Sample records for chemical gradient-mediated melting

  1. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G


    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  2. Melt and Chemical Transport in the Mantle: Insights from Deglaciation-Induced Melting Perturbations in Iceland (United States)

    Eason, D. E.; Ito, G.; Sinton, J. M.


    Eruptive products represent a time-averaged view of the melting region and melt migration processes, making numerous fundamental parameters of the melt system difficult to constrain. Temporal and spatial variations in melting provide potential windows into this obscure region of the Earth by preferentially sampling melts from different regions of the mantle or mixing melts over different length-scales. We present a newly extended geochemical time series from the Western Volcanic Zone (WVZ) of Iceland, which experienced a short-lived melting perturbation due to glacial unloading during the last major deglaciation (~15-10 ka). Glacial unloading during this period led to increased degrees of melting particularly in the shallow mantle, which is manifest as an observed increase in volcanic production up to 30 times the steady-state value, decreased levels of highly to moderately incompatible element ratios (e.g., a 35-50% decrease in Nb/Y, with the greatest change occurring in the northernmost WVZ), and elevated SiO2 and CaO concentrations (~0.8 wt. % and ~1.9 wt. % increase in average oxide concentrations respectively) during and immediately following deglaciation. Although eruptive productivity returns to steady-state values within ~3000 yr following deglaciation, the incompatible element concentrations in erupted lavas gradually increase throughout the post-glacial period. We exploit this short-lived melting perturbation to examine and constrain knowledge of fundamental characteristics of melt generation and transport, including mantle permeability, melt ascent rates, depth-dependent melting functions (dF/dP), and the nature of chemical transport and melt mixing in the system. Using conservation equations describing the generation and porous flow of melt in a viscous matrix, we model melt migration in the mantle during and after ice sheet removal, as well as trace element transport for both equilibrium and disequilibrium transport end members. The predicted

  3. Nepheline structural and chemical dependence on melt composition

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, José; Crum, Jarrod; Neill, Owen; McCloy, John


    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.

  4. The effect of milkfat melting properties on chemical and physical properties of 20% reformulated cream


    Scott, Lisa Lenore


    The Effect of Milkfat Melting Properties on Chemical and Physical Properties of 20% Reformulated Cream Lisa L. Scott (ABSTRACT) Skim, sweet buttermilk, and butter derived aqueous phase components were used to re-emulsify low-melt and medium-melt fraction butteroils to yield 20% milkfat creams. The implications of separation temperature in obtaining components, melting point characteristics, and formulation on the chemical and physical properties of reformulated and natural crea...

  5. Chemical interactions and configurational disorder in silicate melts

    Directory of Open Access Journals (Sweden)

    G. Ottonello


    Full Text Available The Thermodynamics of quasi-chemical and polymeric models are briefly reviewed. It is shown that the two classes are mutually consistent, and that opportune conversion of the existing quasi-chemical parameterization of binary interactions in MO-SiO2 joins to polymeric models may be afforded without substantial loss of precision. It is then shown that polymeric models are extremely useful in deciphering the structural and reactive properties of silicate melts and glasses. They not only allow the Lux-Flood character of the dissolved oxides to be established, but also discriminate subordinate strain energy contributions to the Gibbs free energy of mixing from the dominant chemical interaction terms. This discrimination means that important information on the short-, medium- and long-range periodicity of this class of substances can be retrieved from thermodynamic analysis. Lastly, it is suggested that an important step forward in deciphering the complex topology of the inhomogeneity ranges observed at high SiO2 content can be performed by applying SCMF theory and, particularly, Matsen-Schick spectral analysis, hitherto applied only to rubberlike materials.

  6. Modeling the elution of organic chemicals from a melting homogeneous snow pack. (United States)

    Meyer, Torsten; Wania, Frank


    Organic chemicals are often released in peak concentrations from melting snow packs. A simple, mechanistic snowmelt model was developed to simulate and predict the elution of organic substances from melting, homogeneous snow, as influenced by chemical properties and snow pack characteristics. The model calculates stepwise the chemical transport along with the melt water flow in a multi-layered snow pack, based on chemical equilibrium partitioning between the individual bulk snow phases. The model succeeds in reproducing the elution behavior of several organic contaminants observed in previously conducted cold room experiments. The model aided in identifying four different types of enrichment of organic substances during snowmelt. Water soluble substances experience peak releases early during a melt period (type 1), whereas chemicals that strongly sorb to particulate matter (PM) or snow grain surfaces elute at the end of melting (type 2). Substances that are somewhat water soluble and at the same time have a high affinity for snow grain surfaces may exhibit increasing concentrations in the melt water (type 3). Finally, elution sequences involving peak loads both at the beginning and the end of melting are simulated for chemicals that are partially dissolved in the aqueous melt water phase and partially sorbed to PM (type 4). The extent of type 1 enrichment mainly depends on the snow depth, whereby deeper snow generates more pronounced concentration peaks. PM influences the elution behavior of organic chemicals strongly because of the very large natural variability in the type and amount of particles present in snow. Urban and road-side snow rich in PM can generate type 2 concentration peaks at the end of the melt period for even relatively water soluble substances. From a clean, melting snow pack typical for remote regions, even fairly hydrophobic chemicals can be released in type 1 mode while being almost completely dissolved in the aqueous melt water phase. The

  7. Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. (United States)

    Chen, Jinyao; Chen, Yingzi; Li, Huilin; Lai, Shih-Yaw; Jow, Jinder


    The physical and chemical effects of ultrasound on polypropylene (PP) melts in extrusion were investigated. By applying ultrasound vibration to the entrance of the die, apparent pressure and viscosity of PP can be obviously decreased under the appropriate ultrasound power