WorldWideScience

Sample records for chemical hydrogen storage

  1. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  2. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  3. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  4. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    Science.gov (United States)

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 .

  5. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  6. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  7. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  8. Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same

    Science.gov (United States)

    Yang, Ralph T.; Li, Yingwei; Qi, Gongshin; Lachawiec, Jr., Anthony J.

    2012-12-25

    A composition for hydrogen storage includes a source of hydrogen atoms, a receptor, and a chemical bridge formed between the source and the receptor. The chemical bridge is formed from a precursor material. The receptor is adapted to receive hydrogen spillover from the source.

  9. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  10. Hydrogen storage

    NARCIS (Netherlands)

    Peters, C.J.; Sloan, E.D.

    2005-01-01

    The invention relates to the storage of hydrogen. The invention relates especially to storing hydrogen in a clathrate hydrate. The clathrate hydrate according to the present invention originates from a composition, which comprises water and hydrogen, as well as a promotor compound. The promotor comp

  11. Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Romain Moury

    2015-04-01

    Full Text Available Hydrazine borane N2H4BH3 and alkali derivatives (i.e., lithium, sodium and potassium hydrazinidoboranes MN2H3BH3 with M = Li, Na and K have been considered as potential chemical hydrogen storage materials. They belong to the family of boron- and nitrogen-based materials and the present article aims at providing a timely review while focusing on fundamentals so that their effective potential in the field could be appreciated. It stands out that, on the one hand, hydrazine borane, in aqueous solution, would be suitable for full dehydrogenation in hydrolytic conditions; the most attractive feature is the possibility to dehydrogenate, in addition to the BH3 group, the N2H4 moiety in the presence of an active and selective metal-based catalyst but for which further improvements are still necessary. However, the thermolytic dehydrogenation of hydrazine borane should be avoided because of the evolution of significant amounts of hydrazine and the formation of a shock-sensitive solid residue upon heating at >300 °C. On the other hand, the alkali hydrazinidoboranes, obtained by reaction of hydrazine borane with alkali hydrides, would be more suitable to thermolytic dehydrogenation, with improved properties in comparison to the parent borane. All of these aspects are surveyed herein and put into perspective.

  12. Effect of chemical potential on the computer simulation of hydrogen storage in single walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Hong; WANG; Shaoqing; CHENG; Huiming

    2004-01-01

    Grand canonical Monte Carlo molecular simulations were carried out for hydrogen adsorption in single-walled carbon nanotubes. It was found that variations in chemical potential may result in a great change in the hydrogen storage capacity of single-walled carbon nanotubes. Hydrogen adsorption isotherms of single-walled carbon nanotubes at 298.15 K were calculated using a modified chemical potential, and the result obtained is closer to the experimental results. By comparing the experimental and simulation results, it is proposed that chemical adsorption may exist for hydrogen adsorption in single-walled carbon nanotubes.

  13. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  14. Development and validation of a slurry model for chemical hydrogen storage in fuel cell vehicle applications

    Science.gov (United States)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-12-01

    The U.S. Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE's Technical Targets and a set of four drive cycles. PNNL developed models to simulate the performance and suitability of slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and an endothermic system based on alane were developed and modeled in Simulink®. Once complete, the reactor and radiator components of the model were validated with experimental data. The system design parameters were adjusted to allow the model to successfully meet a highway cycle, an aggressive cycle, a cold-start cycle, and a hot drive cycle. Finally, a sensitivity analysis was performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction >11 kJ mol-1 H2 generated and a slurry hydrogen capacity of >11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  15. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  16. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  17. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  18. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    Science.gov (United States)

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  19. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  20. Chemical activation of MgH2; a new route to superior hydrogen storage materials.

    Science.gov (United States)

    Johnson, Simon R; Anderson, Paul A; Edwards, Peter P; Gameson, Ian; Prendergast, James W; Al-Mamouri, Malek; Book, David; Harris, I Rex; Speight, John D; Walton, Allan

    2005-06-14

    We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

  1. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  2. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    Science.gov (United States)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  3. Interstitial hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A.

    1980-09-30

    A metal hydride fuel system is described that incorporates a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial refueling is presented.

  4. Materials for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Andreas Züttel

    2003-09-01

    The goal is to pack hydrogen as close as possible, i.e. to reach the highest volumetric density by using as little additional material as possible. Hydrogen storage implies the reduction of an enormous volume of hydrogen gas. At ambient temperature and atmospheric pressure, 1 kg of the gas has a volume of 11 m3. To increase hydrogen density, work must either be applied to compress the gas, the temperature decreased below the critical temperature, or the repulsion reduced by the interaction of hydrogen with another material.

  5. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  6. Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Samuel; Kirikova, Marina [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zaïdi, Warda; Bonnet, Jean-Pierre [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Marre, Samuel; Aymonier, Cyril [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zhang, Junxian; Cuevas, Fermin; Latroche, Michel [ICMPE, CNRS-UPEC, UMR 7182, 2-8 rue Henri Dunant, 94320-Thiais (France); Aymard, Luc [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Bobet, Jean-Louis, E-mail: bobet@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2013-10-15

    Highlights: •Nanoparticles of Pd were deposed on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method. •Numerous parameters were tested and optimized in order to obtain a homogeneous deposition. •At the first step, Pd@Mg0.65Sc0.35 decomposes into ScH{sub 2} and MgH{sub 2} under hydrogen pressure (1 MPa) at 330 °C. •The mixture, after decomposition absorbs hydrogen reversibly on Mg/MgH{sub 2} couple with good kinetics. -- Abstract: The deposition of Pd nanoparticles on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method was performed. There, the SFCD operating parameters (co-solvent, temperature, CO{sub 2} and hydrogen pressure, reaction time) have been optimized to obtain homogeneous deposition of Pd nanoparticles (around 10 nm). The hydrogenation properties of the optimized Pd@Mg{sub 0.65}Sc{sub 0.35} material were determined and compared to those of Mg{sub 0.65}Sc{sub 0.35}Pd{sub 0.024}. The latter compound forms at 300 °C and 1 MPa of H{sub 2} a hydride that crystallizes in the fluorite structure, absorbs reversibly 1.5 wt.% hydrogen and exhibits fast kinetics. In contrast, Pd@Mg{sub 0.65}Sc{sub 0.35} compound decomposes into ScH{sub 2} and MgH{sub 2} during hydrogen absorption under the same conditions. However, reversible sorption reaches 3.3 wt.% of hydrogen while keeping good kinetics. The possible roles of Pd on the hydrogen-induced alloy decomposition are discussed.

  7. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  8. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  9. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  10. High efficiency stationary hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Truslow, S. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  11. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    Science.gov (United States)

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility.

  12. Effects of chemical coating with Ni on electrochemical properties of Mg2Ni hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of nickel coating on the electrochemical properties of Mg2Ni hydrogen storage alloys are presented in this paper. X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques were employed to examine the crystal structure and surface morphologies of the bare and Ni-coated Mg2Ni alloys. The electrochemical properties of alloys were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that Ni coating not only decreased the charge transfer resistance, but also decreased the H atom diflusion resistance for Mg2Ni alloys. It was also found that Ni coating effectively improved the discharge capacity, but decreased the cycling performance of the as-synthesized Ni-coated Mg2Ni alloys. The discharge current has a great impact on the cycling performance of the as-synthesized Ni-coated Mg2Ni alloys.

  13. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  14. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier.......A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...

  15. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  16. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  17. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  18. Chemical, mineralogical and molecular biological characterization of the rocks and fluids from a natural gas storage deep reservoir as a baseline for the effects of geological hydrogen storage

    Science.gov (United States)

    Morozova, Daria; Kasina, Monika; Weigt, Jennifer; Merten, Dirk; Pudlo, Dieter; Würdemann, Hilke

    2014-05-01

    Planned transition to renewable energy production from nuclear and CO2-emitting power generation brings the necessity for large scale energy storage capacities. One possibility to store excessive energy produced is to transfer it to chemical forms like hydrogen which can be subsequently injected and stored in subsurface porous rock formations like depleted gas reservoirs and presently used gas storage sites. In order to investigate the feasibility of the hydrogen storage in the subsurface, the collaborative project H2STORE ("hydrogen to store") was initiated. In the scope of this project, potential reactions between microorganism, fluids and rocks induced by hydrogen injection are studied. For the long-term experiments, fluids of natural gas storage are incubated together with rock cores in the high pressure vessels under 40 bar pressure and 40° C temperature with an atmosphere containing 5.8% He as a tracer gas, 3.9% H2 and 90.3% N2. The reservoir is located at a depth of about 2 000 m, and is characterized by a salinity of 88.9 g l-1 NaCl and a temperature of 80° C and therefore represents an extreme environment for microbial life. First geochemical analyses showed a relatively high TOC content of the fluids (about 120 mg l-1) that were also rich in sodium, potassium, calcium, magnesium and iron. Remarkable amounts of heavy metals like zinc and strontium were also detected. XRD analyses of the reservoir sandstones revealed the major components: quartz, plagioclase, K-feldspar, anhydrite and analcime. The sandstones were intercalated by mudstones, consisting of quartz, plagioclase, K-feldspar, analcime, chlorite, mica and carbonates. Genetic profiling of amplified 16S rRNA genes was applied to characterize the microbial community composition by PCR-SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results indicate the presence of microorganisms belonging to the phylotypes alfa-, beta- and gamma

  19. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  20. Hydrogen storage for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.

    1979-01-01

    Results of an analysis of hydrogen-fueled automobiles are presented as a part of a continuing study conducted by Lawrence Livermore Laboratory (LLL) on Energy Storage Systems for Automobile Propulsion. The hydrogen is stored either as a metal hydride at moderate pressure in TiFe/sub 0/ /sub 9/Mn/sub 0/ /sub 1/H/sub x/ and at low pressure in MgH/sub x/ catalyzed with 10 wt % Ni, or it is stored in hollow glass microspheres at pressures up to about 400 atm. Improved projections are given for the two hydrides, which are used in combination to take advantage of their complementary properties. In the dual-hydride case and in the microsphere case where Ti-based hydride is used for initial operation, hydrogen is consumed in an internal-combustion engine; whereas in the third case, hydrogen from Ti-based hydride is used with air in an alkaline fuel cell/Ni-Zn battery combination which powers an electric vehicle. Each system is briefly described; and the results of the vehicle analysis are compared with those for the conventional automobile and with electric vehicles powered by Pb-acid or Ni-Zn batteries. Comparisons are made on the basis of automobile weight, initial user cost, and life-cycle cost. In this report, the results are limited to those for the 5-passenger vehicle in the period 1985-1990, and are provided as probable and optimistic values.

  1. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  2. Lithium borohydride–melamine complex as a promising material for chemical hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lin; Hu, Daqiang; He, Teng; Zhang, Yao; Wu, Guotao; Chu, Hailiang; Wang, Peikun [Dalian National Laboratory for Clear Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Xiong, Zhitao, E-mail: xzt@dicp.ac.cn [Dalian National Laboratory for Clear Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Chen, Ping [Dalian National Laboratory for Clear Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2013-03-05

    Highlights: ► 3LiBH{sub 4}·C{sub 3}H{sub 6}N{sub 6} was synthesized by ball milling of LiBH{sub 4} and C{sub 3}H{sub 6}N{sub 6}. ► 3LiBH{sub 4}·C{sub 3}N{sub 6}H{sub 6} starts to evolve hydrogen at ca. 100 °C. ► 7.83 wt.% of Hydrogen can be evolved in the temperature range of 100–340 °C. ► Combination reaction between NH and BH can improve dehydrogenation properties. -- Abstract: A complex hydride, 3LiBH{sub 4}·C{sub 3}N{sub 6}H{sub 6}, crystallizing in monoclinic structure with lattice parameters of a = 17.4701 Å, b = 17.6332 Å, c = 4.1749 Å, β = 99.7453° and V = 1267.54 Å{sup 3}, was synthesized by solid reaction between LiBH{sub 4} and C{sub 3}N{sub 6}H{sub 6}. 3LiBH{sub 4}·C{sub 3}N{sub 6}H{sub 6} starts to evolve hydrogen at 100 °C, which is 190 °C lower than that of pristine LiBH{sub 4}. Combination of protic hydrogen of [BH{sub 4}]{sup −} and hydridic hydrogen of NH in 3LiBH{sub 4}·C{sub 3}N{sub 6}H{sub 6} may greatly improve the dehydrogenation properties, and totally 7.83 wt.% H{sub 2} can be released from 3LiBH{sub 4}·C{sub 3}N{sub 6}H{sub 6} in the temperature range of 100–340 °C.

  3. LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

    2005-11-21

    During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

  4. Polyhydride complexes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    Polyhydride metal complexes are being developed for application in hydrogen storage. Efforts have focused on developing complexes with improved available hydrogen weight percentages. We have explored the possibility that complexes containing aromatic hydrocarbon ligands could store hydrogen at both the metal center and in the ligands. We have synthesized novel indenyl hydride complexes and explored their reactivity with hydrogen. The reversible hydrogenation of [IrH{sub 3}(PPh{sub 3})({eta}{sup 5}-C{sub 10}H{sub 7})]{sup +} has been achieved. While attempting to prepare {eta}{sup 6}-tetrahydronaphthalene complexes, we discovered that certain polyhydride complexes catalyze both the hydrogenation and dehydrogenation of tetrahydronaphthalene.

  5. Carbon material for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  6. Hydrogen Storage in Carbon Nanotubes

    Science.gov (United States)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  7. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  8. Hydrogen storage container

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  9. Nanoporous polymers for hydrogen storage.

    Science.gov (United States)

    Germain, Jonathan; Fréchet, Jean M J; Svec, Frantisek

    2009-05-01

    The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail.

  10. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  11. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Lipinska, Kris [PI; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not

  12. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  13. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  14. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  15. NREL Advances Spillover Materials for Hydrogen Storage (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This fact sheet describes NREL's accomplishments in advancing spillover materials for hydrogen storage and improving the reproducible synthesis, long-term durability, and material costs of hydrogen storage materials. Work was performed by NREL's Chemical and Materials Science Center.

  16. Hydrogen storage development

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E. [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  17. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    Polyhydride metal complexes are being developed for application to hydrogen storage. Complexes have been found which catalyze the reversible hydrogenation of unsaturated hydrocarbons. This catalytic reaction could be the basis for a low temperature, hydrogen storage system with a available hydrogen density greater than 7 weight percent. The P-C-P pincer complexes, RhH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) and IrH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) have unprecedented, long term stability at elevated temperatures. The novel iridium complex catalyzes the transfer dehydrogenation of cycloctane to cyclooctene at the rate of 716 turnovers/h which is 2 orders of magnitude greater than that found for previously reported catalytic systems which do not require the sacrificial hydrogenation of a large excess of hydrogen acceptor.

  18. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  19. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts.

  20. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  1. Hydrogen storage in graphite nanofibres : new developments

    Energy Technology Data Exchange (ETDEWEB)

    Shutz, W. [Vodafone Pilotentwicklung GmbH, Munich (Germany); Maneck, E. [Bundesanstalt fur Materialforschung, Berlin (Germany)

    2002-07-01

    Carbon materials show high potential as candidates for hydrogen storage for automotive applications, but the price of hydrogen-driven vehicles is too high and customer acceptance is low. In this study, carbon nanofibers were synthesized through the reaction of carbon containing gases over a suitable catalyst. Essentially, carbon nanofibres were created by chemical catalytic vapour deposition of carbon containing gases using a horizontal quartz tube reactor at 500 to 1000 degrees C. The size and shape of the product was found to be dependent on the catalyst used and by the reaction temperature and time. The presentation illustrates gravimetric and volumetric storage capacity measurements, pressure dependent X-ray diffraction and temperature programmed desorption spectroscopy measurements. It was shown that the intercalated hydrogen in carbon nanofibers can be released during heating. Future studies will focus on examining the effects of the interaction between carbon nanofibers and hydrogen with focus on the potential of these materials for technical use in hydrogen storage systems. 7 refs., 2 figs.

  2. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  3. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  4. Applying Study of Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin-ming; JIANG Hai; YIN Shao-hui; TIAN Zhi-gang

    2005-01-01

    Hydrogen is an important source of energy. The natural resouces of hydrogen is plenty and it gives us lots of heat, and it is clean. One of difficulties of developing hydrogen sources of energy is hydrogen storage. Hydrogen storage tank is either dangous or a little of capacity. Liquid hydrogen occupys small space. Liquefaction temprature of hydrogen is - 253℃and need better heat insulation protection, the volumn and weight of heat insulation layer are equal to hydrogen storage tank. Hydrogen storage utillizing hydrogen storage material is a very safety、 economical and effective method. Hydrogen storage material is either a medium of solid hydrogen storage or is negative pole active material of Ni-H battery,and is the one of key technoloy of fuel and Ni-H battery, it is an important material of new sources of energy too. Nanotechnology is introduced Mg-matrix hydrogen storage alloy and is achieved progress gteatly,but hydrogen storage alloy need be mede further improvment on applying investigation.

  5. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  6. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  7. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  8. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  9. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  10. Hydrogen storage with titanium-functionalized graphene

    CERN Document Server

    Mashoff, Torge; Tanabe, Shinichi; Hibino, Hiroki; Beltram, Fabio; Heun, Stefan

    2013-01-01

    We report on hydrogen adsorption and desorption on titanium-covered graphene in order to test theoretical proposals to use of graphene functionalized with metal atoms for hydrogen storage. At room temperature titanium islands grow with an average diameter of about 10 nm. Samples were then loaded with hydrogen, and its desorption kinetics was studied by thermal desorption spectroscopy. We observe the desorption of hydrogen in the temperature range between 400K and 700 K. Our results demonstrate the stability of hydrogen binding at room temperature and show that hydrogen desorbs at moderate temperatures in line with what required for practical hydrogen-storage applications.

  11. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  12. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  13. Solid-State Hydrogen Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Availability of a safe, low-pressure, lightweight, compact hydrogen storage system is an enabling technology for hydrogen electric fuel cell usage for space...

  14. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  15. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  16. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  17. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted.

  18. Effective hydrogen storage: a strategic chemistry challenge.

    Science.gov (United States)

    David, William I F

    2011-01-01

    This paper gives an overview of the current status and future potential of hydrogen storage from a chemistry perspective and is based on the concluding presentation of the Faraday Discussion 151--Hydrogen Storage Materials. The safe, effective and economical storage of hydrogen is one of the main scientific and technological challenges in the move towards a low-carbon economy. One key sector is transportation where future vehicles will most likely be developed around a balance of battery-electric and hydrogen fuel-cell electric technologies. Although there has been a very significant research effort in solid-state hydrogen storage, high-pressure gas storage combined with conventional metal hydrides is still seen as the current intermediate-term candidate for car manufacturers. Significant issues have arisen in the search for improved solid-state hydrogen storage materials; for example, facile reversibility has been a major challenge for many recently studied complex hydrides while physisorption in porous structures is still restricted to cryogenic temperatures. However, many systems fulfil the majority of necessary criteria for improved hydrogen storage--indeed, the discovery of reversibility in multicomponent hydride systems along with recent chemistry breakthroughs in off-board and solvent-assisted regeneration suggest that the goal of both improved on-board reversible and off-board regenerated hydrogen storage systems can be achieved.

  19. Sodium Alanate Nanoparticles for Hydrogen Storage

    NARCIS (Netherlands)

    Baldé, C.P.

    2008-01-01

    Preparation and characterization of sodium alanate (NaAlH4) based hydrogen storage materials are described in this book. The effect of the NaAlH4 particle size, particularly in the nanometer size range deposited on carbon materials, will be linked to the hydrogen storage characteristics. Moreover, r

  20. Study on Hydrogen Storage Materials

    Science.gov (United States)

    Sugiyama, Jun

    2016-09-01

    Complex hydrides have been heavily investigated as a hydrogen storage material, particularly for future vehicular applications. The present major problem of such complex hydrides is their relatively high hydrogen desorption temperature (Td). In order to find a predominant parameter for determining Td, we have investigated internal nuclear magnetic fields in several complex hydrides, such as, lithium and sodium alanates, borohydrides, and magnesium hydrides, with a muon spin rotation and relaxation (μ+SR) technique. At low temperatures, the μ+SR spectrum obtained in a zero external field (ZF) exhibits a clear oscillation due to the formation of a three spin 1/2 system, HμH, besides Mg(BH4)2 and Sc(BH4)2. Such oscillatory signal becomes weaker and weaker with increasing temperature, and finally disappears above around room temperature. However, the volume fraction of the HμH signal to the whole asymmetry at 5 K is found to be a good indicator for Td in borohydrides. At high temperatures, on the contrary, the ZF-spectrum for MgH2 shows a Kubo-Toyabe like relaxation due to a random nuclear magnetic field of 1H. Such nuclear magnetic field becomes dynamic well below Td in the milled MgH2, indicating a significant role on H-diffusion in solids for determining Td.

  1. Hydrogen solubility in rare earth based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Hirohisa [Tokai Univ., Kanagawa (Japan). School of Engineering; Kuji, Toshiro [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan)

    1999-09-01

    This paper reviews significant results of recent studies on the hydrogen storage properties of rare earth based AB{sub 5} (A: rare earth element, B: transition element) alloys The hydrogen solubility and the hydride formation, typically appeared in pressure-composition isotherms (PCT), are strongly dependent upon alloy composition, structure, morphology and even alloy particle size. Typical experimental results are shown to describe how these factors affect the hydrogen solubility and storage properties.

  2. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...... ammonia and benefits from the properties of ammonia as a fuel. The system can be used as a safe, reversible, low-cost hydrogen carrier....

  3. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks.

  4. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  5. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  6. Hydrogen storage in metal-organic frameworks.

    Science.gov (United States)

    Hu, Yun Hang; Zhang, Lei

    2010-05-25

    Metal-organic frameworks (MOFs) are highly attractive materials because of their ultra-high surface areas, simple preparation approaches, designable structures, and potential applications. In the past several years, MOFs have attracted worldwide attention in the area of hydrogen energy, particularly for hydrogen storage. In this review, the recent progress of hydrogen storage in MOFs is presented. The relationships between hydrogen capacities and structures of MOFs are evaluated, with emphasis on the roles of surface area and pore size. The interaction mechanism between H(2) and MOFs is discussed. The challenges to obtain a high hydrogen capacity at ambient temperature are explored.

  7. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  8. Storage, transmission and distribution of hydrogen

    Science.gov (United States)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  9. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  10. Hydrogen storage and delivery system development

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Wally, K.; Raber, T.N. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  11. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  12. Hydrogen storage and delivery system development: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Malinowski, M.E.; Wally, K. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  13. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  14. Recent progress in hydrogen storage

    Directory of Open Access Journals (Sweden)

    Ping Chen

    2008-12-01

    Full Text Available The ever-increasing demand for energy coupled with dwindling fossil fuel resources make the establishment of a clean and sustainable energy system a compelling need. Hydrogen-based energy systems offer potential solutions. Although, in the long-term, the ultimate technological challenge is large-scale hydrogen production from renewable sources, the pressing issue is how to store hydrogen efficiently on board hydrogen fuel-cell vehicles1,2.

  15. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  16. Hydrogen transport and storage in engineered microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G. [Lawrence Livermore National Lab., CA (United States); Hendricks, C. [W.J. Schafer Associates, Livermore, CA (United States)

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  17. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  18. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  19. Hydrogen storage in Li-doped metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Himsl, D.; Hartmann, M. [Erlangen-Nuernberg Univ., Erlangen (Germany). Erlangen Catalysis Resource Center

    2010-12-30

    Porous Metal-Organic Frameworks have been considered as potential materials for solid state hydrogen storage in recent times. In this context their properties like high permanent porosity, large surface area and the ease of chemical modification due their modular assembly are highly attractive. Unfortunately these materials suffer from low physisorption interaction energies with hydrogen and consequently the need for low adsorption temperatures (77 K) to achieve sufficient hydrogen loadings. One possible approach to overcome the outlined problem is the introduction of unsaturated metal sites within the interior MOF surface to strengthen the adsorbate-adsorbent interaction. We established the functionalization with lithiumalkoxide groups via a post-synthetic transformation of pendant hydroxyl groups with a suitable lithium base. Our results show a significant increase of the isosteric heat of adsorption for hydrogen within the lithium-containing material, thus showing that our approach is a promising strategy to make hydrogen storage in Metal-Organic Frameworks more efficient. (orig.)

  20. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  1. Superior hydrogen storage in high entropy alloys

    Science.gov (United States)

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-01

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  2. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  3. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  4. Hydrogen storage systems from waste Mg alloys

    Science.gov (United States)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  5. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  6. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  7. GTI's hydrogen programs: hydrogen production, storage, and applications

    Institute of Scientific and Technical Information of China (English)

    范钦柏

    2006-01-01

    The use of hydrogen as an energy carrier could help address our concerns about energy security, global climate change,and air quality. Fuel cells are an important enabling technology for the Hydrogen Future and have the potential to revolutionize theway we power our nation, offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels.For over 45 years, GTI has been active in hydrogen energy research, development and demonstration. The Institute has extensive experience and on-going work in all aspects of the hydrogen energy economy including production, delivery, infrastructure,use, safety and public policy. This paper discusses the recent GTI programs in hydrogen production, hydrogen storage, and proton exchange membrane fuel cells (PEMFC) and solid oxide fuel cells (SOFC).

