WorldWideScience

Sample records for chemical hydrogen cyanamide

  1. Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry.

    Science.gov (United States)

    Ionescu, Irina A; López-Ortega, Gregorio; Burow, Meike; Bayo-Canha, Almudena; Junge, Alexander; Gericke, Oliver; Møller, Birger L; Sánchez-Pérez, Raquel

    2017-01-01

    Release of bud dormancy in perennial woody plants is a temperature-dependent process and thus flowering in these species is heavily affected by climate change. The lack of cold winters in temperate growing regions often results in reduced flowering and low fruit yields. This is likely to decrease the availability of fruits and nuts of the Prunus spp. in the near future. In order to maintain high yields, it is crucial to gain detailed knowledge on the molecular mechanisms controlling the release of bud dormancy. Here, we studied these mechanisms using sweet cherry ( Prunus avium L.), a crop where the agrochemical hydrogen cyanamide (HC) is routinely used to compensate for the lack of cold winter temperatures and to induce flower opening. In this work, dormant flower buds were sprayed with hydrogen cyanamide followed by deep RNA sequencing, identifying three main expression patterns in response to HC. These transcript level results were validated by quantitative real time polymerase chain reaction and supported further by phytohormone profiling (ABA, SA, IAA, CK, ethylene, JA). Using these approaches, we identified the most up-regulated pathways: the cytokinin pathway, as well as the jasmonate and the hydrogen cyanide pathway. Our results strongly suggest an inductive effect of these metabolites in bud dormancy release and provide a stepping stone for the characterization of key genes in bud dormancy release.

  2. Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry

    Directory of Open Access Journals (Sweden)

    Irina A. Ionescu

    2017-07-01

    Full Text Available Release of bud dormancy in perennial woody plants is a temperature-dependent process and thus flowering in these species is heavily affected by climate change. The lack of cold winters in temperate growing regions often results in reduced flowering and low fruit yields. This is likely to decrease the availability of fruits and nuts of the Prunus spp. in the near future. In order to maintain high yields, it is crucial to gain detailed knowledge on the molecular mechanisms controlling the release of bud dormancy. Here, we studied these mechanisms using sweet cherry (Prunus avium L., a crop where the agrochemical hydrogen cyanamide (HC is routinely used to compensate for the lack of cold winter temperatures and to induce flower opening. In this work, dormant flower buds were sprayed with hydrogen cyanamide followed by deep RNA sequencing, identifying three main expression patterns in response to HC. These transcript level results were validated by quantitative real time polymerase chain reaction and supported further by phytohormone profiling (ABA, SA, IAA, CK, ethylene, JA. Using these approaches, we identified the most up-regulated pathways: the cytokinin pathway, as well as the jasmonate and the hydrogen cyanide pathway. Our results strongly suggest an inductive effect of these metabolites in bud dormancy release and provide a stepping stone for the characterization of key genes in bud dormancy release.

  3. Fruit quality in the peach and nectarine with application of hydrogenated cyanamide and mineral oil

    Directory of Open Access Journals (Sweden)

    Sarita Leonel

    Full Text Available This work evaluated the quality of the fruit in peach and nectarine cultivars with and without the application of hydrogenated cyanamide and mineral oil, for two production cycles (2009 and 2010. The experiment was carried out at the School of Agricultural Science of the São Paulo State University (UNESP, at Botucatu in the Brazilian state of São Paulo, located at latitude 22º51'55" S and longitude 48º26'22" E, at an altitude of 810 m. The predominant climate type is warm temperate (mesothermal with rains in the summer and dry in the winter. The following were evaluated: soluble solids, titratable acidity, pH, ratio, firmness, vitamin C and pulp yield. The use of hydrogenated cyanamide and mineral oil had no effect on the quality attributes of the fruit, except for pH, where those fruits under application of the products showed higher values. The cultivars all had a pulp yield greater than 90%, with 'Tourmaline' showing the highest yield (96 %. The levels of vitamin C varied according to the cultivars, where 'Marli' (16.9 mg 100 g-1 and 'Dourado-2' (16.5 mg 100 g-1, stood out for having the highest levels.

  4. Effects of single cyanamide dose on free amino acid pool in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskiy, S.Yu.

    Outbred rats were employed in trials on the effects of cyanamide - an inhibitor of aldehyde dehydrogenase proposed for the treatment of alcoholism - on the brain pool of essential and nonessential amino acid. Cyanamide was administered intraperitoneally in a dose of 60 mg/kg, followed in some experiments by intraperitoneal ethanol in a dose of 0.5 g/kg. Following cyanamide administration, marked enhancement of the levels of taurine, cystine, and GABA was noted, whereas the increase in serine was less pronounced. Cyanamide administration also induced depression of alanine, valine, leucine, phenylalanine, and of ethanolamine levels. Administration of ethanol after priming with cyanamide had only the additional effect of diminishing the levels of cysteic acid and ornithine in the brain. However, the differences between the cyanamide animals and the cyanamide + ethanol animals were not significant. With currently available data, it is difficult to tell whether the effects of cyanamide are due to elevation in acetaldehyde levels, or to some direct effect of the drug on protein or amino acid metabolism. 24 references.

  5. Pulse radiolysis study of aqueous cyanamide solutions

    International Nuclear Information System (INIS)

    Draganic, I.G.; Draganic, Z.D.; Sehested, K.

    1978-01-01

    The radiolysis of oxygen-free, aqueous solutions of cyanamide was studied by fast kinetic spectrophotometry. Computer simulation of the reaction mechanisms was used to evaluate the experimental data. Four different species are identified: (1) the radical anion (NH 2 CN) - absorbing light in the UV with lambda/sub max/ 240 = 1500 M -1 cm -1 ; the disappearance is a second-order process with 2k = 1.3 x 10 9 M -1 s -1 ; (2) the hydrogen adduct, NH 2 C(H) double bond N (or NH 2 C double bond NH), with lambda/sub max/ 300 nm and epsilon 300 = 150 M -1 cm -1 decaying by second-order kinetics with 2k = 3.1 x 10 9 M -1 s -1 ; (3) the hydroxyl radical preferentially adds to the cyano group, NH 2 C(OH) double bond N (or NH 2 C double bond NOH). This species rearranges in the submicrosecond scale to NH 2 C ( double bond O) NH (lambda/sub max/ 325 nm and epsilon/sub 325 = 1900 M -1 cm -1 ) and disappears by a second-order process with 2k = 6.3 x 10 9 M -1 s -1 . (4) It is estimated that about 10% of OH radicals attack the substituent group and by H abstraction produce the NHCN radical (lambda/sub max/ 370 nm and epsilon 370 = 1800 M -1 cm -1 ); it disappears by a pseudo-first-order process attributed to a hydrolysis reaction. At increasing acidities, protonation of this radical takes place, NHCN + H + → + NH 2 CN; the protonated form decays faster and absorbs more strongly. In a cyanamide solution containing S 2 O 8 2- , the SO - 4 . radicals react with cyanamide, k = 1 x 10 8 M -1 s -1 , producing + NH 2 CN radicals. The dependence of the optical density at 325 nm on the dose rate and solute concentration are quantitatively consistent with the assumption that the OH radicals react with the NH 2 C(=O)NH species with k = 4 x 10 9 M -1 s -1

  6. Amélioration de la croissance végétative et de la constitution des réserves en amidon des pêchers par les traitements avec la cyanamide d'hydrogène

    Directory of Open Access Journals (Sweden)

    Dbara, S.

    2009-01-01

    Full Text Available Vegetative Growth and Starch Reserve Improvement in Peach Trees Using Hydrogen Cyanamid Treatments. Hydrogen cyanamid use was investigated as a means of improving vegetative growth and starch content in peach trees. Results given that the treatments 40 days before natural bud break was increased the vegetative growth, starch content and shoot extension especially in the earliest cultivar (Queen Crest. For the latest cultivar May Crest all treatments (45 and 32 days before natural bud break was ameliorated only the starch content.

  7. Fenologia, brotação de gemas e produção de frutos de macieira em resposta à aplicação de cianamida hidrogenada e óleo mineral Phenology, budbreak and apple fruit production by hydrogen cyanamide and mineral oil application

    Directory of Open Access Journals (Sweden)

    Fernando José Hawerroth

    2009-01-01

    , detecting this effects along of productive season became important. Thus, this study was carried out during 2007/2008 season, in Caçador, Santa Catarina State, Brazil, aiming to evaluate different hydrogen cyanamide and mineral oil combinations on phenology, budbreak and apple fruit production. The experimental design was a randomized block, with six replications, in factorial arrangement (5x2, with five budbreak promoter treatments (1. control; 2. mineral oil 3.2%; 3. mineral oil 3.2% + hydrogen cyanamide 0.20%; 4. mineral oil 3.2% + hydrogen cyanamide 0.39%; 5. mineral oil 3.2% + hydrogen cyanamide 0.59% and two cultivars (Imperial Gala and Suprema's Fuji. The budbreak promoters application anticipated and reduced the blooming period, increasing the blooming overlap between Imperial Gala and Suprema's Fuji cultivars. The budbreak promoters equalized and increased the budbreak in axillary and terminal buds, with the major budbreak level observed in Imperial Gala cultivar with 0.44% of hydrogen cyanamide and 3.2% of mineral oil treatment. The increase of hydrogen cyanamide concentration showed the tendency to decrease the fruit set. It was observed different treatment responses on production and mean fruit weight, probably to be related to fruit production predominance in different frutification structures.

  8. Epicotyl dormancy of tree peony as an oil plant broken by cyanamide

    Science.gov (United States)

    Xu, Jiajie; Gong, Mingfu; Liu, Fang; Wu, Sanlin; Liu, Xiaojie; Zhang, Ya; Xu, Gaoyu

    2018-04-01

    This test materials is `feng Dan', an oil peony, or tree peony as an oil plant, growing in Yangtze river basin. Impact of cyanamide on oil peony epicotyl dormancy was represented with germination rate of peony feeds, a-amylase activity, soluble sugar content, soluble protein content and peroxidase (POD) activity. Results showed that hypocotyls' dormancy of peony seeds was significant breaken by 0.3% cyanamide concentration. Alpha-amylase activity, soluble sugar content, soluble protein content and POD activity in 0.3% cyanamide concentration treatment was significantly higher than other treatments. There was no significant difference between the rest treatments.

  9. The impact of the Cyanamid Canada Co. discharges to benthic invertebrates in the Welland River in Niagara falls, Canada.

    Science.gov (United States)

    Dickman, M; Rygiel, G

    1993-06-01

    : In 1986, the International Joint Commission (IJC) recommended that the Niagara River watershed should be declared an Area of Concern (AOC). This IJC recommendation was ratified by the 4 signatories of the Great Lakes Water Quality Agreement. In order to delist an AOC, it is necessary to locate any areas of impairment within the watershed and carry out remediation projects that permit uses that were previously impaired. To this end we attempted to determine whether or not the sediments at 7 study sites near the Cyanamid Canada (Chemical) Co. were contaminated at levels that would result in the impairment of the natural biota which inhabit the watershed.The Cyanamid Canada (Chemical) Co. discharges ammonia wastes, cyanide, arsenic and a variety of heavy metals into treatment systems which ultimately discharge to the Welland River, the major Canadian tributary to the Niagara River. This portion of the Welland River near the factory was designated a Provincially significant (Class one) wetlands by the Ontario Ministry of Natural Resources. In 1986, the mean discharge to a creek from Cyanamid Canada Co. was 27,342 m(3) per day (MOE, 1987). Similar discharge volumes occurred in 1989. In 1991, the total discharge was 25,000 m(3) per day (MOE, 1991).The majority of the benthic invertebrates collected from the study area were pollution tolerant taxa (e.g., sludge worms constituted 68% of all the organisms collected). The lowest chironomid densities were observed at stations 1, 2, and 4, which were the only stations situated close to Cyanamid's discharge pipes. The absence, of clams and mayflies which burrow to greater depths than do chironomids and sludge worms, probably reflects the inability of the deeper dwelling burrowers to tolerate the contaminants which we recorded at these 3 stations. The absence of all crustaceans from these same 3 stations (stations 1, 2 and 4) when coupled with their low biotic diversity and the elevated heavy metal concentrations in the

  10. First detection of cyanamide (NH2CN) towards solar-type protostars

    Science.gov (United States)

    Coutens, A.; Willis, E. R.; Garrod, R. T.; Müller, H. S. P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Ligterink, N. F. W.; Persson, M. V.; Stéphan, G.; van der Wiel, M. H. D.; van Dishoeck, E. F.; Wampfler, S. F.

    2018-05-01

    Searches for the prebiotically relevant cyanamide (NH2CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13C isotopologs of NH2CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide ( 1.7%) is similar to that of formamide (NH2CHO), which may suggest that these two molecules share NH2 as a common precursor. The NH2CN/NH2CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH2CN on grains through the NH2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH2CN with the correct choice of physical parameters.

  11. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production.

    Science.gov (United States)

    Soltys, Dorota; Gniazdowska, Agnieszka; Bogatek, Renata

    2013-05-01

    Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period.

  12. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Directory of Open Access Journals (Sweden)

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  13. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    Science.gov (United States)

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  14. Brotação e produção das videiras 'Cabernet Sauvignon' e 'Pinot Noir' submetidas a diferentes concentrações de cianamida hidrogenada Shoot growth and production of Cabernet Sauvignon and Pinot Noir grapevines sprayed with different concentrations of hydrogen cyanamide

    Directory of Open Access Journals (Sweden)

    Gilmar Arduino Bettio Marodin

    2006-12-01

    Full Text Available A ausência de frio invernal na videira produz efeitos adversos, como o atraso e desuniformidade de brotação das gemas, dificuldades de manejo fitossanitário, produção escalonada e de baixa qualidade. O trabalho foi realizado no município de Garibaldi, na região da Encosta Superior do Nordeste do Estado do Rio Grande do Sul, com 640 metros de altitude, com objetivo de testar concentrações de cianamida hidrogenada de 0; 0,5; 1,0; 1,5; 2,0 e 2,5% nas cultivares viníferas Cabernet Sauvignon e Pinot Noir. Os melhores resultados para brotação de gemas de vara foram de 1,75 e 2,0 % em 'Cabernet Sauvignon' e 'Pinot Noir', respectivamente. Concentrações superiores a 1,5 % ocasionaram uniformidade de brotação, independentemente do ano. A maior produtividade foi obtida com cianamida.hidrogenada 2,0% nas duas cultivares, com elevação média de cinco ton/ha. Houve maior fertilidade nas gemas de vara do que em esporão. Os aspectos qualitativos das uvas não foram afetados pela cianamida hidrogenada, com exceção do peso médio dos cachos na 'Pinot Noir', na safra de 2004.The lack of chilling for grapevines produces adverse effects such as the delay and unevenness of budburst; difficulties for phytosanitary procedures, extension of the harvesting period and low fruit quality. The work was carried out close to Garibaldi, at an altitude of 640 meters in the region of "Encosta Superior" Northern of the State of Rio Grande do Sul. The objective of this work was to test concentrations of hydrogen Cyanamid varying from 0; 0,5; 1,0; 1,5 ; 2,0 and 2.5% sprayed onto Cabernet Sauvignon and Pinot Noir cultivars. The best shoot growth results were obtained from sprays of 1.75% and 2.0% in Cabernet Sauvignon and Pinot Noir, respectively. Concentrations beyond to 1.5% promoted shoot growth uniformity, independent of the year. The highest productivity was obtained with 2.0% hydrogen Cyanamid in both cultivars, with an average increase of 5 ton/ha. There

  15. Effects of cyanamide and clofibrate on the enzymes of ethanol oxydation and on ethanol consumption in the rat.

    Science.gov (United States)

    Lamboeuf, Y; De Saint Blanquat, G

    1980-01-01

    The action of cyanamide and of clofibrate was studied on the voluntary drinking behaviour of alcohol intoxicated animals and also on the enzymes of ethyl oxydation. Both substances reduce alcohol consumption by about 35% and cause metabolic modifications: inhibition of aldehyde dehydrogenase and of catalase by cyanamide; activation of alcohol- and aldehyde-dehydrogenases by clofibrate. These effects are constantly found in most of the tissues of the rat. The results are discussed bearing in mind the relationships between alcohol metabolism, acetaldehyde metabolism, the toxicity of alcohol and the drinking behaviour.

  16. Low energy electron attachment to cyanamide (NH{sub 2}CN)

    Energy Technology Data Exchange (ETDEWEB)

    Tanzer, Katrin; Denifl, Stephan, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at [Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Pelc, Andrzej, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at [Mass Spectrometry Department, Institute of Physics, Marie Curie-Sklodowska University, Pl. M. C.-Sklodowskiej 1, 20-031 Lublin (Poland); Huber, Stefan E. [Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Lehrstuhl für Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany); Czupyt, Z. [Ion Microprobe Facility Micro-area Analysis Laboratory, Polish Geological Institute–National Research Institute, Rakowiecka 4, 00-975 Warszawa (Poland)

    2015-01-21

    Cyanamide (NH{sub 2}CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH{sub 2}CN has been studied in a crossed electron–molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN{sup −}, NCN{sup −}, CN{sup −}, NH{sub 2}{sup −}, NH{sup −}, and CH{sub 2}{sup −}. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels for all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH{sub 2}CN—carbodiimide.

  17. Superação da dormência de cultivares de mirtileiro em ambiente protegido com cianamida hidrogenada e óleo mineral Dormancy breaking of blueberries cultivars in a protected environment with hydrogen cyanamide and mineral oil

    Directory of Open Access Journals (Sweden)

    Roberto Coletti

    2011-06-01

    Full Text Available O mirtileiro é uma frutífera de clima temperado que necessita de frio no outono/inverno. A insuficiência de frio pode provocar deficiente e desuniforme brotação e floração, com reflexos na produção. A pesquisa realizada na Universidade de Passo Fundo-RS, teve por objetivo estudar a superação da dormência de cultivares de mirtileiro (Georgiagem, Climax e Aliceblue em ambiente protegido, tratadas em 25-07-2007 com cianamida hidrogenada (CH, nas doses de 0,52% e 1,04% (1% e 2% do produto comercial Dormex®, com a adição de 0,5% de óleo mineral (OM, comparando com plantas sem tratamento. As plantas encontravam-se no terceiro ciclo vegetativo e no primeiro de produção. O plantio foi realizado em 2005, no espaçamento de 0,7 m x 2,0 m, com irrigação por gotejamento. De acordo com os resultados obtidos, a aplicação no final de julho de CH + OM concentrou e uniformizou a floração e antecipou a brotação das cvs. Georgiagem e Clímax. A cianamida hidrogenada, nas concentrações de 0,52% e 1,04% (1% e 2% de Dormex®, combinado com 0,5% de óleo mineral, não teve efeito na porcentagem de brotação, mas reduziu a produção, evidenciando efeitos fitotóxicos.Blueberry require chilling hours accumulation in the fall/winter. Insufficient cold accumulation can cause deficient and desuniform sprouting and blooming, with negative consequences on yield. The research conducted in Passo Fundo University, state of Rio Grande do Sul, had the objective of studying the dormancy breaking of blueberries cultivars (Georgiagem, Climax and Aliceblue under greenhouse conditions, submitted to treatments with hydrogen cyanamide (HC at the doses of 0.52% and 1.04% (1% and 2% of the commercial product Dormex®, with the addition of 0.5% of mineral oil (MO, and compare them to a control, without hydrogen cyanamide treatment. Planting was made in December 2005, at a 0.7 m x 2.0 m space, with drip irrigation. The plants were evaluated in the third

  18. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  19. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  20. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  1. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  2. Effect of calcium cyanamide on growth and nutrition of plan fed yellow-poplar seedlings

    Science.gov (United States)

    L.R. Auchmoody; G.W. Wendel; G.W. Wendel

    1973-01-01

    Calcium cyanamide, a nitrogenous fertilizer that also acts as an herbicide, was evaluated over a 3-year period for use in establishing planted yellow-poplar on an old-field site. Results of this study show that first and second year growth of yellow-poplar can be increased by nbroadcasting CaCN2 around the seedlings. When applied at rates of 400 to 500 pounds of...

  3. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  4. Hydrogen concentration profiles and chemical bonding in silicon nitride

    International Nuclear Information System (INIS)

    Peercy, P.S.; Stein, H.J.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    The complementary technique of nuclear reaction analysis and infrared absorption were used to study the concentration profile and chemical bonding of hydrogen in silicon nitride for different preparation and annealing conditions. Silicon nitride prepared by chemical vapor deposition from ammonia-silane mixtures is shown to have hydrogen concentrations of 8.1 and 6.5 at.% for deposition temperatures of 750 and 900 0 C, respectively. Plasma deposition at 300 0 C from these gases results in hydrogen concentrations of approximately 22 at.%. Comparison of nuclear reaction analysis and infrared absorption measurements after isothermal annealing shows that all of the hydrogen retained in the films remains bonded to either silicon or nitrogen and that hydrogen release from the material on annealing is governed by various trap energies involving at least two N-H and one Si-H trap. Reasonable estimates of the hydrogen release rates can be made from the effective diffusion coefficient obtained from measurements of hydrogen migration in hydrogen implanted and annealed films

  5. Novel quinazoline ring synthesis by cycloaddition of N-arylketenimines with N,N-disubstituted cyanamides.

    Science.gov (United States)

    Shimizu, Masao; Oishi, Akihiro; Taguchi, Yoichi; Gama, Yasuo; Shibuya, Isao

    2002-03-01

    The reaction of N-aryl-substituted ketenimines with N,N-disubstituted cyanamides or (MeS)2C=N-CN under high pressure afforded 4-(N,N-disubstituted amino) or 4-(MeS)2C=N-substituted quinazoline derivatives, respectively. These products were formed by [4+2] cycloaddition between the aza-diene moieties of the N-arylsubstituted ketenimines and cyano groups. A 4-(unsubstituted amino)quinazoline derivative was synthesized by hydrolysis of the latter product.

  6. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  7. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  8. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  9. Chemical storage of hydrogen in few-layer graphene

    Science.gov (United States)

    Subrahmanyam, K. S.; Kumar, Prashant; Maitra, Urmimala; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, Umesh V.; Rao, C. N. R.

    2011-01-01

    Birch reduction of few-layer graphene samples gives rise to hydrogenated samples containing up to 5 wt % of hydrogen. Spectroscopic studies reveal the presence of sp3 C-H bonds in the hydrogenated graphenes. They, however, decompose readily on heating to 500 °C or on irradiation with UV or laser radiation releasing all the hydrogen, thereby demonstrating the possible use of few-layer graphene for chemical storage of hydrogen. First-principles calculations throw light on the mechanism of dehydrogenation that appears to involve a significant reconstruction and relaxation of the lattice. PMID:21282617

  10. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    Science.gov (United States)

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  12. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  13. Chemical reaction between single hydrogen atom and graphene

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakamura, Hiroaki; Takayama, Arimichi

    2007-04-01

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp 3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  14. Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same

    Science.gov (United States)

    Yang, Ralph T.; Li, Yingwei; Qi, Gongshin; Lachawiec, Jr., Anthony J.

    2012-12-25

    A composition for hydrogen storage includes a source of hydrogen atoms, a receptor, and a chemical bridge formed between the source and the receptor. The chemical bridge is formed from a precursor material. The receptor is adapted to receive hydrogen spillover from the source.

  15. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4022-4022 ISSN 1521-3765 Institutional support: RVO:61388955 Keywords : Chemical vapor deposition * Hydrogenation * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Chemical reduction of refractory oxides by atomic hydrogen

    International Nuclear Information System (INIS)

    Dooley, D.; Balooch, M.; Olander, D.R.

    1978-11-01

    The chemical reduction of UO 2 and Al 2 O 3 by atomic hydrogen was studied. Results of the UO 2 /H investigation indicates that reduction of UO 2 by atomic hydrogen proceeds by the production of water vapor and hypostoichiometric urania. Water vapor and aluminum metal are formed in the Al 2 O 3 /H system. The relative ease which UO 2 is reduced by atomic hydrogen compared with Al 2 O 3 is due to two factors. The first is related to the thermochemistry of the reactions. The second factor which favors efficient reduction of UO 2 but not of Al 2 O 3 is the oxygen diffusivity

  17. Purification of free hydrogen or hydrogen combined in a gaseous mixture by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron-Charles, M.; Gilot, B.

    1989-01-01

    Within the framework of the European fusion program, the authors are dealing with the tritium technology aspect. Hydrogen, free or under a combined form within a H 2 , N 2 , NH 3 , O 2 , gaseous mixture, can be purified by chemical reactions with uranium metal. The resulting reactions consist in absorbing the impurities without holding back H 2 . Working conditions have been defined according to two main goals: the formation of stable solid products, especially under hydrogenated atmosphere and the optimization of the material quantities to be used. Thermodynamical considerations have shown that the 950-1300 K temperature range should be suitable for this chemical process. Experiments performed with massive uranium set in a closed reactor at 973 K, have produced hydrogen according to the predicted reactions rates. But they have also pointed out the importance of interferences that might occur in the uranium-gas system, on the gases conversion rates. The comparison between the chemical kinetic ratings of the reactions of pure gases and the chemical kinetic ratings of the reactions of the same gases in mixture, has been set up. It proves that simultaneous reactions can modify the working conditions of the solid products formation, and particularly modify their structure. In this case, chemical kinetic ratings are increased up to their maximal value; that means surface phenomena are favoured as with uranium powder gases reactions. (orig.)

