessitates many favourable presumptions from the environment, as well as strategic, systemic and operative measures, of the state within the so-called industry policy, as well as of the very companies which deal with chemical industry. The re-industrialization strategy, adopted officially during the first crisis blow, but to the full extent only during the prolonged crisis period in Serbia (2009-2013 should not be based on direct state incentives, but above all on the institutional infrastructure and business environment improvement which will lead to the investments in technological reconstruction and re-organization of the entire sector. However, chemical industry cannot be observed as a chance for economic growth per se, nor it can lead to higher employment rate in such a short period of time, but above all to productive use of profession, or of growth potential based on knowledge factor. This is why a proper evolution and prosperity of the Serbian chemical industry can be comprehended, not only through contribution of one separate sector, but as complementary and useful technologies within many other industries

  19. Chemical and Physical Sensing in the Petroleum Industry

    Science.gov (United States)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  20. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    Science.gov (United States)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  1. A FLUORESCENCE-BASED SCREENING ASSAY FOR DNA DAMAGE INDUCED BY GENOTOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    The possibility of deliberate or accidental release of toxic chemicals in industrial, commercial or residential settings has indicated a need for rapid, cost-effective and versatile monitoring methods to prevent exposures to humans and ecosystems. Because many toxic industrial c...

  2. Physio-Chemical Analysis of Industrial Effluents in parts of Edo ...

    African Journals Online (AJOL)

    Physio-Chemical Analysis of Industrial Effluents in parts of Edo States Nigeria. ... Journal of Applied Sciences and Environmental Management ... particularly, surface water results from all activities of man involving indiscriminate waste disposal from industry such as effluents into waterways, waste, agricultural waste, and all ...

  3. Accidents, often the result of an 'uncontrolled business process' - a study in the (Dutch) chemical industry

    NARCIS (Netherlands)

    Sonnemans, P.J.M.; Körvers, P.M.W.; Brombacher, A.C.; Beek, van P.C.; Reinders, J.E.A.

    2003-01-01

    Often companies in the (petro-) chemical industry claim that all possible countermeasures against potential accidents have been taken and therefore accidents are unforeseeable. In this paper we question this statement by analysing the pre-warning signals (precursors) preceding a number of industrial

  4. Urinary screening for potentially genotoxic exposures in a chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Ahlborg, G. Jr.; Bergstroem, B.H.; Hogstedt, C.; Einistoe, P.S.; Sorsa, M.

    1985-10-01

    Mutagenic activity, measured by the bacterial fluctuation assay and thioether concentration in urine from workers at a chemical plant producing pharmaceuticals and explosives, was determined before and after exposure. Of 12 groups only those exposed to trinitrotoluene (n = 14) showed a significant increase in mutagenic activity using Salmonella typhimurium TA 98 without any exogenous metabolic system. The same strain responded only weakly when the S-9 mix was used; with Escherichia coli WP2 uvrA no effect of exposure was observed. Urinary thioether concentration was higher among smokers than among non-smokers, but occupational exposure had no effect. Urinary mutagenicity testing may be a useful tool for screening potentially genotoxic exposures in complex chemical environments.

  5. Potential Applications of Peroxidases in the Fine Chemical Industries

    Science.gov (United States)

    Casella, Luigi; Monzani, Enrico; Nicolis, Stefania

    A description of selected types of reactions catalyzed by heme peroxidases is given. In particular, the discussion is focused mainly on those of potential interest for fine chemical synthesis. The division into subsections has been done fromthe point of view of the enzyme action, i.e., giving emphasis to themechanismof the enzymatic reaction, and from that of the substrate, i.e., analyzing the type of transformation promoted by the enzyme. These two approaches have several points in common.

  6. Forecasting global developments in the basic chemical industry for environmental policy analysis

    NARCIS (Netherlands)

    Broeren, M.L.M.|info:eu-repo/dai/nl/371687438; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  7. Management of change: Lessons learned from staff reductions in the chemical process industry

    NARCIS (Netherlands)

    Zwetsloot, G.I.J.M.; Gort, J.; Steijger, N.; Moonen, C.

    2007-01-01

    Increasing global competition and shareholder pressure are causing major changes in the chemical industry. Over the last decade companies have been continuously improving staff efficiency. As a result, most modern chemical plants can be regarded as lean. Plans to further reduce the number of staff

  8. Value chain management for commodities: a case study from the chemical industry

    NARCIS (Netherlands)

    Kannegiesser, M.; Günther, H.O.; Beek, van P.; Grunow, M.; Habla, C.

    2009-01-01

    We present a planning model for chemical commodities related to an industry case. Commodities are standard chemicals characterized by sales and supply volatility in volume and value. Increasing and volatile prices of crude oil-dependent raw materials require coordination of sales and supply

  9. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  10. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    NARCIS (Netherlands)

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical

  11. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  12. Land-use planning risk estimates for a chemical industrial park in China - A longitudinal study

    DEFF Research Database (Denmark)

    Hu, Xinsheng; Wu, Zongzhi; Hedlund, Frank Huess

    2018-01-01

    A chemical industrial park (CIP) can centralize the management of companies and facilitate mutual communication between different businesses. Due to these advantages, an increasing number of chemical companies are forced into CIP, especially in developing countries such as China. Thus, the land......-site risk levels are still low and within the acceptable region, the study concludes that the authorities should review carefully and monitor the risk level in case of future development activities around and within the chemical industrial park, e.g. preserving a buffer zone should be considered. For future...

  13. Radiation chemical technology of industrial polymer reagents development

    International Nuclear Information System (INIS)

    Kudaibergenov, S.; Nurkeeva, Z.; Mun, G.; Sigitov, V.; Maltzeva, R.; Petukhov, V.; Tchekushin, A.

    1996-01-01

    The goal of this project is to develop the technology of producing of polymeric reagents from the raw materials of Kazakstan for application in medicine, agriculture, enhanced oil recovery and ecology. To achieve the objectives the next technological lines or operations (Blocks) should be realized: 1. Rectification column and distilling apparatus for purification of monomers and solvents including analytical equipment to control the quality of the final product; 2. Irradiation of reaction mixture by either gamma-irradiation source Co-60; 3. Purification of polymer reagents; 4. Producing of commercial products. It is supposed that the power irradiation devices for producing of hydrogels will be mounted on the research atomic reactor of the Almaty Branch of the Institute of Atomic Energy of the National Nuclear Center. There are high qualification personal which has much experience in radioactive materials operating. Irradiation technologies will provide the low cost of hydrogels, approximately 250-300 US$ per 1 ton. Expected results. One can expect that the realization of this project allows to produce hydrogels in industrial scale to cover partly the requirements of medicine, agriculture, oil industry and ecology

  14. Research progress on catalytic denitrification technology in chemical industry

    Science.gov (United States)

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  15. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  16. Research, climate, energy : Questions of destiny for the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Kastinen, A., email: aimo.kastinen@chemind.fi

    2010-07-01

    Registration for the first phase of Reach finishes at the end of November. Then we will see whether the standard of legislation has been set correctly in respect of the EU's operational ability. If it isn't, significant problems will result for the community's treatment of materials and the EU's competitiveness, and Reach's value as a global model will become questionable. Also, the CLP regulation concerning classification, labelling and packaging of chemicals will start to come into effect as from the beginning of December. In the first phase, the question is one of classification of substances, and gradually the requirements will be applied to mixtures too. At the same time, Safety Data Sheets shall be renewed in accordance with their own transition period. The current product legislation concerning chemicals shall be fully revised by the mid-point of the decade, but before then company safety officers will have to do lots of work to change the previous routines

  17. Chemical studies on some radionuclides in industrial wastes

    International Nuclear Information System (INIS)

    Ibrahim, M.F.A.

    2006-01-01

    in this thesis, there is much concern about the technologically enhanced-naturally occurring radioactive materials (TE-NORM) associated with phosphate fertilizers and chemical materials production in abu Zaabal Company, Egypt. the phosphogypsum (PG)wastes associated with the phosporic acid produced was found to contain high concentrations of radioactivity than that exists naturally (i.e., background). this chapter includes sufficient information about the different sources of the environmental radioactivities as well as TE-NORM associated with phosphate fertilizers and oil and gas production facilities . it includes also, information about the history, methods used in detection and measurements, limits, trials of TE-NORM treatment . it contains some aspects on the chemistry and radiochemistry of radium and radon. also, this chapter includes the aim of the present work.this chapter includes preparation of all required samples for analysis, as well as chemicals and reagents used in the experimental work .it includes also, description of the different spectroscopic instruments used. which are: HPGe γ-ray spectrometry,α-spectrometry, X-ray diffraction(XRD), x-ray fluorescence (XRF), and IR-spectrometry. the energy and efficiency calibrations of both γ and α-spectrometry are also presented

  18. Alternative routes for the chemical industry regarding US shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Kneissel, B. [Stratley AG, Koeln (Germany)

    2013-11-01

    Cracking ethane from wet shale gas in North America sets a bench mark to global ethylene production costs. Regarding very attractive ethane prices from extraction of low cost wet shale gas we suggest in North America ethylene production costs will roughly vary between 400 and 600 $/ t. As in other parts of the world, except Middle East, the availability of ethane seems to be more limited other sources for ethylene, such as methane, coal and biomass are investigated. Oxidative coupling of methane (OCM) has its limits and may only lead to competitive production costs for large scale operations. Coal converted to ethylene via calcium carbide and subsequent hydrogenation may hardly be a viable answer. Ethylene derived by dehydration of ethanol from fermentation of corn sugar may be an answer for very low crop prices. Further research on the conversion of methane with emphasis on its industrial implementation as a major carbon resource is recommended. (orig.)

  19. Stationary battery storage of energy transition a central component; Stationaere Batteriespeicher der Energiewende eine zentrale Komponente

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Lux, Stephan [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2017-01-15

    In a regenerative energy system with strong fluctuations in electricity production, the importance of short-term storage is increasing - on the one hand, in order to optimal need-oriented use of the energy supply, on the other hand, at any time to ensure a high network quality. The present overview of stationary battery storage shows how important it will be especially in the area of larger storage facilities with direct link to regenerative power plants, as a district storage or in the industry. [German] In einem regenerativen Energiesystem mit starken Fluktuationen der Stromproduktion nimmt die Bedeutung der Kurzzeitspeicherung zu - einerseits, um das Energieangebot bedarfsgerecht optimal zu nutzen, andererseits, um zu jedem Zeitpunkt eine hohe Netzqualitaet zu gewaehrleisten. Der vorliegende Ueberblick ueber stationaere Batteriespeicher zeigt, wie wichtig vor allem der Bereich groesserer Speicher in direkter Koppelung mit regenerativen Kraftwerken, als Quartiersspeicher oder im Gewerbe sein wird.

  20. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  1. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  2. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  3. Progress of environmental management and risk assessment of industrial chemicals in China

    International Nuclear Information System (INIS)

    Wang Hong; Yan Zhenguang; Li Hong; Yang Niyun; Leung, Kenneth M.Y.; Wang Yizhe; Yu Ruozhen; Zhang Lai; Wang Wanhua; Jiao Congying

    2012-01-01

    With China’s rapid economic growth, chemical-related environmental issues have become increasingly prominent, and the environmental management of chemicals has garnered increased attention from the government. This review focuses on the current situation and the application of risk assessment in China’s environmental management of industrial chemicals. The related challenges and research needs of the country are also discussed. The Chinese government promulgated regulations for the import and export of toxic chemicals in 1994. Regulations for new chemical substances came into force in 2003, and were revised in 2010 based on the concept of risk management. In order to support the implementation of new regulations, Guidance for Risk Assessment of Chemicals is under development in an attempt to provide the concepts and techniques of risk assessment. With increasing concern and financial support from Chinese government, China is embarking on the fast track of research and development in environmental management of industrial chemicals. - This paper reviews the current situation of industrial chemical management in China, and discusses the application of risk assessment and further research needs in this field.

  4. Education in petrochemical industry as prevention from chemical terrorism

    International Nuclear Information System (INIS)

    Mesaric, B.; Habek, R.; Loncarevic, M.

    2009-01-01

    Technical and technological accidents in petrochemical industry, with possible catastrophic consequences, caused by anthropogenic activity (technical or technological malfunction, terror, or war destruction ), usually accompanied by great human losses and material damage and high intensity of events in a relatively short period of time, which requires a quick action of emergency responders, process personnel and the high degree of self-organized endangered population for treatment in these kind of accidents. This implies a high qualification and skills for the treatment of accidents of all factors of rescue and protection such as: process personnel, emergency responders (fire-fighters, technical services), other workers as well as the endangered population. Managing the system of protection and rescue in communities with such risks requires maximum responsibility of local authorities and management of petrochemical plants. Petrokemija Kutina, with its many years of experience as a target for military and terrorist attacks, actively participated in the creation of laws and systems of protection and rescue in the Republic of Croatia, and also in creating standard operating procedures on local and regional level, and is also ready to share its own experiences with other similar factories using toxic substances in the production processes.(author)

  5. Federal agencies active in chemical industry-related research and development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  6. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  7. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.

    Science.gov (United States)

    Russell, David; Simpson, John

    2010-03-01

    Society in developed and developing countries is hugely dependent upon chemicals for health, wealth, and economic prosperity, with the chemical industry contributing significantly to the global economy. Many chemicals are synthesized, stored, and transported in vast quantities and classified as high production volume chemicals; some are recognized as being toxic industrial chemicals (TICs). Chemical accidents involving chemical installations and transportation are well recognized. Such chemical accidents occur with relative frequency and may result in large numbers of casualties with acute and chronic health effects as well as fatalities. The large-scale production of TICs, the potential for widespread exposure and significant public health impact, together with their relative ease of acquisition, makes deliberate release an area of potential concern. The large numbers of chemicals, together with the large number of potential release scenarios means that the number of possible forms of chemical incident are almost infinite. Therefore, prior to undertaking emergency planning and preparedness, it is necessary to prioritize risk and subsequently mitigate. This is a multi-faceted process, including implementation of industrial protection layers, substitution of hazardous chemicals, and relocation away from communities. Residual risk provides the basis for subsequent planning. Risk-prioritized emergency planning is a tool for identifying gaps, enhancing communication and collaboration, and for policy development. It also serves to enhance preparedness, a necessary prelude to preventing or mitigating the public health risk to deliberate release. Planning is an iterative and on-going process that requires multi-disciplinary agency input, culminating in the formation of a chemical incident plan complimentary to major incident planning. Preparedness is closely related and reflects a state of readiness. It is comprised of several components, including training and exercising

  8. Towards consistent and reliable Dutch and international energy statistics for the chemical industry

    International Nuclear Information System (INIS)

    Neelis, M.L.; Pouwelse, J.W.

    2008-01-01

    Consistent and reliable energy statistics are of vital importance for proper monitoring of energy-efficiency policies. In recent studies, irregularities have been reported in the Dutch energy statistics for the chemical industry. We studied in depth the company data that form the basis of the energy statistics in the Netherlands between 1995 and 2004 to find causes for these irregularities. We discovered that chemical products have occasionally been included, resulting in statistics with an inconsistent system boundary. Lack of guidance in the survey for the complex energy conversions in the chemical industry in the survey also resulted in large fluctuations for certain energy commodities. The findings of our analysis have been the basis for a new survey that has been used since 2007. We demonstrate that the annual questionnaire used for the international energy statistics can result in comparable problems as observed in the Netherlands. We suggest to include chemical residual gas as energy commodity in the questionnaire and to include the energy conversions in the chemical industry in the international energy statistics. In addition, we think the questionnaire should be explicit about the treatment of basic chemical products produced at refineries and in the petrochemical industry to avoid system boundary problems

  9. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    Science.gov (United States)

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  10. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  11. New life for the chemical industry: the significance of coal gasification. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y

    1985-01-01

    The current status of the cement, petrochemical and chemical divisions of Ube Industries, Ltd. is outlined. Accounts are given of the outlook for the petrochemical division and how it is coping with the present situation; of how the application of new coal gasification technology and the resulting maintenance of the competitive power of the company's ammonia on international markets has revived the chemical division; and of how the industrial gases division is benefiting from a 20% cut in gasification costs, obtained using the new gasification process. Other topics mentioned include the increasing specialization of the chemical division; the accelerated pace of development resulting from joint efforts by industry, government and the universities; the eradication of the adverse effects of a hierarchical organizational structure; and pioneering technology development where the emphasis is not on self-completion.

  12. The application of nuclear energy to the Canadian chemical process industry

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1976-03-01

    A study has been made to determine what role nuclear energy, either electrical or thermal, could play in the Canadian chemical process industry. The study was restricted to current-scale CANDU type power reactors. It is concluded that the scale of operation of the chemical industry is rarely large enough to use blocks of electrical power (e) of 500 MW or thermal power (t) of 1500 MW. Thus, with a few predictable exceptions, the role of nuclear energy in the Canadian chemical industry will be as a general thermal/electrical utility supplier, serving a variety of customers in a particular geographic area. This picture would change if nuclear steam generators of 20 to 50 MW(t) become available and are economically competitive. (author)

  13. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  15. Predicting work-related flow in the chemical industry / Erika Maree

    OpenAIRE

    Maree, Erika

    2008-01-01

    In a new world of work characterised by competitiveness, benchmarking, technological innovation and efficiency, the South African chemical industry needs to function at an optimal level to meet the demands of its stakeholders and employees. The industry needs leadership of the highest standard and an efficient, productive workforce. The objective of this study was to determine the relationship between leader empowering behaviour, self-efficacy, job resources and work-related flow for empl...

  16. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Science.gov (United States)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  17. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Science.gov (United States)

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  18. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  19. Implementation of Responsible Care in the chemical industry: Evidence from Greece

    International Nuclear Information System (INIS)

    Evangelinos, K.I.; Nikolaou, I.E.; Karagiannis, A.

    2010-01-01

    The chemical industry can be held accountable for numerous large-scale accidents which have led to the release of dangerous hazardous materials, pollutants and toxic chemicals into the environment, two well-known examples being the Union Carbide Bhopal disaster and the Three Mile Island tragedy). To ensure environmental protection and the Health and Safety (H and S) of communities, the chemical industry has voluntarily adopted integrated management programs such as the Responsible Care Program. The theoretical body of relevant literature attempts to explain the origin of the Responsible Care Program (RCP) through socio-political and economic theories. At the same time, the empirical research examines the ways in which various factors affect the choice of the chemical industry in their adoption of the RCP. This paper contributes to the debate by examining the challenges and barriers faced by the Greek chemical industry when adopting RCP, the environmental and H and S issues that prevail and finally, the extent of participation of stakeholders in the planning of RCP in the sector.

  20. Energy crisis and changes in the structure of the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Dedov, A G

    1980-01-01

    The effect of the energy crisis together with higher prices and inflation on the chemical industry is reviewed. One effect has been the search for more energy-efficient processes and more widely available raw materials. Measures taken by the industry have included the control of expenses and losses, utilization of secondary materials and energy resources and the development of new technological growth of the industry and has shifted emphasis to small-scale rather than large-scale chemical production. Capital has also been used more for modernizing existing equipment and facilities than for new construction, and industrialized countries have invested more heavily in developing countries. Trade relations between socialist and western countries have also improved. Improvements have been made in the production of aromatic hydrocarbons by extraction with the use of more efficient solvents, in catalytic and thermic hydrodealkylation of toluene, in the chlorine and nitrogen industries, in phosphorus and phosphoric acid production and in benzene and butadiene production. A new scheme for hydroxylamine production and a new technology for styrene and methanol production have been developed. Direct hydration of propylene has been introduced into the production of isopropanol and propylene ammonolysis has been used to obtain acrylonitrile. Changes in the chemical industry have reduced energy consumption per production unit by 14.2% in the U.S.A. in 1977 in comparison with 1972 and by 14.0% in Common Market countries during 1970-1976.

  1. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  2. The growing importance of covering payment risks in the chemical industry

    OpenAIRE

    Timmermann, M. (Michael)

    2008-01-01

    The first dark clouds are gathering on the economic horizon of the chemical industry and may cause an unattractive dip in otherwise impressive growth.With the oil price remaining high, concerns that global economic growth is cooling and ever fiercer competition, the outlook is gloomy. There is also uncertainty about the reform of the European Community Regulation on chemicals, REACH, the financial impact ofwhich is still impossible to predict formost companies. Such lists of possible causes o...

  3. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  4. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  5. Chemical composition of sewage sludge of domestic and industrial areas of Hyderabad

    International Nuclear Information System (INIS)

    Ansari, T.P.; Kazi, T.G.; Kazi, G.H.

    2001-01-01

    A study on chemical composition sewage sludge of domestic and industrial areas of Hyderabad city has been carried out. The sludge samples were collected from various domestic and industrial areas of Hyderabad, over a period of 3 months. Analysis of sludge samples for different micro-nutrients and toxic elements has been accomplished by reliable analytical methods using atomic absorption, UV and colorimeter. It is observed that the levels of copper, nickel, zinc, lead and cadmium are higher in sludge samples of industrial area than those of domestic areas of Hyderabad. (author)

  6. The approach to risk analysis in three industries: nuclear power, space systems, and chemical process

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1988-01-01

    The aerospace, nuclear power, and chemical processing industries are providing much of the incentive for the development and application of advanced risk analysis techniques to engineered systems. Risk analysis must answer three basic questions: What can go wrong? How likely is it? and What are the consequences? The result of such analyses is not only a quantitative answer to the question of 'What is the risk', but, more importantly, a framework for intelligent and visible risk management. Because of the societal importance of the subject industries and the amount of risk analysis activity involved in each, it is interesting to look for commonalities, differences, and, hopefully, a basis for some standardization. Each industry has its strengths: the solid experience base of the chemical industry, the extensive qualification and testing procedures of the space industry, and the integrative and quantitative risk and reliability methodologies developed for the nuclear power industry. In particular, most advances in data handling, systems interaction modeling, and uncertainty analysis have come from the probabilistic risk assessment work in the nuclear safety field. In the final analysis, all three industries would greatly benefit from a more deliberate technology exchange program in the rapidly evolving discipline of quantitative risk analysis. (author)

  7. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against major chemical classes of inhibitors

    Science.gov (United States)

    Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...

  8. Shaping a novel security approach in chemical industrial clusters to prevent large-scale domino events

    NARCIS (Netherlands)

    Reniers, Genserik L L; Dullaert, Wout; Soudan, Karel

    2009-01-01

    Two aspects are important when it comes to guaranteeing an effective and efficient security policy in a chemical industrial cluster. The first issue involves obtaining an acceptable level of collaboration between the different enterprises forming the cluster. The second topic is to ensure that an

  9. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    Science.gov (United States)

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  10. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  11. Status and direction of waste minimization in the chemical and petrochemical industries

    Energy Technology Data Exchange (ETDEWEB)

    Englande Junior, A.J. [Tulane Univ., New Orleans, LA (United States). School of Public Health and Tropical Medicine

    1993-12-31

    This paper presents an evaluation of the status and direction of toxic/hazardous waste reduction in chemical and petrochemical industries from an international perspective. In almost all cases studied savings have resulted. The importance of pollution prevention by `clean technologies` instead of remediation is stressed. 6 refs., 4 tabs.

  12. Revolutionizing safety and security in the chemical and process industry: applying the CHESS concept

    NARCIS (Netherlands)

    Reniers, G.L.L.M.E.; Khakzad Rostami, N.

    2017-01-01

    This paper argues that a new concept, summarized as ‘CHESS’, should be used in the chemical industry to further substantially advance safety (where we use the term in a broad sense, that is, safety and physical security, amongst others). The different domains that need to be focused upon, and where

  13. Status and direction of waste minimization in the chemical and petrochemical industries

    Energy Technology Data Exchange (ETDEWEB)

    Englande, Junior, A J [Tulane Univ., New Orleans, LA (United States). School of Public Health and Tropical Medicine

    1994-12-31

    This paper presents an evaluation of the status and direction of toxic/hazardous waste reduction in chemical and petrochemical industries from an international perspective. In almost all cases studied savings have resulted. The importance of pollution prevention by `clean technologies` instead of remediation is stressed. 6 refs., 4 tabs.

  14. NONPROCESS SOLVENT USE IN THE FURNITURE REFINISHING AND REPAIR INDUSTRY: EVALUATION OF ALTERNATIVE CHEMICAL STRIPPERS

    Science.gov (United States)

    The report gives results of an evaluation of the feasibility of using alternatives to high volatile organic compound/hazardous air pollutant (VOC/HAP) solvent-based, chemical strippers that are currently used in the furniture repair and refinishing industry to remove both traditi...

  15. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Directory of Open Access Journals (Sweden)

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  16. Plasma for electrification of chemical industry : a case study on CO2 reduction

    NARCIS (Netherlands)

    Van Rooij, G.J.; Akse, H.N.; Bongers, W.A.; Van De Sanden, M.C.M.

    2018-01-01

    Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure

  17. Plasma for Electrification of Chemical Industry: a Case Study on CO2 Reduction

    NARCIS (Netherlands)

    van Rooij, G. J.; Akse, H.; Bongers, W.; van de Sanden, M. C. M.

    2018-01-01

    Significantly increasing the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure

  18. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  19. Communicating CSR and Business Identity in the Chemical Industry through Mission Slogans

    Science.gov (United States)

    Verboven, Hans

    2011-01-01

    This article analyzes the communication of corporate social responsibility (CSR) and corporate image in the chemical industry through mission slogans. Morsing's (2006) CSR communication framework is adapted for a comparative analysis of the strategies behind mission slogans. By grouping rhetorical strategies in a mission slogan into a mission…

  20. А construction of management of enterprises charges is in chemical industry

    OpenAIRE

    Gura, N.; Radchenko, K.

    2010-01-01

    In the article the essence and value of conception of "administrative account" are defined, the debatable questions of constructing of administrative account and its structure are considered. The methods of charge accounting are considered at the enterprises of chemical industry. The essence of introduction and usage of modern information technologies are stated.

  1. European Union-Emission Trading Scheme: outlook for the chemical industry

    International Nuclear Information System (INIS)

    Coussy, P.; Alberola, E.

    2013-01-01

    From 2013, under the European Union Emissions Trading Scheme (EU-ETS), Europe will cap its emissions of nitrous oxide (N 2 O) and per-fluorocarbons (PFC) from the chemical industry. Besides, 336 chemical industry facilities will be forced to limit their emissions at 45.8 million tons of CO 2 per year from 2013 to 2020. At date August 1, 2012, almost 70% of the carbon credits issued by the clean development mechanism (CDM) were carried out mainly through the destruction of hydro-fluorocarbons (HFC-23) (42%) and N 2 O (22%). The contribution of emission reductions through chemical processes in the Joint Implementation (JI) projects is smaller but still amounted to 32% of all projects. From 1 May 2013 the European Union will refuse CDM and JI credits from emission reductions of HFC-23 and N 2 O. The issues of the introduction of the chemical industry in the EU-ETS in the context of low CO 2 prices and limited validity of CDM and JI chemical projects are high. Therefore, domestic CO 2 emissions reductions from energy consumption of the chemistry sector will take a larger share. (authors)

  2. Utilization of oleo-chemical industry by-products for biosurfactant production

    Science.gov (United States)

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  3. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  4. Radiation purification of the chemical industry effluents and possibilities of realization of this method

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kovalevskaya, A.M.; Shlyk, V.G.; Savushkin, I.A.; Kazazyan, V.T.

    1977-01-01

    Radiation-chemical methods for synthetic fibre industry effluents purification from cyanides, sulphides and monomers, as well as for disinfection of circulation water and improvement in sedimental and filtering properties of waste active slurry in petrochemical industry are described. Chemical plant effluents are purified by 70-90% from cyanides at the dose rate of 0,3 - 0,5 Mrad, by 60 - 70% from sulphides and monomers at the dose of 0,2 Mrad. Circulation water of petroleum processing plant is disinfected at the dose of 0,08 Mrad; the rates of filtration and sedimentation of waste active slurry increase two and three fold, correspondingly, at the dose of 0,6 Mrad. The power of radiation sources required for the industrial realization of radiation purification of liquid wastes has been calculated

  5. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry.

    Science.gov (United States)

    Singh, Khareen; Oates, Christopher; Plant, Jane; Voulvoulis, Nikolaos

    2014-07-01

    Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of

  6. A calibrated energy end-use model for the U.S. chemical industry

    International Nuclear Information System (INIS)

    Ozalp, N.; Hyman, B.