  8. Simultaneous purification and storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Weber, R.; Carlson, E. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-08-01

    Specially coated magnesium particles have been shown to selectively absorb hydrogen from a hydrogen-rich gas stream such as reformate. These coated magnesium particles can store the absorbed hydrogen as required and subsequently deliver pure hydrogen, just as uncoated magnesium particles can. These coated magnesium particles could be used in a device that accepts a steady stream of reformate, as from a methane reformer, stores the selectively absorbed hydrogen indefinitely, and delivers purified hydrogen on demand. Unfortunately, this coating (magnesium nitride) has been shown to degrade over a period of several weeks, so that the magnesium within evidences progressively lower storage capacity. The authors are investigating two other coatings, one of which might be applicable to hydridable metals other than magnesium, to replace magnesium nitride.

  9. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  10. Multi-component hydrogen storage material

    Science.gov (United States)

    Faheem, Syed A.; Lewis, Gregory J.; Sachtler, J.W. Adriaan; Low, John J.; Lesch, David A.; Dosek, Paul M.; Wolverton, Christopher M.; Siegel, Donald J.; Sudik, Andrea C.; Yang, Jun

    2010-09-07

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0hydrogen storage compared to binary systems such as MgH.sub.2--LiNH.sub.2.

  11. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  12. Hydrogen Storage Properties of Ti1.2Fe+xCa Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrogen storage properties of Ti1.2Fe+xCa (x=1%, 3% and 5% in mass fraction) alloys was investigated. Results show that the modified alloys can be activated without any thermal treatment at room temperature due to the addition of Ca and excess Ti in the alloys. Hydrogen storage properties of these modified alloys vary with Ca amount and reaction temperature. In addition, the influence mechanism of the addition of Ca and excessive Ti on the activation behavior and hydrogen storage capacity of the alloys was discussed.

  13. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  14. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  15. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Zidan, R.A. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  16. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  17. Modified borohydrides for reversible hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Au, Ming

    2005-08-29

    In attempt to develop lithium borohydrides as the reversible hydrogen storage materials with the high capacity, the feasibility to reduce dehydrogenation temperature of the lithium borohydride and moderate rehydrogenation condition has been explored. The commercial available lithium borohydride has been modified by ball milling with metal oxides and metal chlorides as the additives. The modified lithium borohydrides release 9 wt% hydrogen starting from 473K. The dehydrided modified lithium borohydrides absorb 7-9 wt% hydrogen at 873K and 7 MPa. The additive modification reduces dehydriding temperature from 673K to 473K and moderates rehydrogenation conditions to 923K and 15 MPa. XRD and SEM analysis discovered the formation of the intermediate compound TiB{sub 2} that may plays the key role in change the reaction path resulting the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide modified lithium borohydrides decreases gradually during hydriding-dehydriding cycling due to the lost of the boron during dehydrogenation. But, it can be prevented by selecting the suitable additive, forming intermediate boron compounds and changing the reaction path. The additives reduce dehydriding temperature and improve the reversibility, it also reduces the hydrogen storage capacity. The best compromise can be reached by optimization of the additive loading and introducing new process other than ball milling.

  18. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  19. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John

    2016-09-22

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ³11 wt% and ³80 g/L that can deliver hydrogen and be recharged at moderate temperatures (£100 °C) and pressures (£100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement. For the first approach, possible pairs of ternary borides and mixed-metal borohydrides based on Mg with various first row transition metals were investigated both experimentally and theoretically. In particular, the Mg/Mn ternary boride and mixed-metal borohydride were found to be a suitable pair and

  20. Evolution of Hydrogen Storage Alloys Prepared by Special Methods

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Zhang Ximin; Jing Hai; Li Chengdong; Xu Jun

    2004-01-01

    Microstructure characteristics and electrochemical properties of hydrogen storage alloys prepared by gas atomization, melt spinning and strip casting respectively were outlined.The advantages, disadvantages and research development of the above methods for preparing hydrogen storage alloys were explained.The strip casting is a new special means for preparing AB5 rare earth hydrogen storage alloys of high performance and low cost, and the study of the strip casting for preparing hydrogen storage alloys is presented specially.

  1. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  2. Vehicular hydrogen storage using lightweight tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Weisberg, A H; Myers, B

    2000-07-22

    Lightweight hydrogen storage for vehicles is enabled by adopting and adapting aerospace tankage technology. The weight, volume, and cost are already acceptable and improving. Prototype tankage was demonstrated with 11.3% hydrogen by weight, 1.74 million inch (44.3 km) burst performance factor (P{sub b}V/W), and 3.77 kWh/kg specific energy for the tank and hydrogen (LHV). DOE cannot afford full scale aerospace development costs. For example, it costs many tens of $M to develop a rocket motor casing with a safety factor (SF) of 1.25. Large teams of experts are required to design, develop, and test new processes. Car companies are buying existing technology with only modest investments in research and development (R&D). The Lawrence Livermore National Laboratory (LLNL) team is maximizing the leverage from DOE funding by joining with industry to solve technical risks at the component level. LLNL is developing fabrication processes with IMPCO Technologies, Thiokol Propulsion, and Aero Tec Laboratories (ATL). LLNL is creating commercial products that are close to adoption under DOE solicitation. LLNL is breaking ground to achieve greater than 10% hydrogen by weight tankage with safety that exceeds the requirements of NGV2 standards modified for hydrogen. Risk reduction is proceeding along three axes: (1) Commercializable products will be available next year with {approx}90% confidence; (2) R&D progress is pushing the envelope in lightweight tankage for vehicles; and (3) Integration challenges are being met with partners in industry and DOE demo programs. This project is a key part of LLNL's effort to develop high cycle life energy storage systems with >600 Wh/kg specific energy for various applications, including: high altitude long endurance solar rechargeable aircraft, zero emission vehicles, hybrid energy storage/propulsion systems for spacecraft, energy storage for premium power, remote power sources, and peak shaving.

  3. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  4. Modeling of vehicular hydrogen storage transfer processes

    Energy Technology Data Exchange (ETDEWEB)

    Viola, J.; Ventner, R.D. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering; Bose, T.; Benard, P. [Quebec Univ., Trois-Rivieres, PQ (Canada)

    2003-07-01

    The acceptance of hydrogen as an alternate fuel for powering vehicles depends on several factors, such as the performance properties of hydrogen fuels, the behaviour of the vehicle in terms of power response, and the handling of the fuel during the transfer operation to the vehicle. This paper presents a study which examined the transfer of fuel and compared the fueling processes of several hydrogen storage methods on a vehicle. The study involved a computer-simulation of different hydrogen storage systems to compare the characteristics of the various transfer processes. The thermodynamics of hydrogen transfer from a defined initial condition to its final state was studied. Tabulations of energy requirements, temperature and pressure variations, and limitations concerning the transfer rate were provided. The fueling procedure was simulated using dynamic models, and the components from the initial to the final equilibrium state within the vehicle were characterized. The fluctuations in the system during the physical transfer operations were illustrated. Some of the safety risks include passive risks from toxic and low temperature or cryogenic effects, and explosion and combustion. The authors used fuzzy analysis of survey results to examine safety, which is more subjective in nature than the other properties modeled. An introduction to fuzzy logic was presented, followed by a description of the method used. 2 refs., 7 figs.

  5. Coupling of exothermic and endothermic hydrogen storage materials

    Science.gov (United States)

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the energy barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during dehydrogenation can improve onboard energy efficiency and thermal control for the system, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetic considerations. In this work, models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. Modeling results show that the coupling efficiency of exothermic and endothermic reactions is more sensitive to the ratio of the exothermic and endothermic enthalpies than to the ratio of the rates of the two steps. Modeling results also show that a slower endothermic step rate is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first published insight into the required temperature range to maximize the hydrogen release from 1,2-BN cyclohexane and indoline.

  6. Use of hydrogen within a chemical Verbund

    Energy Technology Data Exchange (ETDEWEB)

    Blankertz, H.J.; Gall, M. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    Hydrogen is an essential building block within the value chains of chemical Verbund sites, even though it is not a product targeted within the sales portfolio of a chemical company. At most sites not only Hydrogen, but also the other products of a Synthesisgas plant - Carbonmonoxide and Oxogas (mixture of Hydrogen and Carbonmonoxide) - are needed as well. A predominant portion of the plants within a Verbund depends on its supply. So within a chemical Verbund the challenge is to supply these gases in varying load situations, utilize respective co-produced gases from other plants and do so with highest availability and flexibility. As storage of substantial gas quantities is not economically feasible, buffer capacity is very limited. This makes these gas supply networks very stiff, which means that every change within the system causes immediate effect. Transportation of gases in large volumes via road or rail is economically not feasible, therefore the gases supply of a Verbund site is a customized local set-up. For newly developed demand it has to be evaluated whether an own investment or purchase of respective gas quantities (dedicated plant or supply via pipeline operated by gas companies) is the most economic concept. Future challenges will be limited availability of conventional liquid and gaseous fossil feedstocks, still increasing demand especially in Asia and effects caused by regulations and consumer behaviour related to sustainability and environmental aspects. We will need new, improved and proven technologies to manage these challenges. (Published in summary form only) (orig.)

  7. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  8. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  9. Palladium based nanomaterials for enhanced hydrogen spillover and storage

    Directory of Open Access Journals (Sweden)

    Suresh K. Konda

    2016-03-01

    Full Text Available Hydrogen storage remains one of the most challenging prerequisites to overcome toward the realization of a hydrogen based economy. The use of hydrogen as an energy carrier for fuel cell applications has been limited by the lack of safe and effective hydrogen storage materials. Palladium has high affinity for hydrogen sorption and has been extensively studied, both in the gas phase and under electrochemical conditions. In this review, recent advancements are highlighted and discussed in regard to palladium based nanomaterials for hydrogen storage, as well as the effects of hydrogen spillover on various adsorbents including carbons, metal organic frameworks, covalent organic frameworks, and other nanomaterials.

  10. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  11. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, Mike [Ford Motor Company, Dearborn, MI (United States); Purewal, Justin [Ford Motor Company, Dearborn, MI (United States); Xu, Chunchuan [Ford Motor Company, Dearborn, MI (United States); Yang, Jun [Ford Motor Company, Dearborn, MI (United States); Blaser, Rachel [Ford Motor Company, Dearborn, MI (United States); Sudik, Andrea [Ford Motor Company, Dearborn, MI (United States); Siegel, Don [Univ. of Michigan, Ann Arbor, MI (United States); Ming, Yang [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Dong' an [Univ. of Michigan, Ann Arbor, MI (United States); Chi, Hang [Univ. of Michigan, Ann Arbor, MI (United States); Gaab, Manuela [BASF SE, Ludwigshafen (Germany); Arnold, Lena [BASF SE, Ludwigshafen (Germany); Muller, Ulrich [BASF SE, Ludwigshafen (Germany)

    2015-06-30

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence for materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis

  12. Coupling of exothermic and endothermic hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the thermodynamic and kinetic barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during the dehydrogenation can improve the system on-board energy efficiency and thermal control, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetics considerations. Models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. These modeling results show that the efficiency of coupling of an exothermic and endothermic reaction is more sensitive the magnitude of the ratio of the exothermic and endothermic enthalpies than the ratio of the rates of the two steps. The modeling shows further that a slower rate of the endothermic step is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first insight into the required temperature range to maximize the H2 release from 1,2-BN cyclohexane and indoline.

  13. Theoretical study of hydrogen storage in a truncated tetrahedron hydrocarbon

    Science.gov (United States)

    Ishikawa, Shigeru; Yamabe, Tokio

    2017-02-01

    A hydrocarbon molecule, having a truncated tetrahedron shape with a suitable size for the storage of a hydrogen molecule, is designed using quantum chemical methods. The molecule consists of four benzene rings bridged by six vinylene groups at the 1, 3, and 5 carbon positions of each ring, and has a stoichiometry of C36H24. The molecular geometry optimized under T d symmetry by the B3LYP/cc-pVTZ method shows no imaginary frequencies. The size of the molecular cavity, measured by the distance between opposite vinylene groups, is 8.0 Å. The cavity has four openings along each tetrahedron face. The radius of the opening is approximately 2 Å. The system interacting with a hydrogen molecule is optimized by the MP2/cc-pVTZ method. The interaction energy is evaluated by an extrapolation method through increasing the basis set size of the hydrogen molecule from the cc-pVTZ to the cc-pV6Z with counterpoise corrections. The hydrogen molecule enters the opening by overcoming an energy barrier of +730 meV and locates at the center of the cavity with a binding energy of -140 meV. The high barrier arises from the small size of the opening. The binding energy is three times larger than that of a graphite surface and may allow hydrogen storage at milder temperatures and pressures than those required with graphite.

  14. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  15. Performance of hydrogen storage of carbon nanotubes decorated with palladium

    Institute of Scientific and Technical Information of China (English)

    木士春; 唐浩林; 钱胜浩; 潘牧; 袁润章

    2004-01-01

    Carbon nanotubes(CNTs) decorated with palladium were synthesized and applied to hydrogen storage of gas phase. The results show that the amount of hydrogen storage of the decorated CNTs is up to 3.9 % (mass fraction), of which, almost 85% H2 can be desorbed at ambient temperature and pressure, while the non-decorated CNTs has a poor performance of hydrogen storage(only about 0.5% H2, mass fraction). These indicate that it is feasible to enhance the performance of hydrogen storage of CNTs by further decoration with hydrogen-storing metals or alloys.

  16. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures.

    Science.gov (United States)

    Cheng, Fangyi; Tao, Zhanliang; Liang, Jing; Chen, Jun

    2012-07-28

    Efficient hydrogen storage plays a key role in realizing the incoming hydrogen economy. However, it still remains a great challenge to develop hydrogen storage media with high capacity, favourable thermodynamics, fast kinetics, controllable reversibility, long cycle life, low cost and high safety. To achieve this goal, the combination of lightweight materials and nanostructures should offer great opportunities. In this article, we review recent advances in the field of chemical hydrogen storage that couples lightweight materials and nanostructures, focusing on Mg/MgH(2)-based systems. Selective theoretical and experimental studies on Mg/MgH(2) nanostructures are overviewed, with the emphasis on illustrating the influences of nanostructures on the hydrogenation/dehydrogenation mechanisms and hydrogen storage properties such as capacity, thermodynamics and kinetics. In particular, theoretical studies have shown that the thermodynamics of Mg/MgH(2) clusters below 2 nm change more prominently as particle size decreases.

  17. [Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates].

    Science.gov (United States)

    Meng, Qing-guo; Liu, Chang-ling; Ye, Yu-guang; Li, Cheng-feng

    2012-08-01

    Recently, hydrogen storage using clathrate hydrate as a medium has become a hotspot of hydrogen storage research In the present paper, the laser Raman spectroscopy was used to study the hydrogen storage in nitrogen hydrate. The synthetic nitrogen hydrate was reacted with hydrogen gas under relatively mild conditions (e.g., 15 MPa, -18 degrees C). The Raman spectra of the reaction products show that the hydrogen molecules have enclathrated the cavities of the nitrogen hydrate, with multiple hydrogen cage occupancies in the clathrate cavities. The reaction time is an important factor affecting the hydrogen storage in nitrogen hydrate. The experimental results suggest that nitrogen hydrates are expected to be an effective media for hydrogen storage.

  18. Hydrogen Fire in a Storage Vessel

    Science.gov (United States)

    Hester, Zena M.

    2010-01-01

    On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor

  19. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  20. Surface analysis, hydrogen adsorption and electrochemical performance of alkali-reduce treated hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    陈卫祥; 徐铸德; 涂江平; 李海洋; 陈石; 袁俊; 鲍世宁

    2002-01-01

    The hydrogen storage alloy powders (MlNi4.0Co0.6Al0.4, Ml=rich-La mischmetal) were treated in a hot 6mol/L KOH+0.02mol/L KBH4 solution, the surface compositions and chemical states of the treated and untreated alloys were analyzed by XPS and EDX, the hydrogen adsorption on the surface of these alloys was evaluated by thermal desorption spectroscopy (TDS), the effects of the surface treatment on the electrochemical performances of the alloy electrodes were investigated. The results show that the hydrogen adsorption is greatly strengthened by the surface modification, and hence leads to marked improvement in the electrocatalytic activity, the treated alloy exhibits higher exchange current density and lower apparent activation energy for the hydrogen electrode reaction than the untreated alloy.

  1. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  2. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  3. Hydrogen Storage Performance in Pd/Graphene Nanocomposites.

    Science.gov (United States)

    Zhou, Chunyu; Szpunar, Jerzy A

    2016-10-05

    We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).

  4. Compressorless Gas Storage and Regenerative Hydrogen Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microwave regenerative sorption media gas storage/delivery techniques are proposed to address both compressed gas management and hydrogen purification requirements...

  5. Storage of hydrogen in floating catalytic carbon nanotubes after graphitizing

    Institute of Scientific and Technical Information of China (English)

    朱宏伟; 李雪松; 慈立杰; 徐才录; 毛宗强; 梁吉; 吴德海

    2002-01-01

    Hydrogen storage under moderate pressure (~10 Mpa) and ambient temperature (~25℃) in multi-walled carbon nanotubes (MWNTs) prepared by the floating catalyst method is investigated. The capacity of hydrogen adsorption is evaluated based on both the nanotubes diameter and morphology. Indirect evidence indicates that hydrogen adsorption not only occurs on tube surface and interiors, but also in tube interlayers. The results show that the floating catalytic carbon nanotubes might be a candidate hydrogen storage material for fuel cell electric vehicles.

  6. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  7. Nanostructured polymeric materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia [Argonne National Lab. (ANL), Argonne, IL (United States; Yu, Luping [Argonne National Lab. (ANL), Argonne, IL (United States

    2013-03-01

    The objective of this project is to develop a new class of hydrogen storage adsorbent, nanostructured porous organic polymers (POPs), through collaboration between Argonne National Laboratory and The University of Chicago. POPs have excellent thermal stability and tolerance to gas contaminants such as moisture. They also have low skeleton density and high intrinsic porosity via covalent bonds, capable of maintaining specific surface area (SSA) during high pressure pelletizing for better volumetric density. Furthermore, they can be produced at a commercial scale with the existing industrial infrastructure. The team’s approach focused on improving hydrogen uptake capacity and the heat of adsorption by enhancing SSA, porosity control, and framework-adsorbate interactions through rational design and synthesis at the molecular level. The design principles aim at improving the following attributes of the polymers: (a) high SSA to provide sufficient interface with H2; (b) narrow pore diameter to enhance van der Waals interactions in the confined space; and (c) “metallic” features, either through π- conjugation or metal doping, to promote electronic orbital interactions with hydrogen.

  8. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  9. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  10. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  11. Effects of structure and surface properties on carbon nanotubes' hydrogen storage characteristics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen adsorption experiments were carried out in special stainless steel vessels at room temperature (298K) and under 10 MPa using self-synthesized multi-walled carbon nanotubes. In the experiments, carbon nanotubes synthesized by the seeded catalyst method were pretreated by being soaked in chemical reagents or annealed at high temperature before they were used to adsorb hydrogen, but their capacity for hydrogen storage was still poor. Carbon nanotubes synthesized by the floating catalyst method were found to be able to adsorb more hydrogen. They have a hydrogen storage capacity of over 4% after they were annealed at high temperatures, which suggested that they could be used as a promising material for hydrogen storage.``

  12. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  13. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.

    Science.gov (United States)

    Srinivasadesikan, V; Raghunath, P; Lin, M C

    2015-06-01

    Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

  14. Hydrogen storage in Chabazite zeolite frameworks.

    Science.gov (United States)

    Regli, Laura; Zecchina, Adriano; Vitillo, Jenny G; Cocina, Donato; Spoto, Giuseppe; Lamberti, Carlo; Lillerud, Karl P; Olsbye, Unni; Bordiga, Silvia

    2005-09-07

    We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjørgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Brønsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Brønsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Brønsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Brønsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage.

  15. Material synthesis and hydrogen storage of palladium-rhodium alloy.

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, Enrique J. (University of California, Davis); Yang, Nancy Y. C.; Ong, Markus D. (Whithworth University, Spokane, WA)

    2011-08-01

    Pd and Pd alloys are candidate material systems for Tr or H storage. We have actively engaged in material synthesis and studied the material science of hydrogen storage for Pd-Rh alloys. In collaboration with UC Davis, we successfully developed/optimized a supersonic gas atomization system, including its processing parameters, for Pd-Rh-based alloy powders. This optimized system and processing enable us to produce {le} 50-{mu}m powders with suitable metallurgical properties for H-storage R&D. In addition, we studied hydrogen absorption-desorption pressure-composition-temperature (PCT) behavior using these gas-atomized Pd-Rh alloy powders. The study shows that the pressure-composition-temperature (PCT) behavior of Pd-Rh alloys is strongly influenced by its metallurgy. The plateau pressure, slope, and H/metal capacity are highly dependent on alloy composition and its chemical distribution. For the gas-atomized Pd-10 wt% Rh, the absorption plateau pressure is relatively high and consistent. However, the absorption-desorption PCT exhibits a significant hysteresis loop that is not seen from the 30-nm nanopowders produced by chemical precipitation. In addition, we observed that the presence of hydrogen introduces strong lattice strain, plastic deformation, and dislocation networking that lead to material hardening, lattice distortions, and volume expansion. The above observations suggest that the H-induced dislocation networking is responsible for the hysteresis loop seen in the current atomized Pd-10 wt% Rh powders. This conclusion is consistent with the hypothesis suggested by Flanagan and others (Ref 1) that plastic deformation or dislocations control the hysteresis loop.

  16. Hydrogen Peroxide Storage in Small Sealed Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  17. Low-Cost Precursors to Novel Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This

  18. Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-06-13

    A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated.

  19. Nanoporous metal organic framework materials for hydrogen storage

    Institute of Scientific and Technical Information of China (English)

    Bo Xiao; Qingchun Yuan

    2009-01-01

    Hydrogen is expected to play an important role in future transportation as a promising alternative clean energy source to carbon-based fuels.One of the key challenges to commercialize hydrogen energy is to develop appropriate onboard hydrogen storage systems,capable of charging and discharging large quantities of hydrogen with fast enough kinetics to meet commercial requirements.Metal organic framework (MOF) is a new type of inorganic and organic hybrid nanoporous particulate materials.Its diverse networks can enhance hydrogen storage through tuning the structure and property of MOFs.The MOF materials so far developed adsorb hydrogen through weak disperston interactions,which allow significant quantity of hydrogen to be stored at cryogenic temperatures with fast kinetics.Novel MOFs are being developed to strengthen the interactions between hydrogen and MOFs in order to store hydrogen under ambient conditions.This review surveys the development of such candidate materials,their performance and future research needs.

  20. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage.

    Science.gov (United States)

    Zhou, Chunyu; Szpunar, Jerzy A; Cui, Xiaoyu

    2016-06-22

    We have designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene substrate. This system exhibits attractive features like high gravimetric density, ambient conditions, and low activation temperature for hydrogen release. When charged at room temperature and an atmospheric hydrogen pressure of 1 bar, it could yield a hydrogen capacity of 0.14 wt %. When hydrogen pressure increased to 60 bar, the sorbent had a hydrogen gravimetric density of 1.18 wt %. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C.

  1. Simulation and Modelling of MOFs for Hydrogen Storage

    OpenAIRE

    Başdoğan, Yasemin; Keskin Avcı, Seda

    2015-01-01

    Metal organic frameworks (MOFs) have received significant attention in recent years both from academia and industry since this new class of nanoporous materials has many potential advantages over traditional nanoporous materials in gas storage and separation applications. Hydrogen storage has been one of the most widely investigated applications of MOFs and recent experimental studies have shown that several MOFs are promising for hydrogen storage at low temperatures and moderate pressures. I...

  2. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or combinatio

  3. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal.

    Science.gov (United States)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-08-21

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.

  4. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  5. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  6. Hydrogen storage studies of palladium decorated nitrogen doped graphene nanoplatelets.

    Science.gov (United States)

    Vinayan, B P; Sethupathi, K; Ramaprabhu, S

    2012-08-01

    Hydrogen storage in materials is of significant importance in the present scenario of depleting conventional energy sources. Porous solids such as activated carbon or nanostructured carbon materials have promising future as hydrogen storage media. The hydrogen storage capacity in nanostructured carbon materials can be further enhanced by atomic hydrogen spillover from a supported catalyst. In the present work, the hydrogen storage properties of nitrogen doped graphene nanoplatelets (N-GNP) and palladium decorated nitrogen doped graphene nanoplatelets (Pd/N-GNP) have been investigated. The results show that hydrogen uptake capacity of nitrogen doped graphene nanoplatelets and palladium decorated nitrogen doped graphene nanoplatelets at pressure 32 bar and temperature 25 degrees C is 0.42 wt% and 1.25 wt% respectively. The dispersion of palladium nanoparticles increases the hydrogen storage capacity of nitrogen doped graphene nanoplatelets by 0.83 wt%. This may be due to high dispersion of palladium nanoparticles and strong adhesion between metal and graphene nanoplatelets over the surface of N-GNP, which enhances the spillover mechanism. Thus, an increase in the hydrogen spillover effect and the binding energy between metal nanoparticles and supporting material achieved by nitrogen doping has been observed to result in a higher hydrogen storage capacity of pristine GNP.