  18. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  19. Preliminary analyses on hydrogen diffusion through small break of thermo-chemical IS process hydrogen plant

    International Nuclear Information System (INIS)

    Somolova, Marketa; Terada, Atsuhiko; Takegami, Hiroaki; Iwatsuki, Jin

    2008-12-01

    Japan Atomic Energy Agency has been conducting a conceptual design study of nuclear hydrogen demonstration plant, that is, a thermal-chemical IS process hydrogen plant coupled with the High temperature Engineering Test Reactor (HTTR-IS), which will be planed to produce a large amount of hydrogen up to 1000m 3 /h. As part of the conceptual design work of the HTTR-IS system, preliminary analyses on small break of a hydrogen pipeline in the IS process hydrogen plant was carried out as a first step of the safety analyses. This report presents analytical results of hydrogen diffusion behaviors predicted with a CFD code, in which a diffusion model focused on the turbulent Schmidt number was incorporated. By modifying diffusion model, especially a constant accompanying the turbulent Schmidt number in the diffusion term, analytical results was made agreed well with the experimental results. (author)

  20. Efeito da aplicação de cianamida hidrogenada e óleo mineral na quebra de dormência e producão do pessegueiro-'Flamecrest' Effect of the application of hidrogen cyanamid and mineral oil on dormancy breaking and peach production, cv. Flamecrest

    Directory of Open Access Journals (Sweden)

    GILMAR ARDUINO BETTIO MARODIN

    2002-08-01

    August. The Dormancy breaking, flowering, fruit set, yield, and antecipation of harvest were evaluated from plants of the folllowing treatments: 1,22; 2,45; 3,675 or 4,90 g of i.a.L-1 hydrogen cyanamid together with 10 g i.a L-1 of mineral oil or a single application of 10 g i.a L-1 mineral oil. The Control plants were not sprayed with the dormancy breaking treatment. None of the treatments resulted in sprouting antecipation of flowering buds however, plants treated with 1,22 or 4,90 g i.a L-1 hydrogen cyanamid mixed with 10 g i.a L-1 mineral oil, had a higher number of sprouted vegetative buds. There was no significant effect of the period of application on flowering and fruit set. The number of fruits thinned out from each plant was higher for the treatments with 2,45 or 4,90 g i.a L-1 of hydrogen cyanamid mixed with 10 g i.a L-1 of mineral oil. When applied to peaches trees in july, the treatments with 1,22 and 3,675 g i.a. L-1 of hydragen cyanamid and 10 g i.a. L-1 of mineral oil resulted in a higher number of fruits and total yield per plant. All the treatments, in the second apllication period, produced higher yields. The Average fruit weight, total soluble solids and pulp firmness were not influenced by the treatments.

  1. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    Highlights: • Evaluation of carbon dioxide conversion to methanol by two chemical routes. • HYDROGENATION: conversion via catalytic hydrogenation at high pressure. • BI-REFORMING: conversion via syngas from bi-reforming of natural gas. • HYDROGENATION is viable for hydrogen price inferior to 1000 US$/t. • BI-REFORMING is unable to avoid emissions; viable only if gas price is very low. - Abstract: Chemical conversion of carbon dioxide to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of carbon dioxide is a challenging impediment to conversion requiring severe reaction conditions at the expense of increased energy input, therefore adding capital, operation and environmental costs, which could result in partial or total override of its potential sustainability as feedstock to the chemical and energy industries. This work investigates two innovative chemical destinations of carbon dioxide to methanol, namely a direct conversion through carbon dioxide hydrogenation (HYDROGENATION), and an indirect via carbon dioxide conversion to syngas through bi-reforming (BI-REFORMING). Process simulation is used to obtain mass and energy balances needed to support assessment of economic and environmental performance. A business scenario is considered where an industrial source of nearly pure carbon dioxide exists and an investment decision for utilization of carbon dioxide is faced. Due to uncertainties in prices of the raw materials, hydrogen (HYDROGENATION) and natural gas (BI-REFORMING), the decision procedure includes the definition of price thresholds to reach profitability. Sensitivity analyses are performed varying costs with greater uncertainty, i.e., carbon dioxide and methanol, and recalculating maximum allowable prices of raw materials. The analyses show that in a Brazilian scenario, BI-REFORMING is unlikely

  2. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-11-08

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide; Correction. SUMMARY: The... Administrative Stay of the reporting requirements for hydrogen sulfide. The Office of the Federal Register...

  3. Radiation-chemical yields of molecular hydrogen formation in cyclohexane based alcohols

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Kovalev, G.V.

    1988-01-01

    Molecular hydrogen radiation-chemical yields in γ-irradiated cyclohexanol, 1.2-cis- and 1.2-trans-cyclohexandiols and inositol are determined within the general problem frameworks of radiolysis mechanism for cyclohexanering-base alcohols. Irradiation was conducted at 77 and 293 K, dose rate - 4 Gy/s. Hydrogen concentration in all irradiated alcohols depends linearly on the dose. Radiation-chemical yields of H 2 and of stabilized radicals, as well, in the irradiated crystalline alcohols are analyzed depending on the irradiation temperature, alcohol molecular structure

  4. Determination of trapping parameters and the chemical diffusion coefficient from hydrogen permeation experiments

    International Nuclear Information System (INIS)

    Svoboda, J.; Mori, G.; Prethaler, A.; Fischer, F.D.

    2014-01-01

    Highlights: • A modeling study for diffusion of hydrogen with traps is presented. • Introduction of a new chemical diffusion coefficient. • Density of traps and average depth of traps can be determined. • Lattice diffusion and sub-surface concentration of atomic hydrogen can be determined. - Abstract: An improved diffusion theory accounting for trapping effects is applied to evaluation of hydrogen permeation experiments performed for pure iron and pearlitic and martensitic steels. The trapping parameters as molar volume and depth of traps are determined by fitting experiments by simulations based on the theory. The concentration-dependent chemical diffusion coefficient of hydrogen is extracted indicating that the trapping effect on diffusion in pure iron and pearlitic steel is negligible. However, it is significant for martensitic steel, for which the chemical diffusion coefficient cannot be considered as concentration-independent as it is established in current standards

  5. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Science.gov (United States)

    2010-04-14

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment Period... reporting requirements for hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4) (75 FR... may be potentially affected by this action if you manufacture, process, or otherwise use hydrogen...

  6. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  7. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  8. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-01-01

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  9. Garlic and H2O2 in overcoming dormancy on the vine “Cabernet Sauvignon”

    OpenAIRE

    Saavedra del Aguila Juan; Pereira Dachi Ângela; Nogueira Fernandes Elizeu; Lais Hamm Bruna; Corrêa de Almeida Fabiane; Moreira Silveira Jansen

    2015-01-01

    The objective of this experiment was to evaluate the effect of garlic extract, H2O2 and hydrogen cyanamide on dormancy break, budding and maturation of “Cabernet Sauvignon” in the Campaign Region – Brazil. In late winter 2014 and after drought pruning were performed spraying in the bud: T1 – distilled water (control); T2 – 3.0% of hydrogen cyanamide; T3 – 18.0% H2O2; and T4 – 3.0% garlic extract. It was evaluated in the field: the number of sprouted buds per plant, number of bunches per plant...

  10. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    Science.gov (United States)

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  11. Chemical-clathrate hybrid hydrogen storage: storage in both guest and host.

    Science.gov (United States)

    Strobel, Timothy A; Kim, Yongkwan; Andrews, Gary S; Ferrell, Jack R; Koh, Carolyn A; Herring, Andrew M; Sloan, E Dendy

    2008-11-12

    Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.

  12. Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development.

    Science.gov (United States)

    Ciriminna, Rosaria; Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-12-20

    The global utilization of hydrogen peroxide, a green oxidant that decomposes in water and oxygen, has gone from 0.5 million tonnes per year three decades ago to 4.5 million tonnes per year in 2014, and is still climbing. With the aim of expanding the utilization of this eminent green chemical across different industrial and civil sectors, the production and use of hydrogen peroxide as a green industrial oxidant is reviewed herein to provide an overview of the explosive growth of its industrial use over the last three decades and of the state of the art in its industrial manufacture, with important details of what determines the viability of the direct production from oxygen and hydrogen compared with the traditional auto-oxidation process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dynamic Monte-Carlo modeling of hydrogen retention and chemical erosion from Tore Supra deposits

    International Nuclear Information System (INIS)

    Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.

    2009-01-01

    A multi-scale model has been developed to study the hydrogen retention [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. 374 (2008) 304] and chemical erosion of porous graphite. To model the chemical erosion process due to thermal hydrogen ions, Kueppers cycle [J. Kueppers, Surf. Sci. Rep. 22 (1995) 249; M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186] has been introduced. The model is applied to study hydrogen transport in deposits collected from the leading edge of neutralizers of Tore Supra. The effect of internal structure on chemical erosion is studied. The MD study [E. Salonen et al., J. Nucl. Mater. 290-293 (2001) 144] shows that the experimentally observed decrease of erosion yield at higher fluxes is due to the decrease of carbon collision cross-section at a surface due to shielding by hydrogen atom already present on the surface. Inspired by this study, a simple multi-scale model is developed to describe the flux dependence of chemical erosion. The idea is to use the local chemistry effect from the Kueppers model to calculate the hydrocarbon molecule formation process and then to find the release probability of the produced hydrocarbon based on the purely geometrical constraints. The model represents quite well the trends in experimental data.

  14. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  15. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  16. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  17. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  18. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  19. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  20. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  1. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  2. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  3. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    Science.gov (United States)

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  4. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    Science.gov (United States)

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  5. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Sprik, Sam; Tamburello, David; Thornton, Matthew

    2018-05-03

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.

  6. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brooks, Kriston P. [Pacific Northwest National Laboratory; Tamburello, David A. [Savannah River National Laboratory

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).

  7. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  8. Molecular dynamics simulation of chemical sputtering of hydrogen atom on layer structured graphite

    International Nuclear Information System (INIS)

    Ito, A.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.

    2008-10-01

    Chemical sputtering of hydrogen atom on graphite was simulated using molecular dynamics. Especially, the layer structure of the graphite was maintained by interlayer intermolecular interaction. Three kinds of graphite surfaces, flat (0 0 0 1) surface, armchair (1 1 2-bar 0) surface and zigzag (1 0 1-bar 0) surface, are dealt with as targets of hydrogen atom bombardment. In the case of the flat surface, graphene layers were peeled off one by one and yielded molecules had chain structures. On the other hand, C 2 H 2 and H 2 are dominant yielded molecules on the armchair and zigzag surfaces, respectively. In addition, the interaction of a single hydrogen isotope on a single graphene is investigated. Adsorption, reflection and penetration rates are obtained as functions of incident energy and explain hydrogen retention on layered graphite. (author)

  9. Spectroscopic ellipsometry on Si/SiO2/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    International Nuclear Information System (INIS)

    Eren, Baran; Fu, Wangyang; Marot, Laurent; Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-01

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation

  10. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  11. Synthesis, Crystal Structure, and Chemical-Bonding Analysis of BaZn(NCN2

    Directory of Open Access Journals (Sweden)

    Alex J. Corkett

    2017-12-01

    Full Text Available The ternary carbodiimide BaZn(NCN2 was prepared by a solid-state metathesis reaction between BaF2, ZnF2, and Li2NCN in a 1:1:2 molar ratio, and its crystal structure was determined from Rietveld refinement of X-ray data. BaZn(NCN2 represents the aristotype of the LiBa2Al(NCN4 structure which is unique to carbodiimide/cyanamide chemistry and is well regarded as being constructed from ZnN4 tetrahedra, sharing edges and vertices through NCN2− units to form corrugated layers with Ba2+ in the interlayer voids. Structural anomalies in the shape of the cyanamide units are addressed via IR spectrometry and DFT calculations, which suggest the presence of slightly bent N=C=N2− carbodiimide units with C2v symmetry. Moreover, chemical-bonding analysis within the framework of crystal orbital Hamilton population (COHP reveals striking similarities between the bonding interactions in BaZn(NCN2 and SrZn(NCN2 despite their contrasting crystal structures. BaZn(NCN2 is only the second example of a ternary post-transition metal carbodiimide, and its realization paves the way for the preparation of analogues featuring divalent transition metals at the tetrahedral Zn2+ site.

  12. Chemical grafting of Co9S8 onto C60 for hydrogen spillover and storage.

    Science.gov (United States)

    Han, Lu; Qin, Wei; Zhou, Jia; Jian, Jiahuang; Lu, Songtao; Wu, Xiaohong; Fan, Guohua; Gao, Peng; Liu, Boyu

    2017-04-20

    Metal modified C 60 is considered to be a potential hydrogen storage medium due to its high theoretical capacity. Research interest is growing in various hybrid inorganic compounds-C 60 . While the design and synthesis of a novel hybrid inorganic compound-C 60 is difficult to attain, it has been theorized that the atomic hydrogen could transfer from the inorganic compound to the adjacent C 60 surfaces via spillover and surface diffusion. Here, as a proof of concept experiment, we graft Co 9 S 8 onto C 60 via a facile high energy ball milling process. The Raman, XPS, XRD, TEM, HTEM and EELS measurements have been conducted to evaluate the composition and structure of the pizza-like hybrid material. In addition, the electrochemical measurements and calculated results demonstrate that the chemical "bridges" (C-S bonds) between these two materials enhance the binding strength and, hence, facilitate the hydriding reaction of C 60 during the hydrogen storage process. As a result, an increased hydrogen storage capacity of 4.03 wt% is achieved, along with a favorable cycling stability of ∼80% after 50 cycles. Excluding the direct hydrogen storage contribution from Co 9 S 8 in the hybrid paper, the hydrogen storage ability of C 60 was enhanced by 5.9× through the hydriding reaction caused by the Co 9 S 8 modifier. Based on these experimental measurements and theoretical calculations, the unique chemical structure reported here could potentially inspire other C 60 -based advanced hybrids.

  13. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  14. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eren, Baran [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fu, Wangyang; Marot, Laurent, E-mail: laurent.marot@unibas.ch; Calame, Michel; Steiner, Roland; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  15. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  16. An Integrated Photoelectrochemical-Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

    DEFF Research Database (Denmark)

    Zong, Xu; Han, Jingfeng; Seger, Brian

    2014-01-01

    Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...... simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.......Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...... linked by redox couples such as Fe2+/Fe3+ and I-/I-3(-) for photoelectrochemical H-2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H-2 with high stability and selectivity under...

  17. Formation of hydrogen-related traps in electron-irradiated n-type silicon by wet chemical etching

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Shimada, Hitoshi

    1998-01-01

    Interaction of hydrogen atoms and vacancy-related defects in 10 MeV electron-irradiated n-type silicon has been studied by deep-level transient spectroscopy. Hydrogen has been incorporated into electron-irradiated n-type silicon by wet chemical etching. The reduction of the concentration of the vacancy-oxygen pair and divacancy occurs by the incorporation of hydrogen, while the formation of the NH1 electron trap (E c - 0.31 eV) is observed. Further decrease of the concentration of the vacancy-oxygen pair and further increase of the concentration of the NH1 trap are observed upon subsequent below-band-gap light illumination. It is suggested that the trap NH1 is tentatively ascribed to the vacancy-oxygen pair which is partly saturated with hydrogen

  18. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  19. Purification of hydrogen under a free or combined form in a gaseous mixture, by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron Charles, M.

    1988-03-01

    Within the framework of the european fusion program, we are dealing with the purification of hydrogen (tritium) under a free or combined form, from a H 2 , N 2 , NH 3 , CH 4 , O 2 , gaseous mixture. The process consists in cracking the hydrogenated molecules and absorbing the impurities by chemical reactions with uranium, without holding back hydrogen. In the temperature range: 950 K [fr

  20. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  1. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    Science.gov (United States)

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  2. Analytic description of the chemical erosion of graphite by hydrogen ions

    International Nuclear Information System (INIS)

    Roth, J.; Garcia-Rosales, C.

    1996-01-01

    One main concern about the use of graphite as a plasma facing material is the enhanced erosion, under hydrogen bombardment due to hydrocarbon formation. In view of the lifetime evaluation of plasma exposed carbon components and of impurity production in present and future machines such as ITER, an analytical expression for the erosion yield by chemical sputtering for the relevant energies, temperatures and incident fluxes is of special importance. An extrapolation to fluxes and energies relevant for high density divertor plasmas has not been possible up to now on the basis of semiempirical fits to laboratory data. Starting from a short review of the existing empirical formulas, recent detailed investigations of the atomistic processes for the thermally activated hydrocarbon emission are described, which enable the formulation of an improved analytical description including the ion flux as a parameter. The chemical erosion of graphite by hydrogen bombardment results from two processes: the thermally activated hydrocarbon emission, Y therm , and a surface process at low energies and low temperatures resulting from the kinetic ejection of surface hydrocarbon complexes from collisional energy transfer, Y surf . The new analytic description can be fitted well to the existing data for ion beam erosion, and extrapolation to divertor relevant fluxes is possible. At high ion fluxes the maximum of chemical erosion is shifted to higher temperatures, where annealing of damaged structures leads to a stronger reduction of Y therm than previously estimated. There are no data on a possible flux dependence of Y surf , leaving still some uncertainty in extrapolation. (author). 46 refs, 10 figs, 1 tab

  3. Determination of cyanamide in workplace air by high-performance liquid chromatography%工作场所空气中氨基氰测定的高效液相色谱法

    Institute of Scientific and Technical Information of China (English)

    白玉萍; 李清钊; 郑国颖; 关维俊; 王茜; 马冬

    2014-01-01

    Objective To establish a method for determining cyanamide in workplace air by highperformance liquid chromatography (HPLC).Methods Air samples were collected from the workplace using the shock absorption tube containing water solution at a rate of 2.8~3.0 ml/min for 60 min; dansyl chloride was used as a derivatization reagent to conduct pre-column derivatization,and the procedure was as follows:acetone solution (2.5 ml),mixed solution (1.0 ml) containing 0.016 mol/L Na2CO3 and 0.184 mol/L NaHC03,and 10 mg/ml acetone solution of dansyl chloride (0.5 ml) were added into the samples,and reaction proceeded in a water bath (50 ℃) for 1 h.HPLC was performed on an ODS C18 column (250 mm × 4.6 mm,5 μm) with a mobile phase of acetonitrile-phosphate buffer (35:65) at a flow rate of 1.0 ml/min and a column temperature of 25℃; a fluorescence detector was used at an excitation wavelength of 360 nm and an emission wavelength of 495 nm.Results The minimum detectable concentration of cyanamide was 0.05 μg/ml; a good linear relationship was noted when the concentration of cyanamide was 0.2~100.0 μg/ml; the intraday relative standard deviation (RSD) was 0.28%~1.18%,and the interday RSD was 0.22~2.16%; the recovery rate was 95.7%~ 103.0%,and the sampling efficiency was 95.8%~96.9%.Water solution of cyanamide (pH<6.5) could be stable in the dark at room temperature for 7 d.Conclusion This method is stable,reliable,easy to operate,and highly sensitive and suitable for determination of cyanamide in workplace air.%目的 建立工作场所空气中氨基氰测定的高效液相色谱法.方法 工作场所空气样品以水溶液作吸收液,用冲击式吸收管,以2.8~3.0 ml/min速度采集60 ain,以丹磺酰氯为衍生试剂,进行柱前衍生,衍生方法为待测样品中加入2.5 ml丙酮溶液,1.0 ml含0.016 mol/L碳酸钠和0.184 mol/L碳酸氢钠混合溶液,0.5 ml丹磺酰氯丙酮溶液(浓度为10 mg/ml),50℃水浴中反应1h

  4. A study of chemical equilibrium of tri-component mixtures of hydrogen isotopes

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, I.; Peculea, M.

    1998-01-01

    In this paper we present a model for computing the equilibrium constants for chemical reactions between hydrogen's isotopes as function of temperature. The equilibrium constants were expressed with the aid of Gibbs potential and the partition function of the mixture. We assessed the partition function for hydrogen's isotopes having in view that some nuclei are fermions and other bosons. As results we plotted the values of equilibrium constants as function of temperature. Knowing these values we determined the deuterium distribution on species (for mixture H 2 -HD-D 2 ) as function of total deuterium concentration and the tritium distribution on species (for mixtures D 2 -DT-T 2 and H 2 -HT-T 2 ) as function of total tritium concentration. (authors)

  5. Rotation and rotation-vibration spectroscopy of the 0+-0- inversion doublet in deuterated cyanamide.

    Science.gov (United States)

    Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P; Winnewisser, Manfred

    2013-10-03

    The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm(-1). For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0(+) and 0(-) substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0(+) ↔ 0(-) coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, ΔE = 16.4964789(8), 32.089173(3), and 49.567770(6) cm(-1), for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.

  6. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    Science.gov (United States)

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  7. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  9. Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Time-Delayed Hydrogen Generation.

    Science.gov (United States)

    Lau, Vincent Wing-Hei; Klose, Daniel; Kasap, Hatice; Podjaski, Filip; Pignié, Marie-Claire; Reisner, Erwin; Jeschke, Gunnar; Lotsch, Bettina V

    2017-01-09

    While natural photosynthesis serves as the model system for efficient charge separation and decoupling of redox reactions, bio-inspired artificial systems typically lack applicability owing to synthetic challenges and structural complexity. We present herein a simple and inexpensive system that, under solar irradiation, forms highly reductive radicals in the presence of an electron donor, with lifetimes exceeding the diurnal cycle. This radical species is formed within a cyanamide-functionalized polymeric network of heptazine units and can give off its trapped electrons in the dark to yield H 2 , triggered by a co-catalyst, thus enabling the temporal decoupling of the light and dark reactions of photocatalytic hydrogen production through the radical's longevity. The system introduced here thus demonstrates a new approach for storing sunlight as long-lived radicals, and provides the structural basis for designing photocatalysts with long-lived photo-induced states. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Effects of Hydrogen Cyanamide on the Floral Morphogenesis of Kiwifruit Buds Efectos de la Cianamida de Hidrógeno sobre la Morfogénesis Floral de Kiwi

    Directory of Open Access Journals (Sweden)

    Hakan Engin

    2010-09-01

    Full Text Available The influence of hydrogen cyanamide (HC on the flower bud development of kiwifruit (Actinidia deliciosa (A. Chev. C.F. Liang & A.R. Ferguson. ‘Hayward’ was studied. The bud samples were taken every 5-10 d starting from dormant season (March and fixed in FAA (10% formalin, 50% ethanol, 5% glacial acetic acid. Flower bud development was compared in three HC concentrations and the control. 1%, 2%, and 3% of HC was applied 35 d before the expected natural bud break. During the onset of bud break, only 57.6% of control buds had sepal primordia developed. On the other hand, HC treated buds had almost completed their stamen formation and started stigma primordia. When the control vines were in advanced bud break, gynoecial plateau already began to form in the vines treated with 2 and 3% HC. Vines treated with 1% HC lagged a little behind and had not started developing the gynoecial plateau. As the bud developed from the open cluster to the tight bud stage, the differences between the control and HC treated plants were more distinct. However, there were no differences between HC treatments as the ovule initiation took place in the buds.El presente estudio evalúa la influencia de la aplicación de cianamida de hidrogeno (HC sobre el desarrollo de las yemas florales de kiwi (Actinidia deliciosa (A. Chev. C.F. Liang & A.R. Ferguson cv. Hayward. Las muestras de yemas se tomaron cada 5-10 días comenzando en la época de dormancia en marzo y se fijaron en FAA (10% formaldehido, 50% etanol, 5% ácido acético glacial. Se comparó el desarrollo de las yemas florales en tres concentraciones de HC y el control. Se aplicó HC al 1%, 2% y 3% 35 días antes del brote natural de las yemas. En el momento de la apertura de las yemas, sólo el 57,6% de las yemas de control habían desarrollado los primordios de los sépalos. Por el contrario, las yemas tratadas con HC casi habían completado la formación de estambres y habían empezado el desarrollo de primordios

  11. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  12. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  13. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    International Nuclear Information System (INIS)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Paquette, Michelle M.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.