    2005-01-01

    The chemical industry is the second largest energy user after the petroleum industry in the United States. This paper provided a model for onsite steam and power generation in the chemical industry, as well as an end-use of the industrial gas manufacturing sector. The onsite steam and power generation model included the actual conversion efficiencies of prime movers in the sector. The energy end-use model also allocated combustible fuel and renewable energy inputs among generic end-uses including intermediate conversions through onsite power and steam generation. The model was presented in the form of a graphical depiction of energy flows. Results indicate that 35 per cent of the energy output from boilers is used for power generation, whereas 45 per cent goes directly to end-uses and 20 per cent to waste heat tanks for recovery in the chemical industry. The end-use model for the industrial gas manufacturing sector revealed that 42 per cent of the fuel input goes to onsite steam and power generation, whereas 58 per cent goes directly to end-uses. Among the end-uses, machine drive was the biggest energy user. It was suggested that the model is applicable to all other industries and is consistent with U.S. Department of Energy data for 1998. When used in conjunction with similar models for other years, it can be used to identify changes and trends in energy utilization at the prime mover level of detail. An analysis of the economic impact of energy losses can be based on the results of this model. Cascading of waste heat from high temperature processes to low temperature processes could be integrated into the model. 20 refs., 4 tabs., 8 figs

  7. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  8. Hurricane Harvey, Houston's Petrochemical Industry, and US Chemical Safety Policy: Impacts to Environmental Justice Communities

    Science.gov (United States)

    Goldman, G. T.; Johnson, C.; Gutierrez, A.; Declet-Barreto, J.; Berman, E.; Bergman, A.

    2017-12-01

    When Hurricane Harvey made landfall outside Houston, Texas, the storm's wind speeds and unprecedented precipitation caused significant damage to the region's petrochemical infrastructure. Most notably, the company Arkema's Crosby facility suffered a power failure that led to explosions and incineration of six of its peroxide tanks. Chemicals released into the air from the explosions sent 15 emergency responders to the hospital with severe respiratory conditions and led to the evacuation of hundreds of surrounding households. Other petrochemical facilities faced other damages that resulted in unsafe and acute chemical releases into the air and water. What impacts did such chemical disasters have on the surrounding communities and emergency responders during Harvey's aftermath? What steps might companies have taken to prevent such chemical releases? And what chemical safety policies might have ensured that such disaster risks were mitigated? In this talk we will report on a survey of the extent of damage to Houston's oil and gas infrastructure and related chemical releases and discuss the role of federal chemical safety policy in preventing and mitigating the potential for such risks for future storms and other extreme weather and climate events. We will also discuss how these chemical disasters created acute toxics exposures on environmental justice communities already overburdened with chronic exposures from the petrochemical industry.

  9. Investigating positive leadership, psychological empowerment, work engagement and satisfaction with life in a chemical industry

    Directory of Open Access Journals (Sweden)

    Tersia Nel

    2015-11-01

    Research purpose: The objective of this study was to investigate whether perceived positive leadership behaviour could predict psychological empowerment, work engagement, and satisfaction with life of employees in a chemical organisation in South Africa and whether positive leadership behaviour has an indirect effect on employees work engagement and satisfaction with life by means of psychological empowerment. Motivation for the study: The motivation for this study arose from the evident gap in academic literature as well as in terms of practical implications for the chemical industry regarding positive leadership behaviour, psychological empowerment, work engagement and satisfaction with life of employees. Research design, approach and method: A cross-sectional survey design was used with a convenience sample (n = 322. Structural equation modelling (SEM was used to examine the structural relationships between the constructs. Main findings: Statistically significant relationships were found between positive leadership behaviour, psychological empowerment, work engagement and satisfaction with life of employees. Positive leadership has an indirect effect on work engagement and satisfaction with life via psychological empowerment. Practical/managerial implications: This study adds to the lack of literature in terms of positive leadership, psychological empowerment, work engagement and satisfaction with life within a chemical industry. It can also assist managers and personnel within the chemical industry to understand and perhaps further investigate relationships that exist between the above mentioned concepts. Contribution/value-add: It is recommended that leadership discussions, short training programs and individual coaching about positive leadership and particularly psychological empowerment take place.

  10. Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry

    International Nuclear Information System (INIS)

    Szklo, A.S.; Soares, J.B.; Tolmasquim, M.T.

    2004-01-01

    This paper attempts to estimate the technical and economic potential for natural gas-fired cogeneration (NGCHP) in Brazil's chemical industry as well as also analyses the impacts of specific incentive policies on the economic feasibility of this potential. Currently, the NGCHP installed capacity at Brazil's chemical industry is still quite a low figure, although the chemical plants are under heavy pressures to: (1) cut costs; and (2) show a rising awareness of the importance of power service quality, underscored even more heavily by Brazil's recent power crisis. According this study, a natural gas-fired remaining technical potential of 1.4 GW is noted in the Brazilian chemical industry. Financing policies showed to be the stand-alone policy that would be most successful for ensuring the economic feasibility of this technical potential. Nevertheless, this policy proved to be affected by the economic scenario under consideration, which includes world oil prices, electricity tariff and foreign exchange ratio possible paths. Consequently, the key issue is related to the ability to assess which economic scenario is rated as more probable by possible future investors in NGCHP, and then selecting the most appropriate incentive policy

  11. Chemical and Microbiological Analysis of Certain Water Sources and Industrial Wastewater Samples in Dakahlia Governorate

    International Nuclear Information System (INIS)

    El-Fadaly, H.; El-Defrawy, M.M.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The chemical analysis included quantitative measurement of electrical conductivity, alkalinity , hardness sulphate, ph, total dissolved solids, chloride, as well as dissolved oxygen was carried out. The microbiological examination for different water sources and industrial wastewater samples was also conducted. some of heavy metals, Co 2+ Cu 2+ Fe 3+ and Mn 2+ were determined in fresh water, while other metals, such as Cr 6+ , Co 2+ , Zn 2+ and Ni 2+ were measured in industrial wastewater. Results of the chemical analysis showed that all measured parameters were found within the limitation either national or international law, except some samples which showed higher values than the permissible limits for some measured parameters. The microbiological analysis exhibited presence of yeasts, fungi and bacteria. Most bacterial isolates were short rod, spore formers as well as coccoid shaped bacteria. The efficiency of water treatment process on the reduction of microbial load was also calculated. Regarding the pathogenic bacteria, data showed that neither water samples nor industrial wastewater contain pathogens when using specific cultivation media for the examination. Furthermore, data proved the possibility of recycling of the tested industrial wastewater on which some microorganisms can grow. Data showed that the percent of heavy metals removal can reach to more than 70% in some cases as a result to bacterial treatment of industrial wastewater

  12. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  13. 78 FR 68461 - Guidance for Industry: Studies To Evaluate the Utility of Anti-Salmonella Chemical Food Additives...

    Science.gov (United States)

    2013-11-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-1994-D-0007] Guidance for Industry: Studies To Evaluate the Utility of Anti- Salmonella Chemical Food Additives in Feeds... Industry: Studies to Evaluate the Utility of Anti-Salmonella Chemical Food Additives in Feeds,'' and is...

  14. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Science.gov (United States)

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Biogeochemical features technogenic pollution of soils under the influence chemical industry

    Directory of Open Access Journals (Sweden)

    Kuraeva I.V.

    2015-09-01

    Full Text Available The physico-chemical properties of soil (pH, organic matter content, cation exchange capacity. The regularities of the distribution of total and mobile forms of heavy metals in soil sediments in the territory of Shostka Sumy region under the influence of the chemical industry and in the background areas. Biogeochemical indicators obtained content of microscopic fungi and their species, the most characteristic of the study of soils, which can be used as an additional criterion for ecological and geochemical studies.

  16. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    Science.gov (United States)

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preparation of industrial chemicals by acid leaching from the koga nepheline syenite, southern Swat, lesser Himalayas-Pakistan

    International Nuclear Information System (INIS)

    Nizami, A.R.

    2012-01-01

    This paper encompasses the study on the preparation of industrial chemicals by acid leaching from the Koga nepheline syenite, Southern Swat, Lesser Himalayas-Pakistan. These rocks have been studied in detail by many workers to exploit their industrial utility in the form of powdered rock material in glass and ceramics and steel industry. The present authors for the first time carried out acid leaching studies and prepared a number of industrial chemicals, like, alumina, aluminium sulphate, sodium and ammonium alums, sodium sulphate) and sodium bisulphate by simple chemical reactions at bench scale successfully. The developed process is simple and economically viable. It is recommended to exploit this process in cottage industry in the mountainous areas hosting these rocks for the benefit of local population. The research and development work for production of these chemicals at pilot plant and industrial scale is recommended as well. (author)

  18. The changing employment relationship in the chemical industry : the role of the employment- and psychological contract / Elsabé Keyser.

    OpenAIRE

    Keyser, Elsabé

    2010-01-01

    Understanding the employment relationship in the chemical industry in South Africa and organisational change within it is crucial to the understanding of the changing employment and psychological contract within this industry. This study focused on the employment- and psychological contracts, as well as employees ' work-outcomes (organisational commitment, job insecurity, job performance and intention to quit). Employees from the chemical industry were targeted and a cross-sectional survey...

  19. Value chain management for commodities: a case study from the chemical industry

    DEFF Research Database (Denmark)

    Kannegiesser, M.; Gunther, H.O.; van Beek, P.

    2009-01-01

    decisions by volume and value throughout the value chain to ensure profitability. Contract and spot demand differentiation with volatile and uncertain spot prices, spot sales quantity flexibility, spot sales price-quantity functions and variable raw material consumption rates in production are problem...... quantity, price and supply decisions throughout the value chain. A two-phase optimization approach supports robust planning ensuring minimum profitability even in case of worst-case spot sales price scenarios. Model evaluations with industry case data demonstrate the impact of elasticities, variable raw......We present a planning model for chemical commodities related to an industry case. Commodities are standard chemicals characterized by sales and supply volatility in volume and value. Increasing and volatile prices of crude oil-dependent raw materials require coordination of sales and supply...

  20. Feasibility of cogeneration systems in chemical industry; Viabilidade de sistemas de cogeracao em industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Moises Henrique de Andrade; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    1998-07-01

    The increasing penetration of natural gas in the Brazilian energetic market, some industries as pulp and paper, chemical and that ones related to the food and beverage processes are some of the ones that are more interested in the cogeneration practice based on the burning of this fossil fuel. An analysis of a photographic chemical industry consumption data revealed that combined cycles and Diesel units were the most suitable for thermal following strategy, considering that the four compression chillers must be maintained, and steam or gas cycles in the case of a complete substitution for absorption chillers and the same strategy. The economic attractiveness was done according to the internal return rate and payback, revealing that the investment can be returned in short time. (author)

  1. Host Response to Environmental Hazards: Using Literature, Bioinformatics, and Computation to Derive Candidate Biomarkers of Toxic Industrial Chemical Exposure

    Science.gov (United States)

    2015-10-01

    military threat chemicals with adverse health effects and clinical outcomes to improve diagnostic potential after exposure to toxic industrial...end organ injury following chemical exposures in the field. Markers of end-organ injury and toxicity and other health effects markers, particularly...Biomarkers of Toxic Industrial Chemical Exposure Major Jonathan D. Stallings *1 , Danielle L. Ippolito 1 , Anders Wallqvist 2 , B. Claire McDyre 3 , and

  2. FACTORS INFLUENCING ORGANIZATIONAL STRUCTURE IN THE FOOD MANUFACTURING, CHEMICAL, AGRICULTURAL WHOLESALING AND BIOTECHNOLOGY INDUSTRIES

    OpenAIRE

    Maude Roucan-Kane

    2009-01-01

    The objective of this study is to identify factors determining a business investment strategy (i.e., the choice of investment commitment and form of organizational structure) in the food manufacturing, chemical, agricultural wholesaling and biotechnology industries. Propositions regarding strategic alliance theories are tested on over 400 inter-firm collaborative agreements using secondary data from major US and European companies for the 1994-97 period. Results suggest that transactions with...

  3. Economic consequences of the German environmental liability act: Capital market response for the chemical industry

    OpenAIRE

    Bartsch, Elga

    1997-01-01

    The Environmental Liability Act (Umwelthaftungsgesetz) enacted January 1, 1991 is claimed to have substantially tightened the environmental liability regime in Germany. The economic consequences of the amendment of the German environmental liability legislation initiated by the Sandoz accident are investigated for a portfolio of firms in the chemical industry. By means of an event study it is determined whether the UmweltHG has led to a revision of expectations regarding the profitability of ...

  4. Sorption and desorption of the industrial chemical MCHM into polymer pipes, liners and activated carbon

    OpenAIRE

    Ahart, Megan Leanne

    2015-01-01

    Polyethylene pipes and epoxy or polyurethane linings are increasingly used in drinking water infrastructure. As a recent introduction to the water industry, there are still many unknowns about how polymers will behave in the distribution system specifically relating to sorption and desorption of chemical contaminants. This study is in response to a spill of 4-methylcyclohexane methanol (MCHM) that occurred in January 2014 contaminating the drinking water of nine counties in West Virginia. Thi...

  5. Data solutions for the 21st century: CEFIC's vision and intentions. The European Chemical Industry Council.

    Science.gov (United States)

    Money, C D

    2001-02-01

    Information on workplace exposures to chemicals has a role and importance that goes beyond compliance with occupational exposure limits (OELs). In particular, the increasing use of exposure data in regulatory risk assessment processes places added demands on the need to collect such information. Industry's challenge is to respond to these developments in a manner that ensures data are obtained, archived, and analyzed to standards consistent with evolving stakeholder expectations.

  6. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    OpenAIRE

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-01-01

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was develope...

  7. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India.

    Science.gov (United States)

    Dsikowitzky, Larissa; Nordhaus, Inga; Sujatha, C H; Akhil, P S; Soman, Kunjupilai; Schwarzbauer, Jan

    2014-07-01

    The Cochin Backwaters in India are part of the Vembanad-Kol system, which is a protected wetland and one of the largest estuarine ecosystems in South Asia. The backwaters are a major supplier of fisheries resources and are developed as tourist destination. Periyar River discharges into the northern arm of the system and receives effluents from chemical, petrochemical and metal processing industries which release huge amounts of wastewaters after little treatment. We investigated water and sediment contamination in the industrial vicinity and at one station further away including organic and inorganic contaminants. In total 83 organic contaminants were found, e.g. well known priority pollutants such as endosulfan, hexachlorobenzene, DDT, hexachlorocyclohexane and their metabolites, which likely stem from the industrial manufacturing of organochlorine pesticides. Furthermore, several benzothiazole, dibenzylamine and dicyclohexylamine derivatives were detected, which indicated inputs from rubber producing facilities. Several of these compounds have not been reported as environmental contaminants so far. A comparison of organic contaminant and trace hazardous element concentrations in sediments with reported sediment quality guidelines revealed that adverse effects on benthic species are likely at all stations. The chemical assessment was combined with an investigation of macrobenthic diversity and community composition. Benthic organisms were completely lacking at the site with the highest trace hazardous element concentrations. Highest species numbers, diversity indices and abundances were recorded at the station with the greatest distance to the industrial area. Filter feeders were nearly completely lacking, probably leading to an impairment of the filter function in this area. This study shows that a combination of chemical and biological methods is an innovative approach to achieve a comprehensive characterization of industrial contamination, to evaluate

  8. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Science.gov (United States)

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  9. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Science.gov (United States)

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-01-01

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on. PMID:23603866

  10. Integrated environmental risk assessment and whole-process management system in chemical industry parks.

    Science.gov (United States)

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-04-19

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  11. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2013-04-01

    Full Text Available Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  12. Relation Between Sustainability‑Related Communication and Competitiveness in the Chemical Industry

    Directory of Open Access Journals (Sweden)

    Jaroslava Hyršlová

    2017-01-01

    Full Text Available Interests of companies in the sustainability‑related communication have risen considerably in recent years. This paper focuses on the current state of sustainability‑related reporting in chemical industry companies registered in the Association of Chemical Industry in the Czech Republic. It deals with the form and the content of reporting, the importance of different stakeholders in this process as well as benefits of the sustainability‑related communication and its impacts on competitiveness of the company. This paper summarizes the results of a research executed in the year 2014. The results of the research showed that chemical industry companies were aware of the significance of sustainability‑related communication and they utilized various types of sustainability‑related reports for this communication. Companies prefer to report on the environmental and social aspects of their activities primarily in their annual reports, or they issue separate environmental reports. The research verified the relationship between the sustainability‑related communication and competitiveness. A suitable established high quality system of communication that provides sufficient information and meets the information requirements of the key stakeholders may significantly contribute to reputation improvement, to increased attractiveness of the company as an employer and thereby to maintain, to improve respectively, the level of a company’s competitiveness.

  13. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  14. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  15. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  16. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    Science.gov (United States)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  17. Energy price slump and policy response in the coal-chemical industry district : a case study of Ordos with a system dynamics model

    OpenAIRE

    Wang, Delu; Ma, Gang; Song, Xuefeng; Liu, Yun

    2017-01-01

    We employ system dynamics method towards a coal-chemical industry district economy evolution model, using coal industry, the coal-chemical industry, their downstream industries, and the manufacture-related service industry. Moreover, we construct energy price and policy response scenarios based on Ordos’ management experience. The results show that the energy price slump had a negative impact on the overall economic development of the coal-chemical industry district, despite promoting non-res...

  18. Toxic industrial chemicals (TICs) as asymmetric weapons: the design basis threat

    International Nuclear Information System (INIS)

    Skinner, L.

    2009-01-01

    Asymmetric warfare concepts relate well to the use of improvised chemical weapons against urban targets. Sources of information on toxic industrial chemicals (TICs) and lists of high threat chemicals are available that point to likely choices for an attack. Accident investigations can be used as a template for attacks, and to judge the possible effectiveness of an attack using TICs. The results of a chlorine rail car accident in South Carolina, USA and the Russian military assault on a Moscow theater provide many illustrative points for similar incidents that mighty be carried out deliberately. Computer modeling of outdoor releases shows how an attack might take into consideration issues of stand-off distance and dilution. Finally, the preceding may be used to estimate with some accuracy the design basis threat posed by the used of TICs as weapons.(author)

  19. Forecasting global developments in the basic chemical industry for environmental policy analysis

    International Nuclear Information System (INIS)

    Broeren, M.L.M.; Saygin, D.; Patel, M.K.

    2014-01-01

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock turnover. The model determines the global production capacity placement, implementation of energy-efficient Best Practice Technology (BPT) and global carbon dioxide (CO 2 ) emissions for the period 2010–2030. Subsequently, the effects of energy and climate policies on these parameters are quantified. About 60% of new basic chemical production capacity is projected to be placed in non-OECD regions by 2030 due to low energy prices. While global production increases by 80% between 2010 and 2030, the OECD's production capacity share decreases from 40% to 20% and global emissions increase by 50%. Energy pricing and climate policies are found to reduce 2030 CO 2 emissions by 5–15% relative to the baseline developments by increasing BPT implementation. Maximum BPT implementation results in a 25% reduction. Further emission reductions require measures beyond energy-efficient technologies. The model is useful to estimate general trends related to basic chemicals production, but improved data from the chemical sector is required to expand the analysis to additional technologies and chemicals. - Highlights: • We develop a global cost-driven forecasting model for the basic chemical sector. • We study regional production, energy-efficient technology, emissions and policies. • Between 2010 and 2030, 60% of new chemicals capacity is built in non-OECD regions. • Global CO 2 emissions rise by 50%, but climate policies may limit this to 30–40%. • Measures beyond energy efficiency are needed to prevent increasing CO 2 emissions

  20. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    Braga, Antonio Luiz; Luedtke, Diogo Seibert; Schneider, Paulo Henrique; Andrade, Leandro Helgueira; Paixao, Marcio Weber

    2013-01-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  1. Role of knowledge based engineering in Heavy Water Plants and its relevance to chemical industry

    International Nuclear Information System (INIS)

    Sonde, R.R.

    2002-01-01

    The development of heavy water technology under the Department of Atomic Energy in India is carried out based on a mission oriented programme and this was backed up by a committed and highly trained manpower with a single minded pursuit to achieve the goal of making India self-sufficient in this challenging area. The paper gives step by step methodology followed in completion of the above mission which has become a benchmark in the chemical industry. A large sized chemical industry (Heavy Water plant being once such industry) has many features which are similar. The process design typically includes design of reactors, distillation columns, heat exchange networks, fluid transfer machinery, support utility systems etc. Besides, there are other issues like safety engineering, selection of materials, commissioning strategies and operating philosophies which are quite common to almost all chemical industries. Heavy water board has engineered and set up large scale heavy water plants and the technology for production of heavy water is completely assimilated in India and this paper tries to bring about some of the strategies which were instrumental in achieving this. The story of success in this technology can most certainly be followed in development of any other process technology. The important factors in the development of this technology is based on integration of R and D, process design, engineering backup, safety features, role of good construction and project management and good operating practices. One more important fact in this technology development is continuous improvement in operation and use of knowledge based engineering for debottlenecking. (author)

  2. Maintenance Management Systems in the Czech Enterprises of Chemical and Food Industries

    Directory of Open Access Journals (Sweden)

    Lenka Branska

    2016-12-01

    Full Text Available Purpose of the article: The aim of this article is to use the results of the qualitative research to describe the current form of maintenance systems used in enterprises of chemical and food industries, and then to discuss and generalize the results. Methodology/methods: The primary qualitative research was conducted in five companies, which can be regarded as typical representatives of the industries. The main objective of the primary research in individual companies was to determine how they perform the strategic and tactical operational planning of maintenance, implementation of these plans and their control. Individual interviews with respondents were used as the research method. The results of the research were processed using the content analysis method. Subsequently, comparison of the findings from individual businesses and subsequent synthesis thereof was performed, which allowed making generalizations. Scientific aim: The scientific aim of the article is to develop knowledge in the field of maintenance management by specifying the form of the maintenance systems utilized in Czech enterprises of the chemical and food industries and identifying the main opportunities for their improvement. Findings: Czech enterprises of the chemical and food industries utilize maintenance management systems. These systems are aimed at prevention, emphasizing the planning of maintenance activities in fixed periodic intervals. Also, they often utilize diagnostic maintenance. However, the maintenance systems currently used cannot be considered fully operational, with regard to the relatively large volume of after-failure repairs. Conclusions: Production equipment maintenance systems are irreplaceable in chemical and food industry enterprises, but there is great potential for improvement. Improvement should be focused on the area of strategic as well as tactical and operational planning of production equipment maintenance. In terms of strategy, the biggest

  3. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries.

    Science.gov (United States)

    Pierantozzi, Pierluigi; Zampini, Catiana; Torres, Mariela; Isla, María I; Verdenelli, Romina A; Meriles, José M; Maestri, Damián

    2012-01-30

    In the last few years, agricultural uses of waste waters from olive processing-related industries have been gaining interest mainly with a view to composting or bio-fertilizers. The present work examines physico-chemical, toxicological and geno-toxicological properties of three liquid wastes, namely olive mill wastewater (OMWW), olive wet husk and olive brine. The effect of OMWW spreading on soil microbial activity and biomass was also evaluated. Data from Artemia salina and Lactuca sativa toxicity tests indicated high levels of lethality, and inhibitory effects on seed germination and seedling growth of all olive wastes. The genotoxicity assays using Allium cepa tests showed contrasting results. At high concentrations, olive wastes caused inhibition or suppression of mitosis. However, they did not produce induced anaphase aberrations. Data on reversion of Salmonella thyphimurium strains using the Ames test indicated that the olive wastes did not present mutagenic activity. Results from the field experiment showed that OMWW at a 500 m(3) ha(-1) had the highest values of both soil microbial activity and biomass after 3 months of the amendment application. This work adds new data for environmental risk assessment of olive industrial wastes. Direct use of olive wastes for agricultural purposes should be limited owing to their possible chemotoxic, phytotoxic and antimicrobial effects. Copyright © 2011 Society of Chemical Industry.

  5. Risk analysis in the chemical industry; Analisis de riesgos en la industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Rea Soto, Rogelio; Sandoval Valenzuela, Salvador [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The Instituto de Investigaciones Electricas has a group of risk analysis (GAR), specialized in the most advanced methodologies to apply them in diverse industries of the productive sector, such as the nuclear, the oil and the chemical industries. In this work the integrated methodology that the GAR uses to make risk analysis in the chemical and oil industries is described. These analyses have as an objective to make a meticulous evaluation of the system design, the operation practices, the maintenance and inspection policies and the emergency plans. [Spanish] El Instituto de Investigaciones Electricas cuenta con un grupo de analisis de riesgo (GAR), especializado en las metodologias mas avanzadas para aplicarlas en diversas industrias del sector productivo, como lo son la nuclear, la petrolera y la quimica. En este trabajo se describe la metodologia integrada que el GAR utiliza para realizar analisis de riesgos en las industrias quimica y petrolera. Estos analisis tienen como objetivo realizar una minuciosa evaluacion del diseno del sistema, las practicas de operacion, las politicas de mantenimiento e inspeccion y los planes de emergencia.

  6. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2015-05-01

    Full Text Available Allergic contact dermatitis (ACD is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases (OSDs, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay (LLNA is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  7. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  8. Use of wastes in high-temperature processes of the chemical industry; Verwertung von Abfaellen in Hochtemperaturprozessen der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Domschke, T.; Steinebrunner, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-09-01

    The examples presented in this paper from diverse application areas of the chemical industry serve as an illustration of the many different ways in which wastes can be used for high-temperature processes in this branch. A review of the environmentally friendly concepts implemented at BASF AG in Ludwigshafen in the course of the past five years gives an idea of the immense potential opened up by a consistent application of the four-stage model for the prevention, reduction, and utilisation of wastes. In this period it was possible to reduce waste arisings by 34%, down from a potential 2 million tons, physically recycle 51%, and convert 11.5% to energy. This left a comparatively small fraction of 3.5%, or 70,000 tons, to be disposed of in an environmentally acceptable way. Furthermore, the amount of pollutants produced per tonne of products sold fell from 40.6 kg in 1987 to 6.7 kg in 1997. [Deutsch] Die Beispiele aus den unterschiedlichsten Anwendungsbereichen der chemischen Industrie koennen als Auswahl der vielfaeltigen Verwertungsmoeglichkeiten von Abfaellen in Hochtemperaturprozessen der Chemie betrachtet werden. Das immense Potential, das sich durch konsequente Anwendung des 4-Stufen-Modells zur Vermeidung, Verminderung und Verwertung von Abfaellen eroeffnet, zeigt sich in einer Fuenfjahresbilanz der umgesetzten Umweltschutzbetrachtungen in der BASF AG in Ludwigshafen. So konnten in diesem Zeitraum von potentiellen 2 Mio t Abfall/a ca. 34% vermieden und vermindert, 51% stofflich und 11,5% energetisch verwertet werden, so dass nur noch ein geringer Anteil von 3,5%, entsprechend ca. 70000 t/a, umweltgerecht entsorgt werden musste. Dies fuehrte auch zu einer drastischen Reduktion der auf der Tonne Verkaufsprodukt bezogenen Menge an umweltbelastenden Stoffen von 40,6 kg im Jahre 1987 auf 6,7 kg im Jahre 1997. (orig.)

  9. Chemical, procedural and economical evaluation of carbon dioxide as feedstock in the chemical industry; Chemische, verfahrenstechnische und oekonomische Bewertung von Kohlendioxid als Rohstoff in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Alexander

    2015-07-01

    The utilisation of CO{sub 2} as feedstock in the chemical industry represents an alternative to the geological storage, which is legally limited and socially debated. Generally, scientific publications about the utilisation of CO{sub 2} in chemical reactions typically address the feasibility of the syntheses without paying attention to the CO{sub 2} reduction potential or the economy in contrast to the conventional process of production. The aim of this doctoral thesis is to identify chemical reactions with CO{sub 2} as feedstock, which have the potential to reduce CO{sub 2} emissions. These reactions are evaluated concerning the industrial realization, CO{sub 2} balance and economy compared to the conventional processes. To achieve this, 123 reactions from the literature were collected and evaluated with the help of selection criteria developed specifically for this application. The criteria consider both, the quantitative potential to reduce CO{sub 2} and possible economical interests in these reactions. Additional to the process of the evaluation of the reactions, a CO{sub 2} reduction potential of 1.33 % of the greenhouse gas emissions within the European Union could be calculated. For the chemicals formic acid, oxalic acid, formaldehyde, methanol, urea and dimethyl ether, which most fully satisfy the selection criteria, a direct comparison of the CO{sub 2} based process with the conventional process is performed. By literature data, process designs, and simulations, it has been shown that the highest reductions of CO{sub 2} emissions can be achieved for methanol with 1.43 kg{sub CO2}/kg{sub MeOH} and dimethyl ether with 2.17 kg{sub CO2}/kg{sub DME}, but only with the assumption that the necessary hydrogen for the CO{sub 2} based reaction is produced by electrolysis operated with renewable energy. Overall, the CO{sub 2} based production processes of methanol and dimethyl ether could reduce 0.059 % of the greenhouse gas emissions of the European Union (EU) if

  10. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  11. Advances of radioisotope for design, intensification and optimization of processes and operations in chemical industry

    International Nuclear Information System (INIS)

    Joshi, J.B.