  7. Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices

    DEFF Research Database (Denmark)

    Bishop, S.R.; Marrocchelli, D.; Chatzichristodoulou, Christodoulos;

    2014-01-01

    Many energy-related materials rely on the uptake and release of large quantities of ions, for example, Li+ in batteries, H+ in hydrogen storage materials, and O2− in solid-oxide fuel cell and related materials. These compositional changes often result in large volumetric dilation of the material...... modeling and an overview of factors impacting chemical expansion. We discuss the implications of chemical expansion for mechanical stability and functionality in the energy applications above, as well as in other oxide-based systems. The use of chemical expansion as a new means to probe other materials...

  8. Chemical Effects during Storage of Frozen Foods.

    Science.gov (United States)

    Powrie, W. D.

    1984-01-01

    Discusses (1) characteristics, interrelationships, and distribution of food constituents (including water) in unfrozen food systems; (2) the freezing process; and (3) chemical changes in food during frozen storage. Protein alterations and lipid oxidation are emphasized. (JN)

  9. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  10. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  11. EMR modelling of a hydrogen-based electrical energy storage

    Science.gov (United States)

    Agbli, K. S.; Hissel, D.; Péra, M.-C.; Doumbia, I.

    2011-05-01

    This paper deals with multi-physics modelling of the stationary system. This modelling is the first step to reach the fuel cell system dimensioning aim pursued. Besides this modelling approach based on the stationary energetic system, the novelty in this paper is both the new approach of the photovoltaic EMR modelling and the EMR of the hydrogen storage process. The granular modelling approach is used to model each component of the system. Considering a stand alone PEM fuel cell system, hydrogen is expected to be produced and stored on the spot from renewable energy (photovoltaic) in order to satisfy the fuel availability. In fact, to develop a generic and modular model, energetic macroscopic representation (EMR) is used as graphical modelling tool. Allowing to be easily grasped by the experts even not necessarily gotten used to the modelling formalism, EMR is helpful to model the multi-domains energetic chain. The solar energy through solar module is converted in electrical energy; part of this energy is transformed in chemical energy (hydrogen) thanks to an electrolyser. Then the hydrogen is compressed into a tank across a storage system. The latter part of the solar module energy is stored as electrical energy within supercapacitor or lead-acid battery. Using the modularity feature of the EMR, the whole system is modelled entity by entity; afterwards by putting them together the overall system has been reconstructed. According to the scale effect of the system entities, some simulation and/or experimental results are given. Given to the different aims which are pursued in the sustainable energy framework like prediction, control and optimisation, EMR modelling approach is a reliable option for the energy management in real time of energetic system in macroscopic point of view.

  12. Tailoring of Single Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hui [ORNL; Zhao, Bin [ORNL; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Styers-Barnett, David J [ORNL; Geohegan, David B [ORNL; Brown, Craig M. [Indiana University Cyclotron Facility, Bloomington, IN; Liu, Yun [Indiana University Cyclotron Facility, Bloomington, IN; Zhou, Wei [National Institute of Standards and Technology (NIST); Kabbour, Houria [California Institute of Technology, Pasadena; Neumann, Dan [National Institute of Standards and Technology (NIST)

    2007-01-01

    We report the post-processing chemical treatments of single walled carbon nanohorns (SWNHs) as a medium with tunable porosity to optimize hydrogen adsorption. Laser synthesized SWNHs are oxidized in air to achieve surface areas up to 1900 m2/g. Chemistry methods are described for the decoration of SWNHs with 1-3 nm Pt nanoparticles to probe spillover and metal-assisted hydrogen storage mechanisms. Hydrogen storage of opened SWNHs is 2.6 wt% at 77K, which is 3 times as that of as-prepared SWNHs.

  13. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  14. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  15. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  16. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  17. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  18. Inherent safety key performance indicators for hydrogen storage systems.

    Science.gov (United States)

    Landucci, Gabriele; Tugnoli, Alessandro; Cozzani, Valerio

    2008-11-30

    The expected inherent safety performance of hydrogen storage technologies was investigated. Reference schemes were defined for alternative processes proposed for hydrogen storage, and several storage potentialities were considered. The expected safety performance of alternative process technologies was explored estimating key performance indicators based on consequence assessment and credit factors of possible loss of containment events. The results indicated that the potential hazard is always lower for the innovative technologies proposed for hydrogen storage, as metal or complex hydrides. This derived mainly from the application of the inherent safety principles of "substitution" and "moderation", since in these processes hydrogen is stored as a less hazardous hydride. However, the results also evidenced that in the perspective of an industrial implementation of these technologies, the reliability of the auxiliary equipment will be a critical issue to be addressed.

  19. Novel progress in the development of hydrogen storage materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A new dehydrogenation mechanism for LiBH4, a new hydrogen storage material, has recently been developed by CAS scientists and their coworkersfrom the University of Nottingham, showing a promising future for its onboard applications.

  20. Recent Progress in Metal Borohydrides for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Craig M. Jensen

    2011-01-01

    Full Text Available The prerequisite for widespread use of hydrogen as an energy carrier is the development of new materials that can safely store it at high gravimetric and volumetric densities. Metal borohydrides M(BH4n (n is the valence of metal M, in particular, have high hydrogen density, and are therefore regarded as one such potential hydrogen storage material. For fuel cell vehicles, the goal for on-board storage systems is to achieve reversible store at high density but moderate temperature and hydrogen pressure. To this end, a large amount of effort has been devoted to improvements in their thermodynamic and kinetic aspects. This review provides an overview of recent research activity on various M(BH4n, with a focus on the fundamental dehydrogenation and rehydrogenation properties and on providing guidance for material design in terms of tailoring thermodynamics and promoting kinetics for hydrogen storage.

  1. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  2. Hydrogen Storage in Nanostructured Light Metal Hydrides

    NARCIS (Netherlands)

    Singh, S.

    2009-01-01

    The global energy issues can be solved by the abundantly available hydrogen on earth. Light metals are a compact and safe medium for storing hydrogen. This makes them attractive for vehicular use. Unfortunately, hydrogen uptake and release is slow in light metals at practical temperature and pressur

  3. Storage of hydrogen on carbons; Stockage de l'hydrogene sur les carbones

    Energy Technology Data Exchange (ETDEWEB)

    Conard, J. [Centre National de la Recherche Scientifique, CNRS-CRMD, 45 - Orleans-la-Source (France)

    2000-07-01

    The storage of hydrogen on carbons, with densities above 10% hydrogen weight, can be used in the sector of transport. However, only the physical-sorption of this gas (which is almost perfect and boils at 20 K under atmospheric pressure) cannot explain this performance. A study of the possible sites for one hydrogen, which can take very different forms, is presented, in order to better understand the rational development of this storage mode which could reach about ten weight %. (O.M.)

  4. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  5. The Influence of Graphene Curvature on Hydrogen Adsorption: Towards Hydrogen Storage Devices

    CERN Document Server

    Goler, Sarah; Tozzini, Valentina; Piazza, Vincenzo; Mashoff, Torge; Beltram, Fabio; Pellegrini, Vittorio; Heun, Stefan

    2013-01-01

    The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved regions of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature-dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature making it a valuable candidate for the implementation of hydrogen-storage devices.

  6. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment

    Institute of Scientific and Technical Information of China (English)

    Chuan-xiang ZHENG; Liang WANG; Rong LI; Zong-xin WEI; Wei-wei ZHOU

    2013-01-01

    A significant temperature raise within hydrogen vehicle cylinder during the fast filling process will be observed,while the strength and fatigue life of the cylinder will dramatically decrease at high temperature.In order to evaluate the strength and fatigue of composite hydrogen storage vessel,a 70-MPa fatigue test system using hydrogen medium was set up.Experimental study on the fatigue of composite hydrogen storage vessels under real hydrogen environment was performed.The experimental results show that the ultimate strength and fatigue life both decreased obviously compared with the values under hydraulic fatigue test.Furthermore,fatigue property,failure behavior,and safe hydrogen charging/discharging working mode of onboard hydrogen storage vessels were obtained through the fatigue tests.

  7. Pore structure of SWNTs with high hydrogen storage capacity

    Institute of Scientific and Technical Information of China (English)

    杨全红; 刘畅; 刘敏; 樊彦贞; 成会明; 王茂章

    2002-01-01

    This paper reveals, by analyses of nitrogen cryo-adsorption isotherm, the energetic and structural heterogeneity of single-walled carbon nanotubes (SWNTs) which has a high hydrogen storage capacity. It was found that SWNTs had manifold pore structures and distributed surface energy. By comparison of the pore structures and energy distributions of SWNTs before and after hydrogen adsorption, it is preliminarily indicated that hydrogen adsorption occurred in micropores and mesopores with smaller diameter, and that the pores of different diameters determined different hydrogen adsorption processes and underwent different structure changes during hydrogen adsorption.

  8. Thermal management technology for hydrogen storage: Fullerene option

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C.; Chen, F.C.; Murphy, R.W. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Fullerenes are selected as the first option for investigating advanced thermal management technologies for hydrogen storage because of their potentially high volumetric and gravimetric densities. Experimental results indicate that about 6 wt% of hydrogen (corresponding to C{sub 60}H{sub 48}) can be added to and taken out of fullerenes. A model assuming thermally activated hydrogenation and dehydrogenation processes was developed to explain the experimental findings. The activation energies were estimated to be 100 and 160 kJ/mole (1.0 and 1.6 eV/H{sub 2}) for the hydrogenation and dehydrogenation processes, respectively. The difference is interpreted as the heat released during hydrogenation. There are indications that the activation energies and the heat of hydrogenation can be modified by the use of catalysts. Preliminary hydrogen storage simulations for a conceptually simple device were performed. A 1-m long hollow metal cylinder with an inner diameter of 0.02 m was assumed to be filled with fullerene powders. The results indicate that the thermal diffusivity of the fullerenes controls the hydrogenation and dehydrogenation rates. The rates can be significantly modified by changing the thermal diffusivity of the material inside the cylinder, e.g., by incorporating a metal mesh. Results from the simulation suggest that thermal management is essential for efficient hydrogen storage devices using fullerenes. While the preliminary models developed in this study explain some of the observation, more controlled experiments, rigorous model development, and physical property determinations are needed for the development of practical hydrogen storage devices. The use of catalysts to optimize the hydrogen storage characteristics of fullerenes also needs to be pursued. Future cooperative work between Oak Ridge National Laboratory (ORNL) and Material & Electrochemical Research Corporation (MER) is planned to address these needs.

  9. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    Science.gov (United States)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  10. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen stora

  11. Opportunities and limitations of hydrogen storage in zeolitic clathrates

    NARCIS (Netherlands)

    Van den Berg, A.W.C.

    2006-01-01

    The feasibility of using zeolites, and more specifically the clathrasil subgroup, for hydrogen storage has been investigated by comparing their H2 loading rate and storage capacity to the technically required values. The uptake rate and capacity are determined by means of computational modelling for

  12. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  13. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-01

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  14. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia.

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-20

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  15. A study of hydro-graphene for energy storage (2) Hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tokio Yamabe; Mitsuhiro Fujii [Nagasaki Institute ofApplied Science, 536 Aba-machi, Nagasaki 851-0193, (Japan); Yoshio Furuya [Department of Technology, Faculty of Education, Nagasaki University, 1-14 bunkyo-cho, Nagasaki 852-8521, (Japan); Shiro Mori; Shizukuni Yata [Energy Conversion Research Laboratory, KRI Inc., Kyoto Research Park, 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, (Japan)

    2005-07-01

    The technology of hydrogen storage is one of the most important challenges in hydrogen energy system for clean environment. Some carbon materials are expected to have such advantage for hydrogen storage. We have studied about PAS and PAHs, which are marginal members of the carbon allotropes containing a significant amount of hydrogen atoms, and which show a variety of interesting properties lacking pure carbon materials. They constituted by graphite sheets terminated by hydrogen atoms, and so it may be called 'hydro-graphene'. In this work, we prepared two kinds of hydro-graphene, such as PAS and PAHs, by the pyrolysis at 550 C. The [H]/[C] molar ratio of PAS was 0.45, and that of PAHs was 0.33. The interlayer distance of PAS was broad, and that of PAH was 3.68 A. We examined their ability of hydrogen storage by two methods. It was measured the amount of equilibrium pressure change of sample room, on the first method of increasing hydrogen pressure at 77 K, and on the second method of temperature increasing to R.T. in vacuum after reducing pressure. On the former method, the hydrogen storage amount of PAS was 0.5 wt-%, and that of PAHs was 0.4 wt-%. On the latter, that of PAS was 0.4 wt-%, and that of PAHs was 0.3 wt-%. Those results indicate that each total capacity of hydrogen storage was estimated 0.5-6 wt-%. We will discuss the mechanism of hydrogen adsorption to hydro-graphene based on the quantum chemical viewpoint. (authors)

  16. Atomic hydrogen storage method and apparatus

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  17. A Cassette Based System for Hydrogen Storage and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Britton Wayne E.

    2006-11-29

    A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

  18. High-capacity hydrogen storage in Al-adsorbed graphene

    Science.gov (United States)

    Ao, Z. M.; Peeters, F. M.

    2010-05-01

    A high-capacity hydrogen storage medium—Al-adsorbed graphene—is proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79wt% with average adsorption energy -0.193eV/H2 . Its hydrogen storage capacity is in excess of 6wt% , surpassing U. S. Department of Energy (DOE’s) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

  19. MXene: a new family of promising hydrogen storage medium.

    Science.gov (United States)

    Hu, Qianku; Sun, Dandan; Wu, Qinghua; Wang, Haiyan; Wang, Libo; Liu, Baozhong; Zhou, Aiguo; He, Julong

    2013-12-27

    Searching for reversible hydrogen storage materials operated under ambient conditions is a big challenge for material scientists and chemists. In this work, using density functional calculations, we systematically investigated the hydrogen storage properties of the two-dimensional (2D) Ti2C phase, which is a representative of the recently synthesized MXene materials ( ACS Nano 2012 , 6 , 1322 ). As a constituent element of 2D Ti2C phase, the Ti atoms are fastened tightly by the strong Ti-C covalent bonds, and thus the long-standing clustering problem of transition metal does not exist. Combining with the calculated binding energy of 0.272 eV, ab initio molecular dynamic simulations confirmed the hydrogen molecules (3.4 wt % hydrogen storage capacity) bound by Kubas-type interaction can be adsorbed and released reversibly under ambient conditions. Meanwhile, the hydrogen storage properties of the other two MXene phases (Sc2C and V2C) were also evaluated, and the results were similar to those of Ti2C. Therefore, the MXene family including more than 20 members was expected to be a good candidate for reversible hydrogen storage materials under ambient conditions.

  20. Improved metal hydride technology for the storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Ramachandran, S. [Energy Conversion Devices, Inc., Troy, MI (United States)] [and others

    1995-09-01

    Low cost, high density storage of hydrogen will remove the most serious barrier to large-scale utilization of hydrogen as a non-polluting, zero-emission fuel. An important challenge for the practical use of Mg-based, high capacity hydrogen storage alloys has been the development of a low-cost, bulk production technique. Two difficulties in preparation of Mg-based alloys are the immiscibility of Mg with many transition metals and the relatively high volatility of Mg compared to many transition metals. These factors preclude the use of conventional induction melting techniques for the Mg-based alloy preparation. A mechanical alloying technique, in which Mg immiscibility and volatility do not present a problem, was developed and shows great promise for production of Mg-based alloys. A number of Mg-based alloys were prepared via modified induction melting and mechanical alloying methods. The alloys were tested for gas phase hydrogen storage properties, composition, structure and morphology. The mechanically alloyed samples are multi-component, multi-phase, highly disordered materials in their as-prepared state. These unoptimized alloys have shown reversible H-storage capacity of more than 5 wt.% hydrogen. After 2000 absorption/desorption cycles, the alloys show no decline in storage capacity or desorption kinetics. The alloys have also demonstrated resistance to CH{sub 4} and CO poisoning in preliminary testing. Upon annealing, with an increase in crystallinity, the H-storage capacity decreases, indicating the importance of disorder.

  1. Complex hydrides for hydrogen storage - New perspectives

    DEFF Research Database (Denmark)

    Ley, Morten B.; Jepsen, Lars H.; Lee, Young-Su;

    2014-01-01

    , as discussed in this review, but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed, with a focus on metal borohydrides, which reveal significant structural...

  2. Metallacarboranes: Towards promising hydrogen storage metal organic framework

    Science.gov (United States)

    Singh, Abhishek; Sadrzadeh, Arta; Yakobson, Boris

    2011-03-01

    Using first principles calculations we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms bind hydrogen via Kubas interaction. The average binding energy of ~ 0.3 eV/H favorably lies within the reversible adsorption range The Sc and Ti are found to be the optimum metal atoms maximizing the number of stored H2 molecules. Depending upon the structure, metallacarboranes can adsorb up to 8 wt% of hydrogen, which exceeds DOE goal for 2015. Being integral part of the cage, TMs do not suffer from the aggregation problem. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks (MOF), thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption. A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Metallacarboranes: Toward Promising Hydrogen Storage Metal Organic Frameworks, JACS 132,14126 (2010).

  3. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027 (Norway); Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)

    2015-10-05

    Highlights: • Performance evaluation of H stores with various solid H storage materials was done. • Volumetric and gravimetric H storage densities and energy consumption were evaluated. • Effects of H storage containment and heat exchanger were estimated. • Pressure–temperature conditions of H storage strongly affect the overall performance. • Material’s packing density influences safety of operation and efficiency of H stores. - Abstract: Evaluation of the performances of hydrogen storage systems accommodating solid H storage materials should include characteristics on their reversible hydrogen storage capacity, operating pressures and temperatures, packing densities, and heat effects of hydrogen uptake and release. We have conducted a performance evaluation of the systems accumulating 5 kg of hydrogen in a containment of cylindrical geometry filled with a solid H storage material including such hydrides and reactive hydride composites as AlH{sub 3}, MgH{sub 2}, “low-temperature” (inter)metallic hydrides, NaAlH{sub 4}, Na{sub 3}AlH{sub 6}, LiBH{sub 4} + MgH{sub 2}, and MOFs. The analysis yielded gravimetric and volumetric H storage capacities, and energy efficiencies of hydrogen stores. We conclude that the weight efficiency of hydrogen stores, apart from the gravimetric H storage capacity of the material, is greatly affected by its packing density, and by the pressure–temperature conditions which determine type and dimensions of the containment. The materials with low heat effects of H exchange, operating close to the ambient conditions, should be targeted in the course of the development of new hydrogen stores as offering the best energy efficiency of their operation.

  4. Complex hydrides for hydrogen storage – new perspectives

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2014-04-01

    Full Text Available Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached, as discussed in this review, but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed, with a focus on metal borohydrides, which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.

  5. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  6. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions.

  7. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  8. Metal-functionalized silicene for efficient hydrogen storage.

    Science.gov (United States)

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications.

  9. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  10. Electrochemical storage of hydrogen on carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jurewicz, K.; Frackowiak, E. [ICTE, Poznan University of Technology (Poland); Gautier, S.; Beguin, F. [CRMD, CNRS Universite, 45 - Orleans (France)

    2000-07-01

    Amount of hydrogen reversibly stored on an activated carbon electrode using electro-decomposition of 6 mol.l{sup -1} KOH aqueous solution has been investigated and compared data obtained under a high pressure of dihydrogen (70 bars) at 273 K. In the electrochemical method, 1.5 wt% of hydrogen was released from carbon during the oxidation process, with a well-defined plateau at ca. - 0.5 V vs Hg/HgO. Relatively smaller values were obtained for the sorption ability under a high pressure of gas. This means that the formation of nascent hydrogen during water reduction favours its easy penetration in the carbon nano-structure, even at ambient pressure and temperature. Our results show that not only carbon nano-tubes should be considered for hydrogen reservoir and that low cost materials such as activated carbons could be convenient in appropriate conditions.

  11. Hydrogen storage alloy electrode; Suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Kato, H.; Shirakawa, R. [The Furukawa Battery Co. Ltd., Fukushima (Japan)

    1997-12-16

    In a previous method of manufacturing of a hydrogen storage alloy electrode incorporated in t nickel-hydrogen battery as an negative electrode, the binding strength among the alloy powder is not so strong and is pulverized and falls off during charge and discharge processes and also it has a problem of lowering of the collecting ability and mechanical strength of the electrode when a large amount of a binder is used in order to prevent the falling off. This invention aims to present a hydrogen storage alloy electrode useful as an negative electrode of a nickel-hydrogen battery which prevents the falling off of the hydrogen storage alloy powder during charge and discharge processes and shows excellent charge and discharge cycle life characteristics for a long period. In this invention, the hydrogen storage alloy powder is bound with a silane coupling agent, more preferably, with a silane coupling agent and a water repellent or/and thickner. A fluorine-containing silane coupling agent is preferred as the silane coupling agent. 6 tabs.

  12. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  13. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  14. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41.

    Science.gov (United States)

    Park, Soo-Jin; Lee, Seul-Yi

    2010-06-01

    The objective of the present work was to investigate the possibility of improving the hydrogen-storage capacity of mesoporous MCM-41 containing nickel (Ni) oxides (Ni/MCM-41). The MCM-41 and Ni/MCM-41 were prepared using a hydrothermal process as a function of Ni content (2, 5, and 10 wt.% in the MCM-41). The surface functional groups of the Ni/MCM-41 were identified by Fourier transform infrared spectroscopy (FTIR). The structure and morphology of the Ni/MCM-41 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). XRD results showed a well-ordered hexagonal pore structure; FE-TEM also revealed, as a complementary technique, the structure and pore size. The textural properties of the Ni/MCM-41 were analyzed using N(2) adsorption isotherms at 77 K. The hydrogen-storage capacity of the Ni/MCM-41 was evaluated at 298 K/100 bar. It was found that the presence of Ni on mesoporous MCM-41 created hydrogen-favorable sites that enhanced the hydrogen-storage capacity by a spillover effect. Furthermore, it was concluded that the hydrogen-storage capacity was greatly influenced by the amount of nickel oxide, resulting in a chemical reaction between Ni/MCM-41 and hydrogen molecules.

  15. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Y. (John) F [UTRC

    2015-01-05

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  16. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Y. F. [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  17. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  18. Evaluation of insulated pressure vessels for cryogenic hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Garcia-Villazana, O; Martinez-Frias, J

    1999-03-01

    This paper presents an analytical and experimental evaluation of the applicability of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH?) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The purpose of this work is to verify that commercially available aluminum-lined, fiber- wrapped vessels can be used for cryogenic hydrogen storage. The paper reports on previous and ongoing tests and analyses that have the purpose of improving the system design and assure its safety.

  19. Lunar-derived titanium alloys for hydrogen storage

    Science.gov (United States)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  20. Ballmilling of metal borohydrides for hydrogen storage

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    is to hydrogenate simple compounds such as metalborides and hydrides with the intention of forming a new and more hydrogen rich borohydride. In contrast to mainstream research, the method of synthesis has been based on reactants that are expected to be found in the metal borohydride’s dehydrogenated state....... Specifically, the research undertaken targets CaB6 whose boron is in a octahedral network, or AlB2 whose boron is layered. These compounds were then reactive ball milled with alkali and alkaline earth metal under hydrogen pressure, with the intention of forming metal borohydrides. For CaB6, no clear sign...... Transform Infra-red Spectroscopy, Magic Angle Spinning Nuclear Magnetic Resonance, Thermal Gravimetry, Differential Scanning Calorimetry, Mass Spectroscopy and lastly In Situ Powder X-ray diffraction measurements at l711 MAXLab....

  1. Hydrogen-air energy storage gas-turbine system

    Science.gov (United States)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  2. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  3. Synthesis and Hydrogen Storage in Single-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Single-walled carbon nanotubes (SWNTs) were synthesized by a hydrogen arc discharge method. A high yield of gram quantity of SWNTs per hour was achieved. Tow kinds of SWNT products: web-like substance and thin films in large slices were obtained. Results of resonant Raman scattering measurements indicate that the SWNTs prepared have a wider diameter distribution and a larger mean diameter. Hydrogen uptake measurements of the two kinds of SWNT samples (both as prepared and pretreated) were carried out using a high pressure volumetric method,respectively. And a hydrogen storage capacity of 4 wt pct could be repeatedly achieved for the suitably pretreated SWNTs, which indicates that SWNTs may be a promising hydrogen storage material.

  4. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  5. Calcium-decorated carbyne networks as hydrogen storage media.

    Science.gov (United States)

    Sorokin, Pavel B; Lee, Hoonkyung; Antipina, Lyubov Yu; Singh, Abhishek K; Yakobson, Boris I

    2011-07-13

    Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of ∼0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed ∼8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.

  6. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  7. Development of Mg-based Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail,we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature,especially the substitution of a more electronegative element, such as Al and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature, but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. In order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently,MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future.

  8. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

    Science.gov (United States)

    de Jongh, Petra E; Adelhelm, Philipp

    2010-12-17

    Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

  9. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  10. Hydrogen storage for vehicular applications: Technology status and key development areas

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.L.; Handrock, J.L.