    2015-01-01

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-B x C:H y ) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (E U ), and Tauc parameter (B 1/2 )], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-B x C:H y thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm 3 , Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 10 10 to 10 15 Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ∼1.3 g/cm 3 (or below ∼35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters E U and B 1/2 , with increasing H concentration is explained by the release of strain in the network and associated decrease in structural disorder. All of these correlations in a

  14. Organic chemical hydrides as storage medium of hydrogen on the basis of superheated liquid-film concept

    International Nuclear Information System (INIS)

    Shinya Hodoshima; Atsushi Shono; Kazumi Satoh; Yasukazu Saito

    2006-01-01

    A catalysis pair of tetralin dehydrogenation / naphthalene hydrogenation has been proposed in the present paper as an organic chemical hydride for operating stationary fuel cells. Catalytic naphthalene hydrogenation, having been commercialized since the 1940's, proceeds to generate decalin via tetralin as an intermediate. The storage capacities of tetralin (3.0 wt%, 28.2 kg-H 2 / m 3 ) are lower than decalin (7.3 wt%, 64.8 kg-H 2 / m 3 ) but both tetralin dehydrogenation and naphthalene hydrogenation are much faster than the decalin / naphthalene pair. Moreover, existing infrastructures, e.g., gas station and tank lorry, are available for storage, transportation and supply of hydrogen. As for the stationary fuel cells with large space for hydrogen storage, tetralin as a hydrogen carrier is superior to decalin in terms of fast hydrogen supply. Rapid hydrogen supply from tetralin under mild conditions was only accomplished with the carbon supported metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions. In contrast to the ordinary suspended states, the catalyst layer superheated in the liquid-film state gave high catalytic performances at around 250 C. As a result, serious coke formation over the catalyst surface and excessive exergy consumption were prevented simultaneously. (authors)

  15. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  16. Hydrogen determination in chemically delithiated lithium ion battery cathodes by prompt gamma activation analysis

    Science.gov (United States)

    Alvarez, Emilio, II

    2007-12-01

    Lithium ion batteries, due to their relatively high energy density, are now widely used as the power source for portable electronics. Commercial lithium ion cells currently employ layered LiCoO2 as a cathode but only 50% of its theoretical capacity can be utilized. The factors that cause the limitation are not fully established in the literature. With this perspective, prompt gamma-ray activation analysis (PGAA) has been employed to determine the hydrogen content in various oxide cathodes that have undergone chemical extraction of lithium (delithiation). The PGAA data is complemented by data obtained from atomic absorption spectroscopy (AAS), redox titration, thermogravimetric analysis (TGA), and mass spectroscopy to better understand the capacity limitations and failure mechanisms of lithium ion battery cathodes. As part of this work, the PGAA facility has been redesigned and reconstructed. The neutron and gamma-ray backgrounds have been reduced by more than an order of magnitude. Detection limits for elements have also been improved. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. The data indicates that while delithiated layered Li1- xCoO2, Li1-xNi 1/3Mn1/3Co1/3O2, and Li1- xNi0.5Mn0.5O2 take significant amounts of hydrogen into the lattice during deep extraction, orthorhombic Li 1-xMnO2, spinel Li1- xMn2O4, and olivine Li1- xFePO4 do not. Layered LiCoO2, LiNi 0.5Mn0.5O2, and LiNi1/3Mn1/3Co 1/3O2 have been further analyzed to assess their relative chemical instabilities while undergoing stepped chemical delithiation. Each system takes increasing amounts of protons at lower lithium contents. The differences are attributed to the relative chemical instabilities of the various cathodes

  17. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  18. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  19. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  20. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  1. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  2. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  3. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Science.gov (United States)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  4. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  5. Evaluation of calcium cyanamide addition during co-composting of manure and maize straw in a forced-aeration static-pile system.

    Science.gov (United States)

    Simujide, Huasai; Aorigele, Chen; Wang, Chun-Jie; Zhang, Tian-Hua; Manda, Bai

    2016-01-01

    Composting is one of the most environmentally friendly treatments to inactivate pathogenic organisms or reduce them to acceptable levels. However, even under thermal conditions, some pathogenic organisms such as E. coli could exist for a long time in composting. Such great persistence may increase the possibility of outbreaks of these organisms and further increase the environmental load. Calcium cyanamide (CaCN 2 ) has recently been recognized to have the fungicidal effect on the pathogens of the soilborne diseases. So, the present study determined the effect of CaCN 2 addition on composting progress as an antimicrobial agent and an amendment during forced-aeration static-pile composting of cow manure, which was mainly aimed to inhibit the pathogens that had not been inactivated by heat during composting. The mixtures of dairy cow manure and maize straw with addition of 2 % CaCN 2 or no addition were composted for 63 days. The physical, chemical and biological changes in compost mixtures were examined during composting. The data were statistically analyzed using ANOVA procedure from SAS software (version 9.0). The results showed that the addition of CaCN 2 significantly increased the maximum temperature and lengthened the duration of the thermophilic phase, and increased the percent T-N but decreased C/N ratio. For microbiological test, the addition of CaCN 2 shortened the time to inactivate E. coli , and increased the total average population of thermophilic bacteria but did not significantly influence that of mesophilic bacteria. The results indicated that the addition of CaCN 2 , at least at the additive content of 2 % could benefit the thermophilic phase and the composting could quickly reach the sanitary standard during the composting of manure with maize straw in a forced-aeration static-pile system. This finding will contribute to solve the feces disposal problems.

  6. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  7. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  8. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  10. Influence of density on radiation-chemical yield of molecular hydrogen formed at radiolysis of aqueous solution of NaOH

    International Nuclear Information System (INIS)

    Jafarov, Y.D.; Hajiyeva, S.R.; Ramazanova, N.K.; Aliyev, S.M.; Alasgarov, A.M.

    2014-01-01

    Full text : In atom and nuclear energy the specialists knowledge about radiation-chemical yield of the initial products formed under the influence of ionizing rays on water is of great importance from the point of security. The radiation-chemical yields of molecular hydrogen have been defined according to the graph and the obtained results

  11. Sustainable production of hydrogen and chemical commodities from biodiesel waste crude glycerol and cellulose by biological and catalytic processes

    OpenAIRE

    Maru, Biniam Taddele

    2013-01-01

    Hydrogen has a significant potential as clean and ‘green’ fuel of the future. Accordingly, this thesis investigated how to generate a sustainable production of hydrogen and other chemical commodities through study of: 1) Fermentative behavior of anaerobichydrogen producing microorganisms from pure glycerol and biodiesel waste crude glycerol; 2) The advantage of using a solid supportimmobilisationof microorganisms 3) The integration of the dark fermentative system with the catalytic hydrolysi...

  12. Dormancy break with garlic extract and hydrogen peroxide in rootstock vine ‘SO4’

    Directory of Open Access Journals (Sweden)

    Aguilla Juan Saavedra del

    2016-01-01

    Full Text Available A synthetic product is used to help overcome dormancy of the buds of vines in tropical and sub-tropical climate, but the product currently available in Brazil has the highest level of toxicity to humans. The objective was to study some alternatives to break the dormancy of the buds of the rootstock vine ‘SO4’. The sprayed treatments were: T1 = water (control; T2 = hydrogen cyanamide (3%; T3 = garlic (33% and; T4 = Hydrogen Peroxide – H2O2 – (3%. The cuttings were immersed in a indole acetic acid (IAA of 5 ppm for 15 seconds and placed in plastic bags (19 cm× 5 cm× 8 cm with 50% sand + 50% commercial substrate (H. Decker® . After 04 months, were evaluated: percentage of live cuttings, aerial part height (cm, length of roots (cm and dry matter of aerial parts and root (g. Regarding the roots, root dry weight and dry matter of aerial parts, stood out the cuttings treated with H2O2 at a concentration of 3% (T4. In the present work conditions, preliminarily concluded that H2O2 at a concentration of 3% can assist in breaking dormancy of the buds of the roostock vine ‘SO4’.

  13. User's manual of BISHOP. A Bi-Phase, Sodium-Hydrogen-Oxygen system, chemical equilibrium calculation program

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2001-07-01

    In an event of sodium leakage in liquid metal fast breeder reactors, liquid sodium flows out of piping, and droplet combustion might occur under a certain environmental condition. The combustion heat and reaction products should be evaluated in the sodium fire analysis codes for investigating the influence of the sodium leak age and fire incident. In order to analyze the reaction heat and products, the multi-phase chemical equilibrium calculation program for a sodium, oxygen and hydrogen system has been developed. The developed numerical program is named BISHOP, which denotes 'Bi-Phase, Sodium-Hydrogen-Oxygen, Chemical Equilibrium Calculation Program'. The Gibbs free energy minimization method is used because of the following advantages. Chemical species are easily added and changed. A variety of thermodynamic states, such as isothermal and isentropic changes, can be dealt with in addition to constant temperature and pressure processes. In applying the free energy minimization method to solve the multi-phase sodium reaction system, three new numerical calculation techniques are developed. One is theoretical simplification of phase description in equation system, the other is to extend the Gibbs free energy minimization method to a multi-phase system, and the last is to establish the efficient search for the minimum value. The reaction heat and products at the equilibrium state can be evaluated from the initial conditions, such as temperature, pressure and reactants, using BISHOP. This report describes the thermochemical basis of chemical equilibrium calculations, the system of equations, simplification models, and the procedure to prepare input data and usage of BISHOP. (author)

  14. Future outlook of hydrogen market

    International Nuclear Information System (INIS)

    Ozmen, S.; Leprince, P.

    1976-01-01

    Up to now, hydrogen has been produced from hydrocarbons for chemical uses. In the future, it will have to find a new market for itself which will depend on the development of nuclear power plants. Through the use of electric or thermal energy available during off-peak hours, water decomposition by electrolytic or thermal methods (redox cycle) could produce hydrogen, a storable and transportable gas. In addition to hydrogen consumption for chemical uses (methanol and ammonia manufacturing, petroleum fraction processing, metallurgy, etc.) plans are being drawn up to use hydrogen as a vehicle for energy [fr

  15. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    International Nuclear Information System (INIS)

    Rosenow, Phil; Tonner, Ralf

    2016-01-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H 2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  16. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    Energy Technology Data Exchange (ETDEWEB)

    Rosenow, Phil; Tonner, Ralf, E-mail: tonner@chemie.uni-marburg.de [Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße, Marburg 35032 (Germany)

    2016-05-28

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H{sub 2} desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  17. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    Science.gov (United States)

    Rosenow, Phil; Tonner, Ralf

    2016-05-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  18. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    Science.gov (United States)

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  19. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  20. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  1. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers

    Science.gov (United States)

    Li, Xiao; Li, Xinming; Zang, Xiaobei; Zhu, Miao; He, Yijia; Wang, Kunlin; Xie, Dan; Zhu, Hongwei

    2015-04-01

    Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%-80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials. Electronic supplementary information (ESI) available: Low-magnification optical images; Raman spectra of 0% and 5% H2 samples; AFM characterization; Schematic of the film before and after sulfurization annealing; Schematic illustrations of two typical Raman-active phonon modes (E12g, A1g); Raman (mapping) spectra for 40% and 80% H2 samples before and after sulfurization annealing; PL spectra. See DOI: 10.1039/c5nr00904a

  2. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers

    International Nuclear Information System (INIS)

    Puangpetch, Tarawipa; Chavadej, Sumaeth; Sreethawong, Thammanoon

    2011-01-01

    Graphical abstract: Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability over the 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst. Display Omitted Research highlights: → The 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst was synthesized. → The molecular structure and chemical properties of hole scavengers affected H 2 production rate. → Formic acid exhibited the highest photocatalytic H 2 production enhancement ability. -- Abstract: The hydrogen production via the photocatalytic water splitting under UV irradiation using different compounds as hole scavengers (including methanol, formic acid, acetic acid, propanoic acid, hydrochloric acid, and sulfuric acid) under a low concentration range ( 3 nanocrystal photocatalyst. The results indicated that the hydrogen production efficiency greatly depended on the molecular structure, chemical properties, and concentration of the hole scavengers. Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability. The 2.5 vol.% aqueous formic acid solution system provided the highest photocatalytic hydrogen production rate.

  3. Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasmas via emission actinometry

    International Nuclear Information System (INIS)

    Geng Zicai; Xu Yong; Yang Xuefeng; Wang Weiguo; Zhu Aimin

    2005-01-01

    Atomic hydrogen plays an important role in the chemical vapour deposition of functional materials, plasma etching and new approaches to the chemical synthesis of hydrogen-containing compounds. This work reports experimental determinations of atomic hydrogen in microwave discharge hydrogen plasmas formed from the TM 01 microwave mode in an ASTeX-type reactor, via optical emission spectroscopy using Ar as an actinometer. The relative intensities of the H atom Balmer lines and Ar-750.4 nm emissions as functions of input power and gas pressure have been investigated. At an input microwave power density of 13.5 W cm -3 , the approximate hydrogen dissociation fractions calculated from electron-impact excitation and quenching cross sections in the literature, decreased from ∼0.08 to ∼0.03 as the gas pressure was increased from 5 to 25 Torr. The influences of the above cross sections, and the electron and gas temperatures of the plasmas on the determination of the hydrogen dissociation fraction data have been discussed

  4. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  5. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  6. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  7. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  8. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    Kosmidou, Theodora; Haehner, Peter

    2009-01-01

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I 2 (l) + SO 2 (g) +2 H 2 O (l) → 2HI (l) + H 2 SO 4 (l) (70-120 deg. C); H 2 SO 4 (l) → H 2 O (l) + SO 2 (g) + 1/2 O 2 (g) (800-900 deg. C); 2HI (l) → I 2 (g) + H 2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO 2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO 2 rich environment at 850 o C under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H 2 O, 12.25 SO 2 , 6.13 O 2 , balance N 2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with

  9. Hydrogen for automotive applications and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, U. [Adam Opel GmbH, Ruesselsheim (Germany)

    2010-12-30

    The energy storage system is of decisive importance for all types of electric vehicles, in contrast to the case of vehicles powered by a conventional fossil fuel or bio-fuel based internal combustion engine. Two major alternatives exist and need to be discussed: on the one hand, there is the possibility of electrical energy storage using batteries, whilst on the other hand there is the storage of energy in chemical form as hydrogen and the application of a fuel cell as energy converter. Considering the latter concept, hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared. (orig.)

  10. Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.

    Science.gov (United States)

    Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie

    2018-04-06

    Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Research and development on chemical reactors made of industrial structural materials and hydriodic acid concentration technique for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Iwatsuki, Jin; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Onuki, Kaoru

    2015-10-01

    Japan Atomic Energy Agency has been conducting a study on IS process for thermochemical hydrogen production in order to develop massive hydrogen production technology for hydrogen society. Integrity of the chemical reactors and concentration technology of hydrogen iodide in HIx solution were studied. In the former study, the chemical reactors were trial-fabricated using industrial materials. A test of 30 times of thermal cycle test under circulating condition of the Bunsen reaction solution showed integrity of the Bunsen reactor made of fluororesin lined steel. Also, 100 hours of reaction tests showed integrity of the sulfuric acid decomposer made of silicon carbide and of the hydrogen iodide decomposer made of Hastelloy C-276. In the latter study, concerning electro-electrodialysis using cation-exchange membrane, sulfuric acid in the anolyte had little influence on the concentration performance. These results suggest the purification system of HIx solution can be simplified. Based on the Nernst-Planck equation and the Smoluchowski equation, proton transport number, water permeance, and IR drop of the cation exchange membrane were formulated. The derived equations enable quantitative estimation for the performance indexes of Nafion ® membrane and, also, of ETFE-St membranes made by radiation-induced graft polymerization method. (author)

  12. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of Materials for a Military Overgarment for Protection Against CW Agents and Studies of New Fluorochemicals for Use as Finishes.

    Science.gov (United States)

    1964-07-31

    t ~*: -416- THICKENERS AND STABILIZERS Carbopol Synthetic gel forming polymer from B. F. Goodrich Chemical Company Guar Gum Plant mucilage from...Contact Cement 27 American Cyanamid Company Kymene Unknown Hercules Powder Company N-159 Neoprene in solvent 23 Union Bay State Chemical Company...Trimethylolmelamine ( powder ). from Monsanto Chemical Company ,.rtomerseSX Sodium alkylaryl-sulfonate solution, from Monsanto Chemical Company ,ntomerse 85

  14. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Tung, Fa-Kuei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ohira, Yutaka; Tanji, Takayoshi

    2008-01-01

    Carbon nanotubes are grown directly on a scanning tunneling microscopy tip by liquid catalyst-assisted microwave-enhanced chemical vapor deposition, and effects of hydrogen plasma treatment on the tip have been investigated in detail by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. The unaligned CNTs on the as-grown tip apex have been realigned and reshaped by subsequent hydrogen plasma treatment. The diameter of CNTs is enlarged mainly due to amorphous layers being re-sputtered over their outer shells

  15. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  16. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  17. Production of hydrogen gas from novel chemical hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, R.; Matthews, M.A. [South Carolina Univ., Chemical Engineering Dept., Columbia, SC (United States); Reger, D.L.; Collins, J.E. [South Carolina Univ., Chemistry and Biochemistry Dept., Columbia, SC (United States)

    1998-12-01

    Six ligand-stabilized complexes have been synthesized and tested for use as hydrogen storage media for portable fuel cell applications. The new hydrides are: [HC(3,5-Me{sub 2}pz){sub 3}]LiBH{sub 4} (1), [[H{sub 2}C(3,5-Me{sub 2}pz){sub 2}]LiBH{sub 4})]{sub 2} (2) (pz = pyrazolyl), [(TMEDA)Li(BH{sub 4})]{sub 2} (3) (TMEDA (CH{sub 3}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 3}){sub 2}), [HC(pz){sub 3}]LiBH{sub 4} (4), [[H{sub 2}C(pz){sub 2}]Li(BH{sub 4})]{sub 2} (5) and Mg(BH{sub 4}){sub 2}3THF (6) (THF = tetrahydrofuran). Hydrolysis reactions of the compounds liberate hydrogen in quantities which range from 56 to 104 ({+-}5%) of the theoretical yield. Gas chromatographic analysis of the product gases from these reactions indicate that hydrogen is the only gas produced. Thermally initiated reactions of the novel compounds with NH{sub 4}Cl were unsuccessful. Although the amount of hydrogen energy which can be theoretically obtained per unit weight is lower than that of the classical hydrides such as LiBH{sub 4} and NaBH{sub 4}, the reactions are less violent and hydrolysis of compounds 1, 2, 4, 5 and 6 releases less heat per mole of hydrogen generated. (Author)

  18. Effects of temperature and mass conservation on the typical chemical sequences of hydrogen oxidation

    Science.gov (United States)

    Nicholson, Schuyler B.; Alaghemandi, Mohammad; Green, Jason R.

    2018-01-01

    Macroscopic properties of reacting mixtures are necessary to design synthetic strategies, determine yield, and improve the energy and atom efficiency of many chemical processes. The set of time-ordered sequences of chemical species are one representation of the evolution from reactants to products. However, only a fraction of the possible sequences is typical, having the majority of the joint probability and characterizing the succession of chemical nonequilibrium states. Here, we extend a variational measure of typicality and apply it to atomistic simulations of a model for hydrogen oxidation over a range of temperatures. We demonstrate an information-theoretic methodology to identify typical sequences under the constraints of mass conservation. Including these constraints leads to an improved ability to learn the chemical sequence mechanism from experimentally accessible data. From these typical sequences, we show that two quantities defining the variational typical set of sequences—the joint entropy rate and the topological entropy rate—increase linearly with temperature. These results suggest that, away from explosion limits, data over a narrow range of thermodynamic parameters could be sufficient to extrapolate these typical features of combustion chemistry to other conditions.

  19. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3......−, and conceptually illustrates the remediation of a waste product for producing valuable chemicals....

  20. Method and system for hydrogen evolution and storage

    Science.gov (United States)

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  1. BIG hydrogen: hydrogen technology in the oil and gas sector

    International Nuclear Information System (INIS)

    2006-01-01

    The BIG Hydrogen workshop was held in Calgary, Alberta, Canada on February 13, 2006. About 60 representatives of industry, academia and government attended this one-day technical meeting on hydrogen production for the oil and gas industry. The following themes were identified from the presentations and discussion: the need to find a BIG hydrogen replacement for Steam Methane Reformer (SMR) because of uncertainty regarding cost and availability of natural gas, although given the maturity of SMR process (reliability, known capital cost) how high will H2 prices have to rise?; need for a national strategy to link the near-term and the longer-term hydrogen production requirements, which can take hydrogen from chemical feedstock to energy carrier; and in the near-term Canada should get involved in demonstrations and build expertise in large hydrogen systems including production and carbon capture and sequestration

  2. Storage, generation, and use of hydrogen

    Science.gov (United States)

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  3. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  4. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  5. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  6. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  7. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  8. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  9. Boron-doped hydrogenated Al{sub 3} clusters: A material for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Muz, İskender, E-mail: iskender.muz@nevsehir.edu.tr [Faculty of Education, Department of Science Education, Nevsehir Haci Bektas Veli University, 50300, Nevsehir (Turkey); Atiş, Murat [Kayseri Vocational School, Electricity and Energy Department, Erciyes University, 38300, Kayseri (Turkey)

    2016-05-15

    The energetic and structural stabilities of Al{sub 3}BH{sub 2n} (n = 0–6) clusters are investigated using ab initio calculations. Structural isomers are found using the stochastic search method to search for minima structures, followed by B3LYP optimizations; single-point CCSD(T) calculations are performed to compute relative energies. Chemical bonding analysis is also performed using the adaptive natural density partitioning method to investigate the chemical bonding in the clusters and to elucidate their structural evolution. Our results and analyses indicate that the stability of the boron-doped hydrogenated Al{sub 3} clusters increases as more hydrogen molecules are adsorbed, whereas the H{sub 2} loss energy decreases. The results are in good agreement with available theoretical findings. - Highlights: • The boron-doped hydrogenated Al{sub 3} clusters are generated using stochastic search method. • The energetic and structural stabilities are investigated in detail. • The chemical bonding analysis is performed by using AdNDP analysis. • The doping by boron allows development of better aluminum-based metal hydrides.

  10. Photo- and radiation-chemical stability of molecules. Reactions of monomolecular hydrogen atom splitting off

    International Nuclear Information System (INIS)

    Plotnikov, V.G.; Ovchinnikov, A.A.

    1978-01-01

    In the review of works published up to 1978 one of the main problems of radiation chemistry is discussed, namely the relationship between the structure of organic molecules and their resistance to the effect of ionizing radiation. Theoretical aspects of this problem are considered for reactions of monomolecular hydrogen atom splitting off. It is shown that the radical yield in low-temperature radiation-chemical experiments is connected with the position of lower triplet states of molecules, ionization potentials, polarity of medium and the energy of C-H bonds in cation radicals

  11. Safety issues of nuclear production of hydrogen

    International Nuclear Information System (INIS)

    Piera, Mireia; Martinez-Val, Jose M.; Jose Montes, Ma

    2006-01-01

    Hydrogen is not an uncommon issue in Nuclear Safety analysis, particularly in relation to severe accidents. On the other hand, hydrogen is a household name in the chemical industry, particularly in oil refineries, and is also a well known chemical element currently produced by steam reforming of natural gas, and other methods (such as coal gasification). In the not-too-distant future, hydrogen will have to be produced (by chemical reduction of water) using renewable and nuclear energy sources. In particular, nuclear fission seems to offer the cheapest way to provide the primary energy in the medium-term. Safety principles are fundamental guidelines in the design, construction and operation both of hydrogen facilities and nuclear power plants. When these two technologies are integrated, a complete safety analysis must consider not only the safety practices of each industry, but any interaction that could be established between them. In particular, any accident involving a sudden energy release from one of the facilities can affect the other. Release of dangerous substances (chemicals, radiotoxic effluents) can also pose safety problems. Although nuclear-produced hydrogen facilities will need specific approaches and detailed analysis on their safety features, a preliminary approach is presented in this paper. No significant roadblocks are identified that could hamper the deployment of this new industry, but some of the hydrogen production methods will involve very demanding safety standards

  12. Hydrogen Education Curriculum Path at Michigan Technological University

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit; Meng, Desheng; Lukowski, John; Solomon, Barry; Meldrum, Jay

    2012-01-03

    The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.

  13. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  14. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  15. Physico Chemical Characteristic of Kappa Carrageenan Degraded Using Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Rizky Febriansyah Siregar

    2017-02-01

    Full Text Available AbstractKappa carrageenan is polysaccharide that widely used in food, pharmaceutical, cosmetic, textile and printing industries as coagulate agent, stabilizer and gelling agent. Hydrogen peroxide (H2O2 is strong oxidator to degrade polysaccharide. Hydrogen peroxide has some advantades such as cheap, easy to get and savety environment. Degradation method using hydrogen peroxide is a technology based on establishment radical hydoxile reactive that attack the glycosidic of polysaccharides as a result reducing in molecular weight of polysaccharide. The aims of this study were to analyze the effect of hydrogen peroxide concentration, temperature and degradation time to molecular weight of refined kappa carrageenan. Structural changes on kappa carrageenan degradation were characterized by viscometer, SEM and FTIR. Hydrogen peroxide concentration, temperature and degradation time were significantly reducing molecular weight and changes in the structural function of refined kappa carrageenan. The lowest molecular weight of refined kappa carrageenan degraded was obtained from the treatment 3% of hydrogen peroxide at temperature 80°C and degradation time for 4 hours.