    2002-01-01

    Full text: In chemical industries different processes and operations involve a variety of multiphase contacting schemes for optimal production schedule in terms of ease of handling, time and money. A number of parameters will have to be optimized for this purpose. Further more, during the operation of a process plant, a number of problems such as reduction in process efficiency, deterioration in product quality etc. are encountered due to malfunctioning of one or more components. The successful operation of an industry depends on the early detection of the problems for appropriate remedial action. These are conveniently carried out by the application of radioisotopes either directly or in sealed condition depending upon the problem to be addressed. In this talk both types of radiotracer applications are discussed by taking specific examples

  12. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-01-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments

  13. How to promote energy conservation in China’s chemical industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Long, Houyin

    2014-01-01

    Fossil fuel consumption in China’s chemical industry accounted for 19.7% of the total industrial fossil fuel consumption, and the industry has become the second highest energy intensive sector in the country. Therefore, it is extremely urgent and important to study the problems related to fossil fuel consumption in the industry. This paper adopts the factor decomposition and the EG co-integration methods to investigate the influencing factors of fossil energy consumption and measure the saving potential of fossil fuel. The paper concludes that the influencing factors can be divided into positive driving factors (labor productivity effect and sector scale effect) and negative driving factors (energy intensity effect and energy structure effect). Among them, labor productivity and energy intensity are the main factors affecting fossil fuel demand. The largest saving potentials of fossil fuels are predicted to be 23.3 Mtce in 2015 and 70.6 Mtce in 2020 under the middle scenario and 46.8 Mtce in 2015 and 100.5 Mtce in 2020 under the ideal scenario, respectively. Finally, this paper provides some policy implications on fossil fuel conservation. - Highlights: • Labor productivity and energy intensity are crucial driving factors. • The relationship among variables is co-integrated. • The result of the EG co-integration is the same as that of LMDI. • ECM displays the short-term fluctuation of fossil fuel consumption. • Under the scenario analysis, there is a huge energy saving potential

  14. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Energy Technology Data Exchange (ETDEWEB)

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  15. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  16. Economic Value Approach to Industrial Water Demand Management, A Case Study of Chemical Plants

    Directory of Open Access Journals (Sweden)

    morteza tahami pour zarandi

    2017-03-01

    Full Text Available Limitations in water supply to meet the increasing demand have encouraged both planners and researchers to focus attention on water demand management, in which such economic tools as the water pricing system play a major role. A fundamental component of the pricing system is the estimation of the economic value of water, which reflects a firm’s maximum affordable water price or the ultimate elasticity of industrial water. The present study was conducted to estimate the economic value of water for basic chemical plants, excluding fertilizers and nitrogen compounds (code 2411, representing the four-digit ISIC industrial codes which account for about 14% of the total industrial water consumption. The econometric method of production function within the framework of panel data and the residual method were used. Data were collected from the Census of medium-sized businesses carried out by the Statistical Center of Iran over the period 1997–2013.  Results showed that one cubic meter of water allocated to the plants surveyed creates a value of 3,7071 Rials, which shows a large gap with the current purchase price of 5685 Rials. Moreover, it was found that the present water prices account for only about 1.3 percent of the total production cost of basic chemicals, excluding fertilizers and nitrogen compounds. It may, thus, be concluded that it is reasonable to increase the present water tariffs and discriminate among the various manufacturing codes by differences in tariffs in order to achieve water demand management goals. Finally, the information emerging from the study may be exploited to improve the revenues earned by water authorities or to carry out feasibility studies of industrial water development projects.

  17. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Science.gov (United States)

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  18. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  19. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  20. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  1. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  2. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  3. Testing in power plant construction as well as in the petrochemical and chemical industry

    International Nuclear Information System (INIS)

    Riess, N.; Schittko, H.

    1978-01-01

    In general, the upgrading of requirements for the most different fields of engineering is also characterized by a corresponding effort in testing. In this context especially nondestructive tests of materials are of outstanding importance. In the fields of power plant construction (among others, components for nuclear power plants) as well as petrochemical and chemical industry considered here, almost all nondestructive test methods are applied. This paper discusses not so much theoretical testing problems, but rather test objects as well as specifications and testing equipment. (orig./HP) [de

  4. Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry.

    Science.gov (United States)

    Blöcher, C

    2007-01-01

    Industrial wastewater, especially from chemical and pharmaceutical production, often contains substances that need to be eliminated before being discharged into a biological treatment plant and following water bodies. This can be done within the production itself, in selected waste water streams or in a central treatment plant. Each of these approaches has certain advantages and disadvantages. Furthermore, a variety of wastewater treatment processes exist that can be applied at each stage, making it a challenging task to choose the best one in economic and ecological terms. In this work a general approach for that and examples from practice are discussed.

  5. Status of chemical elements in Atlantic Forest tree species near an industrial complex

    International Nuclear Information System (INIS)

    Araujo, A.L.L.; Fernandes, E.A.N.; Franca, E.J.; Bacchi, M.A.

    2008-01-01

    Environmental quality assessment studies have been conducted with tree species largely distributed in the Atlantic Forest. Leaf and soil samples were collected in the conservation unit Parque Estadual da Serra do Mar (PESM) nearby the industrial complex of Cubatao, Sao Paulo State, Brazil, and analyzed for chemical elements by instrumental neutron activation analysis. Results were compared to background values obtained in the Parque Estadual Carlos Botelho (PECB). The higher As, Fe, Hg and Zn mass fractions in the tree leaves of PESM indicated anthropogenic influence on this conservation unit. (author)

  6. A study of the potential of plasma processing in the chemical industry

    International Nuclear Information System (INIS)

    Estey, P.N.; Connolly, T.J.

    1984-01-01

    This work describes a systematic approach to determine the potential for plasma processing in the United States chemical industry. A model was developed that describes the physical inputs and outputs from a plasma based processing system. Based on these mass flows and the energy flows to the processor an economic assessment of the plasma processing system is made. This economic assessment which also includes the capital costs of the processor, can be used to determine if the plasma system is competitive with the conventional system

  7. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    Science.gov (United States)

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  8. The chemical industry of uranium in France; L'industrie chimique de l'uranium en France

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    The actual CEA program is concerned with the construction of two large graphite reactors, each of those containing at least one hundred tons of uranium metal with nuclear purity. The uranium for these two reactors will be regularly supplied by new resources discovered in France and Madagascar in the last five years. The working and treatment of such ore have led to the creation of an important french industry of which the general outline and principle are described. The operated ores have got different natures and concentration, individual characteristics are described for the main ores.The most high-grade ore are transported to a central plant in Bouchet near Paris; the low-grade ore are concentrated by physical methods or chemical processes of which principles and economy are studied with constancy. The acid processes are the only used until now, although the carbonated alkaline processes has been studied in France. The next following steps after the acid process until the obtention of uranium rich concentrate are described. The purification steps of uranium compounds to nuclear purity material are described as well as the steps to elaborate metal of which the purity grade will be specify. Finally, the economic aspects of uranium production difficulty will be considered in relation with technical progresses which we can expect to achieve in the future. (M.P.)

  9. Estimates of inter-fuel substitution possibilities in Chinese chemical industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wesseh, Presley K.

    2013-01-01

    The chemical sector is a key driver of China's remarkable growth record and accounts for about 10% of the country's GDP. This has made the industry energy-intensive and consequently a major contributor to greenhouse gas emissions (GHG) and other pollutants. This study has attempted to investigate the potential for inter-fuel substitution between coal, oil, natural gas and electricity in Chinese chemical sector by employing a translog production and cost function. Ridge regression procedure was adopted to estimate the parameters of the function. Estimation results show that all energy inputs are substitutes. In addition, the study produces evidence that the significant role of coal in the Chinese chemical fuel mix converges over time, albeit slowly. These results suggest that price-based policies, coupled with capital subsidy programs can be adopted to redirect technology use towards cleaner energy sources like electricity and natural gas; hence, retaining the ability to fuel the chemical sector, while also mitigating GHG emissions. Notwithstanding, one must understand that the extent to which substituting electricity for coal will be effective depends on the extent to which coal or oil is used in generating electricity. The findings of this study provide general insights and underscore the importance of Chinese government policies that focus on installed capacity of renewable electricity, energy intensity targets as well as merger of enterprises. - Highlights: • Potential for inter-fuel substitution in Chinese chemical sector is investigated. • Oil, natural gas and electricity are found to be substitutes for coal. • Coal dominance in Chinese chemical fuel mix is found to converge over time. • Price-based policies and capital-subsidies are needed to redirect technology use. • Results support policies concerning renewables, energy-intensity targets and mergers

  10. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  11. Equilibrium approach towards water resource management and pollution control in coal chemical industrial park.

    Science.gov (United States)

    Xu, Jiuping; Hou, Shuhua; Xie, Heping; Lv, Chengwei; Yao, Liming

    2018-08-01

    In this study, an integrated water and waste load allocation model is proposed to assist decision makers in better understanding the trade-offs between economic growth, resource utilization, and environmental protection of coal chemical industries which characteristically have high water consumption and pollution. In the decision framework, decision makers in a same park, each of whom have different goals and preferences, work together to seek a collective benefit. Similar to a Stackelberg-Nash game, the proposed approach illuminates the decision making interrelationships and involves in the conflict coordination between the park authority and the individual coal chemical company stockholders. In the proposed method, to response to climate change and other uncertainties, a risk assessment tool, Conditional Value-at-Risk (CVaR) and uncertainties through reflecting parameters and coefficients using probability and fuzzy set theory are integrated in the modeling process. Then a case study from Yuheng coal chemical park is presented to demonstrate the practicality and efficiency of the optimization model. To reasonable search the potential consequences of different responses to water and waste load allocation strategies, a number of scenario results considering environmental uncertainty and decision maker' attitudes are examined to explore the tradeoffs between economic development and environmental protection and decision makers' objectives. The results are helpful for decision/police makers to adjust current strategies adapting for current changes. Based on the scenario analyses and discussion, some propositions and operational policies are given and sensitive adaptation strategies are presented to support the efficient, balanced and sustainable development of coal chemical industrial parks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. High-grade use of waste propane streams in the Dutch chemical industry. An exploratory study in the context of the Chemical Industry Roadmap; Hoogwaardig gebruik van reststromen propaan in de Nederlandse chemische industrie. Een verkenning binnen de Routekaart Chemie

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Afman, M.R.; Croezen, H.J.; Van Lieshout, M.

    2012-09-15

    In the context of the Dutch chemical industry's Roadmap the industry is actively seeking concrete ways of improving the efficiency of its products and processes. One option is to make higher-grade use of current waste streams, as feedstocks for other products, for example. This study focuses on propane waste streams from the oil and gas processing industry. Today these are used partly as fuel (fuel gas) but there are no technical barriers to converting propane to propylene, which can then be used as a feedstock. Higher-grade use of this particular waste stream leads to CO2 emission reductions in the production chain. Given the high market price of propylene, such a move may also be economically attractive. The study focuses on the Rotterdam region, because propane suppliers and companies seeking propylene are in closest proximity there [Dutch] In het kader van de Routekaart Chemie is de chemische industrie actief op zoek naar concrete opties om in haar processen en producten de efficiency te verhogen. Een route is daarbij om reststromen hoogwaardiger te benutten en in te zetten als grondstof voor andere producten. Dit onderzoek richt zich op reststromen propaan uit de olie- en gasverwerkende industrie. Deze worden nu deels als brandstof (stookgas) ingezet maar technisch is het mogelijk propaan om te zetten in propeen, dat als grondstof voor de chemische industrie kan worden gebruikt. Door het hoogwaardiger benutten van deze reststroom wordt in de keten een reductie van CO2 gerealiseerd. Tegelijk kan het economisch interessant zijn, vanwege de hoge marktprijzen van propeen. De studie focust op de regio Rotterdam, omdat leveranciers van propaan en afnemers van propeen daar het meest dichtbij elkaar gevestigd zijn.

  13. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  14. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  15. [Technology upgrades and exposure to chemical agents: results of the PPTP study in the footwear industry].

    Science.gov (United States)

    Gianoli, Enrica; Brusoni, Daniela; Cornaggia, Nicoletta; Saretto, Gianni

    2012-01-01

    In the present work the chemical compositions of the products used in shoes manufacturing are reported. The data were collected over the period 2004-2007 in 156 shoe factories in Vigevano area during a study aiming the evaluation of safety conditions and occupational exposure to hazardous chemicals of the employees. The study was part of a regional project for "Occupational cancer prevention in the footwear industry". In the first phase of the study an information form on production cycle, products used and their composition was filled during preliminary audit. In the second phase of the study an in depth qualitative/quantitative evaluation of professional exposure was conducted in 13 selected shoe factories. Data analysis showed the increase in use of water-based adhesives at expense of solvent-based adhesives, the reduction to less than 3.5 weight %, and up to 1 weight %, of n-hexane concentration in solvent mixtures, the increase in use of products containing less hazardous ketones, esters, cyclohexane and heptane. Only in very few cases, products containing from 4 to 12 weight% of toluene were used. These data attest a positive trend in workers risks prevention in shoes industry.

  16. The safety and efficacy of contact lens wear in the industrial and chemical workplace.

    Science.gov (United States)

    Tyhurst, Keith; McNett, Ryan; Bennett, Edward

    2007-11-01

    The use and safety of contact lenses in the industrial and chemical workplace has often been questioned since the 1960s because of many unconfirmed reports of ocular injury resulting from contact lens wear. Because of these urban legends, contact lens wear has been banned or wearers have been required to wear additional personal protective equipment (PPE) not required of non-contact lens wearers. Literature review via Medline and Google search. Research has shown that contact lenses typically provide protective benefits that decrease the severity of ocular injury and improve worker performance. While contact lens wear contraindications do exist, in most cases, and with proper precautions, contact lens wear is still possible. Industrial and chemical companies need to establish written contact lens use policies based on current studies that have shown the safety of workplace contact lens wear when combined with the same PPE required of non-contact lens wearers. Practitioners need to discuss, with their contact lens patients, the additional responsibilities required to maintain proper lens hygiene and proper PPE in the workplace.

  17. Applicable safety-related design and operations considerations from the oil and chemical industries

    International Nuclear Information System (INIS)

    Mulvihill, R.J.; Deshotels, R.L.; Master, C.A.

    1987-01-01

    Fluor Daniel has conducted several hazards and risk analyses on petroleum and chemical facilities. These analyses included qualitative hazards and operability (HAZOP) studies, preliminary hazards analyses, and qualitative fault-tree analysis as well as quantitative event-tree/fault-tree risk analysis. Several design-related problem areas were uncovered as a result of these analyses as well as deficiencies in operations and maintenance. Design deficiency areas include potential common-mode failures associated with redundant functions sharing a common distributed digital control (DDC) logic circuit board and failures in pressure relief systems. Many of the design weaknesses and potential operator errors discussed have a direct counterpart in nuclear fuel processing plants and nuclear power reactors. Counterparts that are discussed are common cause/common mode failures in control systems and failures in pressure relief systems. Overpressurization of piping and vessels resulting in rupture is discussed. Mitigating design features and operations procedures that have been implemented in the chemical process industry are described and their applicability to the nuclear industry is discussed

  18. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  19. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  20. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    Science.gov (United States)

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  1. Chemical Manufacturing and Refining Industry Legitimacy: Reflective Management, Trust, Precrisis Communication to Achieve Community Efficacy.

    Science.gov (United States)

    Heath, Robert L; Lee, Jaesub

    2016-06-01

    Calls for emergency right-to-know in the 1980s, and, in the 1990s, risk management planning, motivated U.S. chemical manufacturing and refining industries to operationalize a three-pronged approach to risk minimization and communication: reflective management to increase legitimacy, operational safety programs to raise trust, and community engagement designed to facilitate citizens' emergency response efficacy. To assess these management, operational, and communication initiatives, communities (often through Local Emergency Planning Committees) monitored the impact of such programs. In 2012, the fourth phase of a quasi-longitudinal study was conducted to assess the effectiveness of operational change and community outreach in one bellwether community. This study focuses on legitimacy, trust, and response efficacy to suggest that an industry can earn legitimacy credits by raising its safety and environmental impact standards, by building trust via that change, and by communicating emergency response messages to near residents to raise their response efficacy. As part of its campaign to demonstrate its concern for community safety through research, planning, and implementation of safe operations and viable emergency response systems, this industry uses a simple narrative of risk/emergency response-shelter-in-place-communicated by a spokes-character: Wally Wise Guy. © 2015 Society for Risk Analysis.

  2. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-04-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 microg/L).

  3. Justice perceptions of performance management practices in a company in the chemical industry

    Directory of Open Access Journals (Sweden)

    Thanasagree Govender

    2015-11-01

    Full Text Available The sustainability of corporations globally is becoming increasingly problematic. Combined with the unique challenges of an operating entity, this could potentially expose the profitability of sustainable businesses on a daily basis. The purpose of this study is to evaluate employees’ justice perceptions of performance management practices in a company in the chemical industry. The population includes all the employees in the chemical industry that was used in this study. A total of 140 questionnaires were issued to all the employees in an organisation which had undergone a performance appraisal and 102 respondents completed the surveys, giving a response rate of 72 per cent. A cross-sectional survey design was used in this study. The justice perceptions were measured according to an existing framework developed by Thurston and McNall (2010. The framework is founded on a hypothesised four-factor model constructed according to theories on organisational justice. The employees of the organisation in the chemical sector were involved in this study. Descriptive statistical analyses were used to measure perceptions of justice based on theories on organisational justice. The measuring instrument used was based on recognised models and theories. The study supports the construct validity of the measuring instrument and the reliability of the scales used. The justice constructs were used to identify specific items in the performance management practice that required improvement. The implications of the results are that continual interventions are required if employee commitment and productivity levels are to improve, resulting in a positive impact on business performance. Significant differences in perceptions by demographic groups were reported and discussed. This study explored the importance of understanding justice perceptions of performance management practices as an enabler for sustained business performance. Further, the study confirmed that

  4. Chemical compounds related to nutraceutical and industrial qualities of non-transgenic soybean genotypes.

    Science.gov (United States)

    Carrera, Constanza S; Dardanelli, Julio L; Soldini, Diego O

    2014-05-01

    Information about the chemical profile of soybean seed is valuable for breeding programs aimed at obtaining value-added products to meet the demands of niche markets. The objective of this study was to determine seed composition of non-transgenic soybean genotypes with specialty characters in different environments of Argentina. Protein and oil contents ranged from 396 to 424 g kg⁻¹ and from 210 to 226 g kg⁻¹, respectively. Oleic and linolenic acid ratio, the general indicator of oil quality, varied from 2.7 to 3.8. The oil contained high levels of total tocopherols (1429-1558 mg kg⁻¹) and the meal exhibited high levels of total isoflavones (2.91-4.62 mg g⁻¹). The biplot showed that oleic, linoleic and linolenic acids, γ-, δ- and total tocopherols, genistin, malonyl daidzin and genistin, acetyl daidzin and glycitin and total isoflavones allowed the greatest discrimination among the genotypes studied. Different chemical profiles of each non-transgenic genotype analyzed were established and, therefore, their identity was defined. These results are important for breeders who intend to obtain new genotypes with improved meal and oil quality, as well as for processors and exporters, who could use them directly as raw material for soyfood processing for nutraceutical purposes. © 2013 Society of Chemical Industry.

  5. Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis.

    Science.gov (United States)

    Ezemonye, L I N; Ogeleka, D F; Okieimen, F E

    2008-08-30

    The toxic effects of industrial chemicals on three early life stages of an economically important fish, Tilapia guineensis were investigated using the Organisation for Economic Cooperation and Development (OECD) # 203 recommended semi-static renewal bioassay. The assessment was necessary for the uncontrollable disposal of Neatex (liquid detergent) and Norust CR 486 (corrosion inhibitor) into the Niger Delta environment of Nigeria. The estimated 96-h LC(50) for 7-, 14- and 28-day-old fish in Norust CR 486 exposure was considered "more toxic" than Neatex in all life stages and was dependent on species age, exposure duration and environment. In the fresh water test, for Neatex and Norust CR 486 exposures for day 7, 14 and 28, the 96-h LC50 were 8.79, 17.10 and 82.42 mg/l and 5.55, 13.58 and 20.21 mg/l, respectively. In the brackish test, 15.42 and 46.52 mg/l, not determined (ND) and 7.35, 13.95 and 24.50mg/l were obtained. Differential toxicity was observed in the fresh and brackish water fish for the two chemicals and controls at pchemicals provides a rationale for regulatory surveillance and monitoring of both chemicals in the fragile Niger Delta environment.

  6. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  7. Assessing potential forest and steel inter-industry residue utilisation by sequential chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Makela, M.

    2012-10-15

    Traditional process industries in Finland and abroad are facing an emerging waste disposal problem due recent regulatory development which has increased the costs of landfill disposal and difficulty in acquiring new sites. For large manufacturers, such as the forest and ferrous metals industries, symbiotic cooperation of formerly separate industrial sectors could enable the utilisation waste-labeled residues in manufacturing novel residue-derived materials suitable for replacing commercial virgin alternatives. Such efforts would allow transforming the current linear resource use and disposal models to more cyclical ones and thus attain savings in valuable materials and energy resources. The work described in this thesis was aimed at utilising forest and carbon steel industry residues in the experimental manufacture of novel residue-derived materials technically and environmentally suitable for amending agricultural or forest soil properties. Single and sequential chemical extractions were used to compare the pseudo-total concentrations of trace elements in the manufactured amendment samples to relevant Finnish statutory limit values for the use of fertilizer products and to assess respective potential availability under natural conditions. In addition, the quality of analytical work and the suitability of sequential extraction in the analysis of an industrial solid sample were respectively evaluated through the analysis of a certified reference material and by X-ray diffraction of parallel sequential extraction residues. According to the acquired data, the incorporation of both forest and steel industry residues, such as fly ashes, lime wastes, green liquor dregs, sludges and slags, led to amendment liming capacities (34.9-38.3%, Ca equiv., d.w.) comparable to relevant commercial alternatives. Only the first experimental samples showed increased concentrations of pseudo-total cadmium and chromium, of which the latter was specified as the trivalent Cr(III). Based on

  8. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  9. Plasma for electrification of chemical industry: a case study on CO2 reduction

    Science.gov (United States)

    van Rooij, G. J.; Akse, H. N.; Bongers, W. A.; van de Sanden, M. C. M.

    2018-01-01

    Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure stream of CO to aid in renewable energy penetration in this sector. A realistic process design is constructed to serve as a basis for an economical analysis. The manufacturing cost price of CO is estimated at 1.2 kUS ton-1 CO. A sensitivity analysis shows that separation is the dominant cost factor, so that improving conversion is currently more effective to lower the price than e.g. energy efficiency.

  10. Development of an Electrolyte CPA Equation of state for Applications in the Petroleum and Chemical Industries

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn

    to the CPA EoS in the absence of electrolytes, making it possible to extend the applicability of the CPA EoS while retaining backwards compatibility and resuing the parameters for non-electrolyte systems . There are many challenges related to thermodynamic modeling of mixtures containing electrolytes......This thesis extends the Cubic Plus Association (CPA) equation of state (EoS) to handle mixtures containing ions from fully dissociated salts. The CPA EoS has during the past 18 years been applied to thermodynamic modeling of a wide range of industrially important chemicals, mainly in relation...... rarely been applied to all types of thermodynamic equilibrium calculations relevant to electrolyte solutions. This project has aimed to determine the best recipe to deliver a complete thermodynamic model capable of handling electrolytes in mixed solvents and at a wide range of temperature and pressure...

  11. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. ESTIMATION OF INDUSTRIAL WASTE SAFETY BY THE “CHEMICAL OXYGEN DEMAND” INDEX

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2015-01-01

    Full Text Available One of the indices of industrial waste safety including distillers grains is chemical oxygen demand (COD, and its value (53591÷64184 mg O/dm3 shows that it can be considered as unsustainable waste. This high value of COD is conditioned by the absence of toxins in distillers grains, and by concentration of biologically active substances after which isolation the distillers grains index lowers by 74%. This allows considering the distillers grains as environmentally safe. The results received evidence the necessity for consideration of COD index only as an index of oxidized substances, but not the criteria of waste pollution.

  13. Materials of 47. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry. Volume 3

    International Nuclear Information System (INIS)

    2004-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum

  14. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  15. The 'PROCESO' index: a new methodology for the evaluation of operational safety in the chemical industry

    International Nuclear Information System (INIS)

    Marono, M.; Pena, J.A.; Santamaria, J.

    2006-01-01

    The acknowledgement of industrial installations as complex systems in the early 1980s outstands as a milestone in the path to operational safety. Process plants are social-technical complex systems of a dynamic nature, whose properties depend not only on their components, but also on the inter-relations among them. A comprehensive assessment of operational safety requires a systemic approach, i.e. an integrated framework that includes all the relevant factors influencing safety. Risk analysis methodologies and safety management systems head the list of methods that point in this direction, but they normally require important plant resources. As a consequence, their use is frequently restricted to especially dangerous processes often driven by compliance with legal requirements. In this work a new safety index for the chemical industry, termed the 'Proceso' Index (standing for the Spanish terms for PROCedure for the Evaluation of Operational Safety), has been developed. PROCESO is based on the principles of systems theory, has a tree-like structure and considers 25 areas to guide the review of plant safety. The method uses indicators whose respective weight values have been obtained via an expert judgement technique. This paper describes the steps followed to develop this new Operational Safety Index, explains its structure and illustrates its application to process plants

  16. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  17. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Science.gov (United States)

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  18. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  19. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    Science.gov (United States)

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  20. Physico-chemical characterization of banana varieties resistant to black leaf streak disease for industrial purposes

    Directory of Open Access Journals (Sweden)

    Rossana Catie Bueno de Godoy

    2016-01-01

    Full Text Available ABSTRACT: Cultivated bananas have very low genetic diversity making them vulnerable to diseases such as black-Sigatoka leaf spot. However, the decision to adopt a new banana variety needs to be based on a robust evaluation of agronomical and physical-chemical characteristics. Here, we characterize new banana varieties resistant to black-Sigatoka leaf spot and compare them to the most widely used traditional variety (Grand Naine. Each variety was evaluated for a range of physic-chemical attributes associated with industrial processing and flavor: pH, TTA, TSS/TTA, total sugars, reducing sugars and non-reducing sugars, humidity, total solids and yield. The Thap Maeo variety had the highest potential as a substitute for the Grand Naine variety, having higher levels of total soluble solids, reducing sugars, total sugars and humidity. The Caipira and FHIA 2 varieties also performed well in comparison with the Grand Naine variety. Cluster analysis indicated that the Grand Naine variety was closely associated with varieties from the Gross Michel subgroup (Bucaneiro, Ambrosia and Calipso and the Caipira variety, all of which come from the same AAA genomic group. It was concluded that several of the new resistant varieties could potentially substitute the traditional variety in areas affected by black-Sigatoka leaf spot disease.

  1. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    Science.gov (United States)

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  2. Sampling and chemical analysis of smoke gas components from the SP Industry Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Maansson, M.; Blomqvist, P.; Isaksson, I.; Rosell, L.

    1995-12-31

    This report describes the sampling and chemical analyses of smoke gas components for combustion performed in the SP Industry Calorimeter, where continuous measurements of oxygen, carbon dioxide and carbon monoxide are an integrated part of the Calorimeter system. On-line measurements of nitrogen oxides and total amounts of unburnt hydrocarbons were performed. Hydrogen cyanide, hydrogen chloride and ammonia in the smoke were sampled and absorbed in impinger bottles and subsequently analyzed using wet chemical techniques. An adsorbent sampling system was designed to allow the identification and quantitative analysis of individual organic compounds in the smoke. Gas chromatography was utilized with a mass spectrometric detector for the identification and a FID for quantification of the total amounts as well as individual components. A procedure for cleaning the smoke gas duct in between the combustion experiments was designed and found to be effective. The materials studied were Nylon 66, polypropylene, polystyrene (with and without fire retardant), PVC, and chlorobenzene. A total of 19 large-scale tests were carried out. The mass of sample burnt ranged from 20 kg to 125 kg in an experiment. 14 refs, 11 tabs

  3. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    Science.gov (United States)

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  4. EDXRF applied to the chemical characterization of domestic and industrial sludges

    International Nuclear Information System (INIS)

    Silva, Gleyce Kelly A. da; Dutra, Emmanuel Damiliano; França, Elvis J. de

    2017-01-01

    The Energy Dispersion X-ray Fluorescence – EDXRF is a low-cost, fast, non-destructible analytical technique, useful for analyzing diverse geological samples. The determination of chemical elements by EDXRF in solid urban wastes is economic and operationally feasible, since the concentration of many heavy metals can be easily monitored. Besides, chemical elements as aluminum and some minerals that compose important natural cycles add valuable information for deciding the final destination of these wastes. The objective of this work was the obtaining the analytical curves for quantifying chemical elements by EDXRF in sewage sludge. For this, analytical portions (1 g) of the certified reference materials SRM 2781 Domestic Sludge and SRM 2782 Industrial Sludge produced by the National Institute of Standards and Technology (NIST) were transferred to polyethylene tubes and sealed at the top and bottom with polypropylene film specific for EDXRF analysis. Exactly 500 mg of each of the above SRMs were mixed by means of a ball mill for composing the SRM MIX, also analyzed for obtaining the analytical curves. All samples were analyzed in an atmosphere close to the vacuum (less than 30 Pa), with dead time less than 35%. For Al, As, Cu, Fe, K, Ni, Pb, Si, Ti and Zn, linear regressions have been fitted with respective linear coefficients higher than 0.95. To evaluate the quality of the analytical procedure, an independent test portion of the reference material SRM 2781 Sludge Domestic was used, calculating the Number En obtaining values between -1 and 1, range considered adequate for the quality assurance at the 95% confidence level. (author)

  5. [Physical and chemical characterization of industrial nixtamalized corn flour for human consumption in Central America].