    1994-04-01

    The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

  11. Design and reversible hydrogen storage capacity determination of unique nanoarrays of titanium dioxide and carbon nanotubes

    Science.gov (United States)

    Mishra, Amrita

    In this project hydrogen storage studies were carried out on TiO 2 nanotubular arrays of different diameters prepared by electrochemical anodization, combined with template-grown carbon nanotubes (CNTs). The growth of the CNTs on the nanotubular TiO2 arrays was accomplished by chemical vapor deposition. The hydrogen storage capacity was determined for the nanotubular TiO2 and the combined TiO2-CNT arrays, by charging and discharging hydrogen with a Sievert's apparatus. It was found that the presence of carbon nanotubes on nano-porous titanium oxide can enhance storage of hydrogen as determined by volumetric means. The hydrogen uptake in as-anodized TiO2 nanotubes was found to be 2 wt% at liquid nitrogen temperature (77 K) and 0.94 wt% at room temperature. Desorption results for TiO2 at 393 K and 300 K were 1.5 wt% and 0.7 wt%, respectively. The CNT-TiO2 composites showed a hydrogen uptake capacity of 1.94 wt% at room temperature and 2.5 wt% at 77 K. The desorption results were 1.8 wt% at 393 K and 0.68 wt% at room temperature. It was seen that the hydrogen uptake was higher at lower temperatures and discharge was increased significantly at higher temperatures for both TiO2 and CNT/TiO2 samples. The utilization of this novel hydrogen storage method can be recognized as a break-through in the hydrogen economy as applied to on-board vehicular applications.

  12. Hydrogen storage in Earth's mantle and core

    Science.gov (United States)

    Prewitt, Charles T.

    1994-01-01

    Two different approaches to explaining how hydrogen might be stored in the mantle are illustrated by a number of papers published over the past 25-30 years, but there has been little attempt to provide objective comparisons of the two. One approach invokes the presence in the mantle of dense hydrous magnesium silicates (DHMS) stable at elevated pressures and temperatures. The other involves nominally anhydrous minerals (NAM) that contain hydrogen as a minor constituent on the ppm level. Experimental studies on DHMS indicate these phases may be stable to pressures and temperatures as high at 16 GPa and 1200 C. This temperature is lower than that indicated by a mantle geotherm at 16 GPa, but may be reasonable for a subducting slab. It is possible that other DHMS could be stable to even higher pressures, but little is known about maximum temperature limits. For NAM, small amounts of hydrogen (up to several hundred ppm) have been detected in olivine, orthopyroxene, clinopyroxene, and garnet recovered from xenoliths in kimberlites, eclogites, and alkali basalts; it has been demonstrated that synthetic wadsleyite and perovskite can accommodate significant amounts of hydrogen. A number of problems are associated with each possibility. For NAM originating in the mantle, one would like to assume that the hydrogen measured in samples recovered on Earth's surface was incorporated when the phase-crystallized at high temperatures and pressures, but it could have been introduced during transport to the surface. Major problems for the DHMS proponents are that none of these phases have been found as minerals and little is yet known about their stabilities in systems containing other cations such as Fe, Al, and Ca.

  13. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  14. Research of heat treatment of low-Co AB5 type hydrogen storage alloys for MH-Ni batteries

    Institute of Scientific and Technical Information of China (English)

    GUO Jinghong; CHEN Demin; LIU Guozhong; YANG Ke; MA Jun

    2003-01-01

    The effects of low-Co AB5 type hydrogen storage alloys prepared by quenching and annealing on the performances of MH-Ni batteries were investigated, and the characteristics of the low-Co AB5 type hydrogen storage alloys were compared with those of the high-Co AB5 type hydrogen storage alloy as well. The results showed that the faster the cooling of the low-Co hydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and the longer cycle life of the battery are, but the electrochemical discharge capacity and high-rate discharge ability are reduced. The high-rate discharge ability and charge retention of MH-Ni batteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to those for the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, but a little inferior in the cycle life.

  15. Hydrogen Storage in Mesoporous Materials under High Pressure

    Science.gov (United States)

    Weinberger, Michelle; Somayazulu, Maddury; Hemley, Russell

    2008-03-01

    To date, the materials considered best candidates for hydrogen storage fuel cells include activated carbon and metal organic frameworks. Both very high surface area activated carbon and MOF-5 have been shown to adsorb around 4.5 wt % of hydrogen gas at 78 K. We have investigated the fundamental structural response of these materials to high pressure, as well as their behavior at high pressure when packed with dense hydrogen. Further investigation of these materials at low temperatures while still at elevated pressures may in fact provide a route for recovery of these hydrogen-packed materials to near ambient conditions. Covalent organic frameworks offer the potential for even better hydrogen storage capacity. These materials have significantly lower densities than the MOF materials and offer a significantly larger number of adsorption sites. Diamond anvil cells are uniquely suited for the study of these materials, allowing in situ measurements at high pressure as well as at low temperatures. Using X-ray diffraction and Raman spectroscopy and Infrared Spectroscopy we probe the behavior of the hydrogen confined in these porous materials at high pressure by tracking changes in the in situ high pressure x-ray diffraction patterns and shifts in the hydrogen vibron peaks.

  16. Hydrogen storage by physisorption on Metal Organic Frameworks

    Science.gov (United States)

    Dailly, Anne

    2008-03-01

    Cryo-adsorption systems based on materials with high specific surface areas have the main advantage that they can store and release hydrogen with fast kinetics and high reversibility over multiples cycles. Recently Metal Organic Frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. These crystallographically well organized hybrid solids resulting from the three dimensional connection of inorganic clusters using organic linkers show the largest specific surface areas of all known crystalline solids. The determination of the relationships between physical properties (chemistry, structure, surface area ) of the MOFs and their hydrogen storage behavior is a key step in the characterization of these materials, if they are to be designed for hydrogen storage applications. Excess hydrogen sorption measurements for different MOFs will be presented. We show that maximum hydrogen uptake at high pressure and 77K does not always scale with the specific surface area. A linear correlation trend only apply within a class of specific materials and breaks down when the surface area measurement does not represent the surface sites that are available to H2. The influence of pore size and shape will also be discussed by comparing several MOFs with different structure types. The hydrogen adsorption and binding energy at low pressure are strongly dependent on the metal ions and the pore size.

  17. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-11-01

    Full Text Available Among the several typologies of storage technologies, mainly on different physical principles (mechanical, electrical and chemical, hydrogen produced by power to gas (P2G from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe, analysing current and potential locations, regulatory framework, governments’ outlooks, economic issues, and available renewable energy amounts. The expert opinion survey, already used in many research articles on different topics including energy, has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.

  18. Progress on first-principles-based materials design for hydrogen storage.

    Science.gov (United States)

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  19. REVERSIBLE HYDROGEN STORAGE IN A LiBH{sub 4}-C{sub 60} NANOCOMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, J.; Zidan, R.; Peters, B.; Wheeler, J.

    2013-08-06

    Reversible hydrogen storage in a LiBH{sub 4}:C{sub 60} nanocomposite (70:30 wt. %) synthesized by solvent-assisted mixing has been demonstrated. During the solvent-assisted mixing and nanocomposite formation, a chemical reaction occurs in which the C{sub 60} cages are significantly modified by polymerization as well as by hydrogenation (fullerane formation) in the presence of LiBH{sub 4}. We have determined that two distinct hydrogen desorption events are observed upon rehydrogenation of the material, which are attributed to the reversible formation of a fullerane (C{sub 60}H{sub x}) as well as a LiBH4 species. This system is unique in that the carbon species (C{sub 60}) actively participates in the hydrogen storage process which differs from the common practice of melt infiltration of high surface area carbon materials with LiBH{sub 4} (nanoconfinment effect). This nanocomposite demonstrated good reversible hydrogen storage properties as well as the ability to absorb hydrogen under mild conditions (pressures as low as 10 bar H{sub 2} or temperatures as low as 150°C). The nanocomposite was characterized by TGA-RGA, DSC, XRD, LDI-TOF-MS, FTIR, 1H NMR, and APPI MS.

  20. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  1. Capacity recovery after storage negatively precharged nickel hydrogen cells

    Science.gov (United States)

    Lowery, John E.

    1993-01-01

    Tests were conducted to investigate the recovery of capacity lost during open circuit storage of negatively precharged nickel hydrogen batteries. Four Eagle Picher RNH-90-3 cells were used in the tests. Recovery procedures and test results are presented in outline and graphic form.

  2. A hydrogen storage nanotank: lithium-organic pillared graphite.

    Science.gov (United States)

    Han, Sang Soo; Jang, Seung Soon

    2009-09-28

    From first-principle based grand canonical Monte-Carlo simulations, we propose a new hydrogen storage material, lithium-organic pillared graphite, showing high H2 uptake of 4.0 wt% and 41.9 kg m(-3) at 300 K and 100 bar.

  3. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery.

  4. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  5. Condensation and Storage of Hydrogen Cluster Ions

    Science.gov (United States)

    1988-11-01

    CA, October 1987. 30. Casero , R. and Soler, J. M., personal communication. 31. Echt, 0., Multiply Charged Clusters, The Physics and Chemistry of...Physics of a Single Electron or Ion in a Panning Trap," Rev. Mod. Phys., Vol. 58, No. 1, pp. 233-311, January 1986. 35. Mitchell, J., The Role of...Determination of Narrow Mul- tichannel Rcsonances: Application to Hydrogen Molecular Ion (H3)", J. Phys. Chem. 90(16), 3595-9 (1986). 15. Pan , Fu Shih

  6. A study of hydro-graphene for energy storage (2) hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tokio, Yamabe; Mitsuhiro, Fujii [Nagasaki Institute of Applied Science, Nagasaki (Japan); Yoshio, Furuya [Faculty of Education, Dept. of Technology, Nagasaki (Japan); Shiro, Mori; Shizukuni, Yata [Energy Conversion Research Lab., KRI Inc., Kyoto (Japan)

    2005-07-01

    The technology of hydrogen storage is one of the most important challenges in hydrogen energy system for clean environment [1]. Some carbon materials are expected to have such advantage for hydrogen storage. We have studied about PAS and PAHs, which are marginal members of the carbon allotropes containing a significant amount of hydrogen atoms, and which show a variety of interesting properties lacking pure carbon materials [2-9]. They constituted by graphite sheets terminated by hydrogen atoms, and so it may be called 'hydro-graphene' [10]. In this work, we prepared two kinds of hydro-graphene, such as PAS [8,9] and PAHs [7], by the pyrolysis at 550 C. The [H]/[C] molar ratio of PAS was 0.45, and that of PAHs was 0.33. The interlayer distance of PAS was broad, and that of PAH was 3.68 A. We examined their ability of hydrogen storage by two methods. It was measured the amount of equilibrium pressure change of sample room, on the first method of increasing hydrogen pressure at 77 K, and on the second method of temperature increasing to R.T. in vacuum after reducing pressure. On the former method, the hydrogen storage amount of PAS was 0.5 wt-%, and that of PAHs was about 0.4 wt-%. On the latter, that of PAS was 0.4 wt-%, d that of PAHs was 0.3 wt-%. Those results indicate that each total capacity of hydrogen storage was estimated 0.5-0.6 wt%. We will discuss the mechanism of hydrogen adsorption to hydro-graphene based on the quantum chemical viewpoint. [1] DOE Hydrogen Program: www.hydrogen.energy.gov. [2] P. Novac, K. Muller, K. S. V. Santhanam, O. Haas: Chem. Rev., 97, 270, 1997; [3] T. Yamabe, K. Tanaka, K. Ohzeki, S. Yata: Solid State Commun., 44, 823, 1982; [4] S. Yata, Y. Hato, K. Sakurai, H. Satake, K. Mukai, K. Tanaka, T. Yamabe: Synth. Met., 38, 169, 1990; [5] S. Yata, H. Kinoshita, M. Komori, N. Ando, T. Kashiwamura, T. Harada, K Tanaka, T. Yamabe: Synth. Met., 62, 153, 1994; [6] J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue: Science, 270, 590, 1995

  7. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  8. Characteristic Investigation of Nano-Crystal Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Xiao Fangming; Huang Lili; Tang Renheng; Lu Qiyun; Peng Neng; Wang Ying

    2004-01-01

    A Ml (NiCoMnA1)5 hydrogen storage alloys was prepared by double-roller rapid quenching.Its microstructure, electrochemically and kinetic characteristic were studied.A uniform crystal phase with CaCu5 structure could be detected by XRD analyses, whose average grain size is 30 ~ 50 nm and the ratio of c/a of nano-crystal hydrogen storage alloy is larger.The hydrogen absorption/desertion p - C isotherms of alloy show that its fiat-performance is perfect and the magnetic stagnant effect is very little.An simulate cell is used for electrochemical measurement.Electrode is 10C, the capacity decreasing rate via the 450 cycles at 7C is less than 20%.

  9. Hydrogen based energy storage for energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Bretthauer, Christian

    2011-07-01

    This thesis presents the development of a novel type of silicon integrated alkaline fuel cell - electrolyser device as on-chip energy storage. The alkaline environment allows not only a facilitated water management compared to state-of-the-art acidic integrated fuel cell systems, it further allows the usage of non-precious metal catalysts and hydrogen storage materials, for the first time. Additionally, a button cell shaped version of the accumulator is presented that incorporates a photoactive SrTiO{sub 3} ceramic for solar recharge. The solar charging mechanism is shown to be inherently self-regulating such that the cell depicts essentially a Micro Hydrogen Economy including energy conversion, energy management and energy storage in a single device. (orig.)

  10. Transition metal based borohydrides for hydrogen storage

    Science.gov (United States)

    Jayanthi, Chakram; Liu, Jianjun; Wei, Suhuai; Zhao, Yufeng

    2010-03-01

    Using ab-initio studies based on the density-functional theory, we have calculated binding energies per hydrogen molecule for decomposition reactions of transition metal borohydrides MHxB12H12 to MB12 structures, where M corresponds to Sc, Ti, or V. Depending on the valence of the transition metal, x can be 1, 2, or 3. Crystal structures considered for MB12 included both hypothetical and those found in the international crystallographic structural database. On the other hand, the crystal structure considered for MHxB12H12 belongs to C2/c (space group 15) structure as reported in a previous study [V. Ozolins et al. JACS, 131, 230 (2009)]. Among the structures investigated, Titanium-based metal borohydride structure has the lowest binding energy per hydrogen molecule relative to the cubic TiB12 structure (˜0.37 eV/H2). Our finding should be contrasted with the binding energy/H2 for simple metal based borohydrides (e.g., CaB12H12 ), which has a value of ˜ 1.5 eV/H2, suggesting that transition metals play a significant role in lowering the H2 binding energy in borohydrides.

  11. Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing-Yun; LIANG Qi-Min; SONG Chen; XIA Yue-Yuan; ZHAO Ming-wen; LIU Xiang-Dong; ZHANG Hong-Yu

    2006-01-01

    The hydrogen storage capacity of(5,5)single-walled carbon nanotubes(SWNTs)decorated chemically with benzene moieties is studied by using molecular dynamics simulations(MDSs)and density functional theory(DFT) calculations.It is found that benzene molecules colliding on (5,5) SWNTs at incident energy of 50 eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs.The MDSs indicate that when the benzene moiety decorated(5,5)SWNTs and a pristine(5,5)SWNT are put in a box in which hydrogen molecules are filled to a pressure of~26 atm,the hydrogen storage capacity of the benzene moiety decorated(5,5)SWNT is about 4.7wt.% and that of the pristine (5,5) SwNT is nearly 3.9 wt.%.

  12. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    Science.gov (United States)

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  13. Combined hydrogen production and storage with subsequent carbon crystallization.

    Science.gov (United States)

    Lueking, Angela D; Gutierrez, Humberto R; Fonseca, Dania A; Narayanan, Deepa L; Van Essendelft, Dirk; Jain, Puja; Clifford, Caroline E B

    2006-06-21

    We provide evidence of low-temperature hydrogen evolution and possible hydrogen trapping in an anthracite coal derivative, formed via reactive ball milling with cyclohexene. No molecular hydrogen is added to the process. Raman-active molecular hydrogen vibrations are apparent in samples at atmospheric conditions (300 K, 1 bar) for samples prepared 1 year previously and stored in ambient air. Hydrogen evolves slowly at room temperature and is accelerated upon sample heating, with a first increase in hydrogen evolution occurring at approximately 60 degrees C. Subsequent chemical modification leads to the observation of crystalline carbons, including nanocrystalline diamond surrounded by graphene ribbons, other sp2-sp3 transition regions, purely graphitic regions, and a previously unidentified crystalline carbon form surrounded by amorphous carbon. The combined evidence for hydrogen trapping and carbon crystallization suggests hydrogen-induced crystallization of the amorphous carbon materials, as metastable hydrogenated carbons formed via the high-energy milling process rearrange into more thermodynamically stable carbon forms and molecular hydrogen.

  14. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  15. Remarkable Hydrogen Storage on Beryllium Oxide Clusters: First Principles Calculations

    CERN Document Server

    Shinde, Ravindra

    2016-01-01

    Since the current transportation sector is the largest consumer of oil, and subsequently responsible for major air pollutants, it is inevitable to use alternative renewable sources of energies for vehicular applications. The hydrogen energy seems to be a promising candidate. To explore the possibility of achieving a solid-state high-capacity storage of hydrogen for onboard applications, we have performed first principles density functional theoretical calculations of hydrogen storage properties of beryllium oxide clusters (BeO)$_{n}$ (n=2 -- 8). We observed that polar BeO bond is responsible for H$_{2}$ adsorption. The problem of cohesion of beryllium atoms does not arise, as they are an integral part of BeO clusters. The (BeO)$_{n}$ (n=2 -- 8) adsorbs 8--12 H$_{2}$ molecules with an adsorption energy in the desirable range of reversible hydrogen storage. The gravimetric density of H$_{2}$ adsorbed on BeO clusters meets the ultimate 7.5 wt% limit, recommended for onboard practical applications. In conclusion,...

  16. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Science.gov (United States)

    2011-01-25

    ... Research and Development Strategies for Compressed & Cryo- Compressed Hydrogen Storage Workshops AGENCY... Laboratory, in conjunction with the Hydrogen Storage team of the EERE Fuel Cell Technologies Program, will be hosting two days of workshops on compressed and cryo-compressed hydrogen storage in the Washington,...

  17. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  18. Hydrogen storage: a comparison of hydrogen uptake values in carbon nanotubes and modified charcoals

    Science.gov (United States)

    Miao, H.-Y.; Chen, G. R.; Chen, D. Y.; Lue, J. T.; Yu, M. S.

    2010-11-01

    We compared the hydrogen uptake weight percentages (wt.%) of different carbonized materials, before and after modification, for their application in hydrogen storage at room temperature. The Sievert's method [T.P. Blach, E. Mac, A. Gray, J. Alloys Compd. 446-447, 692 (2007)] was used to measure hydrogen uptake values on: (1) Taiwan bamboo charcoal (TBC), (2) white charcoal (WC), (3) single-walled carbon nanotubes (SWCNTs) bought from CBT Inc. and (4) homemade multi-walled carbon nanotubes (MWCNTs) grown on TBC. Modified samples were coated with a metal catalyst by dipping in KOH solutions of different concentrations and then activated in a high temperature oven (800 °C) under the atmospheric pressure of inert gas. The results showed that unmodified SWCNTs had superior uptake but that Taiwan bamboo charcoal, after modification, showed enhanced uptake comparable to the SWCNTs. Due to TBC's low cost and high mass production rate, they will be the key candidate for future hydrogen storage applications.

  19. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible.

  20. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  1. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  2. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  3. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    Science.gov (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  4. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A.

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  5. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  6. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  7. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  8. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Joshua; Melaina, Marc

    2015-10-27

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential to provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that

  9. Four Washington companies resolve violations of federal chemical storage laws

    Science.gov (United States)

    (Seattle-July 13, 2015) Four Washington companies have signed settlements for violations of federal chemical storage laws, according to the U.S. Environmental Protection Agency. EPA's investigations found that the companies failed to properly report storag

  10. Rapid Solidification of AB5 Hydrogen Storage Alloys

    OpenAIRE

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB5 materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB5 materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to.The thesis is divided in to 6 parts, of which Part I is a literature review, starting wit...

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  12. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    Science.gov (United States)

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  13. Electronic Structure of Hydrogen Storage Compounds, LaNi5 and Its Micro-Hydrogenated Compounds

    Institute of Scientific and Technical Information of China (English)

    Lin Yufang; Zhao Dongliang; Wang Xinlin; Zhang Yanghuan

    2005-01-01

    The electronic structures of LaNi5 hydrogen storage alloys and its micro-hydrogenated compounds with two hydrogen atoms in the center of two octahedral interstices and two tetrahedral interstices, were investigated by the first principles discrete variational method(DVM). The results of density of states and the difference of charge distribution clearly show that the s electrons of H mainly interact with the s electrons of hydride-non-forming element Ni, despite there being a larger affinity of La for hydrogen than that of Ni in pure metal-hydrogen system. From the cohesive energy of systems, we also found two systems have almost same stability with occupation of H atoms.

  14. Electric field enhanced hydrogen storage on polarizable materials substrates.

    Science.gov (United States)

    Zhou, J; Wang, Q; Sun, Q; Jena, P; Chen, X S

    2010-02-16

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H(2) molecules is adsorbed on a BN sheet, the binding energy per H(2) molecule increases from 0.03 eV/H(2) in the field-free case to 0.14 eV/H(2) in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H(2) can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H(2) molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.

  15. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  16. Cloning single wall carbon nanotubes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M [Rice Univ., Houston, TX (United States); Kittrell, Carter [Rice Univ., Houston, TX (United States)

    2012-08-30

    The purpose of this research is to development the technology required for producing 3-D nano-engineered frameworks for hydrogen storage based on sp2 carbon media, which will have high gravimetric and especially high volumetric uptake of hydrogen, and in an aligned fibrous array that will take advantage of the exceptionally high thermal conductivity of sp2 carbon materials to speed up the fueling process while minimizing or eliminating the need for internal cooling systems. A limitation for nearly all storage media using physisorption of the hydrogen molecule is the large amount of surface area (SA) occupied by each H2 molecule due to its large zero-point vibrational energy. This creates a conundrum that in order to maximize SA, the physisorption media is made more tenuous and the density is decreased, usually well below 1 kg/L, so that there comes a tradeoff between volumetric and gravimetric uptake. Our major goal was to develop a new type of media with high density H2 uptake, which favors volumetric storage and which, in turn, has the capability to meet the ultimate DoE H2 goals.

  17. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  18. Hydrogen Storage Enhancement Attained by Fixation of Ti on MWNTs

    Directory of Open Access Journals (Sweden)

    J. J. Pérez-Bueno

    2012-01-01

    Full Text Available Nowadays, hydrogen has a preponderant position among the potentially sustainable energy sources. Due to its power density, its storage is of main concern when considering a broad use in practical applications. Carbon nanotubes constitute promising candidates for the design and construction of hydrogen storage devices. This work explores the use of some procedures involving electrochemistry, aimed to bond atomic Ti on the outer surface of MWNTs. Each titanium atom has the potential of hosting two hydrogen molecules and relinquishing them by heating. Nevertheless, nanotubes are difficult to handle due to electrostatic charge and agglomeration, and in this context, two routes were tested as procedures to spread and stick nanotubes on an electrode: (1 a functionalization capable of attaching gold was tested in two forms, as either using 4 nm particles or a flat gold electrode. The fixation of Au particles was confirmed by HRTEM. (2 A simpler route that consisted on drying a CH2Cl2/nanotubes solution previously spread on a glassy carbon flat electrode. CH2Cl2 was selected as the medium and TiCl4 as the precursor for attaching atomic Ti to the nanotubes. The results revealed that hydrogen adsorption, estimated from voltamperometry, was five times higher on Ti-MWNTs than on bare nanotubes.

  19. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    Science.gov (United States)

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

  20. Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Kung, Harold H. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering; Yang, Jun [Ford Scientific Research Lab., Dearborn, MI (United States); Hwang, Sonjong [California Inst. of Technology (CalTech), Pasadena, CA (United States). Dept. of Chemistry and Chemical Engineering; Shore, Sheldon [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry and Biochemistry

    2016-11-28

    The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH2+NH3BH3] and nitrogen-hydrogen based borohydrides [e.g. Al(BH4)3(NH3)3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And

  1. Polymer-induced surface modifications of Pd-based thin films leading to improved kinetics in hydrogen sensing and energy storage applications.

    Science.gov (United States)

    Ngene, Peter; Westerwaal, Ruud J; Sachdeva, Sumit; Haije, Wim; de Smet, Louis C P M; Dam, Bernard

    2014-11-03

    The catalytic properties of Pd alloy thin films are enhanced by a thin sputtered PTFE coating, resulting in profound improvements in hydrogen adsorption and desorption in Pd-based and Pd-catalyzed hydrogen sensors and hydrogen storage materials. The remarkably enhanced catalytic performance is attributed to chemical modifications of the catalyst surface by the sputtered PTFE leading to a possible change in the binding strength of the intermediate species involved in the hydrogen sorption process.

  2. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  3. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  4. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  5. Multi-criteria evaluation of on-board hydrogen storage technologies using the MACBETH approach

    Energy Technology Data Exchange (ETDEWEB)

    Montignac, F.; Noirot, I.; Chaudourne, S. [CEA, LITEN, Departement des Technologies de l' Hydrogene, 17 rue des Martyrs, 38054 Grenoble (France)

    2009-05-15

    This paper provides some results obtained from the implementation of the MACBETH multi-criteria evaluation approach for the evaluation and comparison of the technical performance of three hydrogen storage technologies: a type IV 70 MPa hydrogen storage system, a cylindrical steel made liquid hydrogen storage system and a solid storage system. The evaluation is carried out considering a 6 kg hydrogen fuel cell vehicle application. Five technical evaluation criteria are taken into account in the analysis: system volume, system mass, refuelling time, hydrogen loss rate and conformability. The outcomes and added-value of this multi-criteria approach are finally discussed. (author)

  6. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  7. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    Science.gov (United States)

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density.