  16. Chemical warfare agents identification by thermal neutron detection

    International Nuclear Information System (INIS)

    Liu Boxue; Ai Xianyun; Tan Daoyuan; Zhang Dianqin

    2000-01-01

    The hydrogen concentration determination by thermal neutron detection is a non-destructive, fast and effective method to identify chemical warfare agents and TNT that contain different hydrogen fraction. When an isotropic neutron source is used to irradiate chemical ammunition, hydrogen atoms of the agent inside shell act as a moderator and slow down neutrons. The number of induced thermal neutrons depends mainly upon hydrogen content of the agent. Therefore measurement of thermal neutron influence can be used to determine hydrogen atom concentration, thereby to determine the chemical warfare agents. Under a certain geometry three calibration curves of count rate against hydrogen concentration were measured. According to the calibration curves, response of a chemical agent or TNT could be calculated. Differences of count rate among chemical agents and TNT for each kind of shells is greater than five times of standard deviations of count rate for any agent, so chemical agents or TNT could be identified correctly. Meanwhile, blast tube or liquid level of chemical warfare agent could affect the response of thermal neutron count rate, and thereby the result of identification. (author)

  17. Physical, chemical and microbiological properties of mixed hydrogenated palm kernel oil and cold-pressed rice bran oil as ingredients in non-dairy creamer

    Directory of Open Access Journals (Sweden)

    Kunakorn Katsri

    2014-02-01

    Full Text Available The physical, chemical and microbiological properties of hydrogenated palm kernel oil (PKO and cold-pressed rice bran oil (RBOas ingredients in the production of liquid and powdered non-dairy creamer (coffee whitener were studied. The mixing ratios between hydrogenated PKO and cold-pressed RBO were statistically designed as of 100:0, 90:10,80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90 and 0:100.The color, absorbanceand viscosity of the mixtures were investigated. As the ratio of cold-pressed RBO increased, the color became darker (L*of 93.06 to 86.25 and the absorbance significantly increased, while the viscosity of the mixtures of 20:80, 10:90 and 0:100 (54 cp. were the highest amongst the ratios tested.The hydrogenated PKO and cold-pressed RBO mixtures were further chemically tested for fatty acids, -oryzanol, -tocopherol, trans-fat contents andantioxidant activity. There were 10 fatty acids present in hydrogenated PKO with saturated fatty acid being the most predominant. Comparatively, there were only 5 fatty acids found in cold-pressed RBO with monounsaturated fatty acid being the major fatty acid. -Oryzanol and -tocopherol contents were higher with increasingcold-pressed RBO from 0-100% (0 to 1,155.00 mg/100g oil and 0.09 to 30.82 mg/100g oil, respectively. Antioxidant activity was increased with increasing cold-pressed RBO from 0-100% (9.26 to 94.24%.The pure hydrogenated PKO contained higher trans-fat content than that of the 90:10 and 80:20 mixtures (2.73, 1.93 and 1.85mg/100g oil,respectively while other samples had no trans-fat. No microorganisms were present in any of the samples.Therefore, substitution of hydrogenated PKO by cold-pressed RBO from 30-100% would offer more nutritional values and better chemical and physical properties of non-dairy creamer.

  18. Thermodynamic Possibilities and Constraints of Pure Hydrogen Production by a Chromium, Nickel and Manganese-Based Chemical Looping Process at Lower Temperatures

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Siewiorek, A.; Baxter, D.; Rogut, J.; Punčochář, Miroslav

    2007-01-01

    Roč. 61, č. 2 (2007), s. 110-120 ISSN 0366-6352 Institutional research plan: CEZ:AV0Z40720504 Keywords : chromium * thermodynamics * hydrogen Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.367, year: 2007

  19. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  20. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    Akhoundzadeh, Jeyran; Chamsaz, Mahmoud; Costas, Marta; Lavilla, Isela; Bendicho, Carlos

    2013-01-01

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO 2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H 2 O 2 , ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L −1 oxygen. The detection limit was 1.2 mg L −1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  1. Influence of hydrogen on chemical vapour synthesis of different ...

    Indian Academy of Sciences (India)

    ... different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  2. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  3. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  4. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  5. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  6. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  7. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C’ scalar couplings (3hbJNC’)

    NARCIS (Netherlands)

    Bonvin, A.M.J.J.; Houben, K.; Guenneugues, M.N.L.; Kaptein, R.; Boelens, R.

    2001-01-01

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small alpha/beta protein

  8. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  9. Fuel and Chemicals from Renewable Alcohols

    DEFF Research Database (Denmark)

    Hansen, Jeppe Rass

    2008-01-01

    The present work entitled Fuel and Chemicals from Renewable Alcohols covers the idea of developing routes for producing sustainable fuel and chemicals from biomass resources. Some renewable alcohols are already readily available from biomass in significant amounts and thus the potential...... for these renewable alcohols, together with other primary renewable building blocks, has been highlighted in the introductory chapter. While the first chapter covers the general potential of a renewable chemical industry, the other chapters deal with particular possibilities. It is shown how ethanol and glycerol can...... be converted into hydrogen by steam reforming over nickel or ruthenium based catalysts. This process could be important in a future hydrogen society, where hydrogen can be utilized in high efficiency fuel cells. Hydrogen produced from biofeedstocks can also be used directly in the chemical industry, where...

  10. Investigation of hydrogen generation in a three reactor chemical looping reforming process

    International Nuclear Information System (INIS)

    Khan, Mohammed N.; Shamim, Tariq

    2016-01-01

    Highlights: • Three-reactor based chemical looping reforming system for hydrogen production. • Investigation of operating parameters using a system-level model. • Optimum operating conditions for hydrogen production are identified. • Different operating parameters affect the reactor temperatures differently. - Abstract: Chemical looping reforming (CLR) is a relatively new method to produce hydrogen (H_2) and is also used as an energy conversion method for solid, liquid or gaseous fuels. There are various advantages of this method such as inherent carbon dioxide (CO_2) capture, minimal NOx emissions and the H_2 production. In this process, there is no direct contact between the fuel and oxidizer. This method utilizes oxygen from an oxygen carrier which may be a transition metal. The idea is to split the combustion process into three separate sub-processes by employing three separate reactors: air reactor where the oxygen carrier is oxidized by air, fuel reactor where natural gas is oxidized to produce a stream of CO_2 and H_2O and steam reactor where the steam is reduced to produce H_2. In this study, a thermodynamic model with iron oxides as oxygen carrier has been developed using Aspen Plus by employing conservation of mass and energy for all the components of the CLR system. The developed model was employed to investigate the effect of various operating parameters such as mass flow rates of air, fuel, steam and oxygen carrier and fraction of inert material on H_2 and CO_2 production and key reactor temperatures. The results show that the H_2 production increases with the increase in air, fuel and steam flow rates up to a certain limit and stays constant for higher flow rates. The CO_2 production follows a similar trend. Similarly, the H_2 production also increases with the increase in oxide flow rate and fraction of inert material up to a particular value, but then decrease for higher oxide flow rates and inert fractions. Reactor temperatures were also

  11. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Kathe, Mandar [Ohio State University, Columbus, OH (United States); Xu, Dikai [Ohio State University, Columbus, OH (United States); Hsieh, Tien-Lin [Ohio State University, Columbus, OH (United States); Simpson, James [Ohio State University, Columbus, OH (United States); Statnick, Robert [Ohio State University, Columbus, OH (United States); Tong, Andrew [Ohio State University, Columbus, OH (United States); Fan, Liang-Shih [Ohio State University, Columbus, OH (United States)

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  12. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  13. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    Science.gov (United States)

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2− contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg−1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  14. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    Science.gov (United States)

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2- contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg-1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.

  15. Hydrogen gas sample environment for TOSCA

    International Nuclear Information System (INIS)

    Kibble, Mark G; Ramirez-Cuesta, Anibal J; Goodway, Chris M; Evans, Beth E; Kirichek, Oleg

    2014-01-01

    The idea of using hydrogen as a fuel has gained immense popularity over many years. Hydrogen is abundant, can be produced from renewable resources and is not a greenhouse gas. However development of hydrogen based technology is impossible without understanding of physical and chemical processes that involve hydrogen sometime in extreme conditions such as high pressure or low and high temperatures. Neutron spectroscopy allows measurement of a hydrogen atom motion in variety of samples. Here we describe and discuss a sample environment kit developed for hydrogen gas experiment in a broad range of pressure up to 7 kbar and temperatures from 4 K to 473 K. We also describe para-hydrogen rig which produces para-hydrogen gas required for studying the rotational line of molecular hydrogen

  16. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  17. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  18. Characterization of chemical vapour deposited diamond films: correlation between hydrogen incorporation and film morphology and quality

    International Nuclear Information System (INIS)

    Tang, C J; Neves, A J; Carmo, M C

    2005-01-01

    In order to tailor diamond synthesized through chemical vapour deposition (CVD) for different applications, many diamond films of different colours and variable quality were deposited by a 5 kW microwave plasma CVD reactor under different growth conditions. The morphology, quality and hydrogen incorporation of these films were characterized using scanning electron microscopy (SEM), Raman and Fourier-transform infrared (FTIR) spectroscopy, respectively. From this study, a general trend between hydrogen incorporation and film colour, morphology and quality was found. That is, as the films sorted by colour gradually become darker, ranging from white through grey to black, high magnification SEM images illustrate that the smoothness of the well defined crystalline facet gradually decreases and second nucleation starts to appear on it, indicating gradual degradation of the crystalline quality. Correspondingly, Raman spectra evidence that the diamond Raman peak at 1332 cm -1 becomes broader and the non-diamond carbon band around 1500 cm -1 starts to appear and becomes stronger, confirming increase of the non-diamond component and decrease of the phase purity of the film, while FTIR spectra show that the CH stretching band and the two CVD diamond specific peaks around 2830 cm -1 rise rapidly, and this indicates that the total amount of hydrogen incorporated into the film increases significantly

  19. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  20. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  1. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  2. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  3. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  4. Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates

    International Nuclear Information System (INIS)

    Roeb, M.; Monnerie, N.; Schmitz, M.; Sattler, C.; Konstandopoulos, A.G.; Agrafiotis, C.; Zaspalis, V.T.; Nalbandian, L.; Steele, A.; Stobbe, P.

    2006-01-01

    In the European project HYDROSOL a simple two-step thermo-chemical cycle process has been developed and investigated. It is based on metal oxide redox pair systems, which can split water molecules by abstracting oxygen atoms and reversibly incorporating them into their lattice. If concentrated solar radiation is used as the heat source one has a promising method in hand to produce hydrogen without any environmentally critical emissions. The basic idea is to combine a support capable of achieving high temperatures when heated by concentrated solar radiation, with a redox pair system suitable for water dissociation and at the same time for regeneration at these temperatures, so that complete operation of the whole process could be achieved by a single solar energy converter. The feasibility of the process has proven possible in a mini-plant scale using concentrated sunlight provided by the solar furnace in Cologne. Suitable redox materials as coatings and a dedicated receiver-reactor have been developed to produce hydrogen with significant conversions by repeating several subsequent water splitting and regeneration steps. In a design study a possible way of operating the process in commercial scale is demonstrated. (authors)

  5. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  6. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    Science.gov (United States)

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  7. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  8. Garlic and H2O2 in overcoming dormancy on the vine “Cabernet Sauvignon”

    Directory of Open Access Journals (Sweden)

    Saavedra del Aguila Juan

    2015-01-01

    Full Text Available The objective of this experiment was to evaluate the effect of garlic extract, H2O2 and hydrogen cyanamide on dormancy break, budding and maturation of “Cabernet Sauvignon” in the Campaign Region – Brazil. In late winter 2014 and after drought pruning were performed spraying in the bud: T1 – distilled water (control; T2 – 3.0% of hydrogen cyanamide; T3 – 18.0% H2O2; and T4 – 3.0% garlic extract. It was evaluated in the field: the number of sprouted buds per plant, number of bunches per plant and weight of bunches per plant; and laboratory: on ripening, performed weekly from the color change of 360 berries per treatment for analyzes solids soluble – SS (Brix pH and titratable acidity – TA (% tartaric acid. It was observed that the vines of treatment T4 (3.0% garlic extract, showed higher percentage of buds sprouting (63 shoots plant−1. Already at the number of clusters and weight per plant, there were no statistical differences between all treatments. The results obtained in the laboratory to SS, pH and TA did not differ statistically for the four tested treatments.

  9. Iron titanium manganase alloy hydrogen storage

    Science.gov (United States)

    Reilly, James J.; Wiswall, Jr., Richard H.

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  10. 柱前衍生-液相色谱-串联质谱法测定葡萄和樱桃中单氰胺残留%Determination of cyanamide residue in grapes and cherries by liquid chromatography-tandem mass spectrometry coupled with precolumn derivatization

    Institute of Scientific and Technical Information of China (English)

    兰丰; 刘传德

    2018-01-01

    A method was developed for the quantitative determination of cyanamide in grapes and cherries by liquid chromatography-tandem mass spectrometry(LC-MS/MS)coupled with dansyl chloride(DNS)precolumn derivatization. First,the samples were homogenized,and then extracted with ethyl acetate under ultrasonication. The water was removed using anhy-drous sodium sulfate,and the extract was concentrated and derivatized with dansyl chloride under alkaline condition. The separation was performed on a Shimadzu Shim-pack XR-ODS col-umn(75 mm×2.0 mm,1.6 μm)with the mobile phases of methanol and 2 mmol/L ammonium acetate aqueous solution(containing 0.05%(v/v)formic acid)in a gradient elution mode. The identification and quantification of cyanamide were carried out by MS/MS in positive electros-pray ionization(ESI+)and multiple reaction monitoring(MRM)mode. The calibration curves showed good linearities in the range of 0.01-1.0 mg/L with the correlation coefficients not less than 0.999 0. The average recoveries of cyanamide spiked at 0.01,0.05 and 1.0 mg/kg in cher-ries and grapes were between 75% and 81%,and the relative standard deviations(RSDs)were between 6.5% and 9.8%. Both the limits of quantification(LOQs)of the analytes were 0.01 mg/kg. The method is simple,rapid,accurate and suitable for the confirmation and quantifica-tion of cyanamide in cherries and grapes.%建立了丹磺酰氯(DNS)柱前衍生-液相色谱-串联质谱(LC-MS/MS)测定葡萄和樱桃中单氰胺的方法.样品经破壁机匀浆,乙酸乙酯超声提取,无水硫酸钠除水,提取液经减压浓缩,在碱性条件下与丹磺酰氯进行衍生反应.色谱柱为岛津 Shim-pack XR-ODS色谱柱(75 mm×2.0 mm,1.6 μm),流动相为甲醇和含0.05%(体积分数)甲酸的2 mmol/L醋酸铵水溶液,梯度洗脱,采用电喷雾离子源正离子多反应监测模式进行质谱检测.单氰胺在0.01~1.0 mg/L范围内,峰面积与质量浓度之间线性关系良好,相关系数不小于0.9990.在0.01、0

  11. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  12. Enhanced hydrogen storage in sandwich-structured rGO/Co1-xS/rGO hybrid papers through hydrogen spillover

    Science.gov (United States)

    Han, Lu; Qin, Wei; Jian, Jiahuang; Liu, Jiawei; Wu, Xiaohong; Gao, Peng; Hultman, Benjamin; Wu, Gang

    2017-08-01

    Reduced graphene oxide (rGO) based two-dimensional (2D) structures have been fabricated for electrochemical hydrogen storage. However, the effective transfer of atomic hydrogen to adjacent rGO surfaces is suppressed by binders, which are widely used in conventional electrochemical hydrogen storage electrodes, leading to a confining of the performance of rGO for hydrogen storage. As a proof of concept experiment, a novel strategy is developed to fabricate the binder-free sandwich-structured rGO/Co1-xS/rGO hybrid paper via facile ball milling and filtration process. Based on the structure investigation, Co1-xS is immobilized in the space between the individual rGO sheets by the creation of chemical "bridges" (Csbnd S bonds). Through the Csbnd S bonds, the atomic hydrogen is transferred from Co1-xS to rGO accompanying a Csbnd H chemical bond formation. When used as an electrode, the hybrid paper exhibits an improved hydrogen storage capacity of 3.82 wt% and, most importantly, significant cycling stability for up to 50 cycles. Excluding the direct hydrogen storage contribution from the Co1-xS in the hybrid paper, the hydrogen storage ability of rGO is enhanced by 10× through the spillover effects caused by the Co1-xS modifier.

  13. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  14. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Robers [Pennsylvania State Univ., State College, PA (United States); Dryer, Frederick [Princeton Univ., NJ (United States); Ju, Yiguang [Princeton Univ., NJ (United States)

    2013-09-30

    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  15. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  16. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  17. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  18. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. Today's hydrogen systems are built with inherent safety measures and multiple levels of protection. However, human senses, in particular, the sense of smell, is considered the ultimate safeguards against leaks. Since hydrogen is an odorless gas, use of odorants to detect leaks, as is done in case of natural gas, is obvious solution. The odorants required for hydrogen used in fuel cells have a unique requirement which must be met. This is because almost all of the commercial odorants used in gas leak detection contain sulfur which acts as poison for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. A possible solution to this problem is to use non-sulfur containing odorants. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering

  19. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  20. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    Science.gov (United States)

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    Science.gov (United States)

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  2. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  3. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  4. Hydrogen-based industry from remote excess hydroelectricity

    International Nuclear Information System (INIS)

    Ouellette, N.; Rogner, H.-H.; Scott, D.S.

    1997-01-01

    This paper examines synergies, opportunities and barriers associated with hydrogen and excess hydro-electricity in remote areas. The work is based on a case study that examined the techno-economic feasibility of a new hydrogen-based industry using surplus/off-peak generating capacity of the Taltson Dam and Generating Station in the Northwest Territories, Canada. After evaluating the amount and cost of hydrogen that could be produced from the excess capacity, the study investigates three hydrogen utilization scenarios: (1) merchant liquid or compressed hydrogen, (2) hydrogen as a chemical feedstock for the production of hydrogen peroxide, (3) methanol production from biomass, oxygen and hydrogen. Hydrogen peroxide production is the most promising and attractive strategy in the Fort Smith context. The study also illustrates patterns that recur in isolated sites throughout the world. (Author)

  5. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  6. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  7. Chemical interesterification of soybean oil and fully hydrogenated soybean oil: Influence of the reaction time

    International Nuclear Information System (INIS)

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Grimaldi, Renato; Goncalves, Lireny Aparecida Guaraldo

    2009-01-01

    Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 deg C, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs. (author)

  8. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  9. Comparison of reactivity on step and terrace sites of Pd (3 3 2) surface for the dissociative adsorption of hydrogen: A quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, Farouq; Nagumo, Ryo; Miura, Ryuji; Ai, Suzuki; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Miyamoto, Akira

    2011-01-01

    The notion of 'active sites' is fundamental to heterogeneous catalysis. However, the exact nature of the active sites, and hence the mechanism by which they act, are still largely a matter of speculation. In this study, we have presented a systematic quantum chemical molecular dynamics (QCMD) calculations for the interaction of hydrogen on different step and terrace sites of the Pd (3 3 2) surface. Finally the dissociative adsorption of hydrogen on step and terrace as well as the influence of surface hydrogen vacancy for the dissociative adsorption of hydrogen has been investigated through QCMD. This is a state-of-the-art method for calculating the interaction of atoms and molecules with metal surfaces. It is found that fully hydrogen covered (saturated) step sites can dissociate hydrogen moderately and that a monovacancy surface is suitable for significant dissociative adsorption of hydrogen. However in terrace site of the surface we have found that dissociation of hydrogen takes place only on Pd sites where the metal atom is not bound to any pre-adsorbed hydrogen atoms. Furthermore, from the molecular dynamics and electronic structure calculations, we identify a number of consequences for the interpretation and modeling of diffusion experiments demonstrating the coverage and directional dependence of atomic hydrogen diffusion on stepped palladium surface.

  10. Study of hydrogenated silicene: The initialization model of hydrogenation on planar, low buckled and high buckled structures of silicene

    International Nuclear Information System (INIS)

    Syaputra, Marhamni; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana; Purqon, Acep; Suprijadi

    2015-01-01

    We study the hydrogenation structures possessed by silicene i.e. planar (PL), low buckled (LB) and high buckled (HB). On those structures we found the hydrogenation process occurs with some particular notes. Hydrogen stable position on the silicene surface is determined by its initial configuration. We only considered the fully hydrogenated case with the formula unit (SiH) n for all of these structures. Physical and electronic structure shift after the process are compared with hydrogenated graphene. Moreover, we observed a chemical process in the presence of hydrogen on the PL structure by nudged elastic band (NEB) which illustrates how hydrogen has a significant impact to the force barrier of the PL that changing it from its original structure

  11. Hydrogen behaviour study in plasma facing a-C:H and a-SiC:H hydrogenated amorphous materials for fusion reactors

    International Nuclear Information System (INIS)

    Barbier, Gauzelin

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. Firstly, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce this interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a-SiC:H substrate can be benefit in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a -SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a-C:H and a-SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modeling of hydrogen diffusion under irradiation has been also proposed. (author)

  12. Hydrogen and deuterium trapping in iron

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H H; Lin, R W

    1981-02-01

    The research described is directed at present almost exclusively to hydrogen transport, including both chemical and physical trapping, in iron and iron-base alloys. Some attention is directed to isotope effects. Efforts are made to clarify and understand hydrogen-related phenomena which are believed to be of direct importance to practical performance.

  13. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  14. Hydrogen producing method and device therefor

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Ito, Takehiko; Goto, Nobuo; Toyota, Ichiro; Tonegawa, Hiroshi.

    1997-01-01

    The present invention concerns a process for producing hydrogen from water by utilizing a γ · X ray radiation source such as spent nuclear fuels. Hydrogen is formed from water by combining a scintillator which uses a γ · X ray radiation source as an energy source to emit UV light and an optical catalyst or an optical catalyst electrode which undergoes UV light to decompose water into hydrogen and oxygen. The present invention provides a method of effectively using spent fuel assemblies which have not been used at present and capable of converting them into hydrogen as storable chemical energy. (N.H.)

  15. Nuclear-produced hydrogen by a thermochemical Cu-Cl plant for passenger hydrogen trains

    International Nuclear Information System (INIS)

    Marin, G.; Naterer, G.; Gabriel, K.

    2010-01-01

    This paper compares the technical and economic aspects of electrification of a passenger-train operation in Ontario Canada, versus operation with hydrogen trains using nuclear-produced hydrogen. A local GO Transit diesel operation in Ontario has considered electrification as an alternative to reduce greenhouse gas emissions of passenger trains in the Toronto area. Hydrogen production from nuclear energy via a thermo-chemical Copper-Chlorine (Cu-Cl) cycle for train operation is shown to have lower emissions than direct electrification. It significantly reduces the greenhouse gas emissions compared to diesel operation. A bench-mark reference case used for the nuclear thermo-chemical Cu-Cl cycle is the Sulfur-Iodine (S-I) cycle, under investigation in the USA, Japan, and France, among others. The comparative study in this paper considers a base case of diesel operated passenger trains, within the context of a benefits case analysis for train electrification, for GO Transit operations in Toronto, and the impact of each cost component is discussed. The cost analysis includes projected prices of fuel cell trains, with reference to studies performed by train operators. (author)

  16. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  17. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  18. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  19. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  20. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  1. Tobacco and chemicals (image)

    Science.gov (United States)

    Some of the chemicals associated with tobacco smoke include ammonia, carbon dioxide, carbon monoxide, propane, methane, acetone, hydrogen cyanide and various carcinogens. Other chemicals that are associated with chewing ...

  2. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  3. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  4. Possibilities of hydrogen removal

    International Nuclear Information System (INIS)

    Langer, G.; Koehling, A.; Nikodem, H.