    Science.gov (United States)

    Bressani, R; Turcios, J C; Reyes, L; Mérida, R

    2001-09-01

    The objective of this study was the characterization of industrial nixtamalized maize flour for human consumption and which are marketed in Central America for some selected physical and chemical properties which may contribute to food composition information and help nutrition and micronutrient fortification programs. A total of 12 brands purchased in triplicate were obtained from supermarkets in Guatemala, El Salvador and Honduras. These samples were kept under refrigeration until analyzed. The physical parameters measured and results were the following: particle size with most samples having a high percentage of particles greater than 60 mesh, pH (5.4-7.5), water absorption index (WAI) (3.4-4.0 g gel/g sample), water soluble index (WSI) (4.8-7.8 g/100 g) and flour density (0.410-0.547 g/ml). The differences were statistically significant for all parameters measured, except for WAI. The chemical characteristics included, moisture, protein, fat, ash and dietetic fiber. Differences between flour samples were statistically significant except for fat content. Protein content was low, ranging between 6.7-8.1 g/100 g and total dietary fiber varied between 7.7-12.0 g/100 g. The samples were analyzed for phytic acid with a variation from 632 to 903 mg/100 g, with statistical significant differences. The samples were also analyzed for total and soluble (pH 7.5) iron, phosphorus, calcium, potassium, zinc, copper, manganese, and magnesium. The difference in the iron and calcium content between flour samples were statistically significant. The physical and chemical variability found between flour samples of nixtamalized maize was relatively high and it is recommended to establish quality standards through raw material and process standardization for greater effectiveness of nutrition programs and activities on micronutrient fortification which may be pursued in the future.

  6. EDXRF applied to the chemical characterization of domestic and industrial sludges

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gleyce Kelly A. da; Dutra, Emmanuel Damiliano, E-mail: gleyce_kelly990@hotmail.com, E-mail: emmanuel.dutra@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); França, Elvis J. de, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    The Energy Dispersion X-ray Fluorescence – EDXRF is a low-cost, fast, non-destructible analytical technique, useful for analyzing diverse geological samples. The determination of chemical elements by EDXRF in solid urban wastes is economic and operationally feasible, since the concentration of many heavy metals can be easily monitored. Besides, chemical elements as aluminum and some minerals that compose important natural cycles add valuable information for deciding the final destination of these wastes. The objective of this work was the obtaining the analytical curves for quantifying chemical elements by EDXRF in sewage sludge. For this, analytical portions (1 g) of the certified reference materials SRM 2781 Domestic Sludge and SRM 2782 Industrial Sludge produced by the National Institute of Standards and Technology (NIST) were transferred to polyethylene tubes and sealed at the top and bottom with polypropylene film specific for EDXRF analysis. Exactly 500 mg of each of the above SRMs were mixed by means of a ball mill for composing the SRM MIX, also analyzed for obtaining the analytical curves. All samples were analyzed in an atmosphere close to the vacuum (less than 30 Pa), with dead time less than 35%. For Al, As, Cu, Fe, K, Ni, Pb, Si, Ti and Zn, linear regressions have been fitted with respective linear coefficients higher than 0.95. To evaluate the quality of the analytical procedure, an independent test portion of the reference material SRM 2781 Sludge Domestic was used, calculating the Number En obtaining values between -1 and 1, range considered adequate for the quality assurance at the 95% confidence level. (author)

  7. Chemical and Physical Characteristics of Soy Proteins for New Industrial Applications

    Science.gov (United States)

    Arboleda Fernandez, Julio Cesar

    Despite of being environmentally friendly, biocompatible, rich in chemical functionality and abundant as residual materials, soy proteins (SPs) are used for low added value applications. In this work, SPs were studied and used as potentially useful biomacromolecules for different industrial applications with high added value. Initially the effect of acid hydrolysis of soy proteins as a potential route for subsequent surface modification was studied, finding that SP hydrolysates tend to form less aggregates and to adsorb at faster rates compared with unmodified SP; nevertheless, it was also found that the amount of protein adsorbed and water contact angle of the treated surface does not change significantly. Secondly, the gel forming properties of SPs were used to produce aerogels with densities in the order of 0.1 g/cm3. To improve their mechanical properties, the reinforcement of these materials with cellulose nanofibers was studied, obtaining composite aerogels with SP loadings as high as ca. 70% that display a compression modulus of 4.4 MPa, very close to the value obtained from the pure nanofibers aerogels. The composite materials gain moisture (up to 5%) in equilibrium with 50% RH air. Futhermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents, exhibiting sorption rates dependent on the aerogel composition, morphology and swelling abilities. Finally, different soy protein based products and derivatives were used to enhance the dry strength properties of wood fibers in paper production. Experiments using soy flour, soy protein isolate, soy protein isolate hydrolysates, cationized soy flour, and soy flour combined with cationic starch and chitosan were done, obtaining satisfactory results when soy protein flour was utilized in combination with conventional treatments involving cationic polymers. The current results confirm the opportunity to valorize residual soy products that are underutilized today as alternatives to oil

  8. An Integrative Model of the Strategic Management Accounting at the Enterprises of Chemical Industry

    Directory of Open Access Journals (Sweden)

    Aleksandra Vasilyevna Glushchenko

    2016-06-01

    Full Text Available Currently, the issues of information and analytical support of strategic management enabling to take timely and high-quality management decisions, are extremely relevant. Conflicting and poor information, haphazard collected in the practice of large companies from unreliable sources, affects the effective implementation of their development strategies and carries the threat of risk, by the increasing instability of the external environment. Thus chemical industry is one of the central places in the industry of Russia and, of course, has its specificity in the formation of the informationsupport system. Such an information system suitable for the development and implementation of strategic directions, changes in recognized competitive advantages of strategic management accounting. The issues of the lack of requirements for strategic accounting information, its inconsistency in the result of simultaneous accumulation in different parts and using different methods of calculation and assessment of indicators is impossible without a well-constructed model of organization of strategic management accounting. The purpose of this study is to develop such a model, the implementation of which will allow realizing the possibility of achieving strategic goals by harmonizing information from the individual objects of the strategic account to increase the functional effectiveness of management decisions with a focus on strategy. Case study was based on dialectical logic and methods of system analysis, and identifying causal relationships in building a model of strategic management accounting that contributes to the forecasts of its development. The study proposed to implement an integrative model of organization of strategic management accounting. The purpose of a phased implementation of this model defines the objects and tools of strategic management accounting. Moreover, it is determined that from the point of view of increasing the usefulness of management

  9. [Current status of hearing loss and related influencing factors in workers with noise exposure in refining and chemical industry].

    Science.gov (United States)

    Wu, S S; Yu, J N; He, C H; Mu, H X; Wang, C; Zhang, Y; Zhang, C Y; Yu, S F; Li, X L

    2016-12-20

    Objective: To investigate the current status of hearing loss and related influencing factors in workers with noise exposure in refining and chemical industry. Methods: From August 2015 to March 2016, the investigation method of collecting the data of past occupational health examinations and measuring noise in working environment was used to enroll 8 672 male workers. Results: Of all workers, 11.6% were diagnosed with hearing loss. There were significant differences in the distribution of hearing impairment among workers exposed to noise at different ages, device types and types of work (χ(2)=17.80, 77.80 and 30.53, all P hearing loss in workers with noise exposure in refining and chemical industry. Conclusion: The level of noise exposure and working years with noise exposure are main influencing factors for hearing loss in workers with noise exposure in refining and chemical industry.

  10. Assessment of the impact of the European CO2 emissions trading scheme on the Portuguese chemical industry

    International Nuclear Information System (INIS)

    Tomas, R.A.F.; Ramoa Ribeiro, F.; Santos, V.M.S.; Gomes, J.F.P.; Bordado, J.C.M.

    2010-01-01

    This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO 2 ) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO 2 emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO 2 emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors.

  11. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  12. Assessment of the impact of the European CO{sub 2} emissions trading scheme on the Portuguese chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, R.A.F. [Artenius Sines, Zona Industrial, 7520 Sines (Portugal); Ramoa Ribeiro, F.; Bordado, J.C.M. [Centro de Engenharia Quimica e Biologica, IBB-Instituto de Biotecnologia e Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Santos, V.M.S. [Instituto Superior de Economia e Gestao, R. do Quelhas, 6, 1200-781 Lisboa (Portugal); Gomes, J.F.P. [Centro de Engenharia Quimica e Biologica, IBB-Instituto de Biotecnologia e Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro 1949-014 Lisboa (Portugal)

    2010-01-15

    This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO{sub 2}) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO{sub 2} emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO{sub 2} emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors. (author)

  13. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  14. Eco-chemical knowledge, behavior and engagement of workers employed in the mineral fertilizer industry in Novi Sad

    Directory of Open Access Journals (Sweden)

    Cvjetićanin Stanko

    2006-01-01

    Full Text Available The level of environmental pollution is influenced by the knowledge, behavior and ecological engagement of both the individual and society. The mineral fertilizer industry represents a potential source of pollution. The issue examined in this study is the level of eco-chemical knowledge, behavior and ecological engagement of the workers employed in the mineral fertilizer industry in Novi Sad. We have concluded that the workers hover low level of knowledge, behavior and engagement. The results obtained could be used for the selection of methods to enhance the eco-chemical knowledge of the employees.

  15. Detection and reduction of diffuse liquid and gas emissions in chemical and petrochemical industries; Ermittlung und Verminderung diffuser fluessiger und gasfoermiger Emissionen in der chemischen und petrochemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Koeppke, K.E. [Witten-Herdecke Univ. gGmbH, Witten (Germany). Inst. fuer Umwelttechnik und Management; Cuhls, C. [Halle-Wittenberg Univ., Halle (Germany). Inst. fuer Umwelttechnik

    2002-09-01

    In order to improve environmental protection, VOC emissions from diffuse sources are of growing importance. For the first time in Germany the present research report gives a detailed presentation of: constructive measures for the avoidance and reduction of diffuse emissions, adequate assembling procedures for equipments and installations, technical possibilities of leak detection and, different methods for the estimation of total emissions from chemical and petrochemical production plants. On the basis of own investigations and monitoring measures taken at various plants of chemical and petrochemical industries different measuring techniques for leak detection as well as methods for the estimation of total emissions from diffuse sources are analysed and their limits are described. (orig.)

  16. Industry

    International Nuclear Information System (INIS)

    Schindler, I.; Wiesenberger, H.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO 2 , NO x , CO 2 , CO, CH 4 , N 2 O, NH 3 , Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  17. R&D Cooperation and Knowledge Spillover Effects for Sustainable Business Innovation in the Chemical Industry

    Directory of Open Access Journals (Sweden)

    Petr Hájek

    2018-04-01

    Full Text Available This paper investigates the influence of research and development (R&D cooperation on the creation of spillover effects for sustainable firms in the chemical industry. We explore the evidence for the origin of knowledge spillovers derived from cooperation amongst firms and universities and R&D organizations as well as to test the influence of internal/external financial support on these effects. The results confirm that when firms acquire knowledge from internal sources, this leads to increased innovation and sustainable performance. We have proved that internal expenditure results in increased internal knowledge spillovers. These findings may be specific for Central and Eastern (CEE transition countries, indicating their efforts to build path-dependent structures based on knowledge institutions and businesses as well as knowledge networks. However, this study also provides a more “global” contribution to the knowledge spillover effect theory. It shows that a firm’s cooperation both with universities and with other firms promotes different types of knowledge spillovers and can affect diverse modes of sustainable activities in innovation.

  18. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  19. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes.

    Science.gov (United States)

    Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A

    2017-09-13

    The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.

  20. Physico-chemical studies of effluents and emission of ghee/edible oil industries in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, I.; Ali, S.; Jan, M.R.

    1999-01-01

    Samples of the effluents from various Ghee/Edible Oil Industries were collected on fortnightly basis from July 1993 to June 1994 and the emissions from January to April 1994. Parameters such as temperature, pH, conductivity, total dissolved solids (TDS), total suspended solids (TSS), total alkalinity total acidity, total hardness, chemical oxygen demand (COD). chlorides, sulphates, phosphates, silica, calcium magnesium, sodium, and iron were determined in the effluents, Trace metals like copper, manganese, nickel, and zinc were determined by atomic absorption spectroscopy, whereas SO/sub 2/, CO CO/sub 2/, hydrocarbons, hydrogen, nitrogen, oxygen and argon were examined in the flue gases by Gas Chromatography and other standard techniques such as Orsat Gas Analyzer and Dragger Detection Tubes. Remedial measures were suggested for the pollutants exceeding the National Environmental Quality Standards, (NEQS). Parameters like chlorine, ammonia, sulphides, arsenic, cadmium, chromium, cobalt, lead and tin were also analyzed in the effluents and were found to be nil or below the detection limit, while particulate matters, HCl, chlorine, HF, H/sub 2/S, mercaptans and NH/sub 3/ were found to be nil in the flue gases. (author)

  1. A study on manufacturing technology of materials for fine chemical industry use (muscovite, sericite)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jung-Il; Shin, Hee-Young; Hwang, Seon-Kook; Ahn, Ji-Hwan; Bae, Kwang-Hyun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    For the technical development on utilization of unused mineral resources, the study was carried out on the highly purification and mineral processing of domestic Sericite and Muscovite. This study was also carried out to make the functional materials for the use of fine chemical industry. Scope and content of study: 1) A study on the high purification and mineral processing for sericite and muscovite. 2) A study on the surface treatment of fine particles of sericite and muscovite. EDAX analysis on surface treated Mica shows that absorbed area on mica surface appears about 56 wt% when reaction period of 75 min. The result on image analysis on the surface treated mica comparing with that of EDAX analysis appears that the material was stabilized when passing the 1st yielding point. The dry process of surface modification on mica was applied by using {Theta}-composer. The result shows that whiteness of the mica increases upto 91 at 20 min. grinding period. Polymer microcapsulation was carried out on the mica surface. The result shows that materials appear excellent hydrophobic property which is one of important factors for making cosmetics. Based on the applying test of mineral processing on Dong-jin mica, the result shows that high quality mica is recovered. Especially, lithium mica produced in the mine will be further studied in the next year project. (author). 26 refs., 36 tabs., 61 figs.

  2. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    Science.gov (United States)

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  3. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy C. [Shell Global Solutions, Houston, TX (United States); Young, Arthur L. [Humberside Solutions, Toronto, ON (Canada); Pelton, Arthur D. [CRCT, Ecole Polytechnique de Montreal, Quebec (Canada); Thompson, William T. [Royal Military College of Canada, Kingston, ON (Canada); Wright, Ian G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  4. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    International Nuclear Information System (INIS)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-01-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications

  5. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  6. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    Science.gov (United States)

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  7. Applying the three R's: Reduce, reuse, and recycle in the chemical industry.

    Science.gov (United States)

    Mostafa, Mohamed K; Peters, Robert W

    2017-03-01

    Pollution prevention (P2) assessment was conducted by applying the three R's, reduce, reuse, and recycle, in a chemical industry for the purpose of reducing the amount of wastewater generated, reusing paint wastewater in the manufacture of cement bricks, recycling cooling water, and improving water usage efficiency. The results of this study showed that the annual wastewater flow generated from the paint manufacturing can be reduced from 1,100 m 3 to 488.4 m 3 (44.4% reduction) when a high-pressure hose is used. Two mixtures were prepared. The first mixture (A) contains cement, coarse aggregate, fine aggregate, Addicrete BVF, and clean water. The second mixture (B) contains the same components used in the first mixture, except that paint wastewater was used instead of the clean water. The prepared samples were tested for water absorption, toxicity, reactivity, compressive strength, ignitability, and corrosion. The tests results indicated that using paint wastewater in the manufacture of the cement bricks improved the mechanical properties of the bricks. The toxicity test results showed that the metals concentration in the bricks did not exceed the U.S. EPA limits. This company achieved the goal of zero liquid discharge (ZLD), especially after recycling 2,800 m 3 of cooling water. The total annual saving could reach $42,570 with a payback period of 41 days. This research focused on improving the water usage efficiency, reducing the quantity of wastewater generated, and potentially reusing wastewater in the manufacture of cement bricks. Reusing paint wastewater in the manufacture of the bricks prevents the hazardous pollutants in the wastewater (calcium carbonate, styrene acrylic resins, colored pigments, and titanium dioxide) from entering and polluting the surface water and the environment. We think that this paper will help to find the most efficient and cost-effective way to manage paint wastewater and conserve fresh water resources. We also believe that this

  8. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  9. Industrialization

    African Journals Online (AJOL)

    Lucy

    . African states as ... regarded as the most important ingredients that went to add value to land and labour in order for countries ... B. Sutcliffe Industry and Underdevelopment (Massachusetts Addison – Wesley Publishing Company. 1971), pp.

  10. Industrialization

    African Journals Online (AJOL)

    Lucy

    scholar, Walt W. Rostow presented and supported this line of thought in his analysis of ... A Brief Historical Background of Industrialization in Africa ... indicative) The western model allowed for the political economy to be shaped by market.

  11. Effect of water losses by evaporation and chemical reaction in an industrial slaker reactor

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola

    2007-03-01

    Full Text Available A dynamic model of the slaker reactor was developed and validated for Klabin Paraná Papéis causticizing system, responsable for white liquor generation used by the plant. The model considered water losses by evaporation and chemical reaction. The model showed a good agreement with the industrial plant measures of active alkali, total titratable alkali and temperature, without the need of adjustment of any parameter. The simulated results showed that the water consumption by the slaking reaction and evaporation exerted significant influence on the volumetric flow rate of limed liquor, which imposed a decrease of 4.6% in the amount of water in reactor outlet.Foi desenvolvido e testado um modelo dinâmico do reator de apagamento do sistema de caustificação da Klabin Paraná Papéis, responsável pela geração do licor branco utilizado na planta. O modelo contempla perdas de água por evaporação e por reação química e apresentou boa concordância com dados industriais de álcali ativo, álcali total titulável e temperatura, sem a necessidade de ajuste de nenhum parâmetro. Os resultados obtidos a partir de simulações revelam que o consumo de água pela reação de apagamento, bem como pela evaporação, exercem uma influência significativa sobre a vazão volumétrica na saída do reator, impondo uma diminuição de 4,6% sobre o teor de água na corrente de saída do reator em relação à alimentação.

  12. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    International Nuclear Information System (INIS)

    Almeida, S.M.; Lage, J.; Fernández, B.; Garcia, S.; Reis, M.A.; Chaves, P.C.

    2015-01-01

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM 10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM 2.5 and PM 2.5–10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM 10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM 10 . Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH 4 + , K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM 10 was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM 10 mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM 10 . • Fugitive dust emissions highly contribute to PM 10 mass

  13. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  14. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    Science.gov (United States)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  15. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology. 2010 Elsevier Ltd. All rights reserved.

  16. Physical, chemical and radioactive characterization of co-products from titanium dioxide industry for valorization in the cement industry

    International Nuclear Information System (INIS)

    Gazquez, M.J.; Mantero, J.; Bolivar, J.P.; Garcia-Tenorio, R.; Vaca, F.

    2011-01-01

    The present study was conducted to characterize the raw materials (ilmenite and slag), waste (red gypsum) and several co-products (sulphate monohydrate and sulphate heptahydrated) form the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology, physical composition and radioactive content in order to apply this knowledge in the valorization of the co-products in the fields such a as construction, civil engineering, etc. In particular, the main properties of cements produced with different proportions of red gypsum were studied, and the obtained improvements, in relation to Ordinary Portland Cements (OPC) were evaluated. It was also demonstrated that the levels of pollutants and the radioactive content in the produced RG cements, remain within the regulated safety limits. (Author). 38 refs.

  17. Top five industries resulting in injuries from acute chemical incidents—Hazardous Substance Emergency Events Surveillance, nine states, 1999-2008.

    Science.gov (United States)

    Anderson, Ayana R; Wu, Jennifer

    2015-04-10

    Because industries using and/or producing chemicals are located in close proximity to populated areas, U.S. residents are at risk for unintentional chemical exposures. 1999-2008. The Hazardous Substances Emergency Events Surveillance (HSEES) system was operated by the Agency for Toxic Substances and Disease Registry during January 1991-September 2009 to collect data that would enable researchers to describe the public health consequences of chemical releases and to develop activities aimed at reducing the harm from such releases. This report summarizes data for the top five industries resulting in injuries from an acute chemical incident (lasting truck transportation, educational services, chemical manufacturing, utilities, and food manufacturing) accounted for approximately one third of all incidents in which persons were injured as a result of unintentional release of chemicals; the same five industries were responsible for approximately one third of all persons injured as a result of such releases. Acute chemical incidents in these five industries resulted in serious public health implications including the need for evacuations, morbidity, and mortality. PUBLIC HEALTH IMPLICATIONS: Targeting chemical incident prevention and preparedness activities towards these five industries provides an efficient use of resources for reducing chemical exposures. A variety of methods can be used to minimize chemical releases in industries. One example is the Occupational Safety and Health Administration's hierarchy of controls model, which focuses on controlling exposures to occupational hazards. The hierarchy includes elimination, substitution, engineering controls, administrative controls, and use of personal protective equipment.

  18. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Calero Valdayo, Patricia; Lennen, Rebecca

    2016-01-01

    Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology...... approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol......, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps...

  19. IMPLEMENTATION OF A SAFETY PROGRAM FOR THE WORK ACCIDENTS’ CONTROL. A CASE STUDY IN THE CHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Edison Cesar de Faria Nogueira

    2015-03-01

    Full Text Available This article presents a case study related to the implementation of a Work Safety Program in a chemical industry, based on the Process Safety Program, PSP, of a huge energy company. The research was applied, exploratory, qualitative and with and data collection method through documentary and bibliographical research. There will be presented the main practices adopted in order to make the Safety Program a reality inside a chemical industry, its results and contributions for its better development. This paper proposes the implementation of a Safety Program must be preceded by a diagnosis of occupational safety and health management system and with constant critical analysis in order to make the necessary adjustments.

  20. Proceedings of the 3. International conference on waste management in the chemical and petrochemical industries. Volume 1 and 2.

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Francisco F.; Pereira Filho, Francisco A.; Almeida, Sergio A.S. [eds.

    1993-12-31

    To produce without pollution is today a mandate for the preservation of our society. To produce cleaner means to conserve energy and natural resources, to reduce the use of toxic substances, to invest in the evolution of products and production processes towards a minimum of residues. The Third International Conference on Waste Minimization in the Chemical and Petrochemical Industries addresses these challenging questions regarding waste minimization

  1. Proceedings of the 3. International conference on waste management in the chemical and petrochemical industries. Volume 1 and 2.

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Francisco F; Pereira Filho, Francisco A; Almeida, Sergio A.S. [eds.

    1994-12-31

    To produce without pollution is today a mandate for the preservation of our society. To produce cleaner means to conserve energy and natural resources, to reduce the use of toxic substances, to invest in the evolution of products and production processes towards a minimum of residues. The Third International Conference on Waste Minimization in the Chemical and Petrochemical Industries addresses these challenging questions regarding waste minimization

  2. Physical-chemical characteristics of an eco-friendly binder using ternary mixture of industrial wastes

    Directory of Open Access Journals (Sweden)

    Nguyen, Hoang-Anh

    2015-09-01

    Full Text Available This study explores the physical-chemical characteristics of paste and mortar with an eco-friendly binder named as SFC cement, produced by a ternary mixture of industrial waste materials of ground granulated blast furnace slag (S, Class F fly ash (FFA, and circulating fluidized bed combustion fly ash (CFA. To trigger the hydration, the CFA, which acted as an alkaline-sulfate activator, was added to the blended mixture of slag and FFA. The water to binder ratio (W/B, curing regime, and FFA addition significantly affected the engineering performances and shrinkage/expansion of the SFC pastes and mortars. The SFC mortars had higher workability than that of ordinary Portland cement (OPC. With similar workability, the SFC mortars had compressive strengths and expansions comparable to OPC mortars. The main hydration products of the hardened SFC cement were ettringite (AFt and C-S-H/C-A-S-H. The transformation of the AFt to the monosulfates was observed as the hydration time increased.Este trabajo estudia las características fisicoquímicas de pastas y morteros con un ligante eco-amigable llamado cemento SFC, producido por una mezcla ternaria de materiales a partir de residuos industriales tales como escorias granuladas de alto horno (S, ceniza volante clase F (FFA, y cenizas volantes de combustión en lecho fluidizado circulante (CFA. Para desencadenar la hidratación, el CFA que actuó como un activador alcalino-sulfato se añadió a la mezcla combinada de escoria y FFA. La relación de agua/ligante (W/B, el tipo de curado, y la adición de FFA afectaron significativamente a las prestaciones mecánicas así como a la retracción/expansión de pastas y morteros de SFC. Los morteros SFC presentaron una trabajabilidad mayor que los correspondientes de cemento de Portland (OPC. Con una trabajabilidad similar, los morteros SFC presentaron resistencias mecánicas y expansión comparables a los morteros de OPC. Los principales productos de hidratación del

  3. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    Science.gov (United States)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  4. Energy price slump and policy response in the coal-chemical industry district: A case study of Ordos with a system dynamics model

    International Nuclear Information System (INIS)

    Wang, Delu; Ma, Gang; Song, Xuefeng; Liu, Yun

    2017-01-01

    We employ system dynamics method towards a coal-chemical industry district economy evolution model, using coal industry, the coal-chemical industry, their downstream industries, and the manufacture-related service industry. Moreover, we construct energy price and policy response scenarios based on Ordos’ management experience. The results show that the energy price slump had a negative impact on the overall economic development of the coal-chemical industry district, despite promoting non-resource industries. Furthermore, policies had different effects on the industry's output value and profit. In the long-term, developing alternative industries (AI) helps increase the industrial output value and profit. Decreasing value added tax (VAT) has immediate results and a distinctive effect on industrial short-term production value and profit, its long-term effect being limited. The effect of production limit (PL) on industrial profit is stronger than output value, and financial support (FS) is more conducive to improve the latter. However, coal mining and coal-chemical loan increases decrease the gross industrial profit level. Technology innovation (TI) has the best individual policy overall effect on production value and profits. Furthermore, the simultaneous implementation of PL, TI and AI can generate the synergy effect for each of them. And the simultaneous implementation of VAT and one or couple of other policies will generate the crowding-out effect both for VAT and other policies. - Highlights: • A system dynamics model of the coal-chemical industry district economy evolution in Ordos is constructed. • The impact of coal and oil prices slump on the output value and profit of each industry is revealed. • The differences in the effects especially cumulative effects of different response policies are clarified. • The crowding-out and synergy effects of policy implementation are analyzed.

  5. B827 Chemical Synthhesis Project - Industrial Control System Integration - Statement of Work & Specification with Attachments 1-14

    Energy Technology Data Exchange (ETDEWEB)

    Wade, F. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    The Chemical Synthesis Pilot Process at the Lawrence Livermore National Laboratory (LLNL) Site 300 827 Complex will be used to synthesize small quantities of material to support research and development. The project will modernize and increase current capabilities for chemical synthesis at LLNL. The primary objective of this project is the conversion of a non-automated hands-on process to a remoteoperation process, while providing enhanced batch process step control, stored recipe-specific parameter sets, process variable visibility, monitoring, alarm and warning handling, and comprehensive batch record data logging. This Statement of Work and Specification provides the industrial-grade process control requirements for the chemical synthesis batching control system, hereafter referred to as the “Control System” to be delivered by the System Integrator.

  6. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  7. Industrialization of hot wire chemical vapor deposition for thin film applications

    NARCIS (Netherlands)

    Schropp, Ruud

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical

  8. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, B. van; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  9. Evaluating Exposures to Complex Mixtures of Chemicals During a New Production Process in the Plastics Industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, van B.; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  10. Risk perception of aquatic pollution originated from chemical industry clusters in the coastal area of Jiangsu province, China.