  8. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    Science.gov (United States)

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target.

  9. On the hydrogen-graphene layers interactions, relevance to the onboard storage problem.

    Science.gov (United States)

    Nechaev, Y S; Ochsner, A

    2012-10-01

    Empirical evaluations of fundamental characteristics of the physical and chemical interaction of hydrogen with graphene layers in different kinds of graphite and novel carbonaceous nanomaterials of graphene layer structure have been carried out. This was done by using the approaches of the thermodynamics of reversible and irreversible processes for analysis of the adsorption, absorption, diffusion, the temperature-programmed desorption (TPD) and other experimental data and comparing such analytical results with first-principles calculations. Such an analysis of a number of the known experimental and theoretical data has shown a real possibility of the multilayer specific adsorption (intercalation) of hydrogen between graphene layers in novel carbonaceous nanomaterials. This is of relevance for solving the bottle-neck problem of the hydrogen on-board storage in fuel-cell-powered vehicles, and other technical applications.

  10. Northeastern Center for Chemical Energy Storage (NECCES)

    Energy Technology Data Exchange (ETDEWEB)

    Whittingham, M. Stanley [Stony Brook Univ., NY (United States)

    2015-07-31

    The chemical reactions that occur in batteries are complex, spanning a wide range of time and length scales from atomic jumps to the entire battery structure. The NECCES team of experimentalists and theorists made use of, and developed new methodologies to determine how model compound electrodes function in real time, as batteries are cycled. The team determined that kinetic control of intercalation reactions (reactions in which the crystalline structure is maintained) can be achieved by control of the materials morphology and explains and allows for the high rates of many intercalation reactions where the fundamental properties might indicate poor behavior in a battery application. The small overvoltage required for kinetic control is technically effective and economically feasible. A wide range of state-of-the-art operando techniques was developed to study materials under realistic battery conditions, which are now available to the scientific community. The team also investigated the key reaction steps in conversion electrodes, where the crystal structure is destroyed on reaction with lithium and rebuilt on lithium removal. These so-called conversion reactions have in principle much higher capacities, but were found to form very reactive discharge products that reduce the overall energy efficiency on cycling. It was found that by mixing either the anion, as in FeOF, or the cation, as in Cu1-yFeyF2, the capacity on cycling could be improved. The fundamental understanding of the reactions occurring in electrode materials gained in this study will allow for the development of much improved battery systems for energy storage. This will benefit the public in longer lived electronics, higher electric vehicle ranges at lower costs, and improved grid storage that also enables renewable energy supplies such as wind and solar.

  11. Synthesis of carbon nanotube-TiO(2) nanotubular material for reversible hydrogen storage.

    Science.gov (United States)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-11-05

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO(2)) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H(2)) storage. The TiO(2) nanotube arrays (diameter ∼60 nm and length ∼2-3 µm) are grown on a Ti substrate, and MWCNTs a few µm in length and ∼30-60 nm in diameter are grown inside these TiO(2) nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H(2) storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H(2) at 77 K under 25 bar with more than 90% reversibility.

  12. Hydrogen Storage at Ambient Temperature by the Spillover Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang , Ralph T.

    2011-02-04

    The goal of this project was to develop new nanostructured sorbent materials, using the hydrogen spillover mechanism that could meet the DOE 2010 system targets for on-board vehicle hydrogen storage. Hydrogen spillover may be broadly defined as the transport (i.e., via surface diffusion) of dissociated hydrogen adsorbed or formed on a first surface onto another surface. The first surface is typically a metal (that dissociates H2) and the second surface is typically the support on which the metal is doped. Hydrogen spillover is a well documented phenomenon in the catalysis literature, and has been known in the catalysis community for over four decades, although it is still not well understood.1, 2 Much evidence has been shown in the literature on its roles played in catalytic reactions. Very little has been studied on hydrogen storage by spillover at ambient temperature. However, it is also known to occur at such temperature, e.g., direct evidence has been shown for spillover on commercial fuel-cell, highly dispersed Pt/C, Ru/C and PtRu/C catalysts by inelastic neutron scattering.3 To exploit spillover for storage, among the key questions are whether spillover is reversible at ambient temperature and if the adsorption (refill) and desorption rates at ambient temperature are fast enough for automotive applications. In this project, we explored new sorbents by using a transition metal (e.g., Pt, Ru, Pd and Ni) as the H2 dissociation source and sorbents as the hydrogen receptor. The receptors included superactivated carbons (AX-21 and Maxsorb), metal organic frameworks (MOFs) and zeolites. Different metal doping methods have been used successfully to achieve high metal dispersion thereby allowing significant spillover enhancements, as well as a bridging technique used for bridging to MOFs. Among the metals tested, Pt is the hardest to achieve high metal dispersion (and consequently spillover) while Ru is the easiest to disperse. By properly dispersing Pt on

  13. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  14. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  15. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Maria, G.; Marin, A.; Wyss, C.; Mueller, S.; Newson, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  16. An experiment to evaluate liquid hydrogen storage in space

    Science.gov (United States)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  17. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  18. Hydrogen Absorption Thermodynamic Properties of Rare Earth Based Hydrogen Storage Alloy in Benzene

    Institute of Scientific and Technical Information of China (English)

    蔡官明; 陈长聘; 安越; 徐国华; 陈立新; 王启东

    2002-01-01

    The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La-rich mischmetal nickel hydrogen storage alloy (MlNi5) in Benzene (C6H6) were investigated. The pressure-composition isotherms for both the alloy powder and the slurry suspended with MlNi5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation ΔH° and standard entropy of formation ΔS° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of ΔH° and ΔS° for the hydriding reaction of hydrogen storage alloy (MlNi5) of the slurry system and the gas-solid system are all very close.

  19. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  20. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  1. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage.

  2. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework.

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  3. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  4. Design and building of a new experimental setup for testing hydrogen storage materials

    DEFF Research Database (Denmark)

    Andreasen, A.

    2005-01-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics andthermodynamics the Materials Research...

  5. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  6. Computational investigation and design of coordination compounds for hydrogen storage

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo

    Two classes of high capacity hydrogen storage materials, the metal tetrahydroborates and the metal ammines, were investigated at the atomic scale using density functional theory simulations. It was shown that simple model structures could be used to asses the stabilities of complex systems. Trend...... lithium tetrahydroborate with iodine stabilizes the high temperature phase, in agreement with experiment. Finally, examples on how systematic structural studies of metal halides and hydrides can aid the design of new materials were given.......Two classes of high capacity hydrogen storage materials, the metal tetrahydroborates and the metal ammines, were investigated at the atomic scale using density functional theory simulations. It was shown that simple model structures could be used to asses the stabilities of complex systems. Trends...... in stabilities were reproduced for known systems and the correlations were used to predict the stabilities of unknown systems. Of these, 20 tetrahydroborate systems formed stable mixtures with promising stabilities. A few mixed metal ammine systems showed promising decomposition energies but their stabilities...

  7. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ian M. [University of Wisconsin-Madison; Johnson, Duane D. [Ames Lab., Iowa

    2014-06-21

    To understand the processes involved in the uptake and release of hydrogen from candidate light-weight metal hydride storage systems, a combination of materials characterization techniques and first principle calculation methods have been employed. In addition to conventional microstructural characterization in the transmission electron microscope, which provides projected information about the through thickness microstructure, electron tomography methods were employed to determine the three-dimensional spatial distribution of catalyst species for select systems both before and after dehydrogenation. Catalyst species identification as well as compositional analysis of the storage material before and after hydrogen charging and discharging was performed using a combination of energy dispersive spectroscopy, EDS, and electron energy loss spectroscopy, EELS. The characterization effort was coupled with first-principles, electronic-structure and thermodynamic techniques to predict and assess meta-stable and stable phases, reaction pathways, and thermodynamic and kinetic barriers. Systems studied included:NaAlH4, CaH2/CaB6 and Ca(BH4)2, MgH2/MgB2, Ni-Catalyzed Magnesium Hydride, TiH2-Catalyzed Magnesium Hydride, LiBH4, Aluminum-based systems and Aluminum

  8. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    Science.gov (United States)

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  9. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    Science.gov (United States)

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this

  10. Modellization of Metal Hydride Canister for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Rocio Maceiras

    2015-06-01

    Full Text Available Hydrogen shows very interesting features for its use on-board applications as fuel cell vehicles. This paper presents the modelling of a tank with a metal hydride alloy for on-board applications, which provides good performance under ambient conditions. The metal hydride contained in the tank is Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5. A two-dimensional model has been performed for the refuelling process (absorption and the discharge process (desorption. For that, individual models of mass balance, energy balance, reaction kinetics and behaviour of hydrogen gas has been modelled. The model has been developed under Matlab / Simulink© environment. Finally, individual models have been integrated into a global model, and simulated under ambient conditions. With the aim to analyse the temperature influence on the state of charge and filling and emptying time, other simulations were performed at different temperatures. The obtained results allow to conclude that this alloy offers a good behaviour with the discharge process under normal ambient conditions. Keywords: Hydrogen storage; metal hydrides; fuel cell; simulation; board applications

  11. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid an

  12. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Kathleen [SRA International, Inc., Fairfax, VA 22033 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); Ahn, Channing C. [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States); California Institute of Technology, Pasadena, CA 91125 (United States); Stetson, Ned T., E-mail: Ned.Stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-3F, Washington, DC 20585 (United States)

    2015-10-05

    Highlights: • Overview of U.S. DOE-supported hydrogen storage technology development efforts. • Physical and materials-based strategy for developing hydrogen storage systems. • Materials requirements for automotive storage systems. • Key R&D developments. - Abstract: To enable the wide-spread commercialization of hydrogen fuel cell technologies, the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technology Office, maintains a comprehensive portfolio of R&D activities to develop advanced hydrogen storage technologies. The primary focus of the Hydrogen Storage Program is development of technologies to meet the challenging onboard storage requirements for hydrogen fuel cell electric vehicles (FCEVs) to meet vehicle performance that consumers have come to expect. Performance targets have also been established for materials handling equipment (e.g., forklifts) and low-power, portable fuel cell applications. With the imminent release of commercial FCEVs by automobile manufacturers in regional markets, a dual strategy is being pursued to (a) lower the cost and improve performance of high-pressure compressed hydrogen storage systems while (b) continuing efforts on advanced storage technologies that have potential to surpass the performance of ambient compressed hydrogen storage.

  13. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    Science.gov (United States)

    Fliermans; , Carl B.

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  14. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-07-23

    Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.

  15. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  16. Charge storage characteristics of hydrogenated nanocrystalline silicon film prepared by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Gang; Long Shi-Bing; Liu Ming; Wang Cong-Shun; Jia Rui; Lv Jin; Shi Yi

    2007-01-01

    The early stages of hydrogenated nanocrystalline silicon (nc-Si:H) films deposited by plasma-enhanced chemical vapour deposition were characterized by atomic force microscopy.To increase the density of nanocrystals in the nc-Si:H films,the films were annealed by rapid thermal annealing (RTA) at different temperatures and then analysed by Raman spectroscopy.It Was found that the recrystallization process of the film Was optimal at around 1000℃.The effects of different RTA conditions on charge storage were characterized by capacitance-voltage measurement.Experimental results show that nc-Si:H films obtained by RTA have good charge storage characteristics for nonvolatile memory.

  17. Synthesis and Evaluation on Performance of Hydrogen Storage of Multi-Walled Carbon Nanotubes Decorated with Platinum

    Institute of Scientific and Technical Information of China (English)

    MU Shi-chung; TANG Hao-lin; PAN Mu; YUAN Run-zhang

    2003-01-01

    By means of chemical reduction,nanoparticles of platinum were deposited on the surface of multi-walled carbon nanotubes (MWCNTs).The performance of hydrogen storage of as-prepared MWCNTs decorated with platinum was investigated.The results indicate that:(1) Hydrogen uptake is more quick and intense for decorated MWCNTs than that for not decorated ones at 10.931MPa and room temperature.The saturation of hydrogen uptake of the former only lasts about 30min,while the latter needs about 150 min;(2) The amount of hydrogen uptake of decorated MWCNTs is about 1.13wt%, which is larger than that of not decorated ones(about 0.54wt%);(3) However,more than 37% hydrogen absorbed by decorated MWCNTs is chemisorbed.

  18. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna International, Rochester Mills, MI (United States)

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  19. Electrochemical properties of TiV-based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    朱云峰; 李锐; 高明霞; 刘永锋; 潘洪革; 王启东

    2003-01-01

    The electrochemical properties of the super-stoichiometric TiV-based hydrogen storage electrode alloys(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2, 3, 4, 5, 6) were studied. It is found by XRD analysis that all the al-loys mainly consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with BCCstructure. The lattice parameters and the unit cell volumes of the two phases decrease with increasing x. The cyclelife, the linear polarization, the anode polarization and the electrochemical impedance spectra of the alloy electrodeswere investigated systematically. The overall electrochemical properties of the alloy electrode are found improvedgreatly as the result of super-stoichiometry and get to the best when x= 5.

  20. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  1. Lithium boride sheet and nanotubes: structure and hydrogen storage.

    Science.gov (United States)

    Zhang, Hong; Wang, Jing; Tian, Zhi-Xue; Liu, Ying

    2015-06-07

    A new class of Li-B sheets, along with the related nanotubes, with a Li2B5 primitive cell has been designed using first-principles density functional theory. The dynamical stability of the proposed structures was confirmed by calculation of the soft phonon modes, and the calculated electronic structures show that all are metallic. The application of both the sheets and nanotubes for hydrogen storage has been investigated and it has been found that both of them can adsorb two H2 molecules around each Li atom, with an average binding energy of 0.152-0.194 eV per H2, leading to a gravimetric density of 10.6 wt%.

  2. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  3. A Dissipative Model for Hydrogen Storage: Existence and Regularity Results

    CERN Document Server

    Chiodaroli, Elisabetta

    2010-01-01

    We prove global existence of a solution to an initial and boundary value problem for a highly nonlinear PDE system. The problem arises from a termomechanical dissipative model describing hydrogen storage by use of metal hydrides. In order to treat the model from an analytical point of view, we formulate it as a phase transition phenomenon thanks to the introduction of a suitable phase variable. Continuum mechanics laws lead to an evolutionary problem involving three state variables: the temperature, the phase parameter and the pressure. The problem thus consists of three coupled partial differential equations combined with initial and boundary conditions. Existence and regularity of the solutions are here investigated by means of a time discretization-a priori estimate-passage to the limit procedure joined with compactness and monotonicity arguments.

  4. Thermal energy storage. [by means of chemical reactions

    Science.gov (United States)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  5. Applications of functional carbon nanomaterials from hydrogen storage to drug delivery

    Science.gov (United States)

    Leonard, Ashley Dawn

    This dissertation describes the modification and functionalization of single-walled carbon nanotubes (SWCNTs). These SWCNTs were then investigated for their use in medical applications and for the storage of hydrogen. A technique was developed that leads to highly customized, individually suspended aqueous solutions of SWCNTs. These newly generated water-soluble SWCNTs were then functionalized further in water, thereby permitting the second functionalization addends to be chemically sensitive functional groups, for example drugs, that would not withstand the strongly acidic conditions of the first functionalization. The radical scavenging properties of nanovectors derived from SWCNTs were investigated and it was found that even the poorest SWCNT nanovector studied was nearly 40 times more effective at scavenging radicals than dendrite-fullerene DF-1, which has been shown to be a radioprotective to zebrafish via an antioxidant niechanism. This was used as the base to investigate using SWCNTs as protectors and mitigators of radiation exposure. SWCNTs were then explored for their use as drug delivery agents, in particular, the water insoluble chemotherapy drug, paclitaxel. SWCNTs showed promising in vivo and in vitro efficacy in the delivery of paclitaxel. Toxicity and biodistribution studies of the SWCNTs as drug delivery agents were performed in vivo using SWCNTs functionalized with radiolabeled indium. It was found that SWCNTs could be used for hydrogen storage by chemically crosslinking 3-dimensional frameworks of SWCNT fibers. These frameworks were shown to physisorb twice as much hydrogen, at low pressures, with respect to their surface areas, than typical macroporous carbon materials. This makes these SWCNT frameworks attractive materials for the development of a hydrogen vehicle fuel tank.

  6. Development of Improved Composite Pressure Vessels for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Norman L. [Hexagon Lincoln, Lincoln, NE (United States)

    2016-04-29

    Hexagon Lincoln started this DOE project as part of the Hydrogen Storage Engineering Center of Excellence (HSECoE) contract on 1 February 2009. The purpose of the HSECoE was the research and development of viable material based hydrogen storage systems for on-board vehicular applications to meet DOE performance and cost targets. A baseline design was established in Phase 1. Studies were then conducted to evaluate potential improvements, such as alternate fiber, resin, and boss materials. The most promising concepts were selected such that potential improvements, compared with the baseline Hexagon Lincoln tank, resulted in a projected weight reduction of 11 percent, volume increase of 4 percent, and cost reduction of 10 percent. The baseline design was updated in Phase 2 to reflect design improvements and changes in operating conditions specified by HSECoE Partners. Evaluation of potential improvements continued during Phase 2. Subscale prototype cylinders were designed and fabricated for HSECoE Partners’ use in demonstrating their components and systems. Risk mitigation studies were conducted in Phase 3 that focused on damage tolerance of the composite reinforcement. Updated subscale prototype cylinders were designed and manufactured to better address the HSECoE Partners’ requirements for system demonstration. Subscale Type 1, Type 3, and Type 4 tanks were designed, fabricated and tested. Laboratory tests were conducted to evaluate vacuum insulated systems for cooling the tanks during fill, and maintaining low temperatures during service. Full scale designs were prepared based on results from the studies of this program. The operating conditions that developed during the program addressed adsorbent systems operating at cold temperatures. A Type 4 tank would provide the lowest cost and lightest weight, particularly at higher pressures, as long as issues with liner compatibility and damage tolerance could be resolved. A Type 1 tank might be the choice if the

  7. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the k

  8. Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Herranz, V.; Perez-Page, M. [Departamento de Ingenieria Quimica y Nuclear. Universidad Politecnica de Valencia. Camino de Vera S/N, 46022 Valencia (Spain); Beneito, R. [Area de Energia. Departamento de Gestion e Innovacion. Instituto Tecnologico del Juguete (AIJU). Avda. Industria 23, 03440 Ibi, Alicante (Spain)

    2010-02-15

    Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnologicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen. (author)

  9. Nanoporous materials for hydrogen storage and H{sub 2}/D{sub 2} isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyunchul

    2014-05-05

    This thesis presents a study of hydrogen adsorption properties at RT with noble metal doped porous materials and an efficient separation of hydrogen isotopes with nanoporous materials. Most analysis is performed via thermal desorption spectra (TDS) and Sieverts-type apparatus. The result and discussion is presented in two parts; Chapter 4 focuses on metal doped nanoporous materials for hydrogen storage. Cryogenic hydrogen storage by physisorption on porous materials has the advantage of high reversibility and fast refuelling times with low heat evolution at modest pressures. At room temperature, however, the physisorption mechanism is not abEle to achieve enough capacity for practical application due to the weak van der Waals interaction, i.e., low isosteric heats for hydrogen sorption. Recently, the ''spillover'' effect has been proposed by R. Yang et al. to enhance the room temperature hydrogen storage capacity. However, the mechanism of this storage enhancement by decoration of noble metal particles inside high surface area supports is not yet fully understood and still under debate. In this chapter, noble metal (Pt / Pd) doped nanoporous materials (i.e. porous carbon, COFs) have been investigated for room temperature hydrogen storage. Their textural properties and hydrogen storage capacity are characterized by various analytic techniques (e.g. SEM, HRTEM, XRD, BET, ICP-OES, Thermal desorption spectra, Sievert's apparatus and Raman spectroscopy). Firstly, Pt-doped and un-doped templated carbons possessing almost identical textural properties were successfully synthesized via a single step wet impregnation method. This enables the study of Pt catalytic activities and hydrogen adsorption kinetics on porous carbons at ambient temperature by TDS after H{sub 2}/D{sub 2} gas exposure and PCT measurement, respectively. While the H{sub 2} adsorption kinetics in the microporous structure is enhanced by Pt catalytic activities (spillover), only a

  10. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Nicholas Cole [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni⊂SiO2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni⊂SiO2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs

  11. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Thanh [Argonne National Lab. (ANL), Argonne, IL (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K [Argonne National Lab. (ANL), Argonne, IL (United States); Kromer, Matt [TIAX LLC, Lexington, MA (United States); Lasher, Stephen [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Law, Karen [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  12. Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kunowsky, M. [Departamento de Quimica Inorganica, Universidad de Alicante, Apartado de Correos 99, E-03080 Alicante (Spain); CNRS LIMHPUPR1311, Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Weinberger, B.; Lamari Darkrim, F. [CNRS LIMHPUPR1311, Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Suarez-Garcia, F.; Cazorla-Amoros, D.; Linares-Solano, A. [Departamento de Quimica Inorganica, Universidad de Alicante, Apartado de Correos 99, E-03080 Alicante (Spain)

    2008-06-15

    Porous materials are gaining interest due to their potential for storing hydrogen via physisorption. In the present work, two carbon fibres, carbonised at 973 and 1273 K, have been chemically activated with KOH and NaOH, in order to obtain materials with optimised characteristics for hydrogen storage application. Highly microporous activated carbon fibres were obtained from both precursors, especially from the fibre carbonised at the lower carbonisation temperature, remarking its importance on its subsequent activation process. As activation agent, KOH is more effective for developing the narrow microporosity, and higher yields are obtained. H{sub 2} adsorption isotherms were measured at 298 K for pressures up to 20 MPa, and at 77 K up to 4 MPa. The maximum excess adsorption of hydrogen reached 1 wt% at 298 K and 3.8 wt% at 77 K. The total volumetric storage capacity is of 17 g/l at 298 K, and 32 g/l at 77 K. (author)

  13. Systems of solar hydrogen storage; Sistemas de almacenamiento de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E.; Isorna, F.; Rosa, F.

    2004-07-01

    Hydrogen has the potential to play a major role in a future energy system. Hydrogen production from renewable energy can solve some of the associated problems to such energies. From production to end-users, it is essential the development of suitable hydrogen delivery and storage systems, taking into consideration the particular characteristics of each project. This article describes, in a general way, main choices for hydrogen storage when produced from renewable energy, and shows the particular case of the INTA's Hydrogen Production Plant. (Author)

  14. Synthesis,characterization and hydrogen storage capacity of MS2 (M - Mo,TI) nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Tao Zhanliang; Gao Feng; Chen Jun; Yuan Huatang

    2006-01-01

    The structure,morphology and hydrogen-storage capacity of MS2 (M = Mo,Ti) nanotubes prepared by different experimental methods were studied.It was found that the MoS2 nanotubes treated by KOH displayed the gaseous storage capacity of 1.2 wt% hydrogen (under the hydrogen pressure of 3 MPa and 25℃) and the electrochemical discharge capacity of 262 mAh/g (at the discharge current density of 50 mA/g and 25℃) that corresponds to about 1.0 wt% hydrogen.In comparison,TiS2 nanotubes can store 2.5 wt% hydrogen under the hydrogen pressure of 4 MPa and 25℃,The results show that MS2 compound nanotubes are promising materials for hydrogen storage.

  15. Promising gaseous and electrochemical hydrogen storage properties of porous Mg-Pd films under mild conditions.

    Science.gov (United States)

    Xin, Gongbiao; Yuan, Huiping; Jiang, Lijun; Wang, Shumao; Liu, Xiaopeng; Li, Xingguo

    2015-05-28

    In this paper, the gaseous and electrochemical hydrogen storage properties of 200 nm Mg-Pd thin films with different morphologies have been investigated. The results show that Mg-Pd films become porous with the increase of substrate temperature. Porous Mg-Pd films exhibit superior gaseous and electrochemical hydrogen storage behaviors under mild conditions, including rapid hydrogen sorption kinetics, a large hydrogen storage amount, high electrochemical discharge capacity, and a fast hydrogen diffusion rate. The excellent behaviors of porous Mg-Pd films might be ascribed to the significantly shortened hydrogen diffusion paths and the large contact areas between the hydrogen gas and the solid Mg phases, which are elucidative for the development and applications of thick Mg-Pd films.

  16. Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites

    NARCIS (Netherlands)

    Yan, Y.; Au, Y.S.; Rentsch, D.; Remhof, A.; de Jongh, P.E.; Züttel, A.

    2013-01-01

    Mg(BH4)2 exhibits a high hydrogen content of 14.9 wt% and thermodynamic stability in the overall decomposition reaction that corresponds to hydrogen desorption at around room temperature. However, the potential applications in hydrogen storage are restricted by high kinetic barriers. In this study,

  17. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  18. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  19. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  20. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    Science.gov (United States)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  1. GAT 4 production and storage of hydrogen. Report July 2004; GAT 4 procduction et stockage de l'hydrogene. Rapport juillet 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  2. Si-decorated graphene: A promising media for molecular hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M. Darvish, E-mail: ganji_md@yahoo.com; Emami, S.N.; Khosravi, A.; Abbasi, M.