    1982-12-01

    In the event of hypothetical severe accidents in light-water reactors, considerable amounts of hydrogen may be produced and released into the containment. Combustion of the hydrogen may jeopardize the integrity of the containment. The study reported here aimed to identify methods to mitigate the hydrogen problem. These methods should either prevent hydrogen combustion, or limit its effects. The following methods have been investigated: pre-inerting; chemical oxygen absorption; removal of oxygen by combustion; post-inerting with N 2 , CO 2 , or halon; aqueous foam; water fog; deliberate ignition; containment purging; and containment venting. The present state of the art in both nuclear and non-nuclear facilities, has been identified. The assessment of the methods was based on accident scenarios assuming significant release of hydrogen and the spectrum of requirements derived from these scenarios was used to determine the advantages and drawbacks of the various methods, assuming their application in a pressurized-water reactor of German design. (orig.) [de

  5. The impact of hydrogen and oxidizing impurities in chemical vapor deposition of graphene on copper

    Science.gov (United States)

    Choubak, Saman

    Graphene, the single-atom layer of carbon, has attracted scientists and technologists due to its outstanding physical and opto/electronic properties. The use of graphene in practical applications requires a reliable and cost-effective method to produce large area graphene films with low defects and controlled thicknesses. Direct growth of graphene using chemical vapor deposition (CVD) on copper, in which carbonaceous gaseous species react with the metal substrate in the presence of hydrogen at high temperatures (850-1100° C), led to high coverage of high quality graphene, opening up a promising future for methods of this type and a large step towards commercial realization of graphene products. The present thesis deals with the synthesis of graphene via low pressure CVD (LP-CVD) on copper catalyst using methane as the carbon precursor. The focus is mainly on the determination of the role of hydrogen and oxidizing impurities during graphene formation with an ultimate purpose: to elucidate a viable and reproducible method for the production of high quality graphene films compatible with industrial manufacturing processes. The role of molecular hydrogen in graphene CVD is explored in the first part of the thesis. Few studies claimed that molecular hydrogen etches graphene films on copper by conducting annealing experiments. On the other hand, we speculated that this graphene etching reaction is due to the presence of trace amount of oxygen in the furnace atmosphere. Thus, we took another approach and designed systematic annealing experiments to investigate the role of hydrogen in the etching reaction of graphene on copper foils. No evidence of graphene etching on copper was observed when purified ultra high purity (UHP) hydrogen was used at 825 °C and 500 mTorr. Nevertheless, graphene films exposed to the unpurified UHP hydrogen were etched due to the presence of oxidizing impurities. Our results show that hydrogen is not responsible for graphene etching reaction

  6. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  7. Assessment of MHR-based hydrogen energy systems

    International Nuclear Information System (INIS)

    Richards, Matthew; Shenoy, Arkal; Schultz, Kenneth; Brown, Lloyd; Besenbruch, Gottfried; Handa, Norihiko; Das, Jadu

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850degC to 950degC can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. The SI process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents and low-temperature heat as the only waste product. Electricity can also be used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high-temperature capability, advanced of development relative to other high-temperature reactor concepts, and passive-safety features, the Modular Helium Reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate concepts for coupling the MHR to the SI process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  8. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  9. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  10. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su [SK energy Institution of Technology, Daejeon (Korea, Republic of)] (and others)

    2006-02-15

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

  11. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    International Nuclear Information System (INIS)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su

    2006-02-01

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range

  12. Hydrogen-bromine fuel cell advance component development

    Science.gov (United States)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  13. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  14. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

  15. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  16. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    OpenAIRE

    POPOVICI Ovidiu; HOBLE Dorel Anton

    2012-01-01

    The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  17. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  18. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    Science.gov (United States)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  19. Deciphering the "chemical" nature of the exotic isotopes of hydrogen by the MC-QTAIM analysis: the positively charged muon and the muonic helium as new members of the periodic table.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2014-04-14

    This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.

  20. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  1. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  2. Cryogenic hydrogen data pertinent to magnetic fusion energy

    International Nuclear Information System (INIS)

    Souers, P.C.

    1979-01-01

    To aid future hydrogen fusion researchers, I have correlated the measured physical and chemical properties of the hydrogens below 30 0 K. I have further estimated these properties for deuterium--deuterium tritide--tritium (D 2 --DT--T 2 ) fusion fuel. My resulting synthesis offers a timely view and review of cryogenic hydrogen properties, plus some hydrogen data to room temperature. My general thrust is for workers new to the field, although my discussion of the scientific background of the material would suit specialists

  3. Hydrogen gas getters: Susceptibility to poisoning

    International Nuclear Information System (INIS)

    Mroz, E.J.; Dye, R.C.; Duke, J.R.; Weinrach, J.

    1998-01-01

    About 40% (∼9,000) of the ∼23,000 transuranic (TRU) waste drums at Los Alamos National Laboratory (LANL) are presently unshippable because conservative calculations suggest that the hydrogen concentration may exceed the lower explosive limit for hydrogen. This situation extends across nearly all DOE sites holding and generating TRU waste. The incorporation of a hydrogen getter such as DEB into the waste drums (or the TRUPACT II shipping containers) could substantially mitigate the explosion risk. The result would be to increase the number of drums that qualify for transportation to the Waste Isolation Pilot Plant (WIPP) without having to resort to expensive re-packaging or waste treatment technologies. However, before this approach can be implemented, key technical questions must be answered. Foremost among these is the question of whether the presence of other chemical vapors and gases in the drum might poison the catalytic reaction between hydrogen and DEB. This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to obtain fundamental information on the chemical mechanism of the catalytic reaction of hydrogen with one commonly used hydrogen getter, DEB. Experiments with these materials showed that the method of exposure affects the nature of the reaction products. The results of this work contributed to the development of a mechanistic model of the reaction

  4. Microaeration reduces hydrogen sulfide in biogas

    Science.gov (United States)

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  5. Design of an isopropanol–acetone–hydrogen chemical heat pump with exothermic reactors in series

    International Nuclear Information System (INIS)

    Xu, Min; Duan, Yanjun; Xin, Fang; Huai, Xiulan; Li, Xunfeng

    2014-01-01

    The isopropanol–acetone–hydrogen chemical heat pump system with a series of exothermic reactors in which the reaction temperatures decrease successively is proposed. This system shows the better energy performances as compared with the traditional system with a single exothermic reactor, especially when the higher upgraded temperature is need. At the same amounts of the heat released, the work input of the compressor and the heater are both reduced notably. The results indicate that the advantages of the IAH-CHP system with exothermic reactors in series are obvious. - Highlights: • We propose the IAH-CHP system with exothermic reactors in series. • The COP and exergy efficiency of the system increase by 7.6% and 10.3% respectively. • The work input of the system is reduced notably at the same quantity of heat released

  6. A liquid organic carrier of hydrogen as a fuel for automobiles

    International Nuclear Information System (INIS)

    Taube, M.; Taube, P.

    1979-09-01

    A system of storing energy in a hydrogen containing fuel for the motor car is discussed. The recyclable liquid chemical carrier is: (Methylcyclohexane (liquid)) dehydrogenation (Toluene (liquid)) + (hydrogen (gas)). The reverse reaction, the hydrogenation of toluene, occurs in a regional plant connected to a source of hydrogen (electrolysis of water) with a significant by-product being heat at 200 0 C for district heating. The system is able to store hydrogen in liquid form under ambient temperature and pressure even in a small motor car. The concentration of hydrogen is 6.1 % by weight. The release of gaseous hydrogen from the liquid methylcyclohexane needs a chemical catalytic reactor having a temperature of 300 0 C and a pressure of some bars. This reaction has been well studied. The thermal energy for the dehydrogenation is taken from the exhaust gases at 780 0 C. A layout of the most important processes of the system is given. (Auth.)

  7. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  8. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  9. Dinamics of hydrogen in terrestrial atmosphere

    International Nuclear Information System (INIS)

    Roamntan, A.; Mercea, V.; Ristoiu, D.; Ursu, D.

    1981-01-01

    Thishs monographic study presents the dynamics of hydrogen in t e Earth's atmosphere. Atomic hydrogen is produced in the homosphere through a complex system of chemical reaction in wich molecules of 2 , H 2 O, C 4 s ''parent '' molecules are involved. The maximum production of H appears at 8O km resulting a concentration of the order of 10 8 cm -3 . There is a correlation between the total mixing ratio of hydrogen in the homosphere and the global escape flux from the Earth's atmosphere. Two new physical mechanisms which may have a substantial contribution to the total escape flux are presented: ''polar wind'' and charge exchange of H with ''hot'' protons. The possibilities of accretion of hydrogen, as atomic hydrogen or as water from the Earth's atmosphere, are analysed in brief. (authors)

  10. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  11. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  12. Isotope dependence of chemical erosion of carbon

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Krstic, P.S.; Stuart, S.J.; Zhang, H.; Harris, P.R.; Meyer, F.W.

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1-30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However, the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  13. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma

    International Nuclear Information System (INIS)

    Barbier, G.

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author)

  14. Interfacial chemical bonding state and band alignment of CaF2/hydrogen-terminated diamond heterojunction

    International Nuclear Information System (INIS)

    Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M.; Koide, Y.

    2013-01-01

    CaF 2 films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF 2 /H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF 2 /H-diamond heterointerface. Valence and conductance band offsets of the CaF 2 /H-diamond heterojunciton are determined to be 3.7 ± 0.2 and 0.3 ± 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF 2 /H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

  15. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  16. Combustion driven NF3 chemical laser

    International Nuclear Information System (INIS)

    1975-01-01

    Stable, inert, non-corrosive nitrogen trifluoride gas and an inorganic source of hydrogen or deuterium gas are used as reactants in a compact combustion driven chemical laser. Nitrogen trifluoride is introduced into the combustion chamber of a chemical laser together with a hydrogen source selected from hydrogen, hydrazine, ammonia, acetylene, or benzene and the deuterated isotopes thereof and an optional inert diluent gas wherein the nitrogen trifluoride and the hydrogen- or deuterium-source gas hypergolically reacted upon heating to initiation temperature. Dissociated products from the reaction pass into a laser cavity at supersonic velocities where they are reacted with a source gas which is the isotopic opposite of the gas introduced into the combustor and which has been heated by regenerative cooling. Excited molecules of hydrogen fluoride or deuterium fluoride produce laser radiation which leaves the optical resonator cavity transversely to the flow of gases

  17. A DFT study of hydrogen adsorption on Be, Mg and Ca frameworks in erionite zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Fellah, Mehmet Ferdi, E-mail: mferdi.fellah@btu.edu.tr

    2017-02-01

    Highlights: • Mg-ERI and Ca-ERI clusters have much lower chemical potential and hardness. • Adsorption enthalpies for Mg- and Ca-ERI are importantly greater than the liquefaction enthalpy of hydrogen. • Mg-ERI and Ca-ERI clusters have much HOMO-LUMO gap indicating higher reactivity. • Ca- and Mg-ERI are potential cryoadsorbent materials for hydrogen storage. - Abstract: The molecular hydrogen adsorption was investigated on additional frameworks with earth alkaline metal atoms (Be, Mg and Ca) in 24T ERI zeolite cluster model by means of Density Functional Theory study. HOMO and LUMO energy values, chemical potential, chemical hardness, electronegativity, adsorption energy and adsorption enthalpy values have been calculated in this study. Mg-ERI and Ca-ERI clusters have much lower chemical potentials with much lower adsorption energy values when compared to the value of Be-ERI cluster. Additionally, they are softer than Be-ERI cluster with respect to their lower chemical hardness values. Hydrogen adsorption enthalpy values were computed as −3.6 and −3.9 kJ/mol on Mg-ERI and Ca-ERI clusters, respectively. These adsorption enthalpy values are significantly larger than the enthalpy value of liquefaction for hydrogen molecule. This consequently specifies that Mg-ERI and Ca-ERI zeolite structures which have higher chemical reactivity appear to be a promising candidate cryoadsorbent for hydrogen storage.

  18. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  19. Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors

    International Nuclear Information System (INIS)

    Dou, Binlin; Song, Yongchen; Wang, Chao; Chen, Haisheng; Yang, Mingjun; Xu, Yujie

    2014-01-01

    Highlights: • New approach on continuous high-purity H 2 produced auto-thermally with long time. • Low-cost NiO/NiAl 2 O 4 exhibited high redox performance to H 2 from glycerol. • Oxidation, steam reforming, WSG and CO 2 capture were combined into a reactor. • H 2 purity of above 90% was produced without heating at 1.5–3.0 S/C and 500–600 °C. • Sorbent regeneration and catalyst oxidization achieved simultaneously in a reactor. - Abstract: The continuous high-purity hydrogen production by the enhanced-sorption chemical looping steam reforming of glycerol based on redox reactions integrated with in situ CO 2 removal has been experimentally studied. The process was carried out by a flow of catalyst and sorbent mixture using two moving-bed reactors. Various unit operations including oxidation, steam reforming, water gas shrift reaction and CO 2 removal were combined into a single reactor for hydrogen production in an overall economic and efficient process. The low-cost NiO/NiAl 2 O 4 catalyst efficiently converted glycerol and steam to H 2 by redox reactions and the CO 2 produced in the process was simultaneously removed by CaO sorbent. The best results with an enriched hydrogen product of above 90% in auto-thermal operation for reforming reactor were achieved at initial temperatures of 500–600 °C and ratios of steam to carbon (S/C) of 1.5–3.0. The results indicated also that not all of NiO in the catalyst can be reduced to Ni by the reaction with glycerol, and the reduced Ni can be oxidized to NiO by air at 900 °C. The catalyst oxidization and sorbent regeneration were achieved under the same conditions in air reactor

  20. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    Directory of Open Access Journals (Sweden)

    Yin Long

    2015-07-01

    Full Text Available A linear hydrogen-bond acidic (HBA linear functionalized polymer (PLF, was deposited onto a bare surface acoustic wave (SAW device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB, dimethyl methylphosphonate (DMMP, mustard gas (HD, chloroethyl ethyl sulphide (2-CEES, 1,5-dichloropentane (DCP and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  1. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  2. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  3. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  4. A Comprehensive Study on the Electronic State of Hydrogen in α-Phase PdH(D)x-Does a Chemical Bond Between Pd and H(D) Exist?

    Science.gov (United States)

    Dekura, Shun; Kobayashi, Hirokazu; Ikeda, Ryuichi; Maesato, Mitsuhiko; Yoshino, Haruka; Ohba, Masaaki; Ishimoto, Takayoshi; Kawaguchi, Shogo; Kubota, Yoshiki; Yoshioka, Satoru; Matsumura, Syo; Sugiyama, Takeharu; Kitagawa, Hiroshi

    2018-06-12

    The palladium(Pd)-hydrogen(H) system is one of the most famous hydrogen storage systems. Although there has been much research on β-phase PdH(D)x, we comprehensively investigated the nature of the interaction between Pd and H(D) in α-phase PdH(D)x (x H(D) chemical bond for the first time, by various in situ experimental techniques and first-principles theoretical calculations. The lattice expansion by H(D) dissolution in the α-phase lattice suggests the existence of interaction between Pd and H(D). The decrease of magnetic susceptibility and the increase of electrical resistivity indicate that the electronic states are changed by the H(D) dissolution in the α phase. In situ solid-state 1H and 2H NMR results and first-principles theoretical calculations revealed that a Pd-H(D) chemical bond exists in the α phase, but the bonding character of the Pd-H(D) chemical bond in the α phase is quite different from that in the β phase; the nature of the Pd-H(D) chemical bond in the α phase is a localized covalent bond whereas that in the β phase is a metallic bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Chemical corrosion by chlorides on ancient-like bronzes and treatment by hydrogen glow discharge plasma

    Science.gov (United States)

    Papadopoulou, O.; Novakovic, J.; Vassiliou, P.; Filippaki, E.; Bassiakos, Y.

    2013-12-01

    Three representative ancient-like bronzes are employed for the chemical synthesis of Cu2(OH)3Cl rich patinas in order to study the influence of the alloying elements in the evolution of the chloride attack and to further conduct stabilization treatment via Hydrogen Glow Discharge Plasma (HGDP) at low temperature and pressure. The corrosion behavior of specimens having Sn and Pb as main alloying elements is governed by a decuprification mechanism and by the formation of Sn-Pb-O enriched barrier layers. In the case of the Zn containing alloy, dezincification is more pronounced at the corrosion initial stages, and copper species predominate the corrosion products evolution. A three-hour HGDP treatment leads to Cu+ production and metallic Cu, Sn, Zn, and Pb redeposition, as a result of metal cation reduction. This process is accompanied by partial removal of Cl species, O diminution, and change in coloration. The further increase of the Cl/O atomic ratio measured on the post-treated surfaces leads to the formation of nantokite and thus to the conclusion that the stabilization of objects with extensive Cl attack is not feasible by HGDP without preliminary chemical treatment.

  7. Identification of chemical warfare agent with radiological measurements

    International Nuclear Information System (INIS)

    Liu Boxue; Li Yun; Ai Xianyun

    2000-01-01

    There are three non-destructive radiological methods for identification of warfare agents and TNT. Their principles and problems related were discussed. Portable isotopic neutron spectroscopy is based on the assay of key elemental composition (such as Cl, P, H, As, S, N) in chemical agents by neutron induced prompt gamma ray analysis. Hydrogen concentration measurement by means of using thermal neutron can be employed to identify chemical warfare agents and TNT that contains different hydrogen fraction. The calibration curves of thermal neutron count rate against hydrogen concentration were measured. X ray imagination system can be used to determine the internal structure of chemical bombs, there by to identify them. The radiological methods are very useful for identification of old chemical weapons abandoned by Japan Army during World War 2

  8. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  9. Post-synthesis amine borane functionalization of metal-organic framework and its unusual chemical hydrogen release phenomenon

    KAUST Repository

    Berke, Heinz

    2017-05-11

    We report a novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation utilizing gaseous diborane. The covalently confined amine borane derivative decorated on the framework backbone is stable when preserved at low temperature, but spontaneously liberates soft chemical hydrogen at room temperature leading to the development of an unusual borenium type species (-NH=BH2+) ion-paired with hydroborate anion. Furthermore, the unsaturated amino borane (-NH=BH2) and the -iminodiborane ((--NHB2H5) were detected as final products. A combination of DFT based molecular dynamics simulations and solid state NMR spectroscopy, utilizing isotopically enriched materials, were undertaken to unequivocally elucidate the mechanistic pathways for H2 liberation.

  10. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    Science.gov (United States)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  11. Hydrogen and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, N J.D.

    1976-03-01

    There is much debate about the form and availability of energy supplies in the future. It is assumed that nuclear fuel is the only source of controlled energy. Energy inputs from the sun, the wind, the waves, the tides, and other sources not available in the form of fuels are not excluded. In this situation it has been argued that because the cost of transporting energy as a liquid or gaseous fuel is lower than the cost of transmitting energy as electricity it would be more effective to transmit and distribute energy from nuclear fuel in the form of a chemical fuel such as hydrogen. This argument has been critized by Hampson et al., (EAPA 1: 2200) who calculate that the reduced costs of transmission only outweigh the costs of production over distances so large that there appears no realistic application. These calculations neglect the time variation of electricity supply which is fundamental to the planning of an electricity supply system; they also do not appear to do justice to the relationship between the costs of hydrogen and electricity production in an integrated system. These points are included in the analysis presented here by means of the observation that hydrogen generated by nuclear plants with high capital cost and low running cost will be burned by the supply system itself in low-capital-cost plants, suitable for chemical fuels, in order to meet peak demands on the system. This establishes a relationship between the long-run marginal costs of electricity at various times of the day and the long-run marginal cost of hydrogen. These costs are then used to show that, in certain favorable, but common, circumstances, electrolytic hydrogen is the lower-cost source of energy. (from Introduction)

  12. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  13. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  14. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  15. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  16. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  17. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  18. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  19. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH 4 ) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  20. Prospects for pipeline delivery of hydrogen as a fuel and as a chemical feedstock

    Science.gov (United States)

    Gregory, D. P.; Biederman, N. P.; Darrow, K. G., Jr.; Konopka, A. J.; Wurm, J.

    1976-01-01

    The possibility of using hydrogen for storing and carrying energy obtained from nonfossil sources such as nuclear and solar energy is examined. According to the method proposed, these nonfossil raw energy sources will be used to obtain hydrogen from water by three basically distinct routes: (1) electrical generation followed by electrolysis; (2) thermochemical decomposition; and (3) direct neutron or ultraviolet irradiation of hydrogen bearing molecules. The hydrogen obtained will be transmitted in long-distance pipelines, and distributed to all energy-consuming sectors. As a fuel gas, hydrogen has many qualities similar to natural gas and with only minor modifications, it can be transmitted and distributed in the same equipment, and can be burned in the same appliances as natural gas. Hydrogen can also be used as a clean fuel (water is the only combustion product) for automobiles, fleet vehicles, and aircraft.

  1. Chemically modified glasses for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Stanciu, Vasile; Stefanescu, Doina

    1999-01-01

    Hydrogen isotope separation process by such methods as cryogenic distillation or thermal diffusion method is one of the key technologies of the tritium separation from heavy water of CANDU reactors and in the tritium fuel cycle for a thermonuclear fusion reactor. In each process, the analytical techniques for measuring contents of hydrogen isotope mixture are necessary. An extensive experimental research has been carried out in order to produce the most suitable absorbent and define the best operating conditions for selective separation and analysis of hydrogen isotope by gas-chromatography. This paper describes the preparation of adsorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermo-resisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O and Cr 2 O 3 , respectively, have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are also reported and discussed. The gas-chromatographic apparatus used is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector (TCD). The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes H 2 , HD, D 2 and their mixture have been obtained in our laboratories. The best operating conditions of the adsorbent column Fe (III)/glass and Cr 2 O 3 /glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  2. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    1992-01-01

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  3. Hydrogen: an energy vector for the future?

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  4. Hydrogen: an energy vector for the future?

    Energy Technology Data Exchange (ETDEWEB)

    His, St

    2004-07-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  5. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen

    2016-01-01

    ) methods were used to prepare NiFe2O4 oxygen carriers. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, as well as Barrett-Joyner-Halenda (BJH......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement...

  6. Investigation of the explosion hazards of hydrogen sulphide

    International Nuclear Information System (INIS)

    Saber, A.J.; Sulmistras, A.; Moen, I.O.; Thibault, P.A.

    1986-03-01

    The results of Phase I of an investigation directed towards quantifying the explosion hazards of hydrogen sulphide in air are described. The first phase is focussed on detonation in free hydrogen sulphide/air clouds. Detonation properties, including velocity and pressure, have been calculated and compared with experimental results. The observed detonation structure together with critical tube tests tests are used to assess the detonability of hydrogen sulphide/air mixtures relative to hydrogen and common hydrocarbon gases. Detailed chemical kinetic modelling of hydrogen sulphide combustion in air has been performed to correlate the detonation cell size data and to determine the influence of water vapour on the detonability of hydrogen sulphide in air. Calculations of the blast wave properties for detonation of a hydrogen sulphide/air cloud provide the data required to assess the blast effects of such explosions

  7. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  8. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  9. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH{sub 2} films obtained by direct hydrogenation from gaseous phase of metallic Mg

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolsky, V.D., E-mail: dobersh@ipms.kiev.ua; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M.

    2017-02-15

    Highlights: • Air influence on thermal stability of MgH{sub 2} have been studied by XPS. • XPS spectra of MgH{sub 2} films obtained at different hydrogen pressures have been studied. • Changes in the chemical state of MgH{sub 2} films depending on time of exposure to air are analyzed. • Correlation exists between chemical surface condition of MgH{sub 2} films and their thermal stableness. • Process of hydrogen desorption from MgH{sub 2} films is studied using TDS for model samples. - Abstract: Mechanism of influence of exposure to air on thermal stability of MgH{sub 2} obtained by direct hydrogenation from the gas phase, the nature of the hydride sensitivity to the negative impact of air and the role of its surface chemical state have not been studied enough. The present article presents data of X-ray photoelectron spectroscopy (XPS) measurements of the Mg 2s, O 1s, C 1s core-level spectra of surface of hydride MgH{sub 2} films derived by gas phase hydrogenation of model samples of metallic Mg, and the evolution of changes in the chemical state of the surface of the hydride films depending on the time of exposure to air and formation conditions (hydrogen pressure and hydrogenation regime). Based on results of XPS, X-ray diffraction (XRD), and thermodesorption spectroscopy (TDS), the existence of a relationship (correlation) between chemical surface condition of hydride MgH{sub 2} films obtained at different hydrogen pressures (3.0 MPa and 11.5 MPa) and their thermal stableness and temperature of the beginning of hydride decomposition has been established.

  10. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  11. Solar Hydrogen Fuel Cell Projects at Brooklyn Tech

    Science.gov (United States)

    Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael

    2010-01-01

    This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…

  12. Review of theoretical calculations of hydrogen storage in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2001-02-01

    In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)

  13. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  14. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  15. USE OF THE MODULAR HELIUM REACTOR FOR HYDROGEN PRODUCTION

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.

    2003-01-01

    OAK-B135 A significant ''Hydrogen Economy'' is predicted that will reduce our dependence on petroleum imports and reduce pollution and greenhouse gas emissions. Hydrogen is an environmentally attractive fuel that has the potential to displace fossil fuels, but contemporary hydrogen production is primarily based on fossil fuels. The author has recently completed a three-year project for the US Department of Energy (DOE) whose objective was to ''define an economically feasible concept for production of hydrogen, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-slitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen, and to select one for further detailed consideration. They selected the Sulfur-Iodine cycle. In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this report

  16. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  17. Hydrogen bonding in tight environments

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio

    2016-01-01

    The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...