    Science.gov (United States)

    Yao, Hong; Liu, Bo; You, Zhen; Zhao, Li

    2018-02-01

    According to "the Layout Scheme of the Chemical Industry in Jiangsu Province From 2016 to 2030" and "the Development Planning in the Coastal Area of Jiangsu Province, China," several chemical industry clusters will be located in the coastal area of Jiangsu province, China, and the risk of surface water pollution will be inevitably higher in the densely populated region. To get to know the risk acceptance level of the residents near the clusters, public perception was analyzed from the five risk factors: the basic knowledge about the pollution, the negative effects on aquatic environment imposed by the clusters, the positive effects brought by the clusters, the trust of controlling aquatic pollution, and the acceptance of the clusters. Twenty-four statements were screened out to describe the five factors, and about 600 residents were covered in three typical clusters surveyed. On the whole, the youth showed a higher interest on the survey, and middle-aged people were likely to be more concerned about aquatic pollution incident. There was no significant difference on risk perception of the three clusters. The respondents investigated had good knowledge background on aquatic pollution and the residents identified with the benefits brought by the clusters. They were weak in risk awareness of pollution originated from the chemical enterprises' groups. Although the respondents regarded that chemical industry clusters did not expose all points of pollutants' generation to the public, they inclined to trust the administration agencies on controlling the pollution and welcome the construction of chemical clusters in their dwelling cities. Besides, risk perception showed obvious spatial distribution. The closer were the samples' sites to the clusters and the rivers receiving pollutants, the higher were the residents' perceived risk, benefit, and trust. However, there was no identical spatial difference on risk acceptance, which might be comprehensively influenced by various

  11. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Directory of Open Access Journals (Sweden)

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  12. The impact of conventional and nuclear industries on the population A comparative study of the radioactive and chemical aspects

    CERN Document Server

    Coulon, R; Anguenot, F

    1988-01-01

    This study was carried out to make it possible to assess and localize in an objective manner the extent of the hazards and associated detrimental effects which are inherent in nuclear and non-nuclear industrial activities, among all the hazards to which the population of a given region is exposed. Rather than carry out a purely theoretical and speculative study a region was chosen as a basis to carry out a full- scale exercise, taking into account the existing real situation. The region chosen is situated in the south-east of France (Greater Rhone Delta) where almost all industrial activities can be found: electricity generating industries (thermal and nuclear power stations), the activities associated with them (extraction, processing, storage of waste, etc.) and industrial activities which are sources of pollution (refineries, chemical industries, etc.). To put the risks of all these activities (to workers, the public and the environment) in perspective, the case of other sources of risk, such as certain ag...

  13. Application of the natural cellulosic supports modified chemically for the treatment of the industrial effluents

    International Nuclear Information System (INIS)

    Kassale, A.; Elbariji, S.; Lacherai, A.; Elamine, M.; Kabli, H.; Albourine, A.

    2009-01-01

    The process of purification and discoloration of industrial waters (and particularly effluents of the textile industry) can meet major difficulties: certain dyes agents get through the devices of purge without being to stop. the cost of equipment and products of purification is prohibitive. Finally, in many cases, the discoloration can be only partial because waters to be treated containing mixtures of dyes of different nature, the material of purification can be effective only screw/screw of some of them. (Author)

  14. Toxic Industrial Chemical Tests of Resistance to Permeation by Protective Suits

    National Research Council Canada - National Science Library

    Klemperer, Elizabeth

    2005-01-01

    A Natick program to select and test protective materials for soldiers and first responders who face a threat from chemical accidents or terrorist attacks was applied under Congressional legislation...

  15. Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

    Directory of Open Access Journals (Sweden)

    Hyunhee Park

    2011-03-01

    Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

  16. Towards benchmarking of multivariable controllers in chemical/biochemical industries: Plantwide control for ethylene glycol production

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Bialas, Dawid Jan; Jørgensen, John Bagterp

    2011-01-01

    In this paper we discuss a simple yet realistic benchmark plant for evaluation and comparison of advanced multivariable control for chemical and biochemical processes. The benchmark plant is based on recycle-separator-recycle systems for ethylene glycol production and implemented in Matlab...... for education purposes (operator training, student education, etc) as well as scientific research into chemical process control where it enables rapid evaluation and comparison of advanced multivariable controllers as demonstrated in this study....

  17. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    Science.gov (United States)

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  18. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  19. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  20. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  1. The development and application of dynamic operational risk assessment in oil/gas and chemical process industry

    International Nuclear Information System (INIS)

    Yang Xiaole; Mannan, M. Sam

    2010-01-01

    A methodology of dynamic operational risk assessment (DORA) is proposed for operational risk analysis in oil/gas and chemical industries. The methodology is introduced comprehensively starting from the conceptual framework design to mathematical modeling and to decision making based on cost-benefit analysis. The probabilistic modeling part of DORA integrates stochastic modeling and process dynamics modeling to evaluate operational risk. The stochastic system-state trajectory is modeled according to the abnormal behavior or failure of each component. For each of the possible system-state trajectories, a process dynamics evaluation is carried out to check whether process variables, e.g., level, flow rate, temperature, pressure, or chemical concentration, remain in their desirable regions. Component testing/inspection intervals and repair times are critical parameters to define the system-state configuration, and play an important role for evaluating the probability of operational failure. This methodology not only provides a framework to evaluate the dynamic operational risk in oil/gas and chemical industries, but also guides the process design and further optimization. To illustrate the probabilistic study, we present a case-study of a level control in an oil/gas separator at an offshore plant.

  2. Studies on the utilization of agricultural residues in the manufacture of pulp and paper, and industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, V.S.; Kamath, G.P.; Basu, S.

    1980-03-15

    While demand for pulp and paper products in India is increasing at the annual rate of 7 to 8%, availability of cellulosic raw material to meet the ever increasing demand is becoming a serious problem. It has been estimated that bamboo, the traditional source of cellulosic raw material in India, even after ensuring the most scientific and best possible exploitation, could provide less than 50% of the requirement. In a big agricultural country like India, agri-residues like straws and bagasse, along with jute sticks, available in huge quantity, could provide substantial amount of cellulosic resources to the pulp and paper industry. Realizing the importance of agri-residue utilization in Indian economy, a series of research projects have been initiated and completed during the last 15 years to study the techno-economic feasibility of manufacturing pulp, paper, and industrial chemicals, based on rice and wheat straws, bagasse, and jute sticks. The economic advantages of the mechano-chemical pulping process, as compared to the conventional pressure, pulping process, for the conversion of agri-residues into pulp and paer is evaluated. For highlighting the importance of agri-residues in the field of useful chemical recovery possibilities, experimental data are given on the saccarification of agri-residues into reducing sugars by the simple acid hydrolysis method with the help of concentrated sulfuric acid.

  3. Solvation phenomena in association theories with applications to oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2008-01-01

    Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From the scient......Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From...

  4. Impact analysis of the implemented quality management system on business performances in pharmaceutical-chemical industry in Serbia

    Directory of Open Access Journals (Sweden)

    Marinković Valentina D.

    2013-01-01

    Full Text Available International quality management standard (QMS ISO 9001 became widely accepted as a framework for product and/or services quality improvement. There are recent research conducted in order to define relationships and effects between the applied QMS and financial and/or non-financial business parameters. The effects of the applied pharmaceutical quality system (PQS on the business performances in Serbian pharmaceutical-chemical industry are analyzed in this paper using multivariate linear regression analysis. The empirical data were collected using a survey that was performed among experts from Serbian pharmaceutical-chemical industrial sector during 2010. An extensive questionnaire was used in the survey, grouping the questions in eight groups: Implementation of pharmaceutical quality system (AQ, Quality/strategy planning (QP, Human resource management (HR, Supply management (SM, Customer focus (CF, Process management (PM, Continuous improvement (CI, and Business results (BR. The primary goal of the research was to analyze the effects of the elements of first seven groups (AQ, QP, HR, SM, CF, PM, and CI that present various aspects of the implementation of PQS, on the elements of business results (BR. Based on empirical data, regression relations were formed to present the effects of all considered elements of PQS implementation on the business performance parameters (BR. The positive effects of PQS implementation on the business performances such as the assessment of performance indicators, continual products and/or services quality improvement, and efficient problem solving, are confirmed in the presented research for the Serbian pharmaceutical-chemical industrial sector. The results of the presented research will create a room for the improvement of the existing models in application, and for attracting interested parties that aim to commence this business standardization process. Hence, implementation of PQS is not only the regulatory

  5. EVALUATING THE EFFECT OF INDUSTRIAL EFFLUENTS ON CHEMICAL COMPOSITION OF SOIL IN VILLAGE DINGI, DISTRICT HARIPUR

    Directory of Open Access Journals (Sweden)

    K. Asghar

    2016-08-01

    Full Text Available The present report is an outcome of research work conducted in Dingi village, District Haripur in 2012. The research aimed to assess and analyze the effects of industrial effluents on the soil fertility of the village, investigate contributing factors responsible for soil pollution and underlying causes creating the problems. Data analysis revealed that area had problems pertaining to water and soil quality. The key factors affecting soil fertility were the careless discharge of the untreated industrial effluents from Hattar Industrial Estate (HIE into the natural stream passing through village. The results were compared with the soil standards set by the World Wide Fund for Nature (WWF and European Committee Commission (ECC and all of these were exceeding the permissible limits and affecting the soil fertility. The soils were found not fit for agriculture. The investigation highlighted the need to take some effective steps to manage the monitoring program set for checking of industries by the government according to set rules and regulation.

  6. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    Science.gov (United States)

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  7. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  8. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.

    Science.gov (United States)

    Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina

    2010-04-01

    The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.

  9. National symposium on commissioning and operating experiences in heavy water plants and associated chemical industries [Preprint volume

    International Nuclear Information System (INIS)

    1992-02-01

    A symposium on commissioning and operating experiences in heavy water plants and associated chemical industries (SCOPEX-92) was organised to share the experience and exchange the ideas among plant operators, designers, consultants and vendors in the areas of operation, commissioning and equipment performance. This pre-print volume has been brought out as an integrated source of information on commissioning and operation of heavy water plants. The following aspects of heavy water plants are covered: commissioning and operation, instrumentation and control, and safety and environment. (V.R.)

  10. Review of the impact of the Ukraine-EU free trade agreement on manufacturing industries (mechanical engineering, chemical and light industry

    Directory of Open Access Journals (Sweden)

    Olga Usenko

    2007-03-01

    Full Text Available The article gives a definition to the concept of ‘deep integration’ taken by the Ukrainian Government as a framework concept for the establishment of a Ukraine-EU free trade area. The paper uses the term ‘deep free trade’ or ‘free trade area +’. It offers a review of the Ukrainian economy and its readiness to open such industries as mechanical engineering, chemical and light industry to free trade with the EU. It examines which cooperative steps might be taken in the sectors in question in the framework of a free trade area by identifying specific features of those sectors in Ukraine and the EU through SWOT analysis and review of certain provisions in relevant agreements between the EU and other countries. It proposes to forecast the possible impact of a free trade area on stakeholders’ position regarding the agreement by using the ‘stakeholder approach’ (identifying and classifying interest groups and the European Commission’s method of ‘impact assessment’. Based on the results of this research, conclusions are made concerning the fundamental negotiation principles for talks between Ukraine and the EU as to the economic and trade component of the new ‘enhanced agreement.

  11. Impacts of acute exposure of industrial chemicals and pesticides on the survival of fish (Tilapia guineensis and earthworms (Aporrectodea longa

    Directory of Open Access Journals (Sweden)

    Doris F. Ogeleka

    2016-11-01

    Full Text Available Ecotoxicological effects of industrial chemicals (Rig wash, Oil eater, Nalco, Glycol™ and pesticides (Propoxur, Deltamethrin, Atrazine, Furadan on Tilapia guineensis (fish and Aporrectodea longa (earthworms were tested using the Organisation for Economic Cooperation and Development (OECD # 203 and 207 protocols. The water and soil ratings indicate that the test chemicals were toxic to the organisms. The estimated 96 hour lethal concentration LC50 values for Rig wash, Oil eater, Nalco EC1304A/COT 505, Glycol, Propoxur, and Deltamethrin were 26.34±0.46, 6.02±0.30, 3.07±0.14, 1.31±0.01, 20.91±0 and 0.01±0 mg/l respectively. In the earthworm bioassay, the estimated 14-day LC50 values for Rigwash, Oil eater, Nalco EC1304A/COT 505, Glycol, Atrazine and Furadan were 80.05±3.5, 151.55±10.7, 172.63±14.2, 63.72±2.43, 4.97±0 and 0.29±0 mg/kg respectively. Safety factors are arbitrarily built in around the LC50 values in order to arrive at environmentally tolerable concentrations. The concentration of a chemical in the receiving environment should not exceed 10% of the L50. The organisms exposed to the test chemicals showed significant difference when compared with the levels measured in the control group. The observed sensitivity of the test organisms to the chemicals indicates that adherence to standard safety limits/measures should be maintained during use and disposal of hazardous chemicals. This would ensure that the biotic components of the Nigerian Niger Delta ecosystem are prudently protected.

  12. Ethylene vinyl acetate polymer as a tool for passive sampling monitoring of hydrophobic chemicals in the salmon farm industry

    International Nuclear Information System (INIS)

    Tucca, Felipe; Moya, Heriberto; Barra, Ricardo

    2014-01-01

    Highlights: • The samplers allow the detection of hydrophobic chemicals in the marine environment. • The samplers reach equilibrium quickly, with days of deployment in the field. • The samplers have low costs and easy manipulation for monitoring programs. • A way to collect chemicals in the aquatic environment without human effort. - Abstract: Current monitoring programs are focused on hydrophobic chemicals detection in aquatic systems, which require the collection of high volumes of water samples at a given time. The present study documents the preliminary use of the polymer ethylene vinyl acetate (EVA) as a passive sampler for the detection of a hydrophobic chemical used by salmon industries such as cypermethrin. Initially, an experimental calibration in laboratory was performed to determine the cypermethrin equilibrium between sampler and aquatic medium, which was reached after seven days of exposure. A logarithm of partitioning coefficient EVA–water (log K EVA–W ) of 5.6 was reported. Field deployment of EVA samplers demonstrated average concentrations of cypermethrin in water to be 2.07 ± 0.7 ng L −1 close to salmon cages, while near-shore was 4.39 ± 0.8 ng L −1 . This was a first approach for assessing EVA samplers design as a tool of monitoring in water for areas with salmon farming activity

  13. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1B. Control technologies. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents discussions of control technologies used in the industry and the costs of those technologies

  14. Preventing external domino accidents : A framework for enhancing cooperation in the Chemical Process Industry (CPI)

    NARCIS (Netherlands)

    Reniers, G.; Dullaert, W.; Soudan, K.

    2005-01-01

    Empirical research on major accident safety in the second largest chemical cluster worldwide, the Antwerp port area, supports the design of a meta-technical framework for optimizing external domino prevention. First, the majority of Seveso top tier companies have expressed a willingness to cooperate

  15. Environmental stress-corrosion cracking of fiberglass: Lessons learned from failures in the chemical industry

    International Nuclear Information System (INIS)

    Myers, T.J.; Kytoemaa, H.K.; Smith, T.R.

    2007-01-01

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future

  16. Chemical pretreatment of continuous galvanized steel sheet in the automotive industry

    OpenAIRE

    Kuhm, P.

    2013-01-01

    Since several years, new products appeared on the market replacing classic phosphate – based conversioncoatings. This presentation will focus on the replacement of tricationic zinc phosphating systems for theautomotive industry. The basic chemistry and coating properties are presented.In the second part of the presentation, an outlook will be given on anti-corrosion packages for the comingdecade. An example of a very lean automotive paint shop will be discussed.

  17. Utilization of process heat from the HTRM in the chemical and related industries

    International Nuclear Information System (INIS)

    Schad, M.; Barnert, H.; Candeli, R.

    1990-01-01

    Lurgi investigated the feasibility of supplying industrial processes with heat and energy from a Module High Temperature Reactor in an extensive study. This study shows that there are several processes suitable for coupling with the HTRM almost immediately and only require that the layouts are tested. The most interesting process in this respect with high market potential are aluminium oxide production and crude oil refining. (author)

  18. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  19. The impact of the Almalyk Industrial Complex on soil chemical and biological properties

    International Nuclear Information System (INIS)

    Shukurov, Nosir; Pen-Mouratov, Stanislav; Steinberger, Yosef

    2005-01-01

    The effect of heavy metals on soil free-living nematodes, microbial biomass (C mic ) and basal respiration (BR) was studied along a 15 km downwind deposition gradient, originating at the Almalyk Industrial Complex. Soil samples from 0-10 and 10-20 cm layers were collected at 5 km intervals. A significant decrease in heavy metal deposition was found going from the source in the downwind direction and with depth. The soil microbial biomass, basal respiration and derived microbial indices for soil samples from the Almalyk industrial area were analysed. The lowest soil microbial biomass and total number of free-living nematodes were found in soil samples near the industrial complex, with a high heavy metal and weak total organic carbon (C org ) content. The highest C mic was found in the soil samples collected 15 km from the pollution source. BR displayed similar results. The derived indices, metabolic quotient (qCO 2 ) and microbial ratio (C mic /C org ), revealed significant differences with distance, confirming environmental stress in the first and second locations. The present study elucidates the importance of soil nematode and microbial populations as suitable tools for bio-monitoring the effect of heavy metals on soil systems. - Soil nematodes and microbes are suitable biomonitors for metals in soils

  20. Management of evacuation in case of fire accidents in chemical industrial areas

    International Nuclear Information System (INIS)

    Reniers, G.L.L.; Pauwels, N.; Audenaert, A.; Ale, B.J.M.; Soudan, K.

    2007-01-01

    Trade-offs between economic and safety arguments exist in the operation of chemical installations, should knock-on calamities induced by fire accidents occur: a sudden installation shutdown might result in substantial economic losses, but may be needed to ensure safety. Due to the very rare nature of domino effect risks induced decision problems an adequate evacuation decision aid model to be used by plant safety management does, to the best of the authors' knowledge, not exist. This paper develops a tentative approach to calculate the economic gains and/or losses linked to the decision problem whether or not, and when, to evacuate chemical installation(s) threatened by possible domino effect risks. The proposed model is illustrated by a case-study based on empirical data

  1. Neurodevelopmental toxicity risks due to occupational exposure to industrial chemicals during pregnancy

    DEFF Research Database (Denmark)

    Julvez, Jordi; Grandjean, Philippe

    2009-01-01

    Exposure to neurotoxic chemicals is of particular concern when it occurs during early development. The immature brain is highly vulnerable prenatally and is therefore at risk due to occupational exposures incurred by pregnant women. A systematic search of the literature has been performed...... by occupational health researchers and practitioners from the need to protect pregnant workers. Due to the vulnerability of the brain during early development, a precautionary approach to neurodevelopmental toxicity needs to be applied in occupational health....

  2. Aspects of optical fibers and spectrometric sensors in chemical process and industrial environments

    International Nuclear Information System (INIS)

    Boisde, G.; Perez, J.J.

    1988-01-01

    For on-line control, the two alternatives of automatic sample transfer and in situ remote analysis are discussed. New concepts are emerging from the possibilities offered by optical fibers. Absorption in the visible, UV and IR, fluorescence and Raman spectrometric techniques are examined. The state of the art of optodes and devices in chemical process control are given, with some examples of applications in nuclear plants

  3. Liquid chromatography-mass spectrometry in occupational toxicology: a novel approach to the study of biotransformation of industrial chemicals.

    Science.gov (United States)

    Manini, Paola; Andreoli, Roberta; Niessen, Wilfried

    2004-11-26

    Biological monitoring and biomarkers are used in occupational toxicology for a more accurate risk assessment of occupationally exposed people. Appropriate and validated biomarkers of internal dose, like urinary metabolites, besides to be positively correlated with external exposure, have a predictive value to the risk of adverse effects. The application of liquid chromatography-mass spectrometry (LC-MS) in occupational and environmental toxicology, although relatively recent, has been demonstrated valid in the determination of traditional biomarkers of exposure, as well as in metabolism studies aimed at investigating minor metabolic routes and new more specific biomarkers. This review presents selected applications of LC-MS to the study of the metabolism of industrial chemicals, like n-hexane, benzene and other aromatic hydrocarbons, styrene and other monomers employed in plastic industry, as well as to other chemicals used in working environments, like pesticides used by farmers, and antineoplastic agents prepared by hospital personnel. Analytical and pre-analytical factors, which affect quantitative determination of urinary metabolites, i.e. sample preparation, matrix effect, ion suppression, use of internal standards, and calibration, are emphasized.

  4. Peak expiratory flow rate in asymptomatic male workers exposed to chemical fumes, in various industries of Hyderabad

    Directory of Open Access Journals (Sweden)

    Padaki Samata K, Dambal Amrut , Kokiwar Prashant

    2014-11-01

    Full Text Available Context: The prevalence of occupational health hazards and mortality has been reported to be unusually high among people of India. Although developed countries are very much careful about the health in occupations it is quite neglected in the developing countries like India. Aims: To record PEFR in asymptomatic male workers exposed to chemical fumes for more than 2 years and compare the results with age matched unexposed, healthy male controls. Methods and Material: This was a comparative study between 50 asymptomatic male workers exposed to chemical fumes for more than 2 years in various industries located at Jeedimetla Industrial Area and 50 unexposed healthy male individuals from general population. The sampling was done by simple random sampling (lottery method. The data was collected in the Research Laboratory of Physiology. Anthropometry like weight, height, was measured and the PEFR test was performed in the standing position by taking a deep inspiration and then blowing out as hard and as quickly as possible with their nose closed. Data was analyzed by using SPSS package and was expressed in terms of mean ± SD. Results: It was observed that mean PEFR was statistically highly significant in cases (p = 0.0001, and PEFR decreased with increase in duration of exposure. Conclusions: Thus, it can be concluded that apparently healthy individuals may also have abnormal PEFR findings. Hence, a regular check on these parameters will help them in reducing the chances of its manifestation at a future date.

  5. Pilot-industrial plant for radiation-chemical finishing of textiles

    International Nuclear Information System (INIS)

    Burov, V.K.; Vanyushkin, B.M.; Voskoboev, A.E.

    1976-01-01

    A pilot technological radiational-chemical line for liquid-phase radiational-chemical finish of fabrics is described, which is being mounted at the Glukhov cotton group of enterprises now. It is designed primarily for the anti-microbe finish of cotton fabrics by grafting copper polyacrylate. The technological scheme is built on the principle of direct (combined) irradiation of the fabric impregnated by a monomer solution. Graft of the monomer to the fabric is performed by the radiational method. As source of radiation, an electron accelerator with the beam power of 0.4-0.7 Mev and with a biological protection has been employed. Depending on the thickness of the material irradiated and irradiation conditions, the fabric drive mechanism permits to change a number of irradiated fabric layers from 1 to 9 and by this to utilize in the most complete manner the energy of the accelerated electron beam. The nominal width of the irradiated material is 1000 m, the transportation velocity can vary in the range from 10 through 100 m/min. The radiational-chemical method of fabric finish is economical, highly productive and easily controllable

  6. Default values for assessment of potential dermal exposure of the hands to industrial chemicals in the scope of regulatory risk assessments

    NARCIS (Netherlands)

    Marquart, H.; Warren, N.D.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with

  7. Risk based inspection experience from the European chemical- and petrochemical industries

    International Nuclear Information System (INIS)

    Kristensen, Hans; Jeppesen, Leif; Larsen, Bjarne; Kim, Na Yon

    2001-01-01

    As an inspection vendor with 60 years of experience and with more than 25 years of experience as manufacturer of the Automated Ultrasonic NDT systems, the P-scan systems, FORCE Institute is continuously analysing the market for NDT. This is done to assure that both the equipment product line and the service mix provided by FORCE Institute are meeting the requirements from the industry today and in the future. The concept of Risk Based Inspection Programmes were adopted early by the offshore industry and has in the recent years been adopted by many other industries as a reliable and cost efficient way of maintaining a production facility. A Risk/Reliability Based Inspection Programme is a 'living organism' that constantly needs information if it shall be of any value and NDT information is only one type of information that is required. The NDT information required is normally related to corrosion/base material information and weld integrity information. NDT as an integrated part of a plants maintenance system is, in Europe, currently influenced by the following tendencies which all are related to 'Risk Based Inspection': · Increased use of Base-Line Inspections · Reduction in the use of repeated inspections(qualitative- instead of quantitative Inspections). · Inspection results are fed directly into the plant maintenance system. · Fitness-for-Purpose acceptance criteria instead of conventional acceptance criteria. As repeatability and accuracy is a key issue for the data, automated ultrasonic inspection is increasingly used as an alternative to manual ultrasonic inspection, but due to the physical size of most automated ultrasonic inspection systems the gain in productivity has not been as significant as the gain in repeatability and accuracy. In this paper some of FORCE Institute's practical experiences with examinations carried out in connection with Risk Based Inspection is used to illustrate the above described tendencies. Not only examples using automated

  8. A comparision of industrial and homemade bulgur in Turkey in terms of physical, chemical and nutritional properties

    Directory of Open Access Journals (Sweden)

    Ertaş Nilgün

    2017-01-01

    Full Text Available Determination of functional and nutritional properties of bulgur is of paramount importance for the growth of healthy generations. In this study, physical, chemical, nutritional and sensorial qualities of bulgur produced at the industrial, homemade and laboratory scale in Turkey were determined and the results were compared. The ash content of bulgur samples was determined between 1.04 and 1.81%, the total protein contents of the samples were found between 11.90 and 14.47%. Evaluation of nutritional status of bulgur; the total phenolic contents value varied 449.82 to 1047.09 μg/g, the phytic acid values were found between 422.14 and 1173.56 mg/100 g. The mineral contents of the samples were analyzed, and all the bulgur samples contained lower amounts of cadmium and lead than JECFA limits. Homemade bulgur samples had a more aromatic taste and smell than industrially produced bulgur samples, and also industrially produced bulgur samples had lighter color than homemade bulgur.

  9. Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents.

    Science.gov (United States)

    Powell, Richard G

    2009-03-27

    Investigations of natural products isolated from seeds have resulted in a remarkable variety of compounds having unusual structures. Seeds of many plant species contain uncommon fatty acids and lipids, some of which have found uses in the cosmetic industry or as renewable (non-petroleum based) industrial raw materials. In addition to proteins and energy storage substances such as carbohydrates and lipids, seeds generally contain, or have the ability to produce, protective compounds that are active as plant growth regulators, fungicides, insecticides, and repellents of herbivores; seeds occasionally contain compounds that are toxic to most other organisms. These compounds may also be present in other plant parts, but often are found at higher concentrations in seeds. Other compounds of interest have been associated with plant-endophyte interactions that are of mutual benefit to both organisms. Tests of seed extracts for cytotoxic and antitumor activity, toxicity to insects, and relationships to several animal disease syndromes have been revealing. Examples of compounds isolated from plant seeds that have served as lead compounds for additional research, or that continue to be of interest to researchers in multiple areas, are reviewed.

  10. Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries

    DEFF Research Database (Denmark)

    Kamal-Eldin, A; Lærke, Helle Nygaard; Bach Knudsen, Knud Erik

    2009-01-01

    , compared to wheat bran, regarding structure and content of nutrients as well as a number of presumably bioactive compounds. Design: Six different rye brans from Sweden, Denmark and Finland were analysed and compared with two wheat brans regarding colour, particle size distribution, microscopic structures...... and chemical composition including proximal components, vitamins, minerals and bioactive compounds. Results: Rye brans were generally greener in colour and smaller in particle size than wheat brans. The rye brans varied considerably in their starch content (13.2-28.3%), which reflected variable inclusion...

  11. Joint Project Manager (JPM) Chemical Biological Individual and Collective Protection Industry Day

    Science.gov (United States)

    2008-07-22

    ANSWER: The SBA operates the Office of Women’s B i O hi Th OWBO t thus ness wners p. e promo es e growth of women owned businesses through programs...TIC prioritization focused on a h i i k t f h tcompre ens ve r s managemen o w a we do not know: Absolute global production levels Absolute global...Modeling (For operational analyses) 2. Breakthrough Levels 3 D t ti A h. e ec on pproac es Multiple species may be present 4. Chemical Class Analysis

  12. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    Science.gov (United States)

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Operational and biological analyses of branched water-adjustment and combined treatment of wastewater from a chemical industrial park.

    Science.gov (United States)

    Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing

    2018-01-01

    The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH 3 -N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.

  14. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  15. Chemical and microbiological characteristics of Lebanese cheeses made by local industries

    International Nuclear Information System (INIS)

    Dib, H.; Hajj Semaan, E.; Noureddine, Z.