    2015-03-30

    Highlights: • The adsorption of H{sub 2} on Si-decorated graphene was studied by DFT-LDA method. • Chemisorbed Si atom exhibits as a potential positive center for H{sub 2} adsorption. • BSSE correction and spin polarization affect slightly on the binding energies estimation. • Si atom can absorb up to eight H{sub 2}molecules with the gravimetric density of 15 wt%. • The binding properties for the adsorbed H{sub 2}molecules are typical for the physisorption. - Abstract: The adsorption of hydrogen molecules (H{sub 2}) on Si-decorated graphene was studied by using density functional theory calculations based on local density approximation (LDA). The accuracy of our method was validated by high level quantum chemical calculation result at MP2 level of theory for similar system. Our calculations show that Si-decorated graphene has high adsorption energy, high net charge transfer values and small connecting distances to graphene surface due to chemisorption. This makes adsorbed Si on the surface as a positive center which can adsorb considerably H{sub 2} molecules. We find that up to 16 H{sub 2} molecules can stably bind to two Si atoms on both side of the graphene sheet with slightly desirable adsorption energy which indicates that the resultant system facilitates the hydrogen desorption at near ambient conditions for practical applications. This newly developed Si decorated graphene with its hydrogen storage capacity of about 15 wt% would be an excellent candidate for hydrogen storage mediums.

  3. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  4. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed.

  5. THE STUDY OF CHEMICAL COMPOSITION FOR ANIMAL FATS DURING STORAGE

    OpenAIRE

    Flavia Pop; Cornel Laslo

    2009-01-01

    In this article the chemical composition for 3 types of animal fats (pork fat, beef tallow and buffalo tallow), following the variation of saturated and unsaturated fatty acids proportion during freezing storage was studied. Determination of chemical composition of animal fats is important in establishing organoleptic and physico-chemical parameters, the variation of them in time, nature and proportion of fatty acids conferring specific characteristics to them. For pork fat was determined the...

  6. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  7. Modeling of an Integrated Renewable Energy System (IRES) with hydrogen storage

    Science.gov (United States)

    Shenoy, Navin Kodange

    2010-12-01

    Scope and Method of Study. The purpose of the study was to consider the integration of hydrogen storage technology as means of energy storage with renewable sources of energy. Hydrogen storage technology consists of an alkaline electrolyzer, gas storage tank and a fuel cell. The Integrated Renewable Energy System (IRES) under consideration includes wind energy, solar energy from photovoltaics, solar thermal energy and biomass energy in the form of biogas. Energy needs are categorized depending on the type and quality of the energy requirements. After meeting all the energy needs, any excess energy available from wind and PVs is converted into hydrogen using an electrolyzer for later use in a fuel cell. Similarly, when renewable energy generation is not able to supply the actual load demand, the stored hydrogen is utilized through fuel cell to fulfill load demand. Analysis of how IRES operates in order to satisfy different types of energy needs is discussed. Findings and Conclusions. All simulations are performed using MATLAB software. Hydrogen storage technology consisting of an electrolyzer, gas storage tank and a fuel cell is incorporated in the IRES design process for a hypothetical remote community. Results show that whenever renewable energy generated is greater than the electrical demand, excess energy is stored in the form of hydrogen and in case of energy shortfall, the stored hydrogen is utilized through the fuel cell to supply to excess power demand. The overall operation of IRES is enhanced as a result of energy storage in the form of hydrogen. Hydrogen has immense potential to be the energy carrier of the future because of its clean character and the model of hydrogen storage discussed here can form an integral part of IRES for remote area applications.

  8. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  9. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  10. Superhalogens as Building Blocks of Complex Hydrides for Hydrogen Storage

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceed to those of halogen. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogen as ligands, which are termed as hyperhalogen. Having established BH4- as a superhalogen, we have studied BH4-x(BH4)x- (x = 1 to 4) hyperhalogen anions and their Li-complexes, LiBH4-x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4-, which increases with the increase in the number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4-x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between dehydrogenation energy of LiBH4-x(BH4)x complexes and VDE of BH4-x(BH4)x- anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This stud...

  11. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    Science.gov (United States)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  12. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  13. First principles study of hydrogen storage in SWCNT functionalized with MgH2

    Science.gov (United States)

    Lavanya, R.; Iyakutti, K.; Surya, V. J.; Vasu, V.; Kawazoe, Y.

    2013-02-01

    In this work, hydrogen storage in (10,10) armchair single walled carbon nanotube (SWCNT) functionalized with magnesium hydride (MgH2) has been investigated. As expected, due to light weight of MgH2, the system (SWCNT-MgH2) exhibits a storage capacity of 6.44 wt.%. The hydrogen adsorptions are molecular. The system is stable and thus H2 molecules can be desorbed without affecting the C - Mg attachment. Dimerization of MgH2 molecules has been observed. The binding energies confirm that the system can be used as a practical hydrogen storage medium.

  14. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  15. Innovative and cost competitive hydrogen storage systems: STORHY- A European integrated Project

    Energy Technology Data Exchange (ETDEWEB)

    Strubel, V.; Bartlok, G.; Krainz, G.; Gauthier, A.; Mair, G.; Muller, J.; Barral, K.; Zieger, J.

    2005-07-01

    Session Alternative fuel and drive train solutions represent one of the biggest challenge for the vehicle of the future. Current research activities related to hydrogen as an energy carrier indicate that the concept of a hydrogen economy has considerably gained in credibility in recent years. One main technical gap for the wide commercialisation of hydrogen-fuelled vehicles is the improvement of hydrogen storage systems in terms of efficiency, cost and safety. This is indeed the main objective of the Integrated Project StorHy within the EU 6th Framework Programme. In IP StorHy, the major European automotive companies, gas suppliers, research institutes and universities will develop innovative and cost competitive storage solutions with a view to mass production. Technologies of 700 bar compressed gaseous hydrogen storage vessels will be investigated in terms of the following criteria: novel liner materials, modular storage vessel concept, liner and composite vessel manufacturing processes, fast-filling processes for 700 bar vessels applying cool filling protocols, safety on-board monitoring system, recyclability, 700 bar exchangeable rack. Thanks to its low working pressure (compared to high-pressure systems), cryogenic storage of liquid hydrogen allows for new concepts with conformable geometries more suited to vehicle design. Furthermore, the use of new composite materials entails a great potential for weight reduction - with these materials a specific energy storage mass similar to conventional fuel tanks can be achieved. As for the solid hydrogen storage technologies, the StorHy project focuses on light weight complex alanates as these are considered as one of the most promising materials for solid hydrogen storage. The investigations concentrate on improving hydrogen storage density as well as hydrogenation/dehydrogenation kinetics. Furthermore, material production processes capable of supplying larger quantities of storage material for a demonstrator tank

  16. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.

    Science.gov (United States)

    Kowalczyk, Piotr; Tanaka, Hideki; Hołyst, Robert; Kaneko, Katsumi; Ohmori, Takumi; Miyamoto, Junichi

    2005-09-15

    Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs second-order effective potential. The simulated surface excess isotherms of hydrogen were used for the determination of the total hydrogen storage, density of hydrogen in graphite slitlike pores, distribution of pore sizes and volumes, enthalpy of adsorption per mole, total surface area, total pore volume, and average pore size of pitch-based activated carbon fibers. Combining experimental results with simulations reveals that the density of hydrogen in graphite slitlike pores at 303 K does not exceed 0.014 g/cm(3), that is, 21% of the liquid-hydrogen density at the triple point. The optimal pore size for the storage of hydrogen at 303 K in the considered pore geometry depends on the pressure of storage. For lower storage pressures, p optimal pore width is equal to a 2.2 collision diameter of hydrogen (i.e., 0.65 nm), whereas, for p congruent with 50MPa, the pore width is equal to an approximately 7.2 collision diameter of hydrogen (i.e., 2.13 nm). For the wider pores, that is, the pore width exceeds a 7.2 collision diameter of hydrogen, the surface excess of hydrogen adsorption is constant. The importance of quantum effects is recognized in narrow graphite slitlike pores in the whole range of the hydrogen pressure as well as in wider ones at high pressures of bulk hydrogen. The enthalpies of adsorption per mole for the considered carbonaceous materials are practically constant with hydrogen loading and vary within the narrow range q(st) congruent with 7.28-7.85 kJ/mol. Our systematic study of hydrogen adsorption at 303 K in graphite slitlike pores gives deep insight into the timely problem of hydrogen storage as the most promising source of clean energy. The calculated maximum storage of hydrogen is equal to approximately 1.4 wt %, which is far from

  17. Metal-Assisted Hydrogen Storage on Pt-Decorated Single-Walled Carbon Nanohorns

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [National Institute of Standards and Technology (NIST); Brown, Craig [National Institute of Standards and Technology (NIST); Neumann, Dan [National Institute of Standards and Technology (NIST); Geohegan, David B [ORNL; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Hu, Hui [ORNL; Styers-Barnett, David J [ORNL; Krasnov, Pavel O. [Rice University; Yakobson, Boris I. [Rice University

    2012-01-01

    The catalytic dissociation of hydrogen molecules by metal nanoparticles and spillover of atomic hydrogen onto various supports is a well-established phenomenon in catalysis. However, the mechanisms by which metal catalyst nanoparticles can assist in enhanced hydrogen storage on high-surface area supports are still under debate. Experimental measurements of metal-assisted hydrogen storage have been hampered by inaccurate estimation of atomically stored hydrogen deduced from comparative measurements between metal-decorated and undecorated samples. Here we report a temperature cycling technique combined with inelastic neutron scattering (INS) measurements of quantum rotational transitions of molecular H2 to more accurately quantify adsorbed hydrogen aided by catalytic particles using single samples. Temperature cycling measurements on single-wall carbon nanohorns (SWCNHs) decorated with 2-3 nm Pt nanoparticles showed 0.17 % mass fraction of metal-assisted hydrogen storage (at 0.5 MPa) at room temperature. Temperature cycling of Pt-decorated SWCNHs using a Sievert s apparatus also indicated metal-assisted hydrogen adsorption of 0.08 % mass fraction at 5 MPa at room temperature. No additional metal-assisted hydrogen storage was observed in SWCNH samples without Pt nanoparticles cycled to room temperature, or in Pt-SWCNHs when the temperature was cycled to less than 150K. The possible formation of C-H bonds due to spilled-over atomic hydrogen was also investigated using both INS and density functional theory calculations.

  18. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    Science.gov (United States)

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  19. Uncertainties in risk assessment of hydrogen discharges from pressurized storage vessels at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, D.; Baraldi, D.

    2013-01-01

    Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at...... 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel...

  20. Study on Kinetics of Hydrogen Absorption by Metal Hydride Slurries Ⅰ. Absorption of Hydrogen by Hydrogen Storage Alloy MlNi5 Suspended in Benzene

    Institute of Scientific and Technical Information of China (English)

    安越; 陈长聘; 徐国华; 蔡官明; 王启东

    2002-01-01

    The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three-phase mass transfer model. It is also concluded that the suitable absorption temperature is 313 K.

  1. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  2. New insights into designing metallacarborane based room temperature hydrogen storage media.

    Science.gov (United States)

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  3. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development.

  4. Hydrogen Storage in Iron/Carbon Nanopowder Composite Materials: Effect of Varying Spiked Iron Content on Hydrogen Adsorption

    Directory of Open Access Journals (Sweden)

    Chun-Lin Chu

    2013-01-01

    Full Text Available This study investigates the effects of varying the spiked iron content of iron/carbon nanopowder (Fe/CNP composite materials on hydrogen storage capacity. Among four such samples, a maximum hydrogen uptake of approximately 0.48 wt% was obtained with 14 wt% of spiked iron under 37 atm and 300 K. This higher hydrogen uptake capacity was believed to be closely related to the physisorption mechanism rather than chemisorption. In this case, the formation of maghemite catalyzed the attraction of hydrogen molecules and the CNP skeleton was the principal absorbent material for hydrogen storage. However, as the iron content exceeded 14 wt%, the formation of larger and poorly dispersed maghemite grains reduced the available surface areas of CNP for the storage of hydrogen molecules, leading to decreased uptake. Our study shows that hydrogen uptake capacities can be improved by appropriately adjusting the surface polarities of the CNP with well dispersed iron oxides crystals.

  5. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  6. A Novel Sandwich-type Dinuclear Complex for High-capacity Hydrogen Storage%A Novel Sandwich-type Dinuclear Complex for High-capacity Hydrogen Storage

    Institute of Scientific and Technical Information of China (English)

    朱海燕; 陈元振; 李赛; 曹秀贞; 柳永宁

    2012-01-01

    From density functional theory (DFT) calculations, we predicted that the sandwich-type dinuclear organometallic compounds Cpffi2 and Cp2Sc2 can adsorb up to eight hydrogen molecules respectively, corresponding to a high gravimetric storage capacity of 6.7% and 6.8% (w), respectively. These sandwich-type organometallocenes proposed in this work are favorable for reversible adsorption and desorption of hydrogen at ambient conditions.

  7. Modeling, Testing and Deploying a Multifunctional Radiation Shielding / Hydrogen Storage Unit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  8. Studies show C60+Ca might be a new hydrogen-storage material

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In cooperation with their US co-workers,CAS researchers recently discovered a new nanomaterial with high-capacity hydrogen storage.Their work was published in a recent issue of Physics Review Letter.

  9. Hydrogen storage using polymer-supported organometallic dihydrogen complexes: a mechanistic study.

    Science.gov (United States)

    Cooper, Andrew I; Poliakoff, Martyn

    2007-07-28

    The dihydrogen complex W(CO)(5)(H(2)) can be both generated and dissociated in polymer matrices by UV photolysis at 220 K and 90 K, respectively, suggesting a potential "UV-activated" mechanism for hydrogen storage and release.

  10. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  11. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  12. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    Directory of Open Access Journals (Sweden)

    Honghui Cheng

    2017-02-01

    Full Text Available Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD, and synchrotron radiation light source. The applications of ex situ and in situ time-resolved SR-XRPD in hydrogen storage materials, are reviewed in detail. Future trends and proposals in the applications of the advanced XRPD techniques in hydrogen storage materials are also discussed.

  13. Materials for hydrogen storage and the Na-Mg-B-H system

    Directory of Open Access Journals (Sweden)

    Daphiny Pottmaier

    2015-02-01

    Full Text Available This review on materials for hydrogen storage in the solid state gives a brief discussion underlying reasons and driving forces of this specific field of research and development (the why question. This scenario is followed by an outline of the main materials investigated as options for hydrogen storage (the what exactly. Then, it moves into breakthroughs in the specific case of solid state storage of hydrogen, regarding both materials (where to store it and properties (how it works. Finally, one of early model systems, namely NaBH4/MgH2 (the case study, is discussed more comprehensively to better elucidate some of the issues and drawbacks of its use in solid state hydrogen storage.

  14. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Desnavi, Sameerah, E-mail: sameerah-desnavi@zhcet.ac.in [Department of Electronic Engineering, ZHCET, Aligarh Muslim University, Aligarh-202002 (India); Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.

  15. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2014-07-01

    Full Text Available The spray-pyrolysis of borazine at 1400 °C under nitrogen generates boron nitride (BN nanoparticles (NPs. The as-prepared samples form elementary blocks containing slightly agglomerated NPs with sizes ranging from 55 to 120 nm, a Brunauer-Emmett-Teller (BET-specific surface area of 34.6 m2 g−1 and a helium density of 1.95 g cm−3. They are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeds, whereas under nitrogen, their lower size affects their high temperature thermal behavior in the temperature range of 1450–2000 °C. Nitrogen heat-treated nanostructures have been carefully analyzed using X-ray diffraction, electron microscopy and energy-dispersive X-ray spectroscopy. The high temperature treatment (2000 °C gives hollow-cored BN-NPs that are strongly facetted, and after ball-milling, hollow core-mesoporous shell NPs displaying a BET-specific surface area of 200.5 m2·g−1 and a total pore volume of 0.287 cm3·g−1 were produced. They have been used as host material to confine, then destabilize ammonia borane (AB, thus improving its dehydrogenation properties. The as-formed AB@BN nanocomposites liberated H2 at 40 °C, and H2 is pure in the temperature range 40–80 °C, leading to a safe and practical hydrogen storage composite material.

  16. Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S.; Novil, M.; Rockar, E.; Randolph, P.

    1979-12-01

    The technical and economic feasibility of storing hydrogen in underground storage reservoirs is evaluated. The past and present technology of storing gases, primarily natural gas is reviewed. Four types of reservoirs are examined: salt caverns, excavated caverns, aquifers, and depleted fields. A technical investigation of hydrogen properties reveals that only hydrogen embrittlement places a limit on the underground storage by hydrogen. This constraint will limit reservoir pressures to 1200 psi or less. A model was developed to determine economic feasibility. After making reasonable assumptions that a utility might make in determining whether to proceed with a new storage operation, the model was tested and verified on natural gas storage. A parameteric analysis was made on some of the input parameters of the model to determine the sensitivity of the cost of service to them. Once the model was verified it was used to compute the cost of service of storing hydrogen in the four reservoir types. The costs of service for hydrogen storage ranged from 26 to 150% of the cost of the gas stored. The study concludes that it is now both safe and economic to store hydrogen in underground reservoirs.

  17. Hydrogen patent portfolios in the automotive industry - the search for promising storage methods

    NARCIS (Netherlands)

    Bakker, S.

    2010-01-01

    In the development of hydrogen vehicle technologies, the automotive industry adopts a portfolio approach; a multitude of technological options is developed for hydrogen storage and conversion. Patent portfolios of car manufacturers are used as indicators of the variation and selection dynamics of di

  18. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  19. The development of a computational platform to design and simulate on-board hydrogen storage systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2017-01-01

    the vehicular tank within the frame of a complete refueling system. The two technologies that are integrated in the platform are solid-state hydrogen storage in the form of metal hydrides and compressed gas systems. In this work the computational platform is used to compare the storage performance of two tank...

  20. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.

    2011-08-01

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  1. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2009-05-20

    Open-framework materials have been proposed as potential materials for hydrogen storage. Metal-organic framework (MOF) and covalent-organic framework (COF) materials are under extensive study to discover their storage abilities. In particular the IRMOF family of materials have been considered as ideal to study the effect of different factors that affect the hydrogen storage capacity. In this paper, we analyse the effect of different factors such as surface area, pore volume and the interaction of hydrogen with the molecular framework on the hydrogen uptake of such materials. Through this analysis we propose guidelines to enhance hydrogen storage capacity of already synthesized materials and recommend advanced materials for this application.

  2. Ab initio study of magnesium and magnesium hydride nanoclusters and nanocrystals: examining optimal structures and compositions for efficient hydrogen storage.

    Science.gov (United States)

    Koukaras, Emmanuel N; Zdetsis, Aristides D; Sigalas, Michael M

    2012-09-26

    On the basis of the attractive possibility of efficient hydrogen storage in light metal hydrides, we have examined a large variety of Mg(n)H(m) nanoclusters and (MgH(2))(n) nanocrystals (n = 2-216, m = 2-436) using high level coupled cluster, CCSD(T), ab initio methods, and judicially chosen density functional calculations of comparable quality and (near chemical) accuracy. Our calculated desorption energies as a function of size and percentage of hydrogen have pinpointed optimal regions of sizes and concentrations of hydrogen which are in full agreement with recent experimental findings. Furthermore, our results reproduce the experimental desorption energy of 75.5 kJ/mol for the infinite system with remarkable accuracy (76.5 ± 1.5 kJ/mol).

  3. Atomic hydrogen storage. [cryotrapping and magnetic field strength

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  4. First-principles study of hydrogen storage on Li12F12 nano-cage

    Science.gov (United States)

    Zhang, Yafei; Cheng, Xinlu

    2017-03-01

    We use the first-principles calculation based on density functional theory (DFT) to investigate the hydrogen storage on Li12F12 nano-cage. Our result indicates the largest hydrogen gravimetric density is 7.14 wt% and this is higher than the 2017 target from the US department of energy (DOE). Meanwhile, the average adsorption energy is -0.161 eV/H2, which is desirable for absorbing and desorbing H2 molecules at near ambient conditions. These findings will have important implications on designing hydrogen storage materials in the future.

  5. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  6. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  7. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  8. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition.

    Science.gov (United States)

    Gonzalez-Cortes, S; Slocombe, D R; Xiao, T; Aldawsari, A; Yao, B; Kuznetsov, V L; Liberti, E; Kirkland, A I; Alkinani, M S; Al-Megren, H A; Thomas, J M; Edwards, P P

    2016-10-19

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV's). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

  9. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    Science.gov (United States)

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  10. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2013-10-01

    Full Text Available Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys.

  11. Improving the hydrogen storage properties of metal-organic framework by functionalization.

    Science.gov (United States)

    Xia, Liangzhi; Liu, Qing; Wang, Fengling; Lu, Jinming

    2016-10-01

    Based on the structure of MOF-808, different substituents were introduced to replace hydrogen atom on the phenyl ring of MOF-808. The GCMC method was used to study the effect of functional groups on the hydrogen storage properties of MOF-808-X (X = -OH, -NO2, -CH3, -CN, -I). The H2 uptakes and isosteric heat of adsorption were simulated at 77 K. The results indicate that all these substituents have favorable impact on the hydrogen storage capacity, and -CN is found to be the most promising substituent to improve H2 uptake. These results may be helpful for the design of MOFs with higher hydrogen storage capacity. Graphical abstract Atomistic structures of MOFs. (a) The structures of MOF-808-X. (b) Model of organic linker. Atom color scheme: C, gray; H, white; O, red; X, palegreen (X = -OH, -NO2, -CH3, -CN, -I).

  12. Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage.

    Science.gov (United States)

    Kelly, Stephen T; Van Atta, Sky L; Vajo, John J; Olson, Gregory L; Clemens, B M

    2009-05-20

    Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction MgH2 + 1/2Mg2Si + H2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.

  13. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su;

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights ...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  14. Theoretical investigation of the borazine-melamine polymer as a novel candidate for hydrogen storage applications.

    Science.gov (United States)

    Dabbagh, Hossein A; Shahraki, Maryam; Farrokhpour, Hossein

    2014-06-14

    Ab initio calculations and molecular dynamic simulation were employed to study the interaction of molecular hydrogen with the borazine-melamine polymer (BMP) in order to explore its potential for hydrogen storage applications. The calculations were performed using the long range corrected version of density functional theory, the Coulomb-attenuating method (CAM-B3LYP) and the second order Møller-Plesset perturbation theory (MP2). The results showed that the average adsorption energy per hydrogen is about -0.7 and -0.3 kcal mol(-1) at the MP2/6-311+G(d,p) and CAMB3LYP/6-311+G(d,p) levels of theory, respectively. The adsorption energies were corrected for the basis set superposition error (BSSE) by the counterpoise method. It was found that the hydrogen storage capacity of the BMP is about 6.49 wt%, which is close to the values reported for the other selected materials for the hydrogen storage in the literature. The maximum number of hydrogen molecules, which were adsorbed by the BMP building block, is about ten. Molecular dynamic simulation was performed to assess the potential of BMP for hydrogen storage.

  15. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  16. Hydrogen as an energy storage; Wasserstoff als Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Christina [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft; Hustadt, Daniel; Weinmann, Oliver [Vattenfall Europe Innovation GmbH, Hamburg (Germany)

    2013-05-15

    In order to investigate hydrogen in everyday life, its utilization will be tested and optimized in different scenarios in demonstration facilities. Currently, the excess current for example from wind power plants is not yet sufficient in order to refinance the high investment costs for electrolyzers. Under what conditions do economic potentials exist for the use of hydrogen?.

  17. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  18. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  19. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  20. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    Energy Technology Data Exchange (ETDEWEB)

    Petitpas, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benard, P [Universite du Quebec a Trois-Rivieres (Canada); Klebanoff, L E [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, J [Universite du Quebec a Trois-Rivieres (Canada); Aceves, S M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  1. Studies of Modified Hydrogen Storage Intermetallic Compounds Used as Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Rui F. M. Lobo

    2011-12-01

    Full Text Available The possibility of substituting Pt/C with the hydrogen storage alloy MlNi3.6Co0.85Al0.3Mn0.3 as the anode active material of a proton exchange membrane fuel cell system has been analyzed. The electrochemical properties indicate that a much more electrochemically active anode is obtained by impregnating the active material loaded anode in a Nafion proton conducting polymer. Such performance improvement might result from the increase of three-phase boundary sites or length in the gas diffusion electrode where the electrochemical reaction occurs. The experimental data revealed that the membrane electrode assembly (MEA shows better results when the anode active material, MlNi3.6Co0.85Al0.3Mn0.3, is treated with a hot alkaline KBH4 solution, and then chemically coated with 3 wt.% Pd. The MEA with the aforesaid modification presents an enhanced surface capability for hydrogen adsorption, and has been studied by molecular beam-thermal desorption spectrometry.

  2. Magnesium-based nanocomposites synthesized by high-energy ball milling for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, H.; Nakatomi, S.; Tanaka, K.; Hashimoto, Y.; Sakata, Y. [Yamaguchi Univ., Tokiwadai (Japan)

    2010-07-01

    Nanocrystalline MgH{sub 2} obtained by ball milling with cyclohexane or benzene showed excellent properties for hydrogen storage. 1 at% Al-added nanocrystalline magnesium samples obtained by milling of MgH{sub 2} with solutions of Al(C{sub 2}H{sub 5}){sub 3} in benzene showed the reversible hydrogen absorption/desorption cycles even at 0.1 MPa of hydrogen. Moreover, the hydrogen storage properties of magnesium hydride were markedly improved upon nanocomposite formation by ball milling of MgH{sub 2} with Sn or SiC. For MgH{sub 2}/Sn and MgH{sub 2}/SiC nanocomposites, the dissociation temperature at 0.1 MPa of hydrogen was raised, compared to that for MgH{sub 2}. (orig.)