  18. Conceptual study on HTGR-IS hydrogen supply system using organic hydrides

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Inagaki, Yoshiyuki

    2012-02-01

    We have proposed a hydrogen supply-chain system, which is a storage/supply system of large amount of hydrogen produced by HTGR-IS hydrogen production system. The organic chemical hydride method is one of the candidate techniques in the system for hydrogen storage and transportation. In this study, properties of organic hydrides and conventional hydrogen storage/supply system were surveyed to make use of the conceptual design of the hydrogen supply system using an organic hydrides method with VHTR-IS hydrogen production process (hydrogen production: 85,400 Nm 3 /h). Conceptual specifications of the main equipments were designed for the hydrogen supply system consisting of hydrogenation and dehydrogenation process. It was also clarified the problems of hydrogen supply system, such as energy efficiency and system optimization. (author)

  19. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  20. Preparation and Hydrogen Absorption/Desorption of Nanoporous Palladium Thin Films

    Directory of Open Access Journals (Sweden)

    Wen-Chung Li

    2009-12-01

    Full Text Available Nanoporous Pd (np-Pd was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen sensing.

  1. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  2. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  3. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    Science.gov (United States)

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  4. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  5. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  6. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4073-4078 ISSN 0947-6539 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : functionalization * graphene * hydrogen ation * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  7. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4073-4078 ISSN 0947-6539 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : functionalization * graphene * hydrogenation * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  8. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  9. Porous polymeric materials for hydrogen storage

    Science.gov (United States)

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  10. A hydrogen refill for cellular phone

    Science.gov (United States)

    Prosini, Pier Paolo; Gislon, Paola

    A device has been designed to generate hydrogen for a fuel cell powered cellular phone. The device is based on the chemical reaction between NaBH 4 and hydrochloric/water solution to satisfy the hydrogen request at room temperature and pressure. The operation mechanism and controlling method is based on the Kipp's gas generating apparatus. A prototype has been built and tested to evaluate the optimum salt/acid and acid/solution ratios and check the hydrogen mass flow rates upon operation and the pressure variation in stand-by condition. The system works delivering hydrogen flows ranging between 0 and 10 ml min -1. In a typical test the hydrogen flow was set to 5 ml min -1 to match a 1 W power fuel cell. The working pressure was slightly higher than the atmospheric one. The hydrogen capacity was as high as 2.5% (w/w). By converting this amount of hydrogen in electricity by a fuel cell working at 0.8 V it is possible to achieve a system energy density of about 720 Wh kg -1, four times larger than commercial high energy density lithium-ion batteries.

  11. A study of industrial hydrogen and syngas supply systems

    Science.gov (United States)

    Amos, W. J.; Solomon, J.; Eliezer, K. F.

    1979-01-01

    The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.

  12. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  13. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for chemical utilization); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kagaku riyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-15

    Surveys and studies were performed on chemical utilization of hydrogen regarding its status of development and utilization inside and outside the country, as well as its future prospect. This paper describes chemical utilization of hydrogen in ammonia, methanol, petroleum refining and other industries as the existing fields. It also describes chemical utilization of oxygen in iron and steel, chemical and other industries. It describes methanol as a pollution-free auxiliary fuel for electric power plants as a new type of hydrogen application. Acetic acid made by using the Monsanto method which carbonylate methanol is drawing attention in terms of economy, and is in the phase of discussing commercialization. Synthesizing ethylene glycol from carbon monoxide and hydrogen may be conceived economically. Methanol for synthesized protein depends on the possibility of future development. In the iron and steel industry, electric furnace steel makers are planning production of reduced iron, where the direct reduction process using hydrogen is considered as a complementary process, including countermeasures for scrap iron. This paper estimates hydrogen amount as a raw material for ammonia to remove NOx by using the ammonia reduction process. It also describes possibility of other types of utilization. (NEDO)

  14. Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite

    Science.gov (United States)

    Onishi, Taku

    2017-11-01

    In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.

  15. Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR

    International Nuclear Information System (INIS)

    Verfondern, K.; Nishihara, T.

    2004-06-01

    The high-temperature engineering test reactor (HTTR) in Oarai, Japan, will be worldwide the first plant to demonstrate the production of hydrogen by applying the steam reforming process and using nuclear process heat as primary energy. Particular safety aspects for such a combined nuclear/chemical complex have to be investigated to further detail. One of these special aspects is the fire and explosion hazard associated with the presence of flammable gases including a large LNG storage tank in close vicinity to the reactor building. A special focus is laid upon the conceivable development of a detonation pressure wave and its damaging effect on the reactor building. A literature study has shown that methane is a comparatively slow reacting gas and that a methane vapor cloud in the open atmosphere or partially obstructed areas is highly unlikely to result in a detonation if inadvertently released and ignited. Various theoretical assessments and experimental studies, which have been conducted in the past and which are of significance for the HTTR-steam reforming system, include the spreading and combustion behavior of cryogenic liquids and flammable gas mixtures providing the basis of a comprehensive safety analysis of the combined nuclear/chemical facility. (orig.)

  16. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  17. Possibilities of hydrogen removal. Phase 2: Limitation of hydrogen effects in hypothetical severe accidents in PWR reactors

    International Nuclear Information System (INIS)

    Langer, G.; Koehling, A.; Nikodem, H.

    1984-01-01

    In the event of hypothetical severe accidents in light-water reactors, considerable amounts of hydrogen may be produced and released into the containment. Combustion of the hydrogen may jeopardize the integrity of the containment. The study reported here aimed to identify methods to mitigate the hydrogen problem. These methods should either prevent hydrogen combustion, or limit its effects. The following methods have been investigated: pre-inerting; chemical oxygen absorption; removal of oxygen by combustion; post-inerting with N 2 , CO 2 , or halon; aqueous foam; water fog; deliberate ignition; containment purging; and containment venting. The present state of the art in both nuclear and non-nuclear facilities, has been identified. The assessment of the methods was based on accident scenarios assuming significant release of hydrogen and the spectrum of requirements derived from these scenarios was used to determine the advantages and drawbacks of the various methods, assuming their application in a pressurized water reactor of German design. (orig./RW) [de

  18. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  19. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  20. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  1. Composition of hydrogenation products of Borodino brown coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Gyul' malieva; A.S. Maloletnev; G.A. Kalabin; A.M. Gyul' maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

    2008-02-15

    The composition of liquid products of hydrogenation of brown coal from the Borodino deposit was determined by means of {sup 13}C NMR spectroscopy and chemical thermodynamics methods. It was shown that the group composition of the liquid hydrogenation products at thermodynamic equilibrium is predictable from the elemental composition of the organic matter of parent coal. 9 refs., 5 figs., 6 tabs.

  2. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  3. Acetal Resins, Acrylic & Modacrylic Fibers, Carbon Black, Hydrogen Fluoride, Polycarbonate, Ethylene, Spandex & Cyanide Chemical Manufacturing: NESHAP for Source Categories, Generic Maximum Achievable Control Technology Standards (40 CFR 63, Subpart YY)

    Science.gov (United States)

    Learn about the NESHAP for GMACT for acetal resins, hydrogen fluoride, polycarbonate, ethylene production and cyanide chemicals. Find the rule history information, federal register citations, legal authority, rule summary, and additional resources

  4. Nippon oil's activities toward realization of hydrogen society

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kojiro; Okazaki, Junji; Kobori, Yoshihiro; Iki, Hideshi [Nippon Oil Corporation (Japan)

    2010-07-01

    Nippon Oil Corporation, a major Japanese energy distributor, has been devoting extensive efforts toward the establishment of hydrogen supply systems. The Council on Competitiveness-Nippon (COCN), an advisory organization which has influence on Japanese government policy, has announced that the establishment of hydrogen infrastructure should be started in 2015. By that time, we plan to have completed the development of necessary technologies for the infrastructure. It is well recognized that the storage and transportation of hydrogen is the sticking point on the path to realization of a hydrogen economy. The scope of our research covers key technologies for hydrogen storage and transportation, including carbon fiber reinforced plastic (CFRP) tanks for compressed hydrogen gas, hydrogen storage materials, and hydrogen transportation systems which utilize organic chemical hydride (OCH). This article describes Nippon Oil's strategy for realization of the hydrogen economy. (orig.)

  5. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  6. Initial damage processes for diamond film exposure to hydrogen plasma

    International Nuclear Information System (INIS)

    Deslandes, A.; Guenette, M.C.; Samuell, C.M.; Karatchevtseva, I.; Ionescu, M.; Cohen, D.D.; Blackwell, B.; Corr, C.; Riley, D.P.

    2013-01-01

    Graphical abstract: -- Highlights: • Exposing chemical vapour deposited (CVD) diamond films in a recently constructed device, MAGPIE, specially commissioned to simulate fusion plasma conditions. • Non-diamond material is etched from the diamond. • There is no hydrogen retention observed, which suggests diamond is an excellent candidate for plasma facing materials. • Final structure of the surface is dependent on synergistic effects of etching and ion-induced structural change. -- Abstract: Diamond is considered to be a possible alternative to other carbon based materials as a plasma facing material in nuclear fusion devices due to its high thermal conductivity and resistance to chemical erosion. In this work CVD diamond films were exposed to hydrogen plasma in the MAGnetized Plasma Interaction Experiment (MAGPIE): a linear plasma device at the Australian National University which simulates plasma conditions relevant to nuclear fusion. Various negative sample stage biases of magnitude less than 500 V were applied to control the energies of impinging ions. Characterisation results from SEM, Raman spectroscopy and ERDA are presented. No measureable quantity of hydrogen retention was observed, this is either due to no incorporation of hydrogen into the diamond structure or due to initial incorporation as a hydrocarbon followed by subsequent etching back into the plasma. A model is presented for the initial stages of diamond erosion in fusion relevant hydrogen plasma that involves chemical erosion of non-diamond material from the surface by hydrogen radicals and damage to the subsurface region from energetic hydrogen ions. These results show that the initial damage processes in this plasma regime are comparable to previous studies of the fundamental processes as reported for less extreme plasma such as in the development of diamond films

  7. Palladium alloys for hydrogen diffusion

    International Nuclear Information System (INIS)

    1977-01-01

    A palladium-base alloy with tin and/or a silicon addition and its use in the production of hydrogen from water via a cycle of chemical reactions, of which the decomposition of HI into H 2 and I 2 is the most important, is described

  8. Hydrogen - the energy source of the future

    International Nuclear Information System (INIS)

    Aakervik, Anne-Lise

    2001-01-01

    The use of hydrogen is an excellent way of reducing the emission of greenhouse gases. It causes no emission when used in fuel cells. Iceland has set itself the goal of becoming the world's first hydrogen society without emission of carbon dioxide and other greenhouse gases. In the USA, California has decided to concentrate on cars that do not pollute. Hydrogen power is then an interesting alternative. Germany, Japan and the USA are all concentrating on hydrogen. The world production of hydrogen is 50 million tons, 90 per cent of which is made from fossil material, 4 per cent by electrolysis of water. The largest consumers of hydrogen are the petroleum industry and the fertilizer industry. The sale of hydrogen in the refining industry has increased recently and is expected to rise substantially when the fuel cell technology is commercialized. At present, storage of hydrogen is the major problem. Gas storage at atmospheric pressure is inconvenient because of the large volumes required. Alternatives are storage as compressed gas under high pressure, liquid gas at low temperature, storage in metal hydrides or carbon materials, or chemically bound in methanol or ammonia

  9. Developmental lead exposure induces opposite effects on ethanol intake and locomotion in response to central vs. systemic cyanamide administration.

    Science.gov (United States)

    Mattalloni, Mara Soledad; Deza-Ponzio, Romina; Albrecht, Paula Alejandra; Cancela, Liliana Marina; Virgolini, Miriam Beatriz

    2017-02-01

    Lead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects. To evaluate the impact on a 2-h chronic voluntary ethanol intake test, developmentally Pb-exposed and control rats were administered with cyanamide (CY, an ALDH inhibitor) either systemically or intracerebroventricularly (i.c.v.) on the last 4 sessions of the experiment. Furthermore, on the last session and after locomotor activity was assessed, all animals were sacrificed to obtain brain and liver samples for ALDH2 and CAT activity determination. Systemic CY administration reduced the elevated ethanol intake already reported in the Pb-exposed animals (but not in the controls) accompanied by liver (but not brain) ALDH2 inactivation. On the other hand, a 0.3 mg i.c.v. CY administration enhanced both ethanol intake and locomotor activity accompanied by brain ALDH2 inactivation in control animals, while an increase in ethanol consumption was also observed in the Pb-exposed group, although in the absence of brain ALDH2 blockade. No changes were observed in CAT activity as a consequence of CY administration. These results support the participation of liver and brain ACD in ethanol intake and locomotor activity, responses that are modulated by developmental Pb exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  11. Phosphate-bonded composite electrodes for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, E.; Menard, H.; Lalancette, J.M. (Sherbrooke Univ., PQ (Canada). Dept. de Chimie); Brossard, L. (Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada))

    1990-03-01

    A new process of cementing metallic powders to produce high surface area cathodes for alkaline water electrolysis is described. The binding compound is a tridimensional polymer of aluminium phosphate (AlPO{sub 4}). Phosphate-bonded composite electrodes give a low-polarization performance for hydrogen evolution in 1 M KOH aqueous solution in the case of 95wt% Pt and 98wt%Ni. When electrode materials are prepared with nickel powder, the electrocatalytic activity for the hydrogen evolution reaction, the chemical stability and the electrical conductivity depend on the Ni content and morphology of the electrode. The best performance and chemical stability with Ni as the starting material are obtained for spiky filamentary particles produced by the decomposition of nickel carbonyl. (author).

  12. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide.

    Science.gov (United States)

    Pekala, Katarzyna; Jurczakowski, Rafał; Lewera, Adam; Orlik, Marek

    2007-05-10

    The oscillatory oxidation of thiocyanate ions with hydrogen peroxide, catalyzed by Cu2+ ions in alkaline media, was so far observed as occurring simultaneously in the entire space of the batch or flow reactor. We performed this reaction for the first time in the thin-layer reactor and observed the spatiotemporal course of the above process, in the presence of luminol as the chemiluminescent indicator. A series of luminescent patterns periodically starting from the random reaction center and spreading throughout the entire solution layer was reported. For a batch-stirred system, the bursts of luminescence were found to correlate with the steep decreases of the oscillating Pt electrode potential. These novel results open possibilities for further experimental and theoretical investigations of those spatiotemporal patterns, including studies of the mechanism of this chemically complex process.

  13. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  14. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  15. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  16. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    B Buczek; E Wolak

    2005-01-01

    In the present century hydrogen will be the most important source of energy and will replace petroleum and petroleum-derived products in the next future. Hydrogen is an almost ideal fuel, both because of its unlimited accessibility and for ecological reasons; the product of its combustion - water vapour - is neither any gaseous contamination nor a component of greenhouse gases. Nowadays hydrogen is applied in industrial processes, but may be also used as a source of house lighting and heating energy, for production of electricity, and as fuel for car engines. Fuel cells, applying reaction between hydrogen and oxygen for production of electricity have been for a long time used in the space technology. Application of hydrogen as fuel should give a possibility of storage and transfer of the high quality energy, i.e. the energy of a high exo-energetic ratio. Due to its low density, one of the main obstacles to the widespread use of hydrogen in energy sector is an efficient storage technology. At present, the methods of hydrogen storage are to liquefy and store in refrigerated containers, which is very expensive, or to store it in high - pressure gas cylinders at room temperature. Unfortunately, low storage density of hydrogen for the latter technique is a significant drawback. Between alternatives have been considered (chemical storage in irreversible hydrogen carriers like methanol or ammonia, reversible metal and chemical hydrides and adsorption in porous media), the latter one seems to lie the most promising. Physical adsorption is a method by which more gas can be stored at a lower pressure by means of Van der Waals interactions at the gas solid interface. Adsorptive storage is particularly promising for permanent gases, which need to be stored, transported, or used in ambient temperature. Thanks to the high density of adsorbed phase, adsorptive storage system could allow the storage of a high density of hydrogen at much lower pressures than compression and higher

  18. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    International Nuclear Information System (INIS)

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  19. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  20. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: cbarg@enq.ufrgs.br; arge@enq.ufrgs.br; jorge@enq.ufrgs.br

    2000-07-01

    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  1. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  2. Hydrogen-related effects in crystalline semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H + in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H 2 . Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs

  3. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  4. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  5. Small-scale uses and costs of hydrogen derived from OTEC ammonia

    Science.gov (United States)

    Strickland, G.

    Ocean Thermal Energy Conversion (OTEC) plantships could produce NH3 from air and water, using energy derived from thermal gradients in tropical oceans. NH3 can serve both as a commodity, for the fertilizer and chemical industries, and as a liquid energy carrier for fuel use. Attention is given to the economic prospects for using OTEC NH3 as a hydrogen transport and storage medium for small users who want to assess the purchase of hydrogen vs. the cost of producing hydrogen at their sites. Hydrogen is readily obtained from NH3 at the point of end use, by dissociation and purification as required, for use as a chemical commodity or fuel. It is shown that high-purity H2 derived from OTEC NH3 might be competitive with H2 made at the point of end use via water electrolysis, or via steam reforming of natural gas.

  6. The hydrogen state: from the solid to the gas taking into account the liquid; L'hydrogene dans tous ses etats: du solide au gaz en passant par le liquide

    Energy Technology Data Exchange (ETDEWEB)

    Latroche, M.; Joubert, J.M.; Cuevas, F.; Paul-Boncour, V.; Percheron-Guegan, A. [Centre National de la Recherche Scientifique (CNRS), Institut de Chimie et des Materiaux Paris-Est (CMTR-ICMPE-UMR7182), 94 - Thiais (France)

    2007-07-01

    Hydrogen is considered as a future energy vector. To become a viable solution, the hydrogen storage processes must be safe, economic and adapted to the use possibilities. Today many storage modes offer interesting possibilities but need also more researches before realization of prototypes. These modes are described taking into account the physical (compression, liquefaction) and chemical (adsorption in porous solids and absorption in chemical hydrides) solutions. (A.L.B.)

  7. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  8. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  9. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  10. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-11-01

    Full Text Available Among the several typologies of storage technologies, mainly on different physical principles (mechanical, electrical and chemical, hydrogen produced by power to gas (P2G from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe, analysing current and potential locations, regulatory framework, governments’ outlooks, economic issues, and available renewable energy amounts. The expert opinion survey, already used in many research articles on different topics including energy, has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.

  11. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    Science.gov (United States)

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-09-20

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  12. Development of sulfur- and nitrogen- free hydrogen odorants - An important step toward a safe hydrogen society -

    International Nuclear Information System (INIS)

    Nakamura, N.; Oshikawa, K.; Hasegawa, H.; Le Lay, M.; Iwase, M.; Braun, N.A.; Eilers, J.; Walz, A.; Vogt, M.; Herr, M.

    2006-01-01

    We have developed four sulfur-free and nitrogen-free odorants, which can be effectively used to odorize hydrogen. The odors were described through an olfactory test as alarming, strange, and chemical, giving sense of danger to the person who smells the odor. The safety of the material has been assessed and has been shown to be safe for usage. Testing the stability of odorized hydrogen in 80 MPa pressurized state, it was shown for a period of 13 weeks that the odorant retained its warning odor. Using the odorized hydrogen, FC duration test at 0.2 A/cm 2 was carried out for over 900 h without significant decrease in performance or the detectable degradation of MEA. The outlet of the fuel cell had no warning odor, suggesting deodorization on the catalyst. Use of activated charcoal as an adsorbent showed that the deodorization could be effectively carried out, ensuring that normal operation conditions are not perceived as a hydrogen leakage. (authors)

  13. Influence of hydrogen on chemical vapour synthesis of different ...

    Indian Academy of Sciences (India)

    Administrator

    The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its ..... Chae S J, Güneş F, Kim K K, Kim E S, Han G H, Kim S M,. Shin H-J, Yoon ... Xiong Y G, Suda Y, Wang D Z, Huang Y J and Ren Z F 2005. Nanotechnology ...

  14. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  15. Hydrogen at extreme pressures (Review Article)

    International Nuclear Information System (INIS)

    Goncharov, Alexander F.; Howie, Ross T.; Gregoryanz Eugene

    2013-01-01

    Here we review recent experimental and theoretical studies of hydrogen approaching metallization regime. Experimental techniques have made great advances over the last several years making it possible to reach previously unachievable conditions of pressure and temperature and to probe hydrogen at these conditions. Theoretical methods have also greatly improved; exemplified through the prediction of new structural and ordered quantum states. Recently, a new solid phase of hydrogen, phase IV, has been discovered in a high-pressure high-temperature domain. This phase is quite unusual structurally and chemically as it represents an intermediate state between common molecular and monatomic configurations. Moreover, it shows remarkable fluxional characteristics related to its quantum nature, which makes it unique among the solid phases, even of light elements. However, phase IV shows the presence of a band gap and exhibits distinct phonon and libron characteristic of classical solids. The quantum behavior of hydrogen in the limit of very high pressure remains an open question. Prospects of studying hydrogen at more extreme conditions by static and combined static-dynamic methods are also presented.

  16. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  17. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  18. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    With the advent of the fuel cell technology and a drive for clean fuel, hydrogen gas is emerging as a leading candidate for the fuel of choice. For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. When odorants are not added to the hydrogen gas in the storage or delivery means, methods must be developed to incorporate odorant in the leaking gas so that leaks can be detected by small. Further, when odorants are not added to the stored hydrogen, it may also be desirable to observe leaks by sight by discoloration of the surface of the storage or transportation vessels. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering solutions will assure the ultimate safety of hydrogen use as a commercial fuel. (authors)

  19. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  20. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  1. Investigate of analysis for hydrogen contents in carbon films

    International Nuclear Information System (INIS)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko; Awazu, Kaoru; Naramoto, Hiroshi

    2001-01-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV γ-rays from the resonant nuclear reactions 1 H( 15 N, α γ) 12 C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B 4 C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  2. Investigate of analysis for hydrogen contents in carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ., Kanazawa, Ishikawa (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa, Kanazawa, Ishikawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha} {gamma}){sup 12}C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  3. Activation of erbium films for hydrogen storage

    International Nuclear Information System (INIS)

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-01-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  4. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  5. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  6. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  7. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  8. Hydrogen storage alloy electrode for nickel-hydrogen storage battery use; Nikkeru-suiso chikudenchiyo suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Nagase, H.; Tadokoro, M.

    1995-06-16

    In the conventional hydrogen storage alloy electrode, water soluble polymer is employed as for the binder. Employing the water soluble polymer as for the binder may cause the film formation on the surface of the hydrogen storage alloy to hinder the hydrogen absorption at the alloy surface, resulting in the decrease in activity of electrode and in the discharge characteristic at a low temperature. This invention proposes the addition of Vinylon fiber in the binder of the hydrogen storage alloy electrode made by kneading the hydrogen storage alloy and the binder. The Vinylon fiber improves the strength of the electrode, as it forms a network in the electrode. Furthermore, the point contact between the alloy and the Vinylon fiber in the electrode prevents the film formation which hinders the oxygen absorption and chemical reaction on the surface of the alloy. As for the binder, carboxymethyl cellulose is used. The preferable size of Vinylon fiber is fiber diameter of 0.1 - 0.5 denier and fiber length of 0.5 - 5.0 mm. 4 figs., 4 tabs.

  9. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  10. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  11. Drug: D00123 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00123 Drug Cyanamide (JP17); Cyanamide (TN) ... CH2N2 D00123.gif ... Other ... DG01718 ... Drugs... for addictive disorder ... DG01716 ... Drugs for alcohol dependence Same as: C01566 Therapeutic category: 3

  12. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  13. Hydrogenation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Knížek, Karel; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 501, - (2006), s. 144-148 ISSN 0040-6090 R&D Projects: GA MŠk ME 537; GA MŽP(CZ) SM/300/1/03; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon * atmospheric pressure chemical vapour deposition * hydrogen passivation * photoluminescence * Raman spectroscopy * Si-H 2 bonding * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  14. Hydrogen peroxide stabilization in one-dimensional flow columns

    Science.gov (United States)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  15. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  16. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  17. Efficiency of hydrogen gas production in a stand-alone solar hydrogen system

    International Nuclear Information System (INIS)

    Singh, K.; Tamakloe, R.Y.