    2008-01-01

    In order to characterize, protect dairy products and develop new probiotics, a survey was conducted amongst 37 dairy factories. Chemical (pH, acidity, DM, protein, fat, soluble nitrogen and free fatty acid) and microbiological (total aerobic bacteria, Coliforms, E. coli, Salmonella, Listeria, and Staphylococcus aureus) analysis were carried out on samples collected from factories (7 Baladi, 22 Akkawi, 18 Double creme and 22 Halloum) of different regions. These cheeses are made by 73% of visited factories. Chemical analysis showed low acidity (0.18 to 0.26%), variable levels of moisture (54 to 70%) protein (19 to 24%) and fat (12 to 18%) except Double creme (3.26 ± 1.78%). Except 8%, Good Hygienic and Manufacturing Practices (GHP/GMP) are not applied in visited factories. This is confirmed with the high levels of Coliforms, detectable in most varieties at an alarming level (72 to 86%). Besides, 23-71% of samples were contaminated with E. coli. However, all samples were found free of staphylococcus aureus; Halloum cheese was the only one free of Listeria and Salmonella. The highest off standard for these bacteria was noticed in Baladi cheese where 29% were contaminated with Listeria and Salmonella. Listeria was also found in 10% of Akkawi and 17% of Double creme. These results show a violation of the Good Hygienic and Manufacturing Practices (GHP/GMP) by most factories in all visited regions. (author)

  16. Inhalation toxicology of industrial plutonium and uranium oxide aerosols I. Physical chemical characterization

    International Nuclear Information System (INIS)

    Eidson, A.F.; Mewhinney, J.A.

    1978-01-01

    In the fabrication of mixed plutonium and uranium oxide fuel, large quantities of dry powders are processed, causing dusty conditions in glove box enclosures. Inadvertent loss of glove box integrity or failure of air filter systems can lead to human inhalation exposure. Powdered samples and aerosol samples of these materials obtained during two fuel fabrication process steps have been obtained. A regimen of physical chemical tests of properties of these materials has been employed to identify physical chemical properties which may influence their biological behavior and dosimetry. Materials to be discussed are 750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the ball milling operation and 1750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the centerless grinding of fuel pellets. Results of x-ray diffraction studies have shown that the powder generated by the centerless grinding of fuel pellets is best described as a solid solution of UO x and PuO x consistent with its temperature history. In vitro dissolution studies of both mixed oxide materials indicate a generally similar dissolution rate for both materials. In one solvent, the material with the higher temperature history dissolves more rapidly. The x-ray diffraction and in vitro dissolution results as well as preliminary results of x-ray photoelectron spectroscopic analyses will be compared and the implications for the associated biological studies will be discussed. (author)

  17. Possible penetration of nuclear power in fuel and power demand structure in chemical industry

    International Nuclear Information System (INIS)

    Balajka, J.

    1985-01-01

    The possibilities are indicated of the technological applications of high temperature reactors in chemical operations. Nuclear heating may be applied to such processes whose temperature does not 850 degC and pressure is approximately equal to the pressure of helium in the primary circuit of the reactor. The following processes may be implemented: the production of ammonia and methanol, the reduction of iron ore, the implementation of the system of long-distance heat transmission in chemically bound form, etc. The diagram has been designed for the production of ammonia and methanol by steam reforming of methane. The natural gas which enters the process is distributed in the technological and power branches. In the technological branch it is preheated and desulphurized, then mixed with steam and entered the reactor.The outlet mixture of CO, CO 2 , H 2 and Csub(n)Hsub(m) is oxidized with air and following further catalyses a mixture is obtained of N 2 and H 2 in the 1:3 ratio. The power balances and variants are calculated of the distribution of reactor power and its effect on the basic parameters of the technology of the production of NH 3 . (M.D.)

  18. Analysis of Innovation and Its Environmental Impacts on the Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dusan Schreiber

    2016-01-01

    Full Text Available Globalization of the economy and the need to achieve competitiveness drive organizations to invest in technology and in innovation, in order to find solutions that will provide advantages in an ever-more competitive market. The conflict between dwindling natural resources and the demand for economic growth has created a growing need to find means for making environmental conservation compatible with economic growth. The objective of this study is to contribute to the debate by analyzing the innovations implemented by chemical companies in the Sinos Valley region, Rio Grande do Sul, Brazil, and by identifying the motivations that drive them to develop environmental technologies. The study is exploratory and descriptive, with a quantitative data collection component in the form of a survey sent to all chemical companies in the Sinos Valley region, listed in a local business association database. The study results indicate that development of innovations is predominantly of an incremental nature and that novelty is generally restricted to the new-for-firm level. The environmental technologies implemented are generally designed to prevent or remedy environmental damage and are primarily motivated by the need to comply with environmental standards and legislation.

  19. Effect of an industrial chemical waste on the uptake of cations by green oat

    Directory of Open Access Journals (Sweden)

    HORTENSIA RADULESCU

    2007-06-01

    Full Text Available Calcium carbonate, obtained as a waste in the industrial manufacture of magnesium carbonate and magnesium oxide from dolomites, can be applied in agriculture. The appreciable amounts of calcium and magnesium in this waste, together with impurities such as iron, zinc, manganese, chromium and copper compounds can be useful in soil amendment and plant nutrition. This paper presents preliminary results of the testing of several waste doses on soil, pursuing their effect on the uptake of cations by green oat (Avena sativa L.. The obtained results show an increase in the amount of calcium, magnesium, zinc and copper found in green oat plants, as well as a decrease of the content of iron and manganese with increasing waste dose. These results may be explained by lower absorptions of iron andmanganese because of the antagonistic effect created by high amounts of calcium and magnesium, as well as by the presence of copper and zinc.

  20. A scheme for the classification of explosions in the chemical process industry.

    Science.gov (United States)

    Abbasi, Tasneem; Pasman, H J; Abbasi, S A

    2010-02-15

    All process industry accidents fall under three broad categories-fire, explosion, and toxic release. Of these fire is the most common, followed by explosions. Within these broad categories occur a large number of sub-categories, each depicting a specific sub-type of a fire/explosion/toxic release. But whereas clear and self-consistent sub-classifications exist for fires and toxic releases, the situation is not as clear vis a vis explosions. In this paper the inconsistencies and/or shortcomings associated with the classification of different types of explosions, which are seen even in otherwise highly authentic and useful reference books on process safety, are reviewed. In its context a new classification is attempted which may, hopefully, provide a frame-of-reference for the future.

  1. Threshold of toxicological concern values for non-genotoxic effects in industrial chemicals: re-evaluation of the Cramer classification.

    Science.gov (United States)

    Kalkhof, H; Herzler, M; Stahlmann, R; Gundert-Remy, U

    2012-01-01

    The TTC concept employs available data from animal testing to derive a distribution of NOAELs. Taking a probabilistic view, the 5th percentile of the distribution is taken as a threshold value for toxicity. In this paper, we use 824 NOAELs from repeated dose toxicity studies of industrial chemicals to re-evaluate the currently employed TTC values, which have been derived for substances grouped according to the Cramer scheme (Cramer et al. in Food Cosm Toxicol 16:255-276, 1978) by Munro et al. (Food Chem Toxicol 34:829-867, 1996) and refined by Kroes and Kozianowski (Toxicol Lett 127:43-46, 2002), Kroes et al. 2000. In our data set, consisting of 756 NOAELs from 28-day repeated dose testing and 57 NOAELs from 90-days repeated dose testing, the experimental NOAEL had to be extrapolated to chronic TTC using regulatory accepted extrapolation factors. The TTC values derived from our data set were higher than the currently used TTC values confirming the safety of the latter. We analysed the prediction of the Cramer classification by comparing the classification by this tool with the guidance values for classification according to the Globally Harmonised System of classification and labelling of the United Nations (GHS). Nearly 90% of the chemicals were in Cramer class 3 and assumed as highly toxic compared to 22% according to the GHS. The Cramer classification does underestimate the toxicity of chemicals only in 4.6% of the cases. Hence, from a regulatory perspective, the Cramer classification scheme might be applied as it overestimates hazard of a chemical.

  2. To the partnership in Kanegafuchi Chemical Industry and solar cell; Kaneka, taiyo denchi de teikei he

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Kanegafuchi Chemical Ind. clarified that the consultation was advanced in the direction in which the business cooperates with BP Amoco Corp. in international oil majors on the solar cell business on 11 th capital. In full amount fund subsidiary of the bell pool chemistry, the solar cell making and selling company is established in the joint venture in Europe and America, Asia, when the BP Amoco Corp. does capital participation in money mosquito solar tech which is the production marketer of solar cell. The plan which develops the amorphous solar cell of low cost which the bell pool chemistry developed in the world. The consultation of the partnership is also arranging prospect in the end June, and it seems to greatly jump by uniting with the BP Amoco Corp. of the largest hand. (translated by NEDO)

  3. Subjective and objective measurement of websites quality in a chemical industry

    Directory of Open Access Journals (Sweden)

    Julius Jillbert

    2014-10-01

    Full Text Available This paper assesses the Website of a chemical company, Deza, relative to strategy and Website quality. In an attempt to obtain both an objective and subjective measure of the quality of the Deza website, two assessment methods have been used. Firstly, a subjective assessment was conducted based on the WebQual survey instrument proposed by Barnes and Vidgen (2000. Secondly, a more objective assessment was conducted via an “informational content analysis”, based on the work of Carlson et. al. (2001. Analysis of the results of the WebQual survey suggest that overall, the Deza Website is perceived by the user as being of a higher quality than the Koppers Website, but a lower quality then the Nalon Website. The Information content analysis also ranks the Deza website as being superior to Koppers and inferior to Nalon.

  4. Possible penetration of nuclear power in fuel and energy demand structure in chemical industry

    International Nuclear Information System (INIS)

    Balajka, J.

    1986-01-01

    Three basic technologies based on methane steam reforming using nuclear heating were assessed with respect of a simplified diagram of a link between a high temperature reactor and chemical technology. They included the technologies of production of methanol, hydrogen and ammonia which differ in the gradually increasing exothermal character of the fission gas processing into the resulting synthesis gas (methanol, ammonia) or the gaseous product (hydrogen). In dependence on the degree of available power from the high temperature reactor for steam reforming, the efficiency of the cycle of the synthesis gas preparation, the power demand, and the balance of the associated electric power generation and the capacity of the production unit were evaluated. (author)

  5. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  6. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I., E-mail: r.e.i.schropp@tue.nl

    2015-11-30

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  7. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    International Nuclear Information System (INIS)

    Schropp, R.E.I.

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  8. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A; Briand, Y

    1997-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  9. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  10. Assessment of pre-industrial carbon dioxide content in the atmosphere using hydro-chemical data

    International Nuclear Information System (INIS)

    Heans, K.A.; Liaxin, Y.I.

    2001-01-01

    A hydrochemical method has been developed to calculate concentrations of carbon dioxide (CO 2 ) in the pre-industrial atmosphere and its relationship to climatic change. The following factors affect the Earth's climate: (1) the sun with all its processes, (2) the attraction of the moon that limits the axis of inclination of the Earth, and (3) the cycle of carbon dioxide and the greenhouse effect. An imbalance in the climate system would be a major global disaster that could be detrimental for life on Earth. Recent studies and temperature measurements have shown a trend in which air temperature has increased in the troposphere in the last 100 years, affecting the normal development of natural processes. Various phenomena result from climatic change, or the gradual heating of the Earth. These include the weakening of the glacial layer that covers the Earth's surface, cycles of prolonged slowing in freeze and thaw periods of aquatic surfaces, and increased air temperature in the troposphere which can also causes abnormal fluctuations of temperature in the atmosphere, resulting in heat waves and droughts. Gradual heating of the Earth can also result in rainy periods that produce devastating floods, hurricanes and extreme winds. Changes in water temperature can influence pH levels which affect certain marine species. An increase of 5 degrees C in the global average atmospheric temperature has created changes in 420 physical processes as well as in the behavior of plants and animals. The author stated that the most drastic factor that affects the balance of the Earth's climate is the actions of man interfering with the carbon cycle, as carbon dioxide plays a vital role in the formation of the greenhouse effect. The problem results from an imbalance of the carbon dioxide cycle when CO 2 emissions are increased through the combustion of fossil fuels. It was determined that before the beginning of the Industrial Revolution, carbon dioxide in the atmosphere was 256 ppm

  11. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations

    International Nuclear Information System (INIS)

    Vilcocq, L.; Cabiac, A.; Guillon, E.; Especel, C.; Duprez, D.

    2013-01-01

    Decreasing oil supplies and increasing energy demand provide incentives to find alternative fuels. First, the valorisation of edible crops for ethanol and bio-diesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic biomass as a source of renewable carbon (second generation biofuels). Whereas the cellulosic ethanol production is in progress, a new way consisting of the transformation of ex-lignocellulose sugars and polyols towards light hydrocarbons by heterogeneous catalysis in aqueous phase has been recently described. This process is performed under mild conditions (T < 300 deg. C and P < 50 bar). It requires on one hand hydrogen formation by catalytic reforming of carbohydrates in aqueous phase and on the other hand, the dehydration/hydrogenation of polyols leading to alkanes by selective C-O bond cleavages. The challenge here is to conceive multifunctional catalytic systems that are stable, active and selective under the reaction conditions. The aim of this article is to present the involved reactions, the catalytic systems described in literature for that kind of transformation and examples of industrial applications. (authors)

  12. Chemical and physicochemical characterisation of co-products from the vegetable food and agro industries

    DEFF Research Database (Denmark)

    Serena, Anja; Bach Knudsen, Knud Erik

    2007-01-01

    was responsible for the relatively low EDOM. There was a variation from year to year in the concentration of ash (Pprotein (P=0.04) and EDOM (P=0.003) in pea hull. In conclusion, co-products from the vegetable food and agro industries are characterised by a high......Six co-products from the vegetable food and agro industres in Denmark - brewer's spent grain, pea hull, seed residue (rye grass), potato pulp, sugar beet pulp and pectin residue - were collected eight times during two seasons (four samples from each season) (n = 8; N = 48). The samples were...... analysed for dry matter (DM), ash, sand, protein, amino acids, ether extract (EE), carbohydrate constituents, enzyme digestible organic matter (EDOM) and physicochemical properties-water binding capacity (WBC) and swelling. The co-products in general had a low DM (142-216 g/kg as is), EE (6-54 g/kg DM...

  13. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was soil.

  14. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-03-07

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the chapter is motivated by the importance of evaporative film-boiling in the process industries. It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 25°C (3.1 kPa). Such micro-bubbles are generated near to the tube wall surfaces, and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film-boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this chapter and it shows good agreement to the measured data with an experimental uncertainty less than ±8%.

  15. The Social Construction Of Systems Applications Products (SAP R/3 By Employees Of A South African Chemical Industries Company

    Directory of Open Access Journals (Sweden)

    Arnold Beyleveld

    2005-11-01

    Full Text Available Many companies that have implemented an Enterprise Resource Planning (ERP system do not reap the intended benefits of the potential inherent in these systems despite their exorbitant implementation cost. The reasons for this are numerous. This study is aimed at understanding the social impact a Systems Applications Products (SAP R/3 implementation had on the end users of a South African Company in the Chemical Industry. A qualitative process evaluation study was undertaken to obtain a clearer understanding of the underlying organisational cultural factors that emerged from such an implementation. The objective was to provide a framework for companies considering such an implementation to ensure better system productivity and to assist companies already using an ERP solution with continuous improvement.

  16. Comparison of physical chemical properties of powders and respirable aerosols of industrial mixed uranium and plutonium oxide fuels

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1982-01-01

    Studies were performed to characterize physical and chemical properties which may be important in determining the metabolism of accidentally released, inhaled aerosols of industrial mixed uranium and plutonium oxide fuels and to compare the properties of bulk powders and the respirable fraction they include. X-ray diffraction measurements showed that analysis of mixed-oxide powders from four process steps served to characterize their respirable fractions. IR spectroscopy was useful as a method to detect organic binders that were not observed by X-ray diffraction methods. Both X-ray diffraction and IR spectroscopy methods can be used in combination to identify the sources of a complex aerosol that might be released from more than one fabrication step. Isotopic distributions in powders and aerosols showed that information important for radiation dose to tissue calculations or Pu lung burden estimates can be obtained by analysis of powders. (U.K.)

  17. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  18. Strategic of Applying Free Chemical Usage In Purified Water System For Pharmaceutical Industry Toward CPOB (Cara Pembuatan Obat yang Baik Indonesia To Reducing Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Kartono R.

    2014-03-01

    Full Text Available The purpose of this paper is to examine the sets of model and literature review to prove that strategy of applying free chemical usage in purified water system for pharmaceutical industry would be help the existing and new pharmaceutical companies to comply with part of Natioanal Agency of Drug and Food Control / Badan Pengawas Obat dan Makanan (NADFC/BPOM regulation in order to achieve “Cara Pembuatan Obat yang Baik” (CPOB of Indonesia pharmaceutical industry. One of the main reasons is when we figured out the number of Indonesian pharmaceutical industries in 2012 are kept reducing compare to the increasing numbers of Indonesian population growth. This strategy concept also might help the industries to reducing environmental pollution, and operational cost in pharmaceutical industries, by reducing of the chemical usage for water treatment process in floculation and cougulation and chlorination for sterillization. This new model is free usage of chemicals for purified water generation system process and sterilization. The concept offering of using membrane technology- Reverse Osmosis (RO membrane base treatment to replace traditional chemical base treatment, following enhance Electrodeionization (EDI as final polisher for controlling conductivity, and finally Ultra Violet (UV disinfectant technology as final guard for bacteria controls instead of chemical base system in purified water generation system.

  19. Strategic of Applying Free Chemical Usage In Purified Water System For Pharmaceutical Industry Toward CPOB (Cara Pembuatan Obat yang Baik) Indonesia To Reducing Environmental Pollution

    Science.gov (United States)

    Kartono, R.; Basuki, Y. T.

    2014-03-01

    The purpose of this paper is to examine the sets of model and literature review to prove that strategy of applying free chemical usage in purified water system for pharmaceutical industry would be help the existing and new pharmaceutical companies to comply with part of Natioanal Agency of Drug and Food Control / Badan Pengawas Obat dan Makanan (NADFC/BPOM) regulation in order to achieve "Cara Pembuatan Obat yang Baik" (CPOB) of Indonesia pharmaceutical industry. One of the main reasons is when we figured out the number of Indonesian pharmaceutical industries in 2012 are kept reducing compare to the increasing numbers of Indonesian population growth. This strategy concept also might help the industries to reducing environmental pollution, and operational cost in pharmaceutical industries, by reducing of the chemical usage for water treatment process in floculation and cougulation and chlorination for sterillization. This new model is free usage of chemicals for purified water generation system process and sterilization. The concept offering of using membrane technology- Reverse Osmosis (RO) membrane base treatment to replace traditional chemical base treatment, following enhance Electrodeionization (EDI) as final polisher for controlling conductivity, and finally Ultra Violet (UV) disinfectant technology as final guard for bacteria controls instead of chemical base system in purified water generation system.

  20. What would be the effects of a carbon tax in Japan: an historic analysis of subsidies and fuel pricing on the iron & steel, chemical, and machinery industries

    Directory of Open Access Journals (Sweden)

    Takako Wakiyama

    2016-06-01

    Full Text Available This study examines how a carbon tax could affect industrial-related carbon dioxide (CO2 emissions in Japan. Rather than forecasting the effects of a tax, the paper employs a time-series autoregressive moving average (ARMA model to determine how past subsidies and fuel price changes affected investments in energy and carbon intensity in Japan’s iron & steel, chemical, and machinery industries from 1993 to 2004. The results suggest the impacts varied greatly across industries. In the iron & steel industry, subsidies and price changes produced negligible effects on investments in energy and carbon intensity. This may be because existing iron & steel technologies have long lifetimes and substantial replacement costs. It may also be because the few large companies dominating the industry were relatively immune to subsidy provisions and pricing changes. In the chemical industry, subsidies and fuel prices gave rise to investments that improved carbon and energy intensity. This may be because the industry has relatively higher operation costs that could be cut easily given financial incentives. In the machinery industry, two of three fuel price changes (oil and gas, but not subsidy provisions, yielded improvements in carbon and energy intensity. This may reflect the heterogeneity of companies and products comprising the industry. Overall, the study underscores that policymakers need to tailor the rates and revenue recycling provisions of a carbon tax to an industry’s unique features to stimulate CO2 reductions.

  1. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    International Nuclear Information System (INIS)

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  2. Characterization of chemical compounds for dosimetry of the radiation in industrial processes

    International Nuclear Information System (INIS)

    Galante, Ana Maria Sisti

    1999-01-01

    Different chemical compounds have been studied to optimize dosimetric systems in irradiation processes. In this study 2,3,5 Triphenyl -2H- Tetrazolium Chloride, Brilliant Cresyl Blue, Bromocresol Green and Potassium Nitrate were investigated for their merits or faults, for 60 Co gamma field, in order to verify if can be considered as dosimeters. Fricke solution was used as reference dosimeter to determine absorption dose rates at the gamma facilities.Only Bromocresol Green and Potassium Nitrate are recommended for dosimetry purposes since the main characteristics were achieved. The other two compounds could be used in dosimetry with changes in their formulation. Bromocresol Green and potassium Nitrate are reproducible and radiation sensitive for absorbed doses from 300 Gy to 150 kGy Bromocresol Green was used in liquid form and Potassium Nitrate was prepared in solid pellets form. Spectrophotometry in the visible region was used as the main detection technique, which allows relating optical absorption, before and after irradiation, with the absorbed dose. The maximum absorption wavelength for each compound was observed at 450-460nm for bromocresol Green and 546nm for Potassium Nitrate. Dose calibration curves are linear for both compounds in all dose intervals. When irradiated with accelerated electrons, with energies between o,9 MeV and 1,5MeV, optical absorption intensification, of about 2,6 times, was observed when comparing results for Potassium Nitrate, with those for gamma rays. All the evaluations are presented in this work. (author)

  3. Chemical and Microbial Dynamics during Composting of Herbal Pharmaceutical Industrial Waste

    Directory of Open Access Journals (Sweden)

    Farhan Zameer

    2010-01-01

    Full Text Available A study was performed to analyze the dynamics of chemical, biochemical and microbial parameters during composting of herbal pharmaceutical waste. All the parameters were analyzed at three different intervals of composting (1st, 15th and 60th days. Temperature of the compost pile was initially high (46.2 °C and on 60th day it dropped to 33.3 °C. The pH of the sample was initially acidic (2.39 and with the progress of decomposition gradually changed to neutrality (7.55. Electrical conductivity (EC value was high (3.8 mS during last day of composting compared to other stages. The activity of degradative enzymes namely amylase, invertase and urease were initially high (4.1, 4.79 mg of glucose/g/h and 0.19 mg of ammonia/g/h respectively while it decreased with composting. The beneficial microbial load was initially low and very high at the last stages of decomposition. The bioassay studies using compost extracts revealed that the 60th day old sample was not phytotoxic in nature.

  4. From Closed to Open Innovation in Emerging Economies: Evidence from the Chemical Industry in Brazil

    Directory of Open Access Journals (Sweden)

    Elisa Thomas

    2018-03-01

    Full Text Available In this article, we examine how firms in an emerging economy perform research and development (R&D activities in regards to the concept of open innovation. Most literature on open innovation shows multinational knowledge-intensive firms with well-established R&D processes mainly in developed countries. Searching for management contributions for firms in emerging economies, we qualitatively analyzed two chemical firms in Southern Brazil that have different profiles and are representative samples of typical firms in the region. Our results show that firms did not fully exploit the potential benefits brought by open innovation, even when complete opening was not the main goal. The firms were similar concerning interactions with partners and stages where relationships occur. The generation of ideas was an open activity performed both by firms and by clients, and interactions with universities were getting stronger. On the other hand, intellectual property has not been used as means of profiting from innovation activities. Our main finding refers to the internal mediation of relationships with partners. R&D teams rarely contact external organizations directly; instead, they leave such interactions to other departments within their firms. Relationships with clients are mediated through technical and commercial departments, and interactions with suppliers are intermediated by the supply staff.

  5. Food surveys for assessing chemical and dosimetric impacts near industrial sites

    International Nuclear Information System (INIS)

    Parache, V.; Maurau, S.; Mercat, C.

    2011-01-01

    Estimating the ingestion of potentially contaminated foodstuffs around conventional and nuclear industrial sites requires data about the food practices and eating habits of the local residents, especially the consumption of locally- and home-produced food. The IRSN thus chose to conduct surveys about these practices in the vicinity of nuclear sites. Their methodology was based on previous surveys near nuclear sites. In 2004, in partnership with AREVA and BEGEAT, the French Institute for Radioprotection and Nuclear Safety studied the eating habits of the residents of Bollene, near the Tricastin plant (Rhone Valley), with the aim of improving the quantification of the plant's potential health impacts. Based on these studies and as part of the SENSIB project to characterize vulnerability to nuclear risks, we developed and tested a survey protocol during the summer 2008, around the Chinon nuclear plant, in collaboration with EDF. The protocol is currently being tested around the Marcoule nuclear plant, in collaboration with the CEA. The aim was to optimize the feasibility and the reproducibility of the approach, while losing none of the robustness of the results. The data obtained made it possible to evaluate daily food intake values for individuals and to assess the rates of consumption of locally-grown products for many food categories. The data showed the existence of local population groups with very high rates of locally-grown food consumption - over 90 % of certain food products. This comparative study thus shows the significant variability of eating habits in the French population and proposes a reproducible approach to evaluating realistic indicators of potentially risky dietary habits. (authors)

  6. A study on the manufacturing technology of material for fine chemical and electronic industry use.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang-Keun; Kim, Byoung-Gon; Chung, Hun-Saeng [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    The research results are summarized as follows; (1) An investigation on ultra-fine grinding characteristics of crystalline graphite on dry base system by vacuum technique was performed. Natural graphite grinding is inefficient, since graphite has lamella structures which cause the high lubrication by slipping of the layers. However, this lamella structure causes difficulty in grinding. Interposition states of grinding obstacle materials between graphite layers was proposed. (2) An investigation on the oxygen adsorption characteristics of ultrafine crystalline graphite powders(produced by grinding in vacuum) by surface treatment using an attrition mill on dry base was carried out. Adsorbed oxygen on graphite surface was known to influence the suspension stability of graphite particles. (3) The result of scale-up test shows that sericite concentrate obtained about 31.91% Al{sub 2}O{sub 3}, 9.76% K{sub 2}0 and 1.45% Fe{sub 2}O{sub 3}. The process of grinding and classification is obtained fine mica mean size of 2.39 {mu}m such as 3.5 wt.% yield. (4) The dry process of surface modification has been achieved up to 91 for whiteness as 20 min ground samples. Polymer microcapsulation was carried out on the mica surface. The results are excellent hydrophobic properties which is applied cosmetics industry. The results shows a possibility of producing nano size composite materials of 200-500nm and emitting test on purified sericite appears 0.914-0.915 intensity in wave length of 5-20 {mu}m. The delamination effect of surface coated sericite and Muscovite by using Theta-composer. (author). 105 refs., 56 tabs., 139 figs.