  3. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  4. FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2

    Energy Technology Data Exchange (ETDEWEB)

    James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

    2012-01-10

    While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

  5. [Analysis of main chemical composition in hydrogenated rosin from Zhuzhou].

    Science.gov (United States)

    Duan, W G; Chen, X P; Wang, L L; Deng, S; Zhou, Y H; An, X N

    2001-01-01

    The acid fraction, the main part of the hydrogenated rosin produced by Zhuzhou Forest Chemicals Plant of China, was separated from neutral fraction by modified DEAE-Sephadex ion exchange chromatography and analyzed with GC-MS-DS technique by using DB-5 capillary column. Six dihydroabietic-type resin acids, four dihydropimaric/isopimaric-type resin acids and four tetrahydroabietic-type resin acids were identified. The hydrogenated rosin is composed mainly of 8-abietenoic acid, 18-abietanoic acid, 13-abietenoic acid, 8 alpha, 13 beta-abietanoic acid, 13 beta-8-abietenoic acid and 8-isopimarenoic acid etc.

  6. Design and building of a new experimental setup for testing hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-09-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics and thermodynamics the Materials Research Department has a high pressure balance. However, the drawback of this equipment is, that in order to load samples, exposure towards air is inevitable. This has prompted the design and building of a new experimental setup with a detachable reactor allowing samples to be loaded under protective atmosphere. The purpose of this report is to serve as documentation of the new setup. (au)

  7. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  8. Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities.

    Science.gov (United States)

    Kumar, Rajesh; Oh, Jung-Hwan; Kim, Hyun-Jun; Jung, Jung-Hwan; Jung, Chan-Ho; Hong, Won G; Kim, Hae-Jin; Park, Jeong-Young; Oh, Il-Kwon

    2015-07-28

    Atomic-scale defects on carbon nanostructures have been considered as detrimental factors and critical problems to be eliminated in order to fully utilize their intrinsic material properties such as ultrahigh mechanical stiffness and electrical conductivity. However, defects that can be intentionally controlled through chemical and physical treatments are reasonably expected to bring benefits in various practical engineering applications such as desalination thin membranes, photochemical catalysts, and energy storage materials. Herein, we report a defect-engineered self-assembly procedure to produce a three-dimensionally nanohole-structured and palladium-embedded porous graphene hetero-nanostructure having ultrahigh hydrogen storage and CO oxidation multifunctionalities. Under multistep microwave reactions, agglomerated palladium nanoparticles having diameters of ∼10 nm produce physical nanoholes in the basal-plane structure of graphene sheets, while much smaller palladium nanoparticles are readily impregnated inside graphene layers and bonded on graphene surfaces. The present results show that the defect-engineered hetero-nanostructure has a ∼5.4 wt % hydrogen storage capacity under 7.5 MPa and CO oxidation catalytic activity at 190 °C. The defect-laden graphene can be highly functionalized for multipurpose applications such as molecule absorption, electrochemical energy storage, and catalytic activity, resulting in a pathway to nanoengineering based on underlying atomic scale and physical defects.

  9. Implementation for Model of Adsoptive Hydrogen Storage Using UDF in Fluent

    Science.gov (United States)

    Ye, Feng; Xiao, Jinsheng; Hu, Binxiang; Benard, Pierre; Chahine, Richard

    This paper builds an axisymmetrical geometry model and simulates the charging, domancy, discharging and domancy processes of hydrogen storage tank based on activated carbon bed in a steel container at room temperature (302K) and medium storage pressure (10 MPa). The CFD model is based on the mass, momentum and energy conservation equations of the hydrogen storage system formed of gaseous and adsorbed hydrogen, activated carbon bed and steel tank wall. The adsorption model is based on Dubinin-Astakov adsorption isotherms. The simulation is implemented using a finite volume method through the computational fluid dynamics commercial software Fluent. User defined functions (UDFs) hooked in Fluent software are given to set the boundary conditions or modify the mass and energy conservation equations.The simulating results have good agreement with experimental results. Results show that the temperature of central region is higher than that near the wall during the charging process,while the temperature of central region is lower than that near the wall during the discharging process.The amount of adsorbed hydrogen is greater than that of the compressed gaseous hydrogen. Hydrogen storage by adsorption on high surface area activated carbon has obvious advantages.

  10. Predicting hydrogen and methane adsorption in carbon nanopores for energy storage

    Science.gov (United States)

    Ihm, Yungok; Morris, James; Cooper, Valentino; Morris Lab, U. tennessee Collaboration; Advanced material Group, ORNL Collaboration

    2013-03-01

    There are increasing demands for alternate fuels for transportation, which requires safe, high energy density, lightweight storage materials. Experimental measurements and theoretical predictions show relatively low hydrogen storage capacities in various porous materials, limiting hydrogen as a viable alternative for automobiles. In this work, we use a continuum model based on van der Waals density functional (vdW-DF) calculations to elucidate the role that long-range interactions play in the hydrogen adsorption properties of model slit nanopores in carbon. The proper treatment of long-range interactions gives an optimal pore size for hydrogen storage of 8-9 Å (larger than previously predicted). Remarkably, we find a peak hydrogen density close to that of liquid H2 at ambient temperatures, in agreement with recent experimental results on pore-size dependent adsorption in nanoporous carbon. We then show that such nanopores would be better suited to storing methane, possibly providing an alternative to fill the gap between the capacity required by DOE goals and that attainable with current hydrogen storage technology. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  11. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Orhan Talu; Dr. Surendra N. Tewari

    2007-10-27

    This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

  12. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  13. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  14. Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development.

    Science.gov (United States)

    Ciriminna, Rosaria; Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-12-20

    The global utilization of hydrogen peroxide, a green oxidant that decomposes in water and oxygen, has gone from 0.5 million tonnes per year three decades ago to 4.5 million tonnes per year in 2014, and is still climbing. With the aim of expanding the utilization of this eminent green chemical across different industrial and civil sectors, the production and use of hydrogen peroxide as a green industrial oxidant is reviewed herein to provide an overview of the explosive growth of its industrial use over the last three decades and of the state of the art in its industrial manufacture, with important details of what determines the viability of the direct production from oxygen and hydrogen compared with the traditional auto-oxidation process.

  15. Hydrogen storage materials with focus on main group I-II elements

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-07-01

    A future hydrogen based society, viz. a society in which hydrogen is the primary energy carrier, is viewed by many as a solution to many of the energy related problems of the world {integral} the ultimate problem being the eventual depletion of fossil fuels. Although, for the hydrogen based society to become realizable, several technical difficulties must be dealt with. Especially, the transport sector relies on a cheap, safe and reliable way of storing hydrogen with high storage capacity, fast kinetics and favourable thermodynamics. No potential hydrogen storage candidate has been found yet, which meets all the criteria just summarized. The hydrogen storage solution showing the greatest potential in fulfilling the hydrogen storage criteria with respect to storage capacity, is solid state storage in light metal hydrides e.g. alkali metals and alkali earth metals. The remaining issues to be dealt with mainly concerns the kinetics of hydrogen uptake/release and the thermal stability of the formed hydride. In this thesis the hydrogen storage properties of some magnesium based hydrides and alkali metal tetrahydridoaluminates, a subclass of the so called complex hydrides, are explored in relation to hydrogen storage. After briefly reviewing the major energy related problems of the world, including some basic concepts of solid state hydrogen storage the dehydrogenation kinetics of various magnesium based hydrides are investigated. By means of time resolved in situ X-ray powder diffraction, quantitative phase analysis is performed for air exposed samples of magnesium, magnesium-copper, and magnesium-aluminum based hydrides. From kinetic analysis of the different samples it is generally found that the dehydrogenation kinetics of magnesium hydride is severely hampered by the presence of oxide impurities whereas alloying with both Cu and Al creates compounds significantly less sensitive towards contamination. This leads to a phenomenological explanation of the large

  16. A direct electrochemical route from oxides to TiMn2 hydrogen storage alloy☆

    Institute of Scientific and Technical Information of China (English)

    Jing Zhu; Lei Dai; Yao Yu; Jilin Cao; Ling Wang

    2015-01-01

    This study is for investigating the direct electro-deoxidation of mixed TiO2–MnO2 powder to prepare TiMn2 al oy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of al oy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 al oy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/MnO2 pellets at a voltage of 3.1 V in molten calcium chloride of 900 °C for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by TiO2 or CaTiO3 to form TiMn2 al oy. The cyclic voltammetry measurements using pow-der microelectrode show that the prepared TiMn2 al oy has good electrochemical hydrogen storage property. © 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  17. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  18. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Taner [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  19. Hydrogen storage and production in utility systems. Second annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F.J. (ed.)

    1975-08-01

    Progress in the following three areas is reported: engineering analysis and design; hydrogen production and auxiliaries; and hydrogen storage development. Process designs for the 26-MW electric storage facility were completed. Work to determine the allowed break-even capital cost of ''black box'' electric storage devices is completed. Studies of the performance and temperature dependence of power consumption versus current density were completed for the Solid Polymer Electrolyte and KOH small multi-cell modules. Test Bed A-1, for long-term attrition studies, was operated for 1200 hydride-dehydride cycles. About 60 percent of the starting FeTi alloy suffered a factor of ten size reduction, but the ability to absorb hydrogen showed no decrease. (LK)

  20. Ultrasonochemical-Assisted Synthesis of CuO Nanorods with High Hydrogen Storage Ability

    Directory of Open Access Journals (Sweden)

    Gang Xiao

    2011-01-01

    Full Text Available Uniform CuO nanorods with different size have been synthesized in a water-alcohol solution through a fast and facile ultrasound irradiation assistant route. Especially, the as-prepared CuO nanorods have shown a strong size-induced enhancement of electrochemical hydrogen storage performance and exhibit a notable hydrogen storage capacity and big BET surface area. These results further implied that the as-prepared CuO nanorods could be a promising candidate for electrochemical hydrogen storage applications. The observation of the comparison experiments with different concentrations of NaOH, ethanol, CTAB, and HTMA while keeping other synthetic parameters unchanged leads to the morphology and size change of CuO products.

  1. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  2. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xia [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States)], E-mail: tangx@utrc.utc.com; Opalka, Susanne M.; Laube, Bruce L. [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States); Wu Fengjung; Strickler, Jamie R. [Albemarle Corporation, Gulf States Road, Baton Rouge, LA 70805 (United States); Anton, Donald L. [Savannah River National Laboratory, 227 Gateway Dr., Aiken, SC 29808 (United States)

    2007-10-31

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH{sub 4} has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH{sub 4} has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments.

  3. Manufacturing Method of a hydrogen storage electrode. Suiso kyuzo denkyoku no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T. (, Hyogo (Japan)); Ishikawa, H.; Miyamura, H.; Kuriyama, N. (, Osaka (Japan)); Takagi, J. (Toyoda Automatic Loom Works, Ltd., Aichi (Japan))

    1990-11-14

    This invention provides a manufacturing method of a hydrogen storage electrode with excellent high discharging ability. In other words, a surface of hydrogen storage alloy powder is porous coated consisting of copper or nickel which is made into a microcapsule; group of this capsule is mix/kneaded with a PTFE powder and the mass is filled in a porous metal or placing between a metal mesh and is then molded under heat and pressure. Amount of coating of copper or nickel is 5-30 weight% of the microcapsule. Amount of PTFE powder is 5-7 weight% of said mixture. Temperature is 300-340 {degrees}C and the pressure is 200-400 kg/cm {sup 2}. According to this invention, the rapid dischargeability of a large square cell consisting of a nickel-hydrogen storage alloy secondary cell is significantly improved. 2 figs.

  4. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  5. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    Science.gov (United States)

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  6. [Ca(BH4)2] n clusters as hydrogen storage material: A DFT study

    Science.gov (United States)

    Han, Cuiling; Dong, Yanyun; Wang, Bingqiang; Zhang, Caiyun

    2016-10-01

    Calcium borohydride is widely studied as a hydrogen storage material. However, investigations on calcium borohydride from a cluster perspective are seldom found. The geometric structures and binding energies of [Ca(BH4)2] n ( n = 1-4) clusters are determined using density function theory (DFT). For the most stable structures, vibration frequency, natural bond orbital (NBO) are calculated and discussed. The charge transfer from (BH4) to Ca was observed. Meanwhile, we also study the LUMO-HOMO gap ( E g) and the B-H bond dissociation energies (BDEs). [Ca(BH4)2]3 owns higher E g, revealing that trimer is more stable than the other forms. Structures don't change during optimization after hydrogen radical removal, showing that calcium borohydride could possibly be used as a reversible hydrogen storage material. [Ca(BH4)2]4 has the smallest dissociation energy suggesting it releases hydrogen more easily than others.

  7. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  8. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  9. Numerical analysis of accidental hydrogen releases from high pressure storage at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, Daniele; Baraldi, Daniele

    2014-01-01

    . The vessel dynamics are modeled using a simplified engineering and a CFD model to evaluate the performance of various EOS to predict vessel pressures, temperatures mass flow rates and jet flame lengths. It is shown that the chosen EOS and the chosen specific heat capacity correlation are important to model......Evaluations of the performance of simplified engineering and CFD models are important to improve risk assessment tools e.g. to predict accurately releases from various types of hydrogen storages. These tools have to predict releases from a wide range of storage pressures (up to 80 MPa......) and temperatures (down to 20 K), e.g. cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33 K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types...

  10. Investigation of cryogenic hydrogen storage on high surface area activated carbon. Equilibrium and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Paggiaro, Ricardo Gaspar

    2008-11-29

    This thesis investigates cryo-adsorptive systems for hydrogen storage for mobile applications. By means of macroscopic and microscopic balance models, an extensive analysis is carried out, including among others the investigation of the thermal effects during high-pressure system filling, venting losses during normal operation and inactivity, time-course of system pressure and temperature and gas delivery under various operating conditions. Model results were compared with experimental data, good agreement was obtained. The analysis also includes a comparison to other storage technologies such as cryo-compressed gas and liquefaction storage. The results show that cryo-adsorptive systems have storage characteristics comparable to compressed gas systems, but at a much lower pressure. They are also energetically more efficient than liquid hydrogen systems. However, the necessity of cryotemperatures and thermal management during operation and filling might limit their application. (orig.)

  11. Physico-Chemical Characteristics of Pork Sausage during Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    S. Wilfred Ruban

    2009-06-01

    Full Text Available A study to compare the effectiveness of Tapioca Starch (TS and Potato Flour (PF for preparation of pork sausage with 50 per cent lean and 30 per cent low value meat (Head, Heart and Tongue in the ratio of 70:15:15 was carried out. Sausages were prepared with 5 per cent level of PF and 7 per cent of TS and were subjected to physico-chemical characteristics viz., pH, shear force, TBARS and TV to study the keeping quality at refrigerated storage (4±10C for 30 days. Inclusion of 30 per cent low value meat had not much effect compared to full meat sausages. The results revealed that during storage there was a highly significant (P<0.01 decrease in pH, hear force, and increase in TBARS and TV with the increase in storage days in both the treatments. Sausages prepared with 5 per cent PF and 7 per cent TS were acceptable upto 25 days of refrigerated storage (4±10C. Sausages with potato flour had lower values of TBARS and hence considered more acceptable compared to TS incorporated sausages. [Vet. World 2009; 2(3.000: 95-97

  12. Design of Zr-based AB2 type hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    文明芬; 王秋萍; 王兴海; 翟玉春; 陈廉

    2003-01-01

    The influences of the ratio of the radius of atom A(rA)to radius of atom B(rB),electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy.An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model.The results show that the predicted values are in good agreement with the experimental values.The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.

  13. Preparation of Isolated Single-walled Carbon Nanotubes with High Hydrogen Storage Capacity

    Institute of Scientific and Technical Information of China (English)

    张艾飞; 刘吉平; 吕广庶; 刘华

    2006-01-01

    Isolated single-walled carbon nanotubes with high proportion of opening tips were synthesized by using alcohol as carbon source. The mechanism of cutting action of oxygen was proposed to explain its growth. Compared with carbon nanotubes synthesized with benzene as carbon source, their specific surface area was heightened by approximately 2.2 times (from 200.5 to 648 m2/g) and the hydrogen storage capacity was increased by approximately 6.5 times (from 0.95 to 7.17%, ω)which had exceeded DOE energy standard of vehicular hydrogen storage.

  14. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  15. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  16. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K [Argonne National Lab. (ANL), Argonne, IL (United States); Kromer, M. [TIAX LLC, Lexington, MA (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, K. [TIAX LLC, Lexington, MA (United States); Law, K. [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  17. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials.

  18. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Science.gov (United States)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  19. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    Novel developments regarding materials for solid-state hydrogen storage show promising prospects. These complex hydrides exhibit high mass-related storage capacities and thus great technical potential to store hydrogen in an efficient and safe way. However, a comprehensive evaluation of economic competitiveness is still lacking, especially in the case of the LiBH4 / MgH2 storage material. In this study, an assessment with respect to the economic feasibility of implementing complex hydrides as hydrogen storage materials is presented. The cost structure of hydrogen storage systems based on NaAlH4 and LiBH4 / MgH2 is discussed and compared with the conventional high pressure (700 bar) and liquid storage systems. Furthermore, the properties of LiBH4 / MgH2, so-called Li-RHC (Reactive Hydride Composite), are scientifically compared and evaluated on the lab and pilot plant scale. To enhance the reaction rate, the addition of TiCl3 is investigated and high energy ball milling is evaluated as processing technique. The effect of the additive in combination with the processing technique is described in detail. Finally, an optimum set of processing parameters and additive content are identified and can be applied for scaled-up production of the material based on simple models considering energy input during processing. Furthermore, thermodynamic, heat transfer and kinetic properties are experimentally determined by different techniques and analysed as a basis for modelling and designing scaled-up storage systems. The results are analysed and discussed with respect to the reaction mechanisms and reversibility of the system. Heat transfer properties are assessed with respect to the scale-up for larger hydrogen storage systems. Further improvements of the heat transfer were achieved by compacting the material. In this regard, the influence of the compaction pressure on the apparent density, thermal conductivity and sorption behaviour, was investigated in detail. Finally, scaled

  20. DEGRADATION BEHAVIORS OF NEW TYPE TiV-BASED HYDROGEN STORAGE ELECTRODE ALLOYS

    Institute of Scientific and Technical Information of China (English)

    X.Z. Sun; Y.F. Zhu; Y. Lin; R. Li; M.X. Gao; H.G. Pan

    2006-01-01

    The degradation behaviors of the TiV-based multiphase hydrogen storage alloy Ti0.8Zr0.2V3.2Mn0.64-Cr0.96Ni1.2 during electrochemical cycling in alkaline electrolyte have been studied by XRD, SEM,EIS and AES measurements. XRD analysis indicates that the alloy consists of a C14-type Laves phase and a V-based solid solution. The lattice parameters of both phases are increased after discharged with cycling, which indicates that more irreversible hydrogen remains not discharged in the alloy. It should be responsible for the decrease of discharge capacity. SEM micrographs show that after 10 electrochemical cycles, a large number of cracks can be observed in the alloy, existing mainly in the V-based solid solution phase. Moreover, after 30 cycles, the alloy particles are obviously pulverized due to the larger expansion and shrinkage of cell volumes during hydrogen absorption and desorption, which induces the fast degradation of the TiV-based hydrogen storage alloys. EIS and AES measurements indicate that some passive oxide film has been formed on the surface of alloy electrode, which has higher charge-transfer resistance, lower hydrogen diffusivity, and less electro-catalytic activity. Therefore it can be concluded that the pulverization and oxidation of the alloy are the main factors responsible for the fast degradation of the TiV-based hydrogen storage alloys.

  1. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  2. Screening of hydrogen storage media applying high pressure thermogravimetry

    DEFF Research Database (Denmark)

    Bentzen, J.J.; Pedersen, Allan Schrøder; Kjøller, J.

    2001-01-01

    A number of commercially available hydride-forming alloys of the MmNi5–xSnx (Mm=mischmetal, a mixture of lanthanides) type were examined using a high pressure, high temperature microbalance,scanning electron microscopy and X-ray diffraction. Activation conditions, reversible storage capacity...

  3. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  4. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  5. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E [St Andrews

    2012-04-02

    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  6. A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey

    Directory of Open Access Journals (Sweden)

    Aytac Yildiz

    2013-06-01

    Full Text Available In this paper, we aim to select the most appropriate Hydrogen Energy Storage (HES method for Turkey from among the alternatives of tank, metal hydride and chemical storage, which are determined based on expert opinions and literature review. Thus, we propose a Buckley extension based fuzzy Analytical Hierarchical Process (Fuzzy-AHP and linear normalization based fuzzy Grey Relational Analysis (Fuzzy-GRA combined Multi Criteria Decision Making (MCDM methodology. This combined approach can be applied to a complex decision process, which often makes sense with subjective data or vague information; and used to solve to solve HES selection problem with different defuzzification methods. The proposed approach is unique both in the HES literature and the MCDM literature.

  7. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    Science.gov (United States)

    Burton, rodney; King, Darren

    2013-01-01

    The innovation consists of a thermodynamic system for extracting in situ oxygen vapor from lunar regolith using a solar photovoltaic power source in a reactor, a method for thermally insulating the reactor, a method for protecting the reactor internal components from oxidation by the extracted oxygen, a method for removing unwanted chemical species produced in the reactor from the oxygen vapor, a method for passively storing the oxygen, and a method for releasing high-purity oxygen from storage for lunar use. Lunar oxygen exists in various types of minerals, mostly silicates. The energy required to extract the oxygen from the minerals is 30 to 60 MJ/kg O. Using simple heating, the extraction rate depends on temperature. The minimum temperature is approximately 2,500 K, which is at the upper end of available oven temperatures. The oxygen is released from storage in a purified state, as needed, especially if for human consumption. This method extracts oxygen from regolith by treating the problem as a closed batch cycle system. The innovation works equally well in Earth or Lunar gravity fields, at low partial pressure of oxygen, and makes use of in situ regolith for system insulation. The innovation extracts oxygen from lunar regolith using a method similar to vacuum pyrolysis, but with hydrogen cover gas added stoichiometrically to react with the oxygen as it is produced by radiatively heating regolith to 2,500 K. The hydrogen flows over and through the heating element (HE), protecting it from released oxygen. The H2 O2 heat of reaction is regeneratively recovered to assist the heating process. Lunar regolith is loaded into a large-diameter, low-height pancake reactor powered by photovoltaic cells. The reactor lid contains a 2,500 K HE that radiates downward onto the regolith to heat it and extract oxygen, and is shielded above by a multi-layer tungsten radiation shield. Hydrogen cover gas percolates through the perforated tungsten shielding and HE, preventing

  8. Effect of ball milling on hydrogen storage of Mg3La alloy

    Institute of Scientific and Technical Information of China (English)

    DONG Hanwu; OUYANG Liuzhang; SUN Tai; ZHU Min

    2008-01-01

    Hydrogen storage and microstructure of ball milled Mg3La alloy were investigated by X-ray diffraction and pressure-composition-isotherm measurement. The ball milled Mg3La alloy could absorb hydrogen up to 4wt.% at 300 °C for the first time, along with a decomposing course. Following tests showed that the average reversible hydrogen storage capacity was 2.7wt.%. The enthalpy and entropy of dehydrogenation reaction of the decomposed ball milled Mg3La and hydrogen were calculated. XRD patterns indicated the existence of MgH2 and LaH3 in the decomposed hydride and the formation of Mg when hydrogen was desorbed. After the first hydrogenation, all the latter hydrogenation/dehydrogenation reactions could be taken place between Mg and MgH2. The ball milled Mg3La alloy exhibited better hydriding kinetics than that of the as-cast Mg3La alloy at room temperature. The kinetic curve could be well fitted by Avrami-Erofeev equation.

  9. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  10. Hydrogen and electricity co-production schemes based on gasification processes with carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Cristian Cormos; Victoria Goia; Ana-Maria Cormos; Serban Agachi [' Babes - Bolyai' University, Cluj - Napoca (Romania). Faculty of Chemistry and Chemical Engineering

    2009-07-01

    This paper investigates the ways for transforming the coal or coal in addition with renewable energy sources (different sorts of biomass e.g. sawdust) or solid waste having energy value (e.g. municipal waste, meat and bone meal), through gasification into different decarbonised energy vectors (power, hydrogen) simultaneous with carbon dioxide capture and storage (CCS). The energy conversion processes investigated in the paper will be modelled and simulated using commercial process flow modelling package (ChemCAD) to produce data for performance evaluation of hydrogen and electricity co-production processes based on gasification with carbon capture and storage. The case studies investigated in the paper will produce a flexible ratio between power and hydrogen in the range of about 400 MW electricity and 0 - 200 MW hydrogen (considering the lower heating value of hydrogen) with 80 - 90 % carbon capture rate. A particular accent will be put in the paper on fuel selection criteria (blending fuels for optimizing gasifier performance), proper choice of gasification reactor (among various commercial types e.g. Shell, Siemens, GE Texaco etc.), modelling and simulation of whole process, thermal and power integration of processes, flexibility analysis of the energy conversion processes (production of a certain energy vector at specific moment of time according to the market demand), CO{sub 2} capture and storage and analysing the quality specifications for plant gaseous streams (hydrogen and carbon dioxide) considering the potential use of hydrogen in the transport sector (fuel cells) and carbon dioxide storage in geological formation or using for Enhanced Oil Recovery (EOR). 24 refs., 5 figs., 3 tabs.