    2003-01-01

    Many photovoltaic systems operate in a decentralised electricity producing system, or stand-alone mode and the total energy demand is met by the output of the photovoltaic array. The output of the photovoltaic system fluctuates and is unpredictable for many applications making some forms of energy storage system necessary. The role of storage medium is to store the excess energy produced by the photovoltaic arry, to absorb momentary power peaks and to supply energy during sunless periods. One of the storage modes is the use of electrochemical techniques, with batteries and water electrolysis as the most important examples. The present study includes three main parts: the first one is the hydrogen production form the electrolysis of water depending on the DC output current of the photovoltaic (PV) energy source and the charging of the battery. The second part presents the influence of various parameters on the efficiency of hydrogen gas production. The final part includes simulation studies with focus on solar hydrogen efficiency under the influence of various physical and chemical parameters. For a 50W panel-battery-electrolyser system, the dependence of volume of hydrogen gas on voltage, current and power yielded a maximum efficiency of 13.6% (author)

  18. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  19. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  20. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  1. Conceptual design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-08-01

    Since hydrogen produced by nuclear should be economically competitive compared with other methods in a hydrogen society, it is important to build hydrogen production system to be coupled with the reactor as a conventional chemical plant. Japan Atomic Energy Agency started the safety study to establish a new safety philosophy to meet safety requirements for non-nuclear grade hydrogen production system. Also, structural concepts with integrating functions for the Bunsen reactor and sulphuric acid decomposer were proposed to reduce construction cost of the IS process hydrogen production system. In addition, HI decomposer which enables the process condition to be eased consisting of conventional materials and technologies was studied. Moreover, technical feasibility of the HTTR-IS system in which the hydrogen production rate of 1,000 Nm 3 /h by using the supplied heat of 10 MW from the intermediate heat exchanger of the HTTR was confirmed. This paper describes the conceptual design of the HTTR-IS hydrogen production system. (author)

  2. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  3. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  4. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  5. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    Science.gov (United States)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  6. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    Science.gov (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  7. All-Vanadium Dual Circuit Redox Flow Battery for Renewable Hydrogen Generation and Desulfurisation

    OpenAIRE

    Peljo, Pekka Eero; Vrubel, Heron; Amstutz, Veronique; Pandard, Justine; Morgado, Joana; Santasalo-Aarnio, Annukka; Lloyd, David; Gumy, Frederic; Dennison, C R; Toghill, Kathryn; Girault, Hubert

    2016-01-01

    An all-vanadium dual circuit redox flow battery is an electrochemical energy storage system capable to function as a conventional battery, but also to produce hydrogen and perform desulfurization when surplus of electricity is available by chemical discharge of the battery electrolytes. The hydrogen reactor chemically discharging the negative electrolyte has been designed and scaled up to kW scale, while different options to discharge the positive electrolyte have been evaluated, including ox...

  8. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  9. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    Beattie, W.; Freund, S.; Holland, R.; Maier, W.

    1980-01-01

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  10. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific examples are provided where appropriate. A wide variety of readers, including operators, designers, and NRC staff, will find parts of this manual useful. Different sections are written at different levels, according to the most likely audience. The manual is not intended to provide specific plant procedures, but rather, to provide general guidance that may assist in the development of such procedures

  11. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  12. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  13. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  14. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  15. Economic Analysis for Nuclear Hydrogen Production System Based on HyS Process

    International Nuclear Information System (INIS)

    Yang, Kyeong Jin; Lee, Ki Young; Lee, Tae Hoon; Chang, Jong Hwa

    2009-01-01

    The current promising base for massive hydrogen production on high temperature environment derives primarily from three sources: the commercial production of chemicals for the sulfur-iodine (SI) process, the development of solid-oxide fuel cells (SOFC), and the hybrid method of chemicals and fuel cells. The three kinds of process requires high temperature heat energy over 850∼950 .deg. C for the efficient and economic hydrogen production. One of the clean, economic, and moreover promising heat sources supplied to the process is nuclear plants. The nuclear plants producing high temperature heat energy over 950 .deg. C are well known as Very High Temperature Reactors (VHTR) which could have two types of prismatic and pebble-bed cores along reactor core shape. In this paper, we report on the Hybrid Sulfur Process (HyS), and the estimated costs for the system which composes of VHTR of prismatic core type and HyS plant. Nuclear hydrogen production system based on HyS process has been configured to optimally use the thermal energy from VHTR and electric energy to produce hydrogen and oxygen from clean water. High temperature thermal energy is transferred to the HyS process by way of intermediate heat exchanger (IHX) with associated piping. In this paper, the hydrogen production costs for a system composed of a VHTR with six 600MWth module, a power conversion unit (PCU) and a HyS plant are presented, where the thermal energy produced in two module was converted to electric energy in PCU and then transferred to the electrolysis cells for hydrogen production and circulating units on HyS plant, and the remaining thermal energy was supplied to chemical process on HyS plants. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4- ECONS was appropriately modified to calculate the cost for hydrogen production

  16. Meeting Cathala-Letort named: the challenges of the processes engineering facing the hydrogen-energy; Journee Cathala-Letort intitulee: les defis du genie des procedes face a l'hydrogene-energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document provides the presentations proposed during the day Cathala-Letort on the challenges of the processes engineering facing the hydrogen-energy. In the context of the greenhouse effect increase and the fossil energies resources decrease, it brings information on researches on hydrogen technologies, carbon dioxide sequestration, hydrogen supply, production, storage and distribution and the thermo-chemical cycles. (A.L.B.)

  17. Kinetics of Dicyclopentadiene Hydrogenation Using PD/C Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skála, D.; Hanika, Jiří

    2003-01-01

    Roč. 45, 3-4 (2003), s. 105-108 ISSN 1335-3055 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrogenation * dicyclopentadiene * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  18. Role of hydrogen in Sb film deposition and characterization of Sb and GexSby films deposited by cyclic plasma enhanced chemical vapor deposition using metal-organic precursors

    International Nuclear Information System (INIS)

    Kim, Hyung Keun; Jung, Jin Hwan; Choi, Doo Jin

    2012-01-01

    To meet increasing demands for chemical vapor deposition methods for high performance phase-change memory, cyclic plasma enhanced chemical vapor deposition of Sb and Ge x Sb y phase-change films and characterization of their properties were performed. Two cycle sequences were designed to investigate the role of hydrogen gas as a reduction gas during Sb film deposition. Hydrogen gas was not introduced into the reaction chamber during the purge step in cycle sequence A and was introduced during the purge step for cycle sequence B. The role of hydrogen gas was investigated by comparing the results obtained from these two cycle sequences and was concluded to exert an effect by a combination of precursor decomposition, surface maintenance as a hydrogen termination agent, and surface etching. These roles of hydrogen gas are discussed through consideration of changes in deposition rates, the oxygen concentration on the surface of the Sb film, and observations of film surface morphology. Based on these results, Ge x Sb y phase-change films were deposited with an adequate flow rate of hydrogen gas. The Ge and Sb composition of the film was controlled with the designed cycle sequences. A strong oxygen affinity for Ge was observed during the X-ray photoelectron spectroscopy analysis of Sb 3d, Sb 4d, and Ge 3d orbitals. Based on the XPS results, the ratios of Ge to Sb were calculated to be Ge 0.32 Sb 0.68 , Ge 0.38 Sb 0.62 , Ge 0.44 Sb 0.56 , Ge 0.51 Sb 0.49 and Ge 0.67 Sb 0.33 for the G1S7, G1S3, G1S2, G1S1, and G2S1 cycles, respectively. Crystal structures of Sb, Ge, and the GeSb metastable phase were observed with various Ge x Sb y film compositions. Sb crystallinity decreased with respect to Ge crystallinity by increasing the Ge fraction. A current–voltage curve was introduced, and an electro-switching phenomenon was clearly generated at a typical voltage, V th . V th values increased in conjunction with an increased proportion of Ge. The Sb crystallinity decrease and V

  19. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  20. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  1. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  2. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  3. Hydrogen problems related to reactor accidents

    International Nuclear Information System (INIS)

    Bujor, A.

    1993-09-01

    At reactor accidents, the combustion of hydrogen causes pressure and temperature transients which pose supplementary loads in containment. In certain conditions, they could reach hazardous levels and impair the integrity of the containment and the operability of the safety systems. The mechanisms of chemical reactions specific for the hydrogen-oxygen system are presented. Conditions in which combustion can occur and the various combustion modes, including the transition to detonation are also described. The related safety aspects and mitigation methods are discussed. Examples for particular applications and safety approaches for various types of reactors, included those promoted for the advanced reactors are also given. Presentation of the experimental research completed at AECL-Research, Whiteshell Laboratory is given, where the multi-point ignition effects for constant volume and for vented combustion of dry hydrogen-air mixtures in various geometries have been investigated. Various aspects of modelling and simulation of hydrogen combustion are discussed. The adaptations and the new models implemented in the codes VENT and CONTAIN, aimed to widen the simulation capabilities of hydrogen combustion models are described. The capabilities and limitations of the modelling assumptions of these two codes are also evaluated. (EG) (11 tabs., 39 ills., 82 refs.)

  4. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  5. Study of low energy hydrogen ion implantation effects in silicon: electric properties

    International Nuclear Information System (INIS)

    Barhdadi, A.

    1985-07-01

    Several analysis methods have been developed: hydrogen distribution analysis by nuclear reaction, crystal disorder evaluation by R.B.S., chemical impurities identification by SIMS, optical measurements, electrical characterization of surface barriers, deep level spectroscopy DLTS, ... All these analyses have been made after implantation then after thermal annealing. A model explaining the effect of implantation then after thermal annealing. A model explaining the effect of implanted hydrogen is proposed, the implantation creates an important quantity of defects in a thin layer near the surface; a chemical attack removes them. In Schottky devices, this layer has a basic role on carrier transport phenomena. Other results are given, some of them allow to give an account of the passivation by hydrogen implantation [fr

  6. Structure and chemical composition changes of Pd-rod and reaction product collector irradiated by 10 MeV braking gamma quanta inside high pressure chamber filled with 2.5 kbar molecular hydrogen

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.

    2013-01-01

    A research of the elemental composition and surface structure of a Pd rod saturated with hydrogen and a brass collector of nuclear and chemical reaction products irradiated by 10 MeV braking gamma quanta in dense molecular hydrogen gas at 2.5 kbar pressure is carried out. The changes of the elemental composition and surface structure of the Pd rod and collector similar to analogous changes in the experiment carried out in dense gas deuterium are observed. Possible explanations of the firstly observed phenomenon are offered

  7. Scaled Testing of Hydrogen Gas Getters for Transuranic Waste

    International Nuclear Information System (INIS)

    Kaszuba, J.; Mroz, E.; Haga, M.; Hollis, W. K.; Peterson, E.; Stone, M.; Orme, C.; Luther, T.; Benson, M.

    2006-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage and shipment containers. Hydrogen forms a flammable mixture with air over a wide range of concentrations (5% to 75%), and very low energy is needed to ignite hydrogen-air mixtures. For these reasons, the concentration of hydrogen in waste shipment containers (Transuranic Package Transporter-II or TRUPACT-II containers) needs to remain below the lower explosion limit of hydrogen in air (5 vol%). Accident scenarios and the resulting safety analysis require that this limit not be exceeded. The use of 'hydrogen getters' is being investigated as a way to prevent the build up of hydrogen in TRUPACT-II containers. Preferred getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it into the solid state. In this study, two getter systems are evaluated: a) 1,4-bis (phenylethynyl)benzene or DEB, characterized by the presence of carbon-carbon triple bonds; and b) a proprietary polymer hydrogen getter, VEI or TruGetter, characterized by carbon-carbon double bonds. Carbon in both getter types may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. With oxygen present, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB and VEI performed satisfactorily in lab scale tests using small test volumes (ml-scale), high hydrogen generation rates, and short time spans of hours to days. The purpose of this study is to evaluate whether DEB and VEI perform satisfactorily in actual drum-scale tests with realistic hydrogen generation rates and time frames. The two getter systems were evaluated in test vessels comprised of a Gas Generation Test Program-style bell-jar and a drum equipped with a composite drum filter. The vessels were scaled to replicate the ratio between void space in the

  8. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J

  9. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  10. A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chung, J. N., E-mail: jnchung@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL (United States)

    2014-01-02

    Two concept systems that are based on the thermochemical process of high temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are (1) to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest, and municipal waste to clean energy (pure hydrogen fuel), and (2) to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming). The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO{sub 2} sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  11. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro

    2012-02-01

    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  12. Chemical equilibria relating the isotopic hydrogens at low temperatures

    International Nuclear Information System (INIS)

    Pyper, J.W.; Souers, P.C.

    1976-01-01

    Hydrogen fusion will require a fuel mixture of liquefied or frozen D 2 and T 2 . The composition of this fuel mixture is described by the equilibrium constant K/sub DT/. The theory of isotopic exchange reactions is discussed as applied to the hydrogen isotopes. A literature survey of the values of K/sub HD/, K/sub HT/, and K/sub DT/ found no values of K/sub DT/ for temperatures below 25 0 K and no values of K/sub HD/ and K/sub HT/ for temperatures below 50 0 K. The existing data are critically evaluated, and simplified formulas for the three equilibrium constants in the temperature range 50 to 300 0 K are derived from them. Harmonic approximation theory with rotational correction was used to calculate values of K/sub HD/, K/sub HT/, and K/sub DT/ in the temperature range 4.2 to 50 0 K. It is found that K/sub DT/ = 2.995 exp(-10.82/T) in the temperature range 16.7 to 33.3 0 K to an accuracy of 1%. Tables, graphs, and equations of K/sub HD/, K/sub HT/, and K/sub DT/ are given for the temperature range 4.2 to 50 0 K. 27 references, 14 tables, 8 figures

  13. Mechanisms of dispersion during liquid hydrogen leakage

    International Nuclear Information System (INIS)

    Proust, C.; Gaston, D.

    2000-01-01

    INERIS conducts research programs with a mission of assessing and preventing accidental and chronic risks to people and the environment due to industrial plants, chemical substances and underground operation. This paper is a study of the dispersion mechanism of cryogenic hydrogen and the mechanisms of flame propagation in clouds of hydrogen. The objective is to contribute to the industrial control implementation of significant storage of hydrogen liquid that has pressure close to the atmospheric pressure. Within the framework of this program, the only interest is with the risk presented by escape of significant flow. This corresponds to accidental ruptures in tanks. The following four phases are looked at: the escape incident and the determination of the leak flow; the formation of the liquid layer and the vaporization of the hydrogen; the formation of the Hydrogen cloud in air; and the explosive ignition in the atmosphere, propagation of the explosive flame and evaluation of the pressure wave. This situation has been limited to dispersion in free air and does not consider the impact of containment

  14. An Analysis of Dental Enamel after Bleaching using 35% Hydrogen Peroxide with Energy-dispersive X-ray Spectroscopy

    OpenAIRE

    Asmawati, Dr. drg. Asmawati, M.Kes

    2017-01-01

    Hydrogen peroxide (H2O2) is an effective bleaching agent of tooth whitening, but its use causes changes in the chemical composition of the elements that configure tooth enamel. The purpose of this study is to determine whether there are changes in the composition of the elements that configure the tooth enamel after bleaching using 35% hydrogen peroxide. Background: Hydrogen peroxide (H2O2) is an effective bleaching agent of tooth whitening, but its use causes changes in the chemical compo...

  15. Characterization and Testing of Improved Hydrogen Getter Materials - FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandoval, Cynthia Wathen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    Organic-based hydrogen getter materials have been in use for many years. These materials are able to prevent the dangerous buildup of hydrogen gas in sealed containers, and are also used to protect surrounding materials from degradation caused by chemical reactions. This document describes these materials.

  16. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    Buczek, B.; Wolak, E.

    2005-01-01

    In the present century hydrogen will lie the most important source of energy and will replace petroleum and petroleum-derived products in the next future. Hydrogen is an almost ideal fuel, both because of its unlimited accessibility and for ecological reasons; the product of its combustion - water vapour - is neither any gaseous contamination nor a component of greenhouse gases. Nowadays hydrogen is applied in industrial processes, but may be also used as a source of house lighting and heating energy, for production of electricity, and as fuel for car engines. Fuel cells, applying reaction between hydrogen and oxygen for production of electricity have been for a long time used in the space technology. Application of hydrogen as fuel should give a possibility of storage and transfer of the high quality energy, i.e. the energy of a high exo-energetic ratio[l]. Due to its low density, one of the main obstacles to the widespread use of hydrogen in energy sector is an efficient storage technology. At present, the methods of hydrogen storage are to liquefy and store in refrigerated containers, which is very expensive, or to store it in high - pressure gas cylinders at room temperature. Unfortunately, low storage density of hydrogen for the latter technique is a significant drawback. Between alternatives have been considered (chemical storage in irreversible hydrogen carriers like methanol or ammonia, reversible metal and chemical hydrides and adsorption in porous media), the latter one seems to be the most promising [2]. Physical adsorption is a method by which more gas can be stored at a lower pressure by means of Van der Waals interactions at the gas solid interface. Adsorptive storage is particularly promising for permanent gases, which need to be stored, transported, or used in ambient temperature. Thanks to the high density of adsorbed phase, adsorptive storage system could allow the storage of a high density of hydrogen at much lower pressures than compression and

  17. Bioconversion of corncob to hydrogen using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chunmei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China); Biotechnology Department, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011 (China); Zhang, Shufang; Fan, Yaoting; Hou, Hongwei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China)

    2010-04-15

    Biohydrogen production from corncob using natural anaerobic microflora was reported for the first time. The optimum pretreatment condition for the corncob was determined to be 100 C, 30 min, and 1% HCl (w/w). The maximum hydrogen yield of 107.9 ml/g-TVS and hydrogen production rate of 4.20 ml/g-TVS h{sup -1} was obtained under the condition of 10 g/l substrate concentration and initial pH 8.0. Butyrate and acetate were the dominant metabolic by-products of hydrogen fermentation. Chemical composition analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the mechanism of degrading corncob for hydrogen production. The amorphous domains of cellulose and hemicellulose were hydrolyzed into fermentable saccharides through acid pretreatment and the microorganisms had a devastating effect on the crystallinity of the cellulose. The hydrogen yield from pretreated corncob was much higher than from raw corncob. Therefore, the acid pretreatment played a crucial role on hydrogen production from corncob. (author)

  18. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  19. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  20. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  1. French hydrogen markets in 2008-Overview and future prospects

    International Nuclear Information System (INIS)

    Le Duigou, A.; Amalric, Y.; Miguet, M.

    2011-01-01

    This study analyses the current industrial hydrogen markets in France on both a European and international scale, while endeavouring to assess future prospects by 2030. Hydrogen is produced either on purpose or unintentionally as a co-product. Intentional production of hydrogen, generally from natural gas, is classified as captive or merchant hydrogen. France produces about 920,000 metric tons of hydrogen annually. The producer and consumer industries are, in decreasing order of importance are: oil for refinery and petrochemicals, ammonia, iron and steel (co-production), chemicals, and chlorine (co-production). The intentional production of hydrogen from natural gas amounts to less than that co-produced: 40% compared with 60%. The amount of burned hydrogen is about 25% of the total. Production-related carbon dioxide emissions range between 1% and 2% of the total emissions in France. There is an increasing trend in the industrial hydrogen production, essentially due to the oil industry whereas a decline in production is expected in the ammonia industry. The annual production around 2030 should therefore be greater than 1 million metric tons (MMT) per year. If the iron and steel industry were to use hydrogen in every possible situation, it would double the total quantity of hydrogen produced and consumed in France. (authors)

  2. A Theme-Based Course: Hydrogen as the Fuel of the Future

    Science.gov (United States)

    Shultz, Mary Jane; Kelly, Matthew; Paritsky, Leonid; Wagner, Julia

    2009-01-01

    A theme-based course focusing on the potential role of hydrogen as a future fuel is described. Numerous topics included in typical introductory courses can be directly related to the issue of hydrogen energy. Beginning topics include Avogadro's number, the mole, atomic mass, gas laws, and the role of electrons in chemical transformations. Reaction…

  3. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  4. An overview of hydrogen storage materials: Making a case for metal organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-04-01

    Full Text Available hydrogen needs to be stored in a safe and compact manner by combining the gas with other materials either chemically or physically. Hydrogen storage is therefore an extremely active area of research worldwide with many different materials being examined...

  5. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  6. Exploiting fields of gases containing hydrogen-sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Shevets, V.A.

    1980-01-01

    The anthology is devoted to problems of geology, hydrogeology, drilling, industrial development, and processing of gas and condensate at the Orenburg Gas-Chemical Complex. Reviews ways to develop the technology for further processing of hydrogen sulfide gas, as well as handling corrosion.

  7. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  8. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  9. Biological hydrogen formation by thermophilic bacteria

    NARCIS (Netherlands)

    Bielen, A.A.M.

    2014-01-01

    Hydrogen gas (H2) is an important chemical commodity. It is used in many industrial processes and is applicable as a fuel. However, present production processes are predominantly based on non-renewable resources. In a biological H2 (bioH2) production

  10. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  11. Solubility of hydrogen isotopes in liquid LiPb

    International Nuclear Information System (INIS)

    Konishi, S.; Yamamoto, Y.; Noborio, K.; Calderoni, P.; Merrill, B.

    2014-01-01

    This research was performed mainly in the first half of the task 1-2 of TITAN project to investigate the interaction between hydrogen isotopes and liquid LiPb. Solubility of hydrogen in liquid LiPb was measured under a static condition. Kyoto University provided the first experimental apparatus shipped to Idaho, and Kyushu University succeeded the experiment and further improved. Obtained solubility generally agreed with some previous reports, but varied orders of magnitudes suggesting influence of impurity or other chemical processes. (author)

  12. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion; Developpement de populations microbiennes oxydant l'hydrogene produit par radiolyse ou par corrosion des metaux

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M F; Sellier, R; Marty, V; Camaro, S [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H{sub 2} production in a bituminized nuclear waste environment were simulated in the present study: - H{sub 2} production by iron corrosion under anaerobic conditions was simulated by adding 10% of H{sub 2} in the atmosphere; - H{sub 2} production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H{sub 2} in water allows the growth of hydrogen oxidizing bacteria leading to: - CO{sub 2} and N{sub 2} production; - H{sub 2} consumption; - lower NO{sub 3}{sup -} concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO{sub 3}{sup -} release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H{sub 2} instead of hydrocarbons. (authors)

  13. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  14. Cea assessment of the sulphur-iodine cycle for hydrogen production

    International Nuclear Information System (INIS)

    Caries, Ph.; Vitart, X.; Yvon, P.

    2010-01-01

    The sulphur-iodine cycle is a promising process for hydrogen production using nuclear heat: - it is a purely thermochemical cycle, implying that hydrogen production will scale with volume rather than surface; - it only involves fluids, thus avoiding the often difficult handling of solids; - its heat requirements are well matched to the temperatures available from a Generation IV very/high temperature reactor. These characteristics seem very attractive for high efficiency and low cost massive hydrogen production. On the other hand, the efficiency of the cycle may suffer from the large over-stoichiometries of water and iodine and the very important heat exchanges it involves; furthermore, due to lack of adequate thermodynamic models, its efficiency is difficult to assess with confidence. Besides, the large quantities of chemicals that need to be handled, and the corrosiveness of these chemicals, are factors not to be overlooked in terms of investment and operation costs. In order to assess the actual potential of the sulphur-iodine cycle for massive hydrogen production at a competitive cost, CEA has been conducting an important programme on this cycle, ranging from thermodynamic measurements to hydrogen production cost evaluation, with flow sheet optimisation, component sizing and investment cost estimation as intermediate steps. The paper will present the method used, the status of both efficiency and production cost estimations, and discuss perspectives for improvement. (authors)

  15. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  16. The safe production of hydrogen by nuclear power

    International Nuclear Information System (INIS)

    Verfondern, Karl

    2009-01-01

    One of the most promising 'GEN-IV' nuclear reactor concepts is the Very High Temperature Reactor (VHTR). It is characterized by a helium-cooled, graphite moderated, thermal neutron spectrum reactor core of 400-600 MW(th). Coolant outlet temperatures of 900-1000 .deg. C ideally suited for a wide spectrum of high temperature process heat or process steam applications, which allow to deliver, besides the classical electricity, also non-electrical products such as hydrogen or other fuels. In a future energy economy, hydrogen as a storable medium could adjust a variable demand for electricity by means of fuel cell power plants providing much more flexibility in optimized energy structures. The mass production of hydrogen is a major goal for Gen-IV systems. In a nuclear hydrogen production facility, the coupling between the nuclear plant and the process heat/steam application side is given by an intermediate heat exchanger (IHX), a component which provides a clear separation preventing the primary coolant from accessing the heat application plant and, vice versa, any process gases from being routed through the reactor containment. The physical separation has the advantage that the heat application facility can be conventionally designed, and repair works can be conducted under non-nuclear conditions. With regard to the safety of combined nuclear and chemical facilities, apart from their own specific categories of hazards, a qualitatively new class of events will have to be taken into account characterized by interacting influences. Arising problems to be covered by a decent overall safety concept are the questions of safety of the nuclear plant in case of fire and explosion hazards resulting from the leakage of flammable substances, the tolerable tritium contamination of the product hydrogen, or the situations of thermo-dynamic feedback in case of a loss of heat source (nuclear) or heat sink (chemical) resulting in thermal turbulences. A safety-related issue is the

  17. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  19. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  20. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  1. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  2. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    Science.gov (United States)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  3. HYDROGEN INDUCED CRACKING IN MICROALLOYED STEELS

    Directory of Open Access Journals (Sweden)

    Duberney Hincapie-Ladino

    2015-03-01

    Full Text Available The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2 S and carbon dioxide (CO2 , requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2 S, particularly, when related to the Hydrogen Induced Cracking (HIC phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2 S presence effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

  4. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    Science.gov (United States)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  5. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  6. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  7. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  8. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  9. Low-Cost Precursors to Novel Hydrogen Storage Materials

    International Nuclear Information System (INIS)

    Linehan, Suzanne W.; Chin, Arthur A.; Allen, Nathan T.; Butterick, Robert; Kendall, Nathan T.; Klawiter, I. Leo; Lipiecki, Francis J.; Millar, Dean M.; Molzahn, David C.; November, Samuel J.; Jain, Puja; Nadeau, Sara; Mancroni, Scott

    2010-01-01

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH 4 ), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH 4 from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H 2 ) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH 4 as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH 4 is a key building block to most boron-based fuels, and the ability to produce NaBH 4 in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering

  10. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  11. Hydrogen treatment system in the Genkai nuclear power plant No. 2

    International Nuclear Information System (INIS)

    Nakamura, Masayuki; Kodama, Hideo; Murashima, Masayasu

    1977-01-01

    The new hydrogen treatment system which injects hydrogen into the volume control tank for purging the mixed waste gas of Kr, Xe, etc. is adopted in the Genkai nuclear power plant No. 2. The system is composed of mainly the waste gas pretreatment equipment, a palladium alloy membrane type hydrogen separator, a hydrogen compressor, and a waste gas decay tank. The outline of the primary cooling system and the chemical volume control system of PWR, the hydrogen treatment system, and the gaseous waste disposal system of original and new types for the Genkai nuclear power plants No. 1 and 2 are explained in this paper. This newly added hydrogen treatment system will be able to reduce the rare gas concentration rate in the primary coolant to about 1/2 and 1/5 for Kr 85 and Xe 133 , respectively. (auth.)