  7. Application of chemical fractionation for monitoring some trace elements in street and industrial dust from Wadmedani, Sudan

    International Nuclear Information System (INIS)

    Mohamed, Ibtihag El hassan

    2000-09-01

    This study monitors some trace elements concentration in street and industrial dust from Wad Medani city, Gezira State in central Sudan. A total of 20 samples of dust were collected from crowded and non-crowded streets, material processing workshop and a tannery. Samples were treated by sequential chemical extraction in five fractions, which termed as exchangeable fraction, carbonate fraction, Fe-Mn oxides fraction, organic matter fraction and residual fraction. The same samples were digested by wet method. The obtained solutions were analyzed for Cr, Fe, Ni, Cu, Zn, and Pb content using Atomic Absorption Spectrometer (AAS) and for Na and K content using Flame Emission Spectrometer (FES). X-Ray Fluorescence Spectrometer (XRF) was used to determine the total content of Na, K, Cr, Fe, Ni, Cu, Zn and Pb in the bulk sample. Results of total content, which obtained by AAS, FES and XRF spectrometry, were compared with each other and with total content for the fractionated samples. Certified reference materials from IAEA were analyzed to make sure of the data obtained. The ranges of concentrations obtained are 113-3900 μg/g for Cr, 0.3-110.4 mg/g for Fe, 27-500 μg/g for Ni, 34.7-4390 μ/g for Cu, 62-1320 μg/g for Zn and 40-1250 μg/g for Pb dry weight. The obtained results were analyzed statistically using multivariate methods that include Correlation Matrices, Principal Component Analysis (PCA) and cluster analysis. The concentrations of trace elements in street and industrial dust of Wad Medani were compared with those values in literature. It has been observed that the dust from street and industrial area of wad Medani is slightly affected by anthropogenic sources.(Author)

  8. Sense of coherence and burnout in the energy and chemicals industry: The moderating role of age

    Directory of Open Access Journals (Sweden)

    Sanet van der Westhuizen

    2015-11-01

    Full Text Available Orientation: Organisations are accommodating four different social generations in the working environment. This poses a challenge for Human Resources departments to manage these diverse age cohorts in the workforce, as they are likely to have different needs, values and variables affecting their wellness. Research purpose: The objective of the present study was to assess whether various age groups differ with regard to their sense of coherence and burnout, and whether age significantly moderates the relationship between sense of coherence and burnout. Motivation for the study: Although the literature review suggests that age groups may differ with regard to their sense of coherence and burnout, the findings seem to be somewhat inconclusive in this regard. There also seems to be a paucity of research examining the interaction effect between sense of coherence, burnout and age. Research approach, design and method: A cross-sectional quantitative survey approach was used. A nonprobability convenience sample of adults (N = 246 – employed in South Africa by an international integrated energy and chemicals company – participated in the study. Correlation, analysis of variance (ANOVA and hierarchical multiple regression analyses were performed to achieve the objectives of the study. Main findings: The results showed that employees between the ages of 51 and 60 years of age experienced higher levels of comprehensibility and lower levels of reduced professional efficacy than their younger counterparts. The relationship between sense of coherence and exhaustion was also stronger for employees between 51 and 60 years old than for younger age categories. Practical/managerial implications: The results of the study can be useful when planning human resource interventions to enhance the well-being of employees from different age groups. Contribution: The results of the study add new insights to the well-being literature by showing that employees’ age is

  9. Studies on manufacturing technology of materials for fine chemical and electronic industry use

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S K; Kim, B G; Chung, H S; Lee, J C [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Fine natural crystalline graphite which is used as a source material of a high electrically conductive film and an addition of advanced high functional solid lubricant. For use high electrically conductive film and advanced high functional solid lubricant, add new and advanced high functional properties to fine graphite powder through surface modification with gas and organic materials. Surface modification methods: 1) Searching for suitable surfactant to improve dispersing characteristics in aqueous system. 2) Adsorption with oxygen on graphite surface to improve dispersing characteristics in oil. 3) Mechanochemical process using hybridization system is to shape control and spontaneous re-arrangement of the surface layer and interaction between the particle surface and extraneous molecules. In aqueous system, the optimum conditions for graphite to disperse is with 0.3-0.5% concentrations of surfactant Lomar D PWA-40 at pH range 10-11. In order to improve dispersing characteristics in oil, the optimum conditions to adsorb over 3.5% with oxygen on graphite surface are as follows: - Tip speed {yields} 3.9 m/sec, - Reaction time {yields} at least 30 min. at 120 deg.C - inert gas and pressure {yields} dried air, 1 kgf/cm{sup 2}. The oxygen contents acts critical point for dispersing graphite in oil system so needs to control oxygen contents by use of air pressure in reacting mill. Chemical methods for coating with Stearic acid and Paraffin need above 15 weight % to graphite powders. Mechanochemical process using hybridization system is to shape control and spontaneous re-arrangement of the surface layer and interaction between the particle surface and extraneous molecules. (author). 45 refs., 9 tabs., 23 figs.

  10. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  11. Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula × intermedia var. Super, and Santolina chamaecyparissus.

    Science.gov (United States)

    Ortiz de Elguea-Culebras, Gonzalo; Sánchez-Vioque, Raúl; Berruga, María Isabel; Herraiz-Peñalver, David; González-Coloma, Azucena; Andrés, María Fé; Santana-Méridas, Omar

    2018-01-01

    This work presents the biocidal (insecticidal, ixodicidal, nematicidal, and phytotoxic) effects and chemical compositions of three essential oils obtained from the industrial steam distillation (IEOs) of hyssop (Hyssopus officinalis L.), lavandin (Lavandula × intermedia or L. × hybrida var. Super), and cotton lavender (Santolina chamaecyparissus L.). Their chemical composition analyzed by gas chromatography coupled to mass spectrometry showed 1,8-cineole (53%) and β-pinene (16%) as the major components of H. officinalis, linalyl acetate (38%) and linalool (29%) of L. × intermedia; and 1,8-cineole (10%) and 8-methylene-3-oxatricyclo[5.2.0.0 2,4 ]nonane (8%) in S. chamaecyparissus. The biocidal tests showed that L. × intermedia IEO was the most active against the insect Spodoptera littoralis and toxic to the tick Hyalomma lusitanicum, IEO of H. officinalis was strongly active against S. littoralis, and finally, S. chamaecyparissus IEO was a strong antifeedant against the aphid Rhopalosiphum padi, toxic to H. lusitanicum and with moderate effects against Leptinotarsa decemlineata, S. littoralis, and Lolium perenne. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  12. Interaction mechanisms of radioactive, chemical and thermal releases from the nuclear industry: Methodology for considering co-operative effects

    International Nuclear Information System (INIS)

    Streffer, C.

    1975-01-01

    A number of chemicals are known which can modify radiation effects on cell killing, carcinogenesis and mutagenesis. In this paper data are reported for radiosensitizing agents. In order to discuss the interaction mechanisms of these synergistic effects, the action of radiation on DNA, on its biological functions and on its metabolism are explained briefly. Also it is indicated that part of the radiation effects in the DNA can be 'repaired' and that living cells can recover from radiation damage. One group of radiosensitizers interacts with cellular DNA or with the DNP-complex. These reactions change the configurational structure or metabolism of DNA and DNP. In this connection the action of antibiotics such as actinomycin D, and the action of SH-blocking agents such as iodoacetamide and NEM, as well as the action of alkylating agents, are discussed. A second group of radiosensitizers, especially with hypoxic cells, are the electron affinic chemicals like nitro-compounds, ketones and others. Data are also given on the modification of radiation effects by changes in temperature. Further, the problem of whether synergistic effects are to be expected arising from the chemicals and radiation originating in the nuclear industry is considered. Data show that repair and recovery processes especially are modified by radiosensitizers. The implications of this fact on sensitization at low radiation doses and at low dose rates, as well as the effect of high LET radiation, are considered. It is of interest that the dose modifying factor of some sensitizers can reach a magnitude of a factor of two to three. (author)

  13. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1A. National impacts assessment. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents the results of the national impacts assessment for the proposed rule

  14. Effect of Managerial Ownership, Free Cash Flow and Size Company Policy on Debt (Empirical Study on Industrial Enterprises Basic and Chemicals Listed in Bei)

    OpenAIRE

    Hasan, Mudrika Alamsyah

    2013-01-01

    The purpose of this study was to obtain empirical evidence about the effect of managerial ownership structure, free cash flow and the size of the companys debt policy the Basic Industry and Chemicals companies listed on the Stock Exchange.The population in this research is the basic chemical sector companies listed on the Indonesia Stock Exchange during the last three years, is from the years 2009-2011, amounting to 43 companies, using purposive sampling and the sampling results obtained by 3...

  15. Controle químico da mancha-bacteriana do tomate para processamento industrial em campo Field chemical control of bacterial spot on tomato for industrial processing

    Directory of Open Access Journals (Sweden)

    Abadia dos R Nascimento

    2013-03-01

    cloretos de benzalcônio. ASM e famoxadona + mancozebe foram os que promoveram uma relação benefício/custo superior a 1.In order to evaluate chemical control of bacterial spot on tomato for industrial processing, two field trials were carried out at the Unilever Bestfoods experimental station, in Goiânia, Goias state, Brazil. The first trial was in a randomized complete block design, with 15 treatments and three replications, using the hybrid Heinz 9992 inoculated with Xanthomonas perforans. The second trial was in a split-plot randomized complete block design with chemical foliar applications (10 treatments and hybrids (Hypeel 108 and U2006 as factors. Plants were inoculated with X. perforans and X. gardneri. In both trials the chemicals, in different number of applications and combinations, were: acibenzolar-S-methyl (ASM; famoxadone + mancozeb; metiram + pyraclostrobin; phosphite PK; benzalkonium chlorides; cuprous oxide, and copper hydroxide (SC, WP and WG. For both trials, disease severity on leaves, number of fruits with symptoms and yield were evaluated. In the second one, sunscald was also evaluated. For the first trial, significant severity differences (p>0.05 among treatments were observed only in the first two evaluations, but none of them differed from the water check control. In the second trial, significant differences were detected only in foliar severity in first evaluation for hybrids. For number of fruits with symptoms and sunscald, besides hybrids, interaction among factors was also significant. 'U2006' was more resistant than 'Hypeel 108', which also had highest sunscald values, but concerning fruits with symptoms, the opposite was observed. The two factors were significant for yield data, 'U2006' yielded better than 'Hypeel 108'. Despite none of the treatments have differed in yield from the water control, famoxadone + mancozeb, which resulted in the highest yield, differed from copper hydroxide, ASM - famoxadone + mancozeb, and benzalkonium

  16. Health Risk Assessment of Xylene through Microenvironment Monitoring Data: A Case Study of the Petro-Chemical Industries, Thailand

    Directory of Open Access Journals (Sweden)

    Pensri Watchalayann

    2009-01-01

    Full Text Available In the absence of environmental health epidemiology, risk managers, policy makers and health-care authorities usually rely on estimates of human exposure level of proximity to hazardous waste site or regional ambient air quality data. Based on ambient concentrations without considering time-activity patterns, the estimation of personal exposure may be overor underestimated. Twelve villages surrounding the petro-chemical industries located in the eastern region of Thailand were randomly selected to be a representative study area. In each village, air samples were collected at thirty-one microenvironments including indoor and outdoor of a household and workplace. The time-activity patterns of the commuters were also recorded. The ambient xylene concentrations were determined by thermal desorption gas chromatograhy/mass spectrometry. The indoor samples were determined by gas chromatography flame ionization detector. Commuters living in the vicinity of the industrial areas spent most of the time indoor (93.2%, especially at home (66.8%. Individuals spent a significant fraction of the day indoors. The concentrations of xylene ranged from less than 1 μg/m3 to 291.3 μg/m3. The highest level was found at the auto repair shop (291.3 μg/m3. Given micro-environmental concentrations and activity times, the average concentrations of xylene to which commuters may be exposed daily ranged from 90.62 to 134.75 μg/m3. The long term exposure level via inhalation was found to be very low. Collectively, no hazard was indicated by the hazard quotient and the results were found to be similar in all villages.

  17. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction.

    Directory of Open Access Journals (Sweden)

    Aldo Cavallini

    Full Text Available Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR. Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy, an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group, who were undergoing in vitro fertilization (IVF protocol. In follicular fluids (FFs of both groups the toxic and essential heavy metals, such as chromiun (Cr, Manganese (Mn, iron (Fe, cobalt (Co, nickel (Ni, copper (Cu, zinc (Zn, cadmium (Cd and lead (Pb, were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1, a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb.

  18. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  19. Application of industrial hygiene techniques for work-place exposure assessment protocols related to petro-chemical exploration and production field activities

    International Nuclear Information System (INIS)

    Koehn, J.

    1995-01-01

    Standard industrial hygiene techniques for recognition, evaluation, and control can be directly applied to development of technical protocols for workplace exposure assessment activities for a variety of field site locations. Categories of occupational hazards include chemical and physical agents. Examples of these types of hazards directly related to oil and gas exploration and production workplaces include hydrocarbons, benzene, oil mist, hydrogen sulfide, Naturally Occurring Radioactive Materials (NORM), asbestos-containing materials, and noise. Specific components of well process chemicals include potential hazardous chemical substances such as methanol, acrolein, chlorine dioxide, and hydrochloric acid. Other types of exposure hazards may result from non-routine conduct of sandblasting and painting operations

  20. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Keasling, Jay D.; Katz, Leonard

    2017-01-01

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containin...... have applications as fuels or industrial chemicals....

  1. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against the major chemical classes of inhibitors derived from lignocellulosic biomass conversion

    Science.gov (United States)

    Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...

  2. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing.

    Science.gov (United States)

    Ruiz-Cano, Domingo; Pérez-Llamas, Francisca; Frutos, María José; Arnao, Marino B; Espinosa, Cristóbal; López-Jiménez, José Ángel; Castillo, Julián; Zamora, Salvador

    2014-10-01

    In this study, the basic chemical composition and functional properties of six by-product fractions collected from different steps of artichoke industrial processing were evaluated. Fractions differed in thermal treatment, the bract position in the artichoke head and the cutting size. Contents of moisture, ash, protein, fat, dietary fibre, inulin, total phenolics, total flavonoids, caffeoyl derivatives and flavones were analysed. Antioxidant activity values were also determined. All assessed artichoke by-product fractions contained high-dietary fibre (53.6-67.0%) and low fat (2.5-3.7%). Artichoke by-product fractions contained high levels of inulin, especially in the boiled inner bracts (30%). Total phenolic and flavonoid contents and antioxidant activity (153-729 μmol gallic acid equivalents, 6.9-19.2 μmol quercetin equivalents and 85-234 μmol ascorbic acid equivalents per gram of dry matter, respectively) varied widely with the bract positions in the artichoke head and the thermal treatments. The more interesting fractions for use as functional ingredients were those situated closer to the artichoke heart and thermally treated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. 2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas ▿ †

    Science.gov (United States)

    Köpke, Michael; Mihalcea, Christophe; Liew, FungMin; Tizard, Joseph H.; Ali, Mohammed S.; Conolly, Joshua J.; Al-Sinawi, Bakir; Simpson, Séan D.

    2011-01-01

    2,3-Butanediol (23BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, the best microbial 23BD production rates have been observed using pathogenic bacteria in fermentation systems that depend on sugars as the carbon and energy sources for product synthesis. Here we present evidence of 23BD production by three nonpathogenic acetogenic Clostridium species—Clostridium autoethanogenum, C. ljungdahlii, and C. ragsdalei—using carbon monoxide-containing industrial waste gases or syngas as the sole source of carbon and energy. Through an analysis of the C. ljungdahlii genome, the complete pathway from carbon monoxide to 23BD has been proposed. Homologues of the genes involved in this pathway were also confirmed for the other two species investigated. A gene expression study demonstrates a correlation between mRNA accumulation from 23BD biosynthetic genes and the onset of 23BD production, while a broader expression study of Wood-Ljungdahl pathway genes provides a transcription-level view of one of the oldest existing biochemical pathways. PMID:21685168

  4. Fine chemicals for the electronics industry: the proceedings of a symposium organised by the Fine Chemicals and Medicinals Group of the Industrial Division of the Royal Society of Chemistry, Bath, UK, 2-4 April 1986

    International Nuclear Information System (INIS)

    Bamfield, P.

    1986-01-01

    Most business surveys on electronic chemicals emphasise the importance of semi-conductor materials, printed circuit board chemicals, hybrid circuit materials and others, e.g. liquid crystal materials. This was expanded in this symposium to include chemicals consumed by the telecommunications, optoelectronics, reprographics, displays, and energy conversion sectors. The burgeoning area of molecular electronics was also considered to be important. (author)

  5. Riskgov European Project. Comparative analysis of risk governance for radiological and chemical discharges of industrial installations. Final report

    International Nuclear Information System (INIS)

    Schneider, T.; Schieber, C.; Vaillant, L.; Heriard Dubreuil, G.; Gadbois, S.; Oudiz, A.; Bourgoignon, F.; Milochevitch, A.; PATERSON, J.; Brownless, G.; Bandle, T.; Hansson, S.O.; Hayenhjelm, M.

    2004-11-01

    The objective of the RISKGOV Project is to analyse and identify quality criteria for the governance of industrial activities giving rise to risks to people and the environment from radioactive and chemical discharges during normal operations. For this purpose, RISKGOV aims at: 1) analysing and comparing the elements contributing to the quality of governance systems associated with environmental discharges from nuclear and chemical installations; 2) providing a series of criteria to assess the quality of the governance of risk activities. In total, 8 case studies were conducted, covering radioactive and chemical releases related to local and international contexts and referring to innovative risk governance processes in France, Sweden and the United Kingdom: - The role of local liaison committees with regard to the management of discharges of installations: - France: Local liaison committee of the Gravelines Nuclear Power Plant, - Sweden: Local liaison committees of the Barsebaeck Nuclear Power Plant and the Rohm and Hass Chemical installation, - The dialogue process during the preparation of re-authorisation of radioactive discharges: - France: COGEMA-La Hague facility, - United-Kingdom: Devonport Royal Dockyard, - The dialogue process in a regional context: - France: Management of air quality around the industrial site of Etang de Berre, - The dialogue process in an international context: - Implementation of the OSPAR Convention for chemical and radioactive releases, - The abandonment of the Brent Spar offshore platform. The analysis was performed by a multidisciplinary research team and based notably on interviews with key stakeholders directly involved in these innovative risk governance processes. The following dimensions were addressed: a) The guiding principles of the decision-making process; b) The role of expertise; c) The stakeholders involvement process; d) The factors integrated into the decision-framing and decision-taking processes; e) The

  6. Industrial wastes from the boat-building sector in the Marche Region (Italy): a parametric and chemical-physical characterization.

    Science.gov (United States)

    Carchesio, M; Tatàno, F; Tosi, G; Trivellone, C H

    2013-01-01

    Using the renowned leisure boat-building sector in the Marche Region (Italy) as a case-study, this paper addresses the characterization of (1) the industrial waste generation from the building of composite material-based boats and (2) some chemical-physical properties of representative types of boat-building residues (plastic foam, hardened resin, fibre-reinforced composite residues, and sanding dust). A parametric evaluation based on the number of employees gave a representative unit generation rate per employee (UGRpE) of 1.47 tons(waste) employee(-1) year(-1) for the entire Marche regional boatbuilding district, whereas evaluations carried out separately for three case-study companies provided values of 1.56, 3.07, and 1.12 tons(waste) employee(-1) year(-1) as representative for a mass-produced motor boat builder (case-study company '1'), a customized sailing boat builder (case-study company '2'), and a mould and structural component builder (case-study company '3'), respectively. The original proposal and evaluation of two additional generation rates based on physical characteristics intrinsic to the manufactured product, i.e. the unit generation rate per boat area (UGRpA) and per boat weight (UGRpW), confirmed the higher waste generation for the sailing boat builder(representative UGRpA and UGRpW values of 0.35 tons(waste) m(-2)(boat) year(-1) and 2. 71 tons(waste) tons(-1)(boat) year(-1), respectively) compared with the motor boat builder (representative UGRpA and UGRpW values of 0.06 tons(waste) m(-2)(boat) year(-1) and 0.49 tons(waste) tons(-1)(boat) year(-1), respectively). The chemical-physical property characterization of the selected residues revealed the following aspects: a general condition of low moisture contents; significant ash contents in the glass- and carbon-fibre composite residues and the correlated sanding dust; and relatively high energy content values in the overall range 14,144-32,479 kJ kg(-1), expressed as the lower heating value.

  7. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    Science.gov (United States)

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  8. Design of Laser Based Monitoring Systems for Compliance Management of Odorous and Hazardous Air Pollutants in Selected Chemical Industrial Estates at Hyderabad, India

    Science.gov (United States)

    Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.

    2014-12-01

    Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.

  9. The unique field experiments on the assessment of accident consequences at industrial enterprises of gas-chemical complexes

    International Nuclear Information System (INIS)

    Belov, N.S.; Trebin, I.S.; Sorokovikova, O.

    1998-01-01

    Sour natural gas fields are the unique raw material base for setting up such large enterprises as gas chemical complexes. The presence of high toxic H 2 S in natural gas results in widening a range of dangerous and harmful factors for biosphere. Emission of such gases into atmosphere during accidents at gas wells and gas pipelines is of especial danger for environment and first of all for people. Development of mathematical forecast models for assessment of accidents progression and consequences is one of the main elements of works on safety analysis and risk assessment. The critical step in development of such models is their validation using the experimental material. Full-scale experiments have been conducted by the All-Union Scientific-Research institute of Natural Gases and Gas Technology (VNIIGAZ) for grounding of sizes of hazard zones in case of the severe accidents with the gas pipelines. The source of emergency gas release was the working gas pipelines with 100 mm dia. And 110 km length. This pipeline was used for transportation of natural gas with significant amount of hydrogen sulphide. During these experiments significant quantities of the gas including H 2 S were released into the atmosphere and then concentrations of gas and H 2 S were measured in the accident region. The results of these experiments are used for validation of atmospheric dispersion models including the new Lagrangian trace stochastic model that takes into account a wide range of meteorological factors. This model was developed as a part of computer system for decision-making support in case of accident release of toxic gases into atmosphere at the enterprises of Russian gas industry. (authors)

  10. Dioxin-like chemicals in soil and sediment from residential and industrial areas in central South Africa.

    Science.gov (United States)

    Nieuwoudt, Claudine; Quinn, Laura P; Pieters, Rialet; Jordaan, Ilse; Visser, Maret; Kylin, Henrik; Borgen, Anders R; Giesy, John P; Bouwman, Henk

    2009-08-01

    Persistent organic pollutants (POPs) are a global concern due to their ubiquitous presence and toxicity. Currently, there is a lack of information regarding POPs from South Africa. Here we report and interpret concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), -dibenzofurans (PCDFs) and co-planar-biphenyls (PCBs) in soils and sediments collected from central South Africa. High resolution gas chromatography-high resolution mass spectrometry (HRGC/HRMS) and the H4IIE-luc bio-assay were used to identify and quantify individual PCDD/F congeners and to report the total concentration of 2,3,7,8-tetrachloro dibenzo-p-dioxin equivalents (TCDD-EQ), respectively. TCDD-EQs determined by use of the bio-assay, and concentrations of WHO(2005)-TEQ (toxic equivalents) determined by chemical analysis, were similar. The limit of detection (LOD) for the bio-assay was 0.82 and 2.8 ng TCDD-EQ kg(-1), dw for sediment and soil, respectively. EQ20 concentrations determined by use of the bio-assay ranged from industrial area of Vanderbijlpark and the residential area of Klerksdorp contained the greatest concentrations. Based on the congener-specific HRGC/HRMS analyzes, concentrations of WHO(2005)-TEQ ranged from 0.12 to 32 ng WHO(2005)-TEQ kg(-1), dw in sediments, and between 0.34 and 20 ng WHO(2005)-TEQkg(-1), dw in soils. The sources, processes and threats that govern and are associated with the lesser concentrations in sediment and greater concentrations in soils need further investigation.

  11. Semi-Quantitative Assessment of the Health Risk of Occupational Exposure to Chemicals and Evaluation of Spirometry Indices on the Staff of Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Hajar Dazi

    2017-01-01

    Full Text Available Background & Aims of the Study: Petrochemical industry is an important industry in the economic development of the country that causes employees have exposure with several kinds of contamination. The aim of this study was Semi-quantitative assessment of the health risk of occupational exposure to chemical materials and investigation of spirometry indices between employees of petrochemical industry. Material & Methods: This cross-sectional study was conducted in one of the petrochemical industry complex in a special area of Assaluyeh in Iran in 2016. Health risk assessment of exposure to harmful chemical agents was performed in all of units and during three stages (identification of harmful material, determination of hazard rate of the chemical material, exposure rate and estimate of risk rate. Spirometry indices were measured using spirometry. Results: The results of chemical materials risk assessment showed that Raffinate in Butadiene unit has identified the highest amount of risk rank among 27 chemical materials in investigated units. In comparison with spirometry indices in Olefine unit between age with FVC parameter and history work with FVC and FEV1 parameters has observed a significant and negative correlation (P<0.05. Conclusion: The results of risk assessment in all of the petrochemical units showed that 48.14% of materials were at low risk level, 29.62% medium risk, 18.51% high risk and 3.7% had very high risk level. The variables affecting on spirometry employees such as age and work experience play an important role in reducing the pulmonary function tests in exposed subjects.

  12. Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India.

    Science.gov (United States)

    Gupta, A K; Karar, Kakoli; Srivastava, Anjali

    2007-04-02

    Daily average PM(10) (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 microm aerodynamic diameter), TSP (total suspended particulate matter) and their chemical species mass concentrations were measured at residential and industrial sites of an urban region of Kolkata during November 2003-November 2004. Source apportionment using chemical mass balance model revealed that the most dominant source throughout the study period at residential site was coal combustion (42%), while vehicular emission (47%) dominates at industrial site to PM(10). Paved road, field burning and wood combustion contributed 21%, 7% and 1% at residential site, while coal combustion, metal industry and soil dust contributed 34%, 1% and 1% at industrial site, respectively, to PM(10) during the study period. The contributors to TSP included coal combustion (37%), soil dust (19%), road dust (17%) and diesel combustion (15%) at residential site, while soil dust (36%), coal combustion (17%), solid waste (17%), road dust (16%) and tyre wear (7%) at industrial site. Significant seasonal variations of the particulate matters have been observed during the study period. In the monitoring sites total carbon, organic carbon and iron were found to be the marker species of road dust, while organic carbon, total carbon, chloride and sulfate have been observed as the marker species of soil dust in TSP.

  13. Methods and instruments for the ecological assessment of the treatment of solvent wastes in the chemical industry; Methoden und Instrumente zur oekologischen Bewertung der Abfall-Loesungsmittelbehandlung in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Capello, Ch.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which looked at the treatment of solvent wastes in the chemical industry and its ecological impact. The development of a method based on the life-cycle-analysis (LCA) approach is described. The LCA methodology is to provide support for decision-making in the area of solvent waste disposal in the chemical industry. Various methods of disposal, such as distillation or incineration are looked at. The results of calculations using a software tool called 'ecosolvent' are presented and discussed. The 15 most important solvents and their quantities as used in the 6 facilities examined, are listed. The functioning of the ecosolvent software is discussed and illustrated in a flow-diagram. Along with detailed results, a few qualitative rules of thumb are quoted for the treatment of solvent wastes.

  14. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  15. 5th National meeting of the SA Institution of Chemical Engineers: chemical engineering in support of industry and society. V. 1-3

    International Nuclear Information System (INIS)

    1988-01-01

    The 5th national meeting of the SA Institution of Chemical Engineering was held from 15-16 August 1988 at Pretoria. The subject scope covered on the meeting include the broad spectrum of work done by the chemical engineer. The main categories include the processing of agricultural products, biotechnology, coal and hydrocarbons, the chemical engineering practice, fluid dynamics, gas treatment, heat and mass transfer, materials of construction, minerals processing, source materials and products, training and education, vapour-liquid equilibrium, and water and effluents. One seminar specifically covers process engineering in the context of nuclear reactors and two other papers cover supported liquid membrane extraction of uranium

  16. From the Scientific Council of the State Science and Technology Committee on New processes in the coking and chemical industry, Coking and Chemical Products Divisions of the Science and Technological Council of the Ministry of Ferrous Metallurgy of the USSR and Central Plenum of Scientific and Technological Associations of the Ferrous Metallurgy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ermolova, V.P.

    1985-06-01

    Joint conference took place on 5-7 December 1984 in Moscow. Reports were presented on the following topics: status of implementing the union-wide scientific and technological programs on coking by-products and organizing the production of coke briquet fuel in 1984; developments in the coking and chemical industry up to the year 2000; developing a raw material base for coking up to the year 2000; state of research on thermal processing with hot coke; training engineers for the coking and chemical industry; on planning the work of the scientific council in 1985.

  17. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  18. Using the WTO/TBT enquiry point to monitor tendencies in the regulation of environment, health, and safety issues affecting the chemical industry.