  11. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  12. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  13. The route to a feasible hydrogen-storage material: MOFs versus ammonia borane.

    Science.gov (United States)

    Hügle, Thomas; Hartl, Monika; Lentz, Dieter

    2011-09-05

    The replacement of fossil fuels is one of the greatest challenges that chemistry and material sciences will have to face in the near future. While hydrogen seems to be the most likely candidate for this, a material able to store the hydrogen itself is sorely needed. Intense research in the past decade has narrowed down the field of possible concepts to two materials: ammonia borane with chemically bound hydrogen atoms and metal-organic frameworks with physisorbed hydrogen molecules. Herein we want to give an overview of the strengths and weaknesses of each concept, discuss the challenges that need to be overcome, and try to compare the future capabilities of these two materials.

  14. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  15. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  16. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  17. Metalized T graphene: A reversible hydrogen storage material at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiao-Juan; Zhong, Wei, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn; Du, You-Wei [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn [Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-09-21

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H₂. The adsorption/desorption of H₂ at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  18. Control analysis of renewable energy system with hydrogen storage for residential applications

    Science.gov (United States)

    Bilodeau, A.; Agbossou, K.

    The combination of an electrolyzer and a fuel cell can provide peak power control in a decentralized/distributed power system. The electrolyzer produces hydrogen and oxygen from off-peak electricity generated by the renewable energy sources (wind turbine and photovoltaic array), for later use in the fuel cell to produce on-peak electricity. An issue related to this system is the control of the hydrogen loop (electrolyzer, tank, fuel cell). A number of control algorithms were developed to decide when to produce hydrogen and when to convert it back to electricity, most of them assuming that the electrolyzer and the fuel cell run alternatively to provide nominal power (full power). This paper presents a complete model of a stand-alone renewable energy system with hydrogen storage controlled by a dynamic fuzzy logic controller (FLC). In this system, batteries are used as energy buffers and for short time storage. To study the behavior of such a system, a complete model is developed by integrating the individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries. An analysis of the performances of the dynamic fuzzy logic controller is then presented. This model is useful for building efficient peak power control.

  19. The Role of Water in the Storage of Hydrogen in Metals

    Science.gov (United States)

    Hampton, Michael D.; Lomness, Janice K.; Giannuzzi, Lucille A.

    2001-01-01

    One major problem with the use of hydrogen is safe and efficient storage. In the pure form, bulky and heavy containers are required greatly reducing the efficiency of its use. Safety is also a great concern. Storage of hydrogen in the form of a metal hydride offers distinct advantages both in terms of volumetric efficiency and in terms of safety. As a result, an enormous amount of research is currently being done on metal-hydrogen systems. Practical application of these systems to storage of hydrogen can only occur when they are very well understood. In this paper, the preliminary results of a study of the surfaces of magnesium nickel alloys will be presented. Alloys that have been rendered totally unreactive with hydrogen as well as those that have been activated with liquid water and with water vapor were studied. Data obtained from XPS (X-ray Photoelectron Spectrometer) analysis, with samples held in vacuum for the shortest possible time to minimize the hydroxide degradation will be presented. Furthermore, TEM data on samples prepared in a new way that largely protects the surface from the high vacuum will be discussed.

  20. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  1. Hydrogen storage property of sandwiched magnesium hydride nanoparticle thin film

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, Steven; Rogers, Matthew; Grigoropoulos, Costas P.; Mao, Samuel S. [Lawrence Berkeley National Laboratory and Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2010-07-15

    Hydrogen sorption property of magnesium (Mg) in the form of sandwiched Pd/Mg/Pd films is investigated. Pulsed laser deposition method was applied to deposit the samples consisting of films of nanoparticles. The enthalpy of formation of MgH{sub 2} was found to be -68 kJ/mol H{sub 2} for films with nanoparticle size on the order of 50 nm, which is smaller than the value for bulk MgH{sub 2} and may be explained by the concept of excess volume. (author)

  2. General Motors: Final Report for Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Mei [General Motors Company, Warren, MI (United States); Chakraborty, Amlan [General Motors Company, Warren, MI (United States); Hou, Peter [General Motors Company, Warren, MI (United States); Kaisare, Niklet [General Motors Company, Warren, MI (United States); Jorgensen, Scott [General Motors Company, Warren, MI (United States); Kumar, Sudarshan [General Motors Company, Warren, MI (United States); Li, Changpeng [General Motors Company, Warren, MI (United States); Ortmann, Jerome [General Motors Company, Warren, MI (United States); Raju, M. [General Motors Company, Warren, MI (United States); Vadivelu, S. Kumar [General Motors Company, Warren, MI (United States)

    2015-06-30

    As part of the HSECoE team, the GM team built system models and detailed transport models for on-board hydrogen storage systems using metal hydrides and adsorbent materials. Detailed transport models have been developed for both the metal hydride and adsorbent systems with a focus on optimization of heat exchanger designs with the objective of minimizing the heat exchanger mass. We also performed work in collaboration with our partners on storage media structuring and enhancement studies for the metal hydride and adsorbent materials. Since the hydrogen storage materials are generally characterized by low density and low thermal conductivity, we conducted experiments to form pellets and add thermal conductivity enhancers to the storage material, and to improve cycling stability and durability of the metal hydride and adsorbent materials. Refueling of a MOF-5 pellet with cryogenic hydrogen was studied by developing a detailed two-dimensional axisymmetric COMSOL® model of the process. The effects of pellet permeability, thermal conductivity, and thermal conductivity enhancers were investigated. Our key area of focus has been on designing and building a cryo-adsorption vessel for validation of cryo-adsorption models. The 3-L cryogenic tank was used to study the fast fill and discharge dynamics of a cryo-adsorbent storage system, both experimentally and numerically.

  3. A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James

    2010-10-01

    The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

  4. Study on High Rate Discharge Performance and Mechanism of AB5 Type Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    郭靖洪; 陈德敏; 于军; 张建海; 刘国忠; 杨柯

    2004-01-01

    The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.

  5. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  6. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  7. Scaling up effects of Mg hydride in a temperature and pressure-controlled hydrogen storage device

    Energy Technology Data Exchange (ETDEWEB)

    Verga, M.; Armanasco, F.; Guardamagna, C.; Valli, C. [CESI RICERCA S.p.A., Via Rubattino 54, 20134 Milano (Italy); Bianchin, A.; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Agresti, F.; Maddalena, A.; Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, via Marzolo 9, 35131 Padova (Italy)

    2009-05-15

    A research program addressed to evaluate the magnesium hydride storage scaling up effects is being developed by CESI RICERCA, Milano, and the Hydrogen Group of Padova University. A storage device containing 500 g of magnesium hydride powder (manufactured by Venezia Tecnologie S.p.A. using high-energy ball milling) has been designed and tested in different operating conditions. A number of absorption and desorption cycles at different temperatures and pressures has been carried out in order to see if the results are comparable with laboratory data obtained on small amounts (fractions of grams) of powder samples. A sensible performance degradation that reduced the overall storage capacity of about 50% has been noticed after 20 cycles, presumably due to local powder heating, fragmentation and subsequent compaction. Further tests on a smaller tank equipped also with a porous baffle gave useful indications for the design of an improved large hydrogen reservoir. (author)

  8. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

    Science.gov (United States)

    Cheng, Yi-Han; Zhang, Chuan-Yu; Ren, Juan; Tong, Kai-Yu

    2016-10-01

    New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen ( h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN ( n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96-13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10-21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (-80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

  9. Potassium silanide (KSiH3): a reversible hydrogen storage material.

    Science.gov (United States)

    Chotard, Jean-Noël; Tang, Wan Si; Raybaud, Pascal; Janot, Raphaël

    2011-10-24

    KSi silicide can absorb hydrogen to directly form the ternary KSiH(3) hydride. The full structure of α-KSiD(3), which has been solved by using neutron powder diffraction (NPD), shows an unusually short Si-D lengths of 1.47 Å. Through a combination of density functional theory (DFT) calculations and experimental methods, the thermodynamic and structural properties of the KSi/α-KSiH(3) system are determined. This system is able to store 4.3 wt% of hydrogen reversibly within a good P-T window; a 0.1 MPa hydrogen equilibrium pressure can be obtained at around 414 K. The DFT calculations and the measurements of hydrogen equilibrium pressures at different temperatures give similar values for the dehydrogenation enthalpy (≈23 kJ mol(-1) H(2)) and entropy (≈54 J K(-1) mol(-1) H(2)). Owing to its relatively high hydrogen storage capacity and its good thermodynamic values, this KSi/α-KSiH(3) system is a promising candidate for reversible hydrogen storage.

  10. Ti-decorated graphitic-C3N4 monolayer: A promising material for hydrogen storage

    Science.gov (United States)

    Zhang, Weibin; Zhang, Zhijun; Zhang, Fuchun; Yang, Woochul

    2016-11-01

    Ti-decorated graphitic carbon nitride (g-C3N4) monolayer as a promising material system for high-capacity hydrogen storage is proposed through density functional theory calculations. The stability and hydrogen adsorption of Ti-decorated g-C3N4 is analyzed by computing the adsorption energy, the charge population, and electronic density of states. The most stable decoration site of Ti atom is the triangular N hole in g-C3N4 with an adsorption energy of -7.58 eV. The large diffusion energy barrier of the adsorbed Ti atom of ∼6.00 eV prohibits the cluster formation of Ti atoms. The electric field induced by electron redistribution of Ti-adsorbed porous g-C3N4 significantly enhanced hydrogen adsorption up to five H2 molecules at each Ti atom with an average adsorption energy of -0.30 eV/H2. The corresponding hydrogen capacity reaches up to 9.70 wt% at 0 K. In addition, the hydrogen capacity is predicted to be 6.30 wt% at 233 K and all adsorbed H2 are released at 393 K according to molecular dynamics simulation. Thus, the Ti-decorated g-C3N4 monolayer is suggested to be a promising material for hydrogen storage suggested by the DOE for commercial applications.

  11. Tool for optimal design and operation of hydrogen storage based autonomous energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Oberschachtsiek, B.; Lemken, D. [ZBT - Duisburg (Germany); Stark, M.; Krost, G. [Duisburg-Essen Univ. (Germany)

    2010-07-01

    Decentralized small scale electricity generation based on renewable energy sources usually necessitates decoupling of volatile power generation and consumption by means of energy storage. Hydrogen has proven as an eligible storage medium for mid- and long-term range, which - when indicated - can be reasonably complemented by accumulator short term storage. The selection of appropriate system components - sources, storage devices and the appertaining peripherals - is a demanding task which affords a high degree of freedom but, on the other hand, has to account for various operational dependencies and restrictions of system components, as well as for conduct of load and generation. An innovative tool facilitates the configuration and dimensioning of renewable energy based power supply systems with hydrogen storage paths, and allows for applying appropriate operation strategies. This tool accounts for the characteristics and performances of relevant power sources, loads, and types of energy storage, and also regards safety rules the energy system has to comply with. In particular, the tool is addressing small, detached and autonomous supply systems. (orig.)

  12. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  13. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  14. High-density automotive hydrogen storage with cryogenic capable pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Ross, Timothy O.; Weisberg, Andrew H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-792, Livermore, CA 94551 (United States); Brunner, Tobias C.; Kircher, Oliver [BMW Group, Knorrstr. 147, 80788 Munich (Germany)

    2010-02-15

    LLNL is developing cryogenic capable pressure vessels with thermal endurance 5-10 times greater than conventional liquid hydrogen (LH{sub 2}) tanks that can eliminate evaporative losses in routine usage of (L)H{sub 2} automobiles. In a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH{sub 2}), LH{sub 2} or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH{sub 2}). When filled with LH{sub 2} or CcH{sub 2}, these vessels contain 2-3 times more fuel than conventional ambient temperature compressed H{sub 2} vessels. LLNL has demonstrated fueling with LH{sub 2} onboard two vehicles. The generation 2 vessel, installed onboard an H{sub 2}-powered Toyota Prius and fueled with LH{sub 2} demonstrated the longest unrefueled driving distance and the longest cryogenic H{sub 2} hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. (author)

  15. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  16. Hydrogen storage in LiH: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Banger, Suman, E-mail: sumanphy28@gmail.com; Nayak, Vikas, E-mail: sumanphy28@gmail.com; Verma, U. P., E-mail: sumanphy28@gmail.com [School of Studies in Physics, Jiwaji University, Gwalior-474011 (India)

    2014-04-24

    First principles calculations have been performed on the Lithium hydride (LiH) using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory. We have extended our calculations for LiH+2H and LiH+6H in NaCl structure. The structural stability of three compounds have been studied. It is found that LiH with 6 added Hydrogen atoms is most stable. The obtained results for LiH are in good agreement with reported experimental data. Electronic structures of three compounds are also studied. Out of three the energy band gap in LiH is ∼3.0 eV and LiH+2H and LiH+6H are metallic.

  17. Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aboutalebi, Seyed Hamed; Aminorroaya-Yamini, Sima; Nevirkovets, Ivan; Konstantinov, Konstantin; Liu, Hua Kun [Institute for Superconducting and Electronic Materials (ISEM), Innovation Campus, University of Wollongong, NSW 2519 (Australia)

    2012-12-15

    High hydrogen capacity (up to 2.6 wt%) is reported for highly aligned structures of Graphene oxide-Multiwalled carbon nanotubes composite at room temperature. It is demonstrated that the scalable liquid crystal route can be employed as a new method to prepare unique 3-D framework of graphene oxide layers with proper interlayer spacing as building blocks for cost-effective high-capacity hydrogen storage media. The strong synergistic effect of the intercalation of MWCNTs as 1-D spacers within graphene oxide frameworks resulted in unrivalled high hydrogen capacity at ambient temperature. The mechanisms involved in the intercalation procedure are fully discussed. The main concept behind intercalating one-dimensional spacers in between giant GO sheets represents a versatile and highly scalable route to fabricate devices with superior hydrogen uptake. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.

  19. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  20. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  1. Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

    2008-12-31

    The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay

  2. Model for energy conversion in renewable energy system with hydrogen storage

    Science.gov (United States)

    Kélouwani, S.; Agbossou, K.; Chahine, R.

    A dynamic model for a stand-alone renewable energy system with hydrogen storage (RESHS) is developed. In this system, surplus energy available from a photovoltaic array and a wind turbine generator is stored in the form of hydrogen, produced via an electrolyzer. When the energy production from the wind turbine and the photovoltaic array is not enough to meet the load demand, the stored hydrogen can then be converted by a fuel cell to produce electricity. In this system, batteries are used as energy buffers or for short time storage. To study the behavior of such a system, a complete model is developed by integrating individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries (used as an energy buffer). The sub-models are valid for transient and steady state analysis as a function of voltage, current, and temperature. A comparison between experimental measurements and simulation results is given. The model is useful for building effective algorithms for the management, control and optimization of stand-alone RESHSs.

  3. First Principles Simulations of Hydrogen Storage via Spillover in MOF-5

    Science.gov (United States)

    Siegel, Donald

    2010-03-01

    Metal organic frameworks (MOF) have attracted considerable attention as hydrogen storage materials due to their high surface areas and ability to adsorb large quantities of hydrogen by weight (˜12 wt. % at 100bar). However, as a consequence of the weak H2-MOF bonding interaction (˜5 kJ/mol H2), this uptake occurs only at cryogenic temperatures; at room temperature, gravimetric capacities do not exceed ˜0.5 wt. %. As an ideal storage system would operate under ambient conditions, renewed interest in these materials has been sparked by recent experiments demonstrating RT uptake of ˜4 wt. % via the so-called ``spillover'' mechanism [JACS 128, 8136 (2006)]. In contrast to the conventional mechanism of MOF-based storage, where molecular H2 bonds directly to the MOF, spillover employs a hydrogen dissociation catalyst to generate atomic hydrogen (H), presumably resulting in stronger H-MOF bonding. Recent computational studies of spillover have reported conflicting results regarding the nature of this interaction. In an effort to resolve these ambiguities and clarify the thermodynamics of MOF-based spillover, DFT calculations are used to evaluate binding energies for several H adsorption configurations on MOF-5. Importantly, our calculations avoid the cluster approximation to the MOF geometry--a source of significant uncertainty in previous studies--and account for finite-temperature contributions to the free energy of adsorption.

  4. Hydrogen adsorption and storage on Palladium - functionalized graphene with NH-dopant: A first principles calculation

    Science.gov (United States)

    Faye, Omar; Szpunar, Jerzy A.; Szpunar, Barbara; Beye, Aboubaker Chedikh

    2017-01-01

    We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H2 molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315-0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H2 molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H2 adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H2 molecules, which helps also to avoid the desorption of Pd(H2)n (n = 1-5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  5. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  6. "Job-Sharing" Storage of Hydrogen in Ru/Li₂O Nanocomposites.

    Science.gov (United States)

    Fu, Lijun; Tang, Kun; Oh, Hyunchul; Manickam, Kandavel; Bräuniger, Thomas; Chandran, C Vinod; Menzel, Alexander; Hirscher, Michael; Samuelis, Dominik; Maier, Joachim

    2015-06-10

    A "job-sharing" hydrogen storage mechanism is proposed and experimentally investigated in Ru/Li2O nanocomposites in which H(+) is accommodated on the Li2O side, while H(-) or e(-) is stored on the side of Ru. Thermal desorption-mass spectroscopy results show that after loading with D2, Ru/Li2O exhibits an extra desorption peak, which is in contrast to Ru nanoparticles or ball-milled Li2O alone, indicating a synergistic hydrogen storage effect due to the presence of both phases. By varying the ratio of the two phases, it is shown that the effect increases monotonically with the area of the heterojunctions, indicating interface related hydrogen storage. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results show that a weak LiO···D bond is formed after loading in Ru/Li2O nanocomposites with D2. The storage-pressure curve seems to favor H(+)/H(-) over H(+)/e(-) mechanism.

  7. Isotope tracer study of hydrogen spillover on carbon-based adsorbents for hydrogen storage.

    Science.gov (United States)

    Lachawiec, Anthony J; Yang, Ralph T

    2008-06-17

    A composite material comprising platinum nanoparticles supported on molecular sieve templated carbon was synthesized and found to adsorb 1.35 wt % hydrogen at 298 K and 100 atm. The isosteric heat of adsorption for the material at low coverage was approximately 14 kJ/mol, and it approached a value of 10.6 kJ/mol as coverage increased for pressures at and above 1 atm. The increase in capacity is attributed to spillover, which is observed with the use of isotopic tracer TPD. IRMOF-8 bridged to Pt/C, a material known to exhibit hydrogen spillover at room temperature, was also studied with the hydrogen-deuterium scrambling reaction for comparison. The isotherms were reversible. For desorption, sequential doses of H2 and D2 at room temperature and subsequent TPD yield product distributions that are strong indicators of the surface diffusion controlled reverse spillover process.

  8. Comparison of hydrogen storage properties of Mg-Ni from different preparation methods

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, A., E-mail: ar143@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Aminorroaya, S. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Guo, Z.P. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, NSW 2522 (Australia); Cho, Y. [CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Liu, H.K. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Dahle, A. [CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia)

    2011-05-16

    Research highlights: {yields} Three samples of Mg-Ni samples were prepared by casting and ball-milling with CNT. {yields} XRD, SEM, DSC and hydrogenation (by Sievert's method) have been investigated. {yields} Hydrogenation behaviours indicated that ball-milled samples have better kinetics. {yields} 'Ball-milled cast' had a double catalytic role in hydrogen dissociation and diffusion. - Abstract: In this work, a systematic study on the fabrication of Mg-Ni hydrogen storage materials is presented. Mg-6 wt% Ni base alloys were fabricated by a melting and casting process, and then ball milled by planetary ball milling. As a comparison, a sample of Mg + 6 wt% Ni was also prepared by ball milling pure elemental powders. X-ray diffraction patterns of the cast and ball-milled (BM)-cast samples show the existence of both Mg and Mg{sub 2}Ni phases, while in the BM-powder sample there are some peaks corresponding to Ni particles. Hydrogen sorption properties of the samples were measured at 200 deg. C and 250 deg. C. The thermodynamic behaviour of hydrogenated samples was also investigated by differential scanning calorimetry. The ball-milled samples show enhanced hydrogen sorption properties in comparison with the cast samples, and ball-milling after casting results in superior hydrogen absorption/desorption properties in comparison with the ball-milled powder. Our discussion demonstrates that by ball-milling after casting, the Ni particles can penetrate into the deeper layers of magnesium particles and show a combination of the catalytic roles in terms of both hydrogen dissociation and hydrogen pumping to the interface between the catalyst and the Mg.

  9. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films

    Science.gov (United States)

    Yoon, Hyojin; Choi, Minseok; Lim, Tae-Won; Kwon, Hyunah; Ihm, Kyuwook; Kim, Jong Kyu; Choi, Si-Young; Son, Junwoo

    2016-10-01

    Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)-metal (HxVO2)-insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

  10. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.

    Science.gov (United States)

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M

    2010-08-25

    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  11. Low-Temperature Hydrogen Storage Alloy and Its Application in Ni-MH Battery

    Institute of Scientific and Technical Information of China (English)

    陶明大; 陈云贵; 吴朝玲; 付春艳; 涂铭旌

    2004-01-01

    Rare earth compositions, La, Ce and Pr in Mm(NiCoMnAl)5 hydrogen storage alloy, were arranged by uniform design method. The discharge performances and kinetics parameters including capacity, exchange current density, symmetry factor and hydrogen diffusion coefficient of the alloy at -40 ℃, were tested in standard tri-electrode cell. And linear regression method was used to analyze the effect of rare earth compositions on the performances of hydrogen storage alloys. The results show that the capacities of the alloys are positively correlative to the square of Ce content at -40 ℃ and under both 0.4 and 0.2C rate. The kinetics parameters and hydrogen diffusion coefficient indicate that the low-temperature performances of the alloys are mainly controlled by hydrogen diffusion process, and the surface electrochemical reaction affects the low-temperature performances to a certain extent. The low-temperature discharge capacities of the battery were also tested. The results show excellent low-temperature performances.The battery delivers 69.6% of its room-temperature capacity at -40 ℃ and 0.2C rate, 77.7% at -40 ℃ and 0.4C rate, 59.1% at -45 ℃ and 0.2C rate.

  12. Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.

    Science.gov (United States)

    Slavcheva, E; Ganske, G; Schnakenberg, U

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.

  13. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  14. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition

    Science.gov (United States)

    Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.

    2016-01-01

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014

  15. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...... the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out...... in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems.This manuscript presents a review of the main achievements of this Action. © 2016 Hydrogen Energy...

  16. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    Science.gov (United States)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  17. Characteristics of multi-component MI-based hydrogen storage alloys and their hydride electrodes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of multi-component MI-based hydrogen storage alloys with a cobalt atomic ratio of 0.40-0.75 w ere prepared. The electrochemical properties under different charge-discharge conditions and PCT characteristics measured by electrochemical method were investigated. The addition of other alloying elements for partial substitution of Co lowers the hydrogen equilibrium pressure and discharge capacity, but improves the cycling stability and makes the alloys keep nearly the same rate discharge capability and high-temperature discharge capability as those of the compared alloy.The reasons were discussed.

  18. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Kwo-hsiung Young

    2013-10-01

    Full Text Available In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  19. Influence of surface contaminations on the hydrogen storage behaviour of metal hydride alloys.

    Science.gov (United States)

    Schülke, Mark; Paulus, Hubert; Lammers, Martin; Kiss, Gábor; Réti, Ferenc; Müller, Karl-Heinz

    2008-03-01

    Hydrogen storage in metal hydrides is a promising alternative to common storage methods. The surface of a metal hydride plays an important part in the absorption of hydrogen, since important partial reaction steps take place here. The development of surface contaminations and their influence on hydrogen absorption is examined by means of absorption experiments and surface analysis, using X-ray photoelectron spectroscopy (XPS), thermal desorption mass spectrometry (TDMS) and secondary neutral mass spectrometry (SNMS), in this work. All investigations were carried out on a modern AB(2) metal hydride alloy, namely Ti(0.96)Zr(0.04)Mn(1.43)V(0.45)Fe(0.08). Surface analysis (SNMS, XPS) shows that long-term air storage (several months) leads to oxide layers about 15 nm thick, with complete oxidation of all main alloy components. By means of in situ oxygen exposure at room temperature and XPS analysis, it can be shown that an oxygen dose of about 100 Langmuirs produces an oxide layer comparable to that after air storage. Manganese enrichment (segregation) is also clearly observed and is theoretically described here. This oxide layer hinders hydrogen absorption, so an activation procedure is necessary in order to use the full capacity of the metal hydride. This procedure consists of heating (T = 120 degrees C) in vacuum and hydrogen flushing at pressures like p = 18 bar. During the activation process the alloy is pulverized to particles of approximately 20 microm through lattice stretches. It is shown that this pulverization of the metal hydride (creating clean surface) during hydrogen flushing is essential for complete activation of the material. Re-activation of powder contaminated by small doses of air (p approximately 0.1 bar) does not lead to full absorption capacity. In ultrahigh vacuum, hydrogen is only taken up by the alloy after sputtering of the surface (which is done in order to remove oxide layers from it), thus creating adsorption sites for the hydrogen. This

  20. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    Science.gov (United States)

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…