  12. Hydrogen evolution under visible light over LaCoO3 prepared by chemical route

    International Nuclear Information System (INIS)

    Meziani, D.; Reziga, A.; Rekhila, G.; Bellal, B.; Trari, M.

    2014-01-01

    Highlights: • Visible-light hydrogen evolution is achieved on the hetero-system LaCoO 3 /SnO 2 . • The crystal field splits the Co 3+ : 3d orbital by a value of 2.05 eV. • The capacitance plot shows p-type conduction with flat band potential of 0 V SCE. • The photo-electrochemistry yields a valence and conduction bands of 3d parentage. - Abstract: The semiconducting properties of the perovskite LaCoO 3 , prepared by nitrate route, are investigated for the first time by the photo-electrochemical technique. The oxide shows a direct optical transition at 1.33 eV, due to Co 3+ : 3d orbital splitting in octahedral site and possesses a chemical stability over a fair pH range (4–14). The conductivity follows an exponential type law with a hole mobility (8.3 × 10 −2 cm 2 V −1 s −1 ), thermally activated. The Mott–Schottky plot in KOH medium is characteristic of p type conduction with a flat band potential of 0 V SCE and a holes density of 1.35 × 10 17 cm −3 . The electrochemical impedance spectroscopy reveals the predominance of the bulk and grains boundaries contributions with a constant phase element and a multi-relaxation type nature. As application, the hydrogen evolution upon visible light is demonstrated on the hetero-junction LaCoO 3 /SnO 2 . The best performance occurs at pH ∼ 12.8 with an evolution rate of 0.25 cm 3 min −1 (mg LaCoO 3 ) −1 and a quantum yield of 0.11%. The improved activity is attributed to the wide depletion width of ∼10 nm and the potential of the conduction band of LaCoO 3 (−1.34 V SCE ), more negative than that of SnO 2 , the latter acts as electrons bridge for the interfacial water reduction. The relevance of 3d orbital of the performance of semi conducting photoelectrode is discussed

  13. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  14. Hydrogen `96: From vision to reality. 11. world hydrogen enery conference in Stuttagrt; Hydrogen `96: Von der Vision zur Realitaet. 11. Welt-Wasserstoffenergie-Konferenz in Stuttgart

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-08-01

    More than 700 attendants from 45 countries, 140 technical lectures, 6 plenary lectures, 220 poster presentations, 18 exhibitors from sectors such as high-performance electrolysis for hydrogen generation, fuel cells, hydrogen-powered motor cars and hydrogen filling stations - such is, in a few numbers, the statistics of the Hydrogen `96 Conference. The 11th world conference on energy from hydrogen took place in Stuttgart from 23 to 28 June 1996. The event was opened by Dr. Angela Merkel, the federal German minister for environmental affairs, nature conservancy and reactor safety. The organization of the conference was taken care of by DECHEMA (Deutsche Gesellschaft fuer Chemisches Apparatewesen, Chemische Technik und Biotechnologie), Frankfurt, who were assisted by experienced partners. To mention only a few: Deutsche Forschungsgesellschaft fuer Luft- und Raumfahrt, the VDI Energietechnik Society, the Center for Solar Energy and Hydrogen Research, and the European Federation of Chemical Engineering. (orig.) [Deutsch] Mehr als 700 Teilnehmer aus 45 Laendern, 140 Fachvortraege, 6 Plenarvortraege, 220 Posterpraesentationen, dazu 18 Aussteller aus Bereichen, wie Hochleistungselektrolysen zur Wasserstofferzeugung, Brennstoffzellen, wasserstoffgetriebene Autos und Tankstellen fuer Wasserstoff, das ist, in wenigen Zahlen aufgelistet, die Tagungsstatistik der Hydrogen `96. Die 11. Welt-Wasserstoffenergie-Konferenz fand vom 23. bis 28. Juni 1996 in Stuttgart statt. Eroeffnet wurde die Veranstaltung von der Bundesministerin fuer Umwelt, Naturschutz und Reaktorsicherheit, Dr. Angela Merkel. Die organisatorische Kompetenz lag bei der DECHEMA, der Deutschen Gesellschaft fuer Chemisches Apparatewesen, Chemische Technik und Biotechnologie in Frankfurt, die bei der Vorbereitung der Konferenz auf bewaehrte Partner zurueckgreifen konnte. Genannt seien nur die Deutsche Forschungsgesellschaft fuer Luft- und Raumfahrt, die VDI-Gesellschaft Energietechnik, das Zentrum fuer Sonnenenergie

  15. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  16. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  17. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    International Nuclear Information System (INIS)

    Palacios, W.D.; Koropecki, R.R.; Arce, R.D.; Busso, A.

    2008-01-01

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium

  18. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, W.D. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina); Koropecki, R.R. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina)], E-mail: rkoro@intec.ceride.gov.ar; Arce, R.D. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina); Busso, A. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina)

    2008-04-30

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium.

  19. Hydrogenation of ethylene over PrCo5Hsub(2.4)

    International Nuclear Information System (INIS)

    Soga, Kazuo; Imamura, Hayao; Ikeda, Sakuji

    1977-01-01

    To elucidate the chemical reactivity of the hydrogen atom absorbed in the hydrogenated alloy PrCo 5 H sub(n), the hydrogenation of ethylene was carried out over PrCo 5 Hsub(2.4) in the absence (A) or presence (B) of hydrogen in gas phase. PrCo 5 Hsub(2.4) was prepared from PrCo 5 according to an ordinary procedure with repeated heating and cooling in hydrogen atmosphere. The hydrogenation of ethylene was conducted at about -70 0 C in a conventional gas circulation system in a pressure range of ethylene 5 -- 16 cmHg and hydrogen 0 -- 38.0 cmHg. The hydrogenation rate was followed by gas chromatography. In the case of (A), the total gas pressure in the gas phase remained constant during the reaction. The hydrogenation rate was independent of the partial pressure of ethylene and it increased in proportion to the concentration of the absorbed hydrogen atom. The rate of desorption of the absorbed hydrogen atom from PrCo 5 Hsub(2.4) also measured under a reduced pressure. The desorption rate was approximately the same as the hydrogenation rate under the similar conditions. From these results, it was concluded that the migration process of the absorbed hydrogen atom from the bulk of the alloy to its surface was rate-determining. In the case of (B), on the other hand, the hydrogenation rate was accelerated by the gaseous hydrogen; the rate increased almost linearly with increasing pressure of hydrogen. The hydrogenation of ethylene was also conducted over PrCo 5 under the similar conditions. (auth.)

  20. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiyong [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); School of Environment and Energy, Shenzhen Graduate School of Peking University, 518055, (China); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Bitton, Gabriel [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States)

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H{sub 2}S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H{sub 2}S production in landfills results from biological activity, the concept of inhibiting H{sub 2}S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na{sub 2}MoO{sub 4}), ferric chloride (FeCl{sub 3}), and hydrated lime (Ca(OH){sub 2}) - were evaluated using flask and column experiments. All three agents inhibited H{sub 2}S generation, with Na{sub 2}MoO{sub 4} reducing H{sub 2}S generation by interrupting the biological sulfate reduction process and Ca(OH){sub 2} providing an unfavorable pH for biological growth. Although FeCl{sub 3} was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H{sub 2}S production in the column experiment was a reduction in pH. Application of both Na{sub 2}MoO{sub 4} and FeCl{sub 3} inhibited H{sub 2}S generation over a long period (over 180 days), but the impact of Ca(OH){sub 2} decreased with time as the alkalinity it contributed was neutralized by the generated H{sub 2}S. Practical application and potential environmental implications need additional exploration.

  1. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  3. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  4. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on chemical use); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kagaku riyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-04-15

    The whole amount of hydrogen consumption for chemical industries all over the world is estimated to be 249.7 billion Nm{sup 3} in 1974, while 367.2 billion Nm{sup 3} in 1980 roughly under a bold assumption, based on 3 current big consumption fields of ammonia production, methanol production and petroleum refining, and some promising fields in the future such as reduced iron and synthetic protein. Consumption ratios for every field are probably 54.9% in ammonia production, 30% in petroleum refining, 9.5% in methanol production and 5.6% in others in 1974, and nearly similar in 1980. However, although there are various troubles, if a large amount of methanol is used as fuel in the future, and its production plan is promoted to satisfy the demand of methanol fuel, hydrogen consumption for methanol production will increase drastically. In the future, if the production process of hydrogen as secondary fuel is established, such hydrogen also will be used for various chemical industries naturally. Research was thus made on use of oxygen as byproduct inevitably. (NEDO)

  5. Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition.

    Science.gov (United States)

    Tao, Shasha; Yang, Florent; Schuch, Jona; Jaegermann, Wolfram; Kaiser, Bernhard

    2018-03-09

    Ni nanoparticles (NPs) consisting of Ni, NiO, and Ni(OH) 2 were formed on Ti substrates by electrodeposition as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. Additionally, the deposition parameters including the potential range and the scan rate were varied, and the resulting NPs were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The chemical composition of the NPs changed upon using different conditions, and it was found that the catalytic activity increased with an increase in the amount of NiO. From these data, optimized NPs were synthesized; the best sample showed an onset potential of approximately 0 V and an overpotential of 197 mV at a cathodic current density of 10 mA cm -2 as well as a small Tafel slope of 88 mV dec -1 in 1 m KOH, values that are comparable to those of Pt foil. These NPs consist of approximately 25 % Ni and Ni(OH) 2 each, as well as approximately 50 % NiO. This implies that to obtain a successful HER electrocatalyst, active sites with differing compositions have to be close to each other to promote the different reaction steps. Long-time measurements (30 h) showed almost complete transformation of the highly active catalyst compound consisting of Ni 0 , NiO, and Ni(OH) 2 into the less active Ni(OH) 2 phase. Nevertheless, the here-employed electrodeposition of nonprecious metal/metal-oxide combination compounds represents a promising alternative to Pt-based electrocatalysts for water reduction to hydrogen. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  7. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor; Modelisation des effets de l'hydrogene sur la morphogenese des nanostructures de silicium hydrogene dans un reacteur plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brulin, Q

    2006-01-15

    This work pursues the goal of understanding mechanisms related to the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor through modeling techniques. Current technologies are first reviewed with an aim to understand the purpose behind their development. Then follows a summary of the possible studies which are useful in this particular context. The various techniques which make it possible to simulate the trajectories of atoms by molecular dynamics are discussed. The quantum methods of calculation of the interaction potential between chemical species are then developed, reaching the conclusion that only semi-empirical quantum methods are sufficiently fast to be able to implement an algorithm of quantum molecular dynamics on a reasonable timescale. From the tools introduced, a reflection on the nature of molecular metastable energetic states is presented for the theoretical case of the self-organized growth of a linear chain of atoms. This model - which consists of propagating the growth of a chain by the successive addition of the atom which least increases the electronic energy of the chain - shows that the Fermi level is a parameter essential to self organization during growth. This model also shows that the structure formed is not necessarily a total minimum energy structure. From all these numerical tools, the molecular growth of clusters can be simulated by using parameters from magnetohydrodynamic calculation results of plasma reactor modeling (concentrations of the species, interval between chemical reactions, energy of impact of the reagents...). The formation of silicon-hydrogen clusters is thus simulated by the successive capture of silane molecules. The structures formed in simulation at the operating temperatures of the plasma reactor predict the formation of spherical clusters constituting an amorphous silicon core covered by hydrogen. These structures are thus not in a state of minimum energy, contrary to certain experimental

  8. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  9. Storage and characterization of the hydrogen in mixed oxides on base of cerium-nickel and zirconium or the aluminium

    International Nuclear Information System (INIS)

    Debeusscher, S.

    2008-12-01

    The mixed oxides based on cerium-nickel and zirconium or aluminium are able to store large quantities of hydrogen, To determine nature, reactivity and properties of hydrogen species (spill-over, direct desorption), the solid were studied by different physicochemical techniques in the dried, calcined and partially reduced states: XRD, porosity, TGA, TPR, TPA, TPD, chemical titration and inelastic neutron scattering (INS). Solids are mainly meso-porous with a common pore size at 4 nm, They are constituted of CeO 2 phase, Ce-Ni or Ce-Ni-Zr solid solution and of Ni(OH) 2 in the dried state and NiO in the calcined state. The Ni species are in various environments and the strong interactions between the cations in solid solution and at different particles interface influence their reducibility and the creation of anionic vacancies. Activation in H 2 in temperature is determining for hydrogen storage in the solid while calcination step is not necessary. INS Analyses evidence that the hydrogen species inserted during treatment in H 2 are H + (OH - ), hydride H - and H * (metallic nickel) species, present in various chemical environments, in particular for hydride species. All kinds of hydrogen species participate to the reaction during the chemical titration in agreement with the proposed hydrogenation mechanism. The study of the adsorption of hydrogen shows that this step is fast and in quantity of the same order as that measured by chemical titration. The direct desorption of H 2 is very low, linked to the presence of hydrogen in interaction with metallic nickel (H *- .). Desorption of water is also observed, in parallel, corresponding to the elimination of groups. The hydride species are not desorbed. These various observations allow connecting hydrogen species properties with their localization in the structure and to model active sites. (author)

  10. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  11. Study of hydrogen interaction with SiO2/Si(100) system using positrons

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Lynn, K.G.; Leung, T.C.; Nielsen, B.; Wu, X.Y.

    1991-01-01

    We describe positron annihilation studies of SiO 2 /Si(100) structures having 100-nm-thick oxide grown by plasma enhanced chemical vapor deposition. A normalized shape parameter is used to characterize the positron annihilation spectra. Activation and passivation of interface states by atomic hydrogen are demonstrated by repeated vacuum anneal and atomic hydrogen exposure. Hydrogen activation energy is derived for one of the samples as 2.02±0.07 eV

  12. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  13. Trace detection of hydrogen peroxide vapor using a carbon-nanotube-based chemical sensor.

    Science.gov (United States)

    Lu, Yijiang; Meyyappan, M; Li, Jing

    2011-06-20

    The sensitive detection of hydrogen peroxide in the vapor phase is achieved using a nanochemical sensor consisting of single-walled carbon nanotubes as the sensing material. The interdigitated electrode-based sensor is constructed using a simple and standard microfabrication approach. The test results indicate a sensing capability of 25 ppm and response and recovery times in seconds. The sensor array consisting of 32 sensor elements with variations in sensing materials is capable of discriminating hydrogen peroxide from water and methanol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  15. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  16. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.; Hart, E.J.; Flynn, K.F.; Gindler, J.E.

    1976-04-01

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO 2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  17. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  18. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa).

    Science.gov (United States)

    Fujii, Yoshiharu

    2003-06-01

    We have studied on allelopathy of plants and developed methods to identify the effective substances in root exudates, leaf leacheate, and volatile chemicals emitted from plants. We found traditional cover plants that show allelopathic activity are useful for weed control. It could eliminate the use of synthetic chemicals for this purpose. Allelopathy is a natural power of plants to protect themselves by producing natural organic chemicals. Some endemic plants in Asia, already known by farmers in the region, as either cover crops used in intercropping, hedgerow, or agroforestry, were found to possess strong allelopathic abilities. Our group identified several allelochemicals from these plants. These allelopathic cover crops, mostly leguminous plants, provide protein rich food, and grow easily without artificial fertilizers, herbicides, insecticides and fungicides. In this regards, these allelopathic cover crops could save food shortage in rural area, and are useful for environmental conservation. Screenings of allelopathic plants by specific bioassays and field tests have been conducted. Hairy vetch (Vicia villosa) and Velvet bean (Mucuna pruriens) are two promising species for the practical application of allelopathy. An amino acid, L-DOPA, unusual in plants, plays an important role as allelochemical in Velvet bean (Mucuna pruriens). Hairy vetch is the most promising cover plant for the weed control in orchard, vegetable and rice production and even for landscape amendment in abandoned field in Japan. We have isolated "cyanamide", a well known nitrogen fertilizer, from Hairy vetch. This is the first finding of naturally produced cyanamide in the world.

  19. Rupture mechanics of metallic alloys for hydrogen transport

    International Nuclear Information System (INIS)

    Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.

    2007-01-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  20. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vijayamohanan K Pillai. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 719-725. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical ...

  2. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  3. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Clean Energy Research Inst., Univ. of Miami, Coral Gables, Florida (United States)

    2009-07-01

    'Full text': Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted quickly. Also, their combustion products are causing global problems such as the greenhouse effect, ozone layer depletion, acid rains and pollution, all of which are posing great danger for our environment and eventually for the life on our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, and little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century. (author)

  4. Saga of hydrogen civilization

    International Nuclear Information System (INIS)

    Veziroglu, T.N.

    2009-01-01

    'Full text': Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted quickly. Also, their combustion products are causing global problems such as the greenhouse effect, ozone layer depletion, acid rains and pollution, all of which are posing great danger for our environment and eventually for the life on our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, and little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century. (author)

  5. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  6. Experimental results and analysis on hydrogen combustion

    International Nuclear Information System (INIS)

    Dorofeev, S.B.; Efimenko, A.A.; Kochurko, A.S.; Sidorov, V.P.; Bezmelnitsin, A.V.

    1994-01-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam-mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperature between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15% and 50%, and for a mixture of equimolar hydrogen-air and 30% steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44% hydrogen, and from 15 to 11% hydrogen, were observed on a time frame of minutes. The DeSoete rate equation predicts the 50% experiment very well, but greatly underestimates the reaction rate of the lean mixtures

  7. Thymol Hydrogenation in Bench Scale Trickle Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Dudas, J.; Hanika, Jiří; Lepuru, J.; Barkhuysen, M.

    2005-01-01

    Roč. 19, č. 3 (2005), s. 255-262 ISSN 0352-9568 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * trickle bed reactor * gas-liquid-solid reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.632, year: 2005

  8. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  9. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  10. Development of control technology for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A cooling system for a secondary helium with a steam generator (SG) and a radiator is installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of ±10 K at SG outlet. A dynamic simulation code of the cooling system for HTTR-H2 was verified with the obtained test data

  11. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.

    Science.gov (United States)

    Prieto, Gonzalo

    2017-03-22

    Under specific scenarios, the catalytic hydrogenation of CO 2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO 2 into C 1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C 2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C 1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO 2 to C 2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  13. The reactions of oxygen and hydrogen with liquid sodium

    International Nuclear Information System (INIS)

    Ullmann, H.

    1981-01-01

    Results so far available as to the reactions and chemical equilibrium of oxygen and hydrogen with liquid sodium have been analyzed critically. The enthalpy values of the reactions have been discussed and supplemented on the basis of corresponding BORN-HABER cycles. The concentration and temperature functions of the hydrogen equilibrium pressure were deduced from experimental results. In relation to the solubility data the solid phases coexisting with liquid sodium in the ternary system Na-O-H have been discussed. The reaction of oxygen with hydrogen in diluted solution in liquid sodium has been investigated in more detail. Interaction coefficients, and the temperature functions of the free energy of formation and the equilibrium constant have been determined. (orig.)

  14. Paracyclophane functionalized with Sc and Li for hydrogen storage

    Science.gov (United States)

    Sathe, Rohit Y.; Dhilip Kumar, T. J.

    2018-01-01

    Li and Sc metals functionalized on the delocalized π -electrons of benzene rings in [2,2]paracyclophane structure are studied for hydrogen storage efficiency by using the M06 DFT functional with 6-311G(d,p) basis set. It is found that Sc and Li functionalized [2,2]paracyclophane complexes can hold up to 10 H2 molecules and 8 H2 molecules by Kubas-Niu-Jena interaction and charge polarization mechanism with hydrogen weight percentage of 11.4 and 13.5, respectively. Molecular dynamics simulation at various temperatures showed appreciable thermal stability while the chemical potential calculation at room temperature reveals that Sc functionalized [2,2]paracyclophane system will be a promising hydrogen storage material.

  15. Plant's sterilization rule for fertile women cited.

    Science.gov (United States)

    1979-01-01

    The American Cyanamid Corporation has been cited by the Occupational Safety and Health Administration (OSHA) for violating federal law by requiring female employees of childbearing age to be sterilized in order to continue working in areas of the plant where they would be exposed to high levels of airborne lead. High levels of airborne lead can cause damage to workers' reproductive systems and be responsible for birth defects in fetuses. The OSHA charged that American Cyanamid's policy constituted a "willful violation" of the 1970 Occupational Safety and Health Act. The Act requires employers to provide employment that is free from recognized hazards likely to cause death or physical harm. According to OSHA, the Act does not allow an employer to eliminate the hazard by compelling employees to choose between losing their jobs and undergoing sterilization. The reproductive health of workers is considered a valid part of OSHA's regulatory concern. The citation, which carries a $10,000 fine, grew out of a complaint that was filed by the Oil, Chemical and Atomic Workers Union on behalf of 5 female workers working in the lead pigment division of the company's Willow Island, West Virginia plant. The 5 employees alleged that they had themselves sterilized to avoid being transferred to other and possibly lower paying janitorial jobs or losing thier jobs completely. The company is appealing the citation. The union has also filed a complaint with the Equal Employment Opportunity Commission charging American Cyanamid with sex discrimination, since only the women workers are at risk of being transferred to lower paying jobs.

  16. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Science.gov (United States)

    2011-01-31

    combinations have been investigated for the production of hydrogen from biomass carbohydrate. Chemical catalysis approaches include pyrolysis [19...temperature. High fructose corn syrup, low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...gasoline, vegetable oil vs. biodiesel, corn kernels vs. ethanol [31,109]. Given a price of $0.18/kg carbohydrate (i.e., $10.6/GJ) [2,44], the hydrogen

  17. A new concept of hydrogen production system for sodium cooled FBR

    International Nuclear Information System (INIS)

    Nakagiri, Toshio; Aoto, Kazumi; Hoshiya, Taiji

    2004-01-01

    A new thermo-chemical and electrolytic hybrid hydrogen production process (thermo-chemical and electrolytic Hybrid Hydrogen process in Lower Temperature range: HHLT) is newly proposed by the Japan Nuclear Cycle Development Institute (JNC) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeding Reactor (FBR). The HHLT process is based on the sulfuric acid (H 2 SO 4 ) synthesis and decomposition processes developed earlier (Westinghouse process), and sulfur trioxide (SO 3 ) decomposition process of HHLT is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce operating temperature 200degC-300degC lower than Westinghouse process. Decomposition processes of SO 3 were confirmed with the cell voltage lower than 0.5 V at 500degC-600degC using 8mol yttria stabilized zirconia (8molYSZ) solid electrolyte and platinum electrode. Therefore, total voltage required for HHLT is expected to be lower than 1.0 V, because the voltage required for sulfuric acid synthesis is about 0.5V. Thermal efficiency of HHLT based on chemical reactions was roughly estimated to be within the range of 35% to 55% under the influence of H 2 SO 4 concentration and heat recovery. These results show the possibility of development of a new hydrogen production process which needs low splitting voltage and has high efficiency at around 500degC, utilizing the heat generation of sodium cooled FBR. SO 3 splitting with the voltage lower than 0.5V was confirmed at about 500degC experimentally, and ideal thermal efficiency of the cycle based on chemical reactions was evaluated. Furthermore, test apparatus to substantiate whole process of HHLT was manufactured. (author)

  18. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  19. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  20. Method and apparatus for hydrogen production from water

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.