    Science.gov (United States)

    Pio Borges Menezes, Rodrigo; Maria de Souza Antunes, Adelaide

    2005-04-01

    The growing importance of technical regulation affecting the use and sale of chemical products is a topic of interest not only for the chemical industry, but also for governments, nongovernmental organizations, consumers, and interested communities. The results of such regulation on behalf of the environment, health and safety of individuals, as well as its economic effects on industrial activity, are well understood in the United States and recently in the European Union. In less developed countries, however, the general level of public understanding of these issues is still minimal. It is common knowledge that the so-called "regulatory asymmetry" between countries at different levels of development contributes to the establishment of technical barriers to trade. Such asymmetries, however, also have other impacts: the displacement of polluting industrial sectors to countries which have less demanding regulations, the concentration of unsafe and harmful environmental conditions in certain parts of the globe, and the competitive disadvantage for industries located in countries where control is more rigid. This study analyses information on a wide range of technical regulations issued by World Trade Organization (WTO) members, and focuses on those regulations that affect the chemical industry. This information is available through the WTO Enquiry Points, organizations created in each country to administrate the Technical Barriers to Trade Agreement (TBT). This article consists of an analysis of 4,301 notifications of technical regulations by WTO member states in the 7-year period following the establishment of the WTO in 1995. Starting from this mass of information, 585 notifications that affect the circulation or use of chemical products were isolated. Of this group, 71% refer to only 15 countries. This group of notifications was further classified according to their motivation (the environment, health, safety), by the type of product affected (medications, fuels

  19. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  20. A Detailed Research Study of Learning and Teaching Core Chemical Engineering to a High Standard in a Mixed-Ability Small Class in Industry

    Science.gov (United States)

    Davey, Kenneth

    2017-01-01

    A detailed study of learning and teaching (L&T) of chemical engineering distillation to a mixed-ability small class of 13 students who are ordinarily full-time in-house employees in industry is reported. The course consisted of 9 × 2-h lectures (18 hours) and 9 × 2-h tutorials (18 hours). It was delivered over nine business days "in…

  1. Efficiency of Coagulation and Flocculation Process Combined with Chemical Sequestration in Removal of Organic and Inorganic Contaminants from Aautomotive Industry Sewag

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-08-01

    Full Text Available Introduction: The most important environmental problem of automotive industries is the produced wastewater due to its various processes. The flocculation and coagulation along with chemical sequestration are among important processes for removing contaminants from wastewaters. The aim of this study is to investigate the efficiency of coagulation and flocculation process along with chemical sequestration in the removal of organic and inorganic pollutants from automotive industry sewage. Study Method: This study is an applied-experimental study. The removal of organic and inorganic substances by coagulation, flocculation process combined with chemical sequestration was carried out in batch reactors. The parameters turbidity, heavy metals' concentration, color, phosphate, coagulants concentration, exposure time, TSS, pH and COD were studied. The concentration of color and residue of heavy metals were determined using spectrophotometer -UV and atomic absorption. Results: The research results showed that the removal percentage of Cr, Ni, Pb and Zn by ferric sulfate combined with lime at a pH equal to 10 and the exposure time of 100 minutes were 52.65, 96.3, 3.27 and 100 respectively, and percentage of removing them by aluminum sulfate combined with lime was 52.65, 97.8, 3.37 and 99.81 respectively. the removal percentage of TSS, COD, color, turbidity, phosphates ferric sulfate was also 68.9, 83, 94, 84 and 47.2 respectively, and this amount of removal by aluminum sulfate was 62, 80, 94, 73.5 and 48 respectively at neutral pH and concentration of coagulant was obtained equal to 150 mg / L. Conclusion: According to the results, the use of coagulation and flocculation process combined with chemical sequestration in the removal of organic and inorganic pollutants in wastewaters of automotive industry achieved under optimal conditions is very effective and can be used in water treatment of automotive industry.

  2. Job insecurity , work-based support, job satisfaction, organisational commitment and general health of human resources professionals in a chemical industry / by Florence Nomhlangano Rani

    OpenAIRE

    Rani, Nomhlangano Florence

    2005-01-01

    The work environment in which South African employees have to function is highly demanding, offering them little in terms of job security, but simultaneously expecting them to give more in terms of inter alia flexibility, competency, and effort. Tracking and addressing chemical industry employees' functioning in areas that could affect their general health and consequent standard of service is essential. Job insecurity, work-based support, job satisfaction, organisational commitment and gener...

  3. Evaluation of environmental policy instruments - a case study of the Finnish pulp and paper and chemical industries

    International Nuclear Information System (INIS)

    Hilden, M.; Lepola, J.; Mickwitz, P.; Palosaari, M.; Similae, J.; Sjoeblom, S.; Mulders, A.; Vedung, E.

    2002-01-01

    This research-based evaluation of environmental policy Instruments in Finland is focussed on regulatory instruments based on the Water Act, the Air Pollution Control Act and the Chemicals Act, on electricity taxation and on voluntary environmental management systems. The examined policy instruments have had several positive effects. They have directed major industrial point source polluters towards solving environmental problems. The transparency has been an important factor ensuring the success of the policy instruments and in avoiding the regulatory capture that could have thrived in a system largely based on negotiations between operators and authorities. The transparency has made it easy for Finnish firms to adopt environmental management systems and an open attitude to environmental reporting. The permit conditions have not directly resulted in innovations, but they have contributed to the diffusion of end-of-pipe technology and have contributed to innovations by expanding the market for environmentally better technical solutions. The permit systems have also indirectly contributed to innovations by creating a demand for environmental experts and environmental education. Networks have clearly developed as a consequence of and in response to regulatory instruments. These networks appear to have had their greatest significance prior to the permit procedures. The trend has been towards a greater emphasis of the communication in the networks prior to the presentation of an application in order to ensure a smoothly functioning permit process. In the networks contributing to innovations and the diffusion of innovations authorities have largely been outsiders, except when an innovation has become a de facto standard for permit conditions. The different kind of effects, the complexity of consequences and the uncertainties with respect to causes and effects mean that studies aiming at evaluating the overall worth and merit of an environmental policy instrument should

  4. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd Correção química e fitoestabilização de um resíduo industrial contaminado com Zn e Cd

    Directory of Open Access Journals (Sweden)

    Fabiana Soares dos Santos

    2007-10-01

    Full Text Available Phytostabilisation of a contaminated soil with heavy metals is considered a very appropriate technology to reduce erosion and dispersion of contaminants. A greenhouse study was conducted to evaluate the effects of both chemical amendments (calcium silicate and brewery sludge, and phytoremediation using the grass Brachiaria decumbens, on an industrial residue contaminated with Zn and Cd (industrial residue. Industrial residue samples placed into 30 L containers were amended with 20% brewery sludge, calcium silicate (2%, 3%, and 20% of brewery sludge + calcium silicate (2.5%, 4%, and were compared to the control treatment (non-amended residue. After pH stabilization, B. decumbens plants were grown on all treatments in order to evaluate the ability of the species to tolerate high Zn and Cd concentrations from the residue. Samples were collected twice, at planting and harvesting, for pH determination and simple extractions with water, sodium nitrate, acetic acid and DTPA. Differences in Zn and Cd concentrations in extracts allowed to estimate the concentrations of these elements in the most likely chemical forms they are found in the residue. Alkaline and organic industrial amendments reduced Zn and Cd percentages, both in the soluble and exchangeable fractions, as well as caused the predominance of Zn and Cd in the most stable chemical fractions, such as complexed and precipitated compounds. B. decumbens was tolerant to Zn and Cd from the industrial residue after addition of the amendments.A fitoestabilização de solos contaminados com metais pesados é considerada uma boa alternativa para reduzir a erosão e dispersão de contaminantes no ambiente. Foi conduzido um experimento em casa-de-vegetação com o objetivo de avaliar a contenção química (silicato de cálcio e lodo do biodigestor de uma cervejaria e a fitorremediação pela Brachiaria decumbens, de um resíduo industrial contaminado com Zn e Cd, utilizando vasos de 30 L. Os tratamentos

  5. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    Directory of Open Access Journals (Sweden)

    Haochen Ni

    2014-09-01

    Full Text Available The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  6. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    Science.gov (United States)

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-05

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  7. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    Science.gov (United States)

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-01-01

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686

  8. Constructing the Indicators of Assessing Human Vulnerability to Industrial Chemical Accidents: A Consensus-based Fuzzy Delphi and Fuzzy AHP Approach.

    Science.gov (United States)

    Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj

    2017-04-10

    Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards.

  9. Influence of the feed pipe position of an industrial scale two-phase decanter on extraction efficiency and chemical-sensory characteristics of virgin olive oil.

    Science.gov (United States)

    Caponio, Francesco; Squeo, Giacomo; Brunetti, Lucio; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito M; Catalano, Pasquale; Bianchi, Biagio

    2018-02-10

    Nowadays, olive oil extraction is basically achieved by means of two-phase decanters, which allow a reduction of water consumption and the leaching of phenolic compounds. Despite this, most of the working settings derive from studies carried out on three-phase decanters. Hence, the aim of the present study was to assess the influence of two-phase decanter feed pipe position (FP) on the extraction efficiency and chemical-sensory characteristics of virgin olive oil. Three different positions were considered: at 825 mm (FP1), 610 mm (FP2) and 520 mm (FP3) from the outlet of the oily phase. Position FP3 allowed the highest oil recovery (up to 10%), the lowest percentage of oil in the olive pomace and, in general, a regular trend in terms of oil extraction efficiency. However, the oily must that came out of the decanter was not completely clean in terms of residual content of solid sediment and water. The feeding position partially affected the profile of antioxidant compounds. In two-phase decanters, loading the olive paste close to the outlet of the oily phase is recommended to increase the extraction efficiency without jeopardizing the chemical-sensory characteristics of virgin olive oil. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Industrial practices

    International Nuclear Information System (INIS)

    Velasquez Torrez, Patricia Irma

    1999-01-01

    This document reports the industrial practices carried out by the author viewing the requirements fulfilled for obtention the academic degree in chemical engineering of the San Andres University - Bolivia

  11. APPLICATION OF ELECTROCHEMICAL METHODS FOR DECREASING OF CHEMICAL OXYGEN DEMAND (COD AND TOTAL SUSPENDED SOLID (TSS OF TOFU INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Suyata

    2015-05-01

    Full Text Available Tofu industrial wastewater has high COD and TSS level, which it cause an environmental pollution. Therefore, it is necessary to decrease the value of COD and TSS of tofu industrial wastewater before discharge into the water body. Decreasing of COD and TSS values can be carried out using an electrochemical method. The purpose of this research was to determine the effect of potential, electrode distance, pH, and time to decrease of COD and TSS value of the tofu industrial wastewater. The experiment has been performed by electrolysis tofu industrial wastewater using PbO2 as anode and Pb as cathode. The result of the research showed that under the optimum conditions of 12 V voltage, 1 cm electrode distance, pH 1, and electrolysis time of 120 minutes, decreasing COD and TSS of 96.33% and 87.87% respectively

  12. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry; Catalise assimetrica no Brasil: desenvolvimento e potencialidades para o avanco da industria quimica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Antonio Luiz, E-mail: braga.antonio@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica; Luedtke, Diogo Seibert; Schneider, Paulo Henrique [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Quimica; Andrade, Leandro Helgueira [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica; Paixao, Marcio Weber [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  13. Chemical and microbiological characteristics of Lebanese cheeses made by local industries; Caracteristiques chimiques et microbiologiques des fromages libanais issus d'industries locales

    Energy Technology Data Exchange (ETDEWEB)

    Dib, H.; Hajj Semaan, E.; Noureddine, Z. [Lebanese University, Faculty of Agronomy, Dekwaneh (Lebanon)

    2008-07-01

    In order to characterize, protect dairy products and develop new probiotics, a survey was conducted amongst 37 dairy factories. Chemical (pH, acidity, DM, protein, fat, soluble nitrogen and free fatty acid) and microbiological (total aerobic bacteria, Coliforms, E. coli, Salmonella, Listeria, and Staphylococcus aureus) analysis were carried out on samples collected from factories (7 Baladi, 22 Akkawi, 18 Double creme and 22 Halloum) of different regions. These cheeses are made by 73% of visited factories. Chemical analysis showed low acidity (0.18 to 0.26%), variable levels of moisture (54 to 70%) protein (19 to 24%) and fat (12 to 18%) except Double creme (3.26 {+-} 1.78%). Except 8%, Good Hygienic and Manufacturing Practices (GHP/GMP) are not applied in visited factories. This is confirmed with the high levels of Coliforms, detectable in most varieties at an alarming level (72 to 86%). Besides, 23-71% of samples were contaminated with E. coli. However, all samples were found free of staphylococcus aureus; Halloum cheese was the only one free of Listeria and Salmonella. The highest off standard for these bacteria was noticed in Baladi cheese where 29% were contaminated with Listeria and Salmonella. Listeria was also found in 10% of Akkawi and 17% of Double creme. These results show a violation of the Good Hygienic and Manufacturing Practices (GHP/GMP) by most factories in all visited regions. (author)

  14. The effects of wood storage on the chemical composition and indigenous microflora of eucalyptus species used in the pulping industry

    CSIR Research Space (South Africa)

    Ramnath, L

    2018-02-01

    Full Text Available Lipophilic extractives naturally occurring in wood tend to coalesce during pulping to form pitch deposits, which have particularly undesirable effects on the pulping process and quality of pulp produced. A chemical characterization of different...

  15. The Chemistry Scoring Index (CSI: A Hazard-Based Scoring and Ranking Tool for Chemicals and Products Used in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Tim Verslycke

    2014-06-01

    Full Text Available A large portfolio of chemicals and products is needed to meet the wide range of performance requirements of the oil and gas industry. The oil and gas industry is under increased scrutiny from regulators, environmental groups, the public, and other stakeholders for use of their chemicals. In response, industry is increasingly incorporating “greener” products and practices but is struggling to define and quantify what exactly constitutes “green” in the absence of a universally accepted definition. We recently developed the Chemistry Scoring Index (CSI which is ultimately intended to be a globally implementable tool that comprehensively scores and ranks hazards to human health, safety, and the environment for products used in oil and gas operations. CSI scores are assigned to products designed for the same use (e.g., surfactants, catalysts on the basis of product composition as well as intrinsic hazard properties and data availability for each product component. As such, products with a lower CSI score within a product use group are considered to have a lower intrinsic hazard compared to other products within the same use group. The CSI provides a powerful tool to evaluate relative product hazards; to review and assess product portfolios; and to aid in the formulation of products.

  16. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  17. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Gupta, Shikha

    2014-01-01

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R 2 ) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R 2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  18. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer

    Science.gov (United States)

    Ma, Yan; Diao, Yiwei; Zhang, Bingjie; Wang, Weiwei; Ren, Xinrong; Yang, Dongsen; Wang, Ming; Shi, Xiaowen; Zheng, Jun

    2016-12-01

    A proton transfer reaction ion-drift chemical ionization mass spectrometer (PTR-ID-CIMS) equipped with a hydronium (H3+O) ion source was developed and deployed near an industrial zone in the Yangtze River Delta (YRD) region of China in spring 2015 to investigate industry-related emissions of volatile organic compounds (VOCs). Air pollutants including formaldehyde (HCHO), aromatics, and other trace gases (O3 and CO) were simultaneously measured. Humidity effects on the sensitivity of the PTR-ID-CIMS for HCHO detection were investigated and quantified. The performances of the PTR-ID-CIMS were also validated by intercomparing with offline HCHO measurement technique using 2,4-dinitrophenylhydrazone (DNPH) cartridges and the results showed fairly good agreement (slope = 0.81, R2 = 0.80). The PTR-ID-CIMS detection limit of HCHO (10 s, three-duty-cycle averages) was determined to be 0.9-2.4 (RH = 1-81.5 %) parts per billion by volume (ppbv) based on 3 times the standard deviations of the background signals. During the field study, observed HCHO concentrations ranged between 1.8 and 12.8 ppbv with a campaign average of 4.1 ± 1.6 ppbv, which was comparable with previous HCHO observations in other similar locations of China. However, HCHO diurnal profiles showed few features of secondary formation. In addition, time series of both HCHO and aromatic VOCs indicated strong influence from local emissions. Using a multiple linear regression fit model, on average the observed HCHO can be attributed to secondary formation (13.8 %), background level (27.0 %), and industry-related emissions, i.e., combustion sources (43.2 %) and chemical productions (16.0 %). Moreover, within the plumes the industry-related emissions can account for up to 69.2 % of the observed HCHO. This work has provided direct evidence of strong primary emissions of HCHO from industry-related activities. These primary HCHO sources can potentially have a strong impact on local and regional air pollution formation

  19. THE CHEMICAL COMPOSITION ASSESSMENT OF THE FETEASCĂ NEAGRĂ GRAPE POMACE AND ITS FRACTIONS OBTAINED FROM WINE INDUSTRY IN DIFFERENT YEARS

    Directory of Open Access Journals (Sweden)

    Pascariu Mariana Silvia

    2015-12-01

    Full Text Available The aim of the hereby study was to analyze and to compare the chemical content of the grape pomace and its fractions: skins and seeds from the red grape variety Fetească neagră (from Iași area, obtained in different years 2013 and 2014 respectively, from the winemaking process. Measurements targeted the dry matter content (DM%, organic matter (OM%, crude ash (CA%, crude protein (CP%, crude fat (EE%, crude fiber (CF%, neazotate extractive substances (SEN%, total polyphenols (TP% and tannins (Ta%. The results obtained showed significant differences in the chemical composition in favour of the grape pomace obtained in the 2014 climatic conditions: in the case of the seed for the content of DM%, SEN%, TP% and Ta%, in the case of the skins for the content of DM%, OM%, CF%, TP%, Ta% and in the case of the grape pomace for the content of DM%, OM%, CF%, SEN%, TP%, and Ta%. Comparative analysis of the chemical composition showed an annual variation of the chemical components, which may be due to climatic conditions and winemaking process. Therefore, an annual chemical quality assessment of the grape pomace is necessary, for the efficient use in the animal feed.

  20. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  1. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  2. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview.

    Science.gov (United States)

    Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran

    2017-09-01

    One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges.

    Science.gov (United States)

    Yuzawa, Satoshi; Keasling, Jay D; Katz, Leonard

    2017-04-01

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.

  4. 浅议陕西煤化集团并购重组工作%Discussion of mergers and acquisitions work in Shaanxi Coal and Chemical Industry Group

    Institute of Scientific and Technical Information of China (English)

    邹贵武

    2015-01-01

    This paper introduced the main methods of mergers and acquisitions work , summarized the experiences of mergers and acquisitions work and analyzed the effects of mergers and acquisitions work during the development process of Shaanxi Coal and Chemical Industry Group .%介绍了陕煤化集团在发展过程中,实施并购重组工作的主要做法,总结了开展并购重组工作经验,并以具体实例说明了集团实施并购重组工作的效果。

  5. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Yuzawa, Satoshi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Keasling, Jay D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of California, Berkeley, CA (United States). QB3 Inst.; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Technical Univ. of Denmark, Horsholm (Denmark). Novo Nordisk Foundation Center for Biosustainability; Katz, Leonard [Univ. of California, Berkeley, CA (United States). QB3 Inst.

    2016-11-16

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. Finally, we have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.

  6. Air pollution around the Keihin heavy chemical industrial zone, and living environment and health injury in the inhabitants therein

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, I

    1975-08-01

    A survey of air pollution levels and the health of high school pupils and their parents was conducted in a heavily industrialized area of Kawasaki, Japan. The concentration of sulfur oxides in 1974 was about half of that in 1970 (0.029 ppM). The concentration of nitrogen oxides ranged from 0.030 to 0.040 ppM. There was a correlation between the concentrations of oxides of sulfur nitrogen. According to questionnaires, about 32 percent of the inhabitants showed concern about air pollution and photochemical smog. About 22 percent of the inhabitants complained of symptoms such as cold, rhinitis, and pharyngitis; and there was a correlation between total subjective symptoms and concentration of sulfur oxides. Near roadsides the concentration of nitrogen oxides was very high. Green plants are gradually disappearing from the heavily polluted area. Further industrialization in this area appears to be very dangerous for man and other living things.

  7. The Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry: A Domino Effect-Based Study

    OpenAIRE

    Kadri , Farid; Chatelet , E.; Lallement , Patrick

    2013-01-01

    International audience; In the field of risks analysis, the domino effect has been documented in technical literature since 1947. The accidents caused by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion are among the most frequent primary accidents for a domino effect due to the units under pressure and the storage of flammable and dangerous substances. Heat radiation and overpressure are one of major factors leading to domino effect on ind...

  8. Application of TCF bleaching in mixtures of chemical and mechanics fibers recycled: alternative for the paper industry

    International Nuclear Information System (INIS)

    Fuentes L, Jhonattan; Uribe R, Gabriel H

    2009-01-01

    In this paper we study the technical feasibility of using mixtures composed by mechanical and chemical fibers recycled in the production of tissue paper, using TCF bleaching sequences that improve the optical properties of this raw material. At present, chemical fibers recycled are used, but their limited availability and high cost,stimulate the search for raw materials which replace them partially. Bleaching stages were carried out at atmospheric pressure, with the oxidative process made with hydrogen peroxide at 80 celsius degrade in 1.5 hours and the reductive stage with FAS, VBrite, Thiourea Dioxide in situ or Chromaclear at 60 celsius degrade for 1 hour. The obtained results allow to deduce that the addition of mechanical recycled fiber significantly affects the optical properties of mixtures. However, some of the bleaching sequences applied manage to compensate, at least partly, the effect of adding this raw material of lower quality and cost.

  9. The organization of industry-science collaboration in the Dutch chemical industry : an exploratory study on the organizational arrangements applied for knowledge transfer in industrial R&D-projects

    NARCIS (Netherlands)

    Gils, M.J.G.M. van

    2010-01-01

    Nowadays, industry-science collaboration is a hot topic. A main reason is that both universities and public research institutes are considered to be able to act as an external source of new skills and knowledge that firms can use as input in their innovation processes. There are many possibilities

  10. Characterization and environmental risk assessment of heavy metals in construction and demolition wastes from five sources (chemical, metallurgical and light industries, and residential and recycled aggregates).

    Science.gov (United States)

    Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai

    2015-06-01

    Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.

  11. The Chemicals, Coal and Petroleum Products, and Rubber Industries in Italy's Regions, 1861-1913: Time-Series Estimates

    OpenAIRE

    Ciccarelli Carlo; Fenoaltea Stefano

    2008-01-01

    Questo saggio presenta stime annuali della produzione delle industrie chimiche e affini nell'Italia post-unitaria, disaggregate per regione e per industria. Nel lungo periodo la produzione si concentra, e si sposta verso nord. La crescita più rapida si registra dai primi anni settanta ai primi anni novanta in Piemonte e in Lombardia, e poi, fino al 1913, in Liguria, in Toscana, e (grazie alla sua elettrochimica) in Umbria. Le regioni meridionali erano dominanti all'Unità; registrarono poi una...

  12. Caracterização físico-química da erva mate: influência das etapas do processamento industrial Effects of industrial processing steps on the physico-chemical characteristics of mate tea leaves

    Directory of Open Access Journals (Sweden)

    Maria Carolina Esmelindro

    2002-08-01

    Full Text Available A erva-mate é uma matéria-prima de grande importância para a região Sul do Brasil, sendo que a produção anual é de aproximadamente 650.000 toneladas de folhas. Atualmente, problemas com o excesso de oferta têm incentivado pesquisadores e empresários a buscar alternativas para a utilização da erva-mate como matéria-prima para o desenvolvimento de novos produtos bem como promover melhorias no processamento industrial visando a obtenção de características organolépticas desejáveis. Neste sentido, o presente trabalho teve por objetivo realizar a caracterização físico-química da erva-mate em função das etapas do processamento industrial (sapeco, secagem e tempo de cancheamento e verificar como estas etapas influem nos teores de cinzas, fibras, gorduras, proteínas, glicose, sacarose e cafeína presentes na matéria-prima. Os resultados obtidos permitiram verificar que as etapas do processamento industrial influem diretamente nos teores dos compostos citados, mostrando a relevância em se analisar estes resultados quando o objetivo é utilizar esta matéria-prima para o desenvolvimento de novos produtos alimentícios que podem exigir características específicas.Mate tea leaves is a raw material of great importance to Southern Brazil, considering its annual production of approximately 650,000 tons of leaves. Currently the excess of mate tea leaves supply in the market has encouraged researchers and entrepreneurs to search for alternatives involving the application of this raw material in the development of new products, as well as the improvement the industrial process, seeking to obtain desirable organoleptic properties. Thus, the present work performed the physical-chemical characterization of mate tea leaves, correlating its qualities to the industrial processing steps ("sapeco", drying and time of "cancheamento". The effect of these steps on the content of ash, fiber, fat, protein, glucose, sucrose and caffeine in the raw

  13. Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity.

    Science.gov (United States)

    Paoli, Luca; Pisani, Tommaso; Guttová, Anna; Sardella, Giovanni; Loppi, Stefano

    2011-05-01

    The lichen Evernia prunastri (L.) Ach. has been exposed for 3 months in and around an industrial area of Mediterranean Italy for monitoring physiological (photosynthetic efficiency, membrane lipids peroxidation and cell membrane integrity) and chemical (bioaccumulation of the heavy metals Cr, Ni, Pb, V and Zn) effects and investigate the consistency with the environmental quality status depicted by the diversity of epiphytic lichens (index of lichen diversity (ILD)). The results showed that thalli transplanted close to the industrial area exhibited early stress symptoms, as revealed by the increase in electrical conductivity indicating a damage endured by lichen cell membranes. The electrical conductivity was inversely correlated with the diversity of epiphytic lichens recorded at the same sites. The ILD negatively correlated also with membrane lipid peroxidation and the rate of accumulation of Pb, V and Zn. Reciprocal correlations found among trace elements pinpointed vehicular traffic and metal processing in the industrial area as main sources. The damage endured by cell membranes was the best physiological indicator consistent with the air quality status depicted by the diversity of epiphytic lichens. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Chemical composition of Chinese palm fruit and chemical properties ...

    African Journals Online (AJOL)

    ... chemical properties and could be used as edible oils and for industrial applications. ... on it, which can provide useful information for Chinese oil palm industry. Key words: Chemical composition, palm fruit, palm oil, palm kernel oil, chemical ...

  15. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  16. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (industrial utilization. Copyright © 2011 Wiley Periodicals, Inc.

  17. Industrial metalorganic chemical vapor deposition technology for the growth of YBa2Cu3O7-∂

    International Nuclear Information System (INIS)

    Schulte, B.; Richards, B.C.; Cook, S.L.

    1997-01-01

    MOCVD is the established technology for the mass production of compound semiconductors for e.g. opto-electronic devices. To transfer the MOCVD technology for HTS films to the standard MOCVD technology used in semiconductor production two major challenges have to be solved: 1. the Ba-precursor instability and 2. the demonstration of uniform deposition of HTS films onto large area substrates. This paper presents an industrial MOCVD process solving these challenges using a new stable fluorinated Ba-precursor and a gas foil rotation trademark susceptor. On a 2 inch diameter substrate area state-of-the-art YBCO thin films were fabricated having a thickness uniformity of 1% and compositional uniformity of 2% and 5% for Y/Ba and Cu/Ba, respectively. The films show a surface morphology with low defect density ( 2 ) and excellent superconducting properties (T c (50%) > 90 K, j c (T=77 K, B=0T) > 5 x 10 6 A cm -2 ). The residual contamination by fluorine was determined by SIMS to be less than 250 ppm. This gives the strong evidence that this industrial process can be transferred to the multiwafer planetary reactors trademark for mass production. (orig.)

  18. The ''C'' family of Ni-Cr-Mo allloys' partnership with the chemical process industry: the last 70 years

    International Nuclear Information System (INIS)

    Agarwal, D.C.; Herda, W.R.

    1997-01-01

    The ''C'' family of alloys, the original being Hastelloy trademark alloy C (1930's) was an innovative optimization of Ni-Cr alloys having good resistance to oxidizing corrosive media and Ni-Mo alloys with superior resistance to reducing corrosive media. This combination resulted in the most versatile corrosion resistant alloy in the ''Ni-Cr-Mo'' alloy family, with exceptional corrosion resistance in a wide variety of severe corrosive environments typically encountered in CPI and other industries. The alloy also exhibited excellent resistance to pitting and crevice corrosion attack in low pH, high chloride oxidizing environments and had virtual immunity to chloride stress corrosion cracking. These properties allowed this alloy to serve the industrial needs for many years, although it had some limitations. The decades of the 1960's (alloy C-276), 1970's (alloy C-4), 1980's (alloy C-22 and 622) and 1990's (alloy 59, alloy 686 and alloy C-2000) saw newer alloy developments with improvements in corrosion resistance, which not only overcame the limitations of alloy C, but further expanded the horizons of applications as the needs of the CPI became more critical, severe and demanding. Today the originally alloy ''C'' of the 1930's is practically obsolete except for some usage in form of castings. This paper presents a chronology of the various corrosion resistant alloy developments during this century, with special emphasis on the last 70 years evolution in the ''C'' family of Ni-Cr-Mo alloys and their applications. (orig.)

  19. Physico-Chemical Studies Involving Incorporation of Radioactive and Industrial Waste In Cement-Epoxy Resin Matrix

    International Nuclear Information System (INIS)

    Sayed, M.S.; Hafez, N.

    1999-01-01

    Cement and epoxy resin as chemical additives are proposed to incorporate different types of wastes. The study was extended to prepare different mixtures of cement and epoxy resin in presence of some toxic ions. The studied ions were Cd II, Ni II, Cu II, Fe III, Ce IV, 154+152 Eu, phenol and toluene. The physical, mechanical and leaching properties of the mixtures were studied. The thermal analysis and infrared spectra were also investigated. It was observed that all the studied properties of the epoxy modified cement as a disposal matrix was improved

  20. Genetic k-means clustering approach for mapping human vulnerability to chemical hazards in the industrialized city: a case study of Shanghai, China.

    Science.gov (United States)

    Shi, Weifang; Zeng, Weihua

    2013-06-20

    Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k-means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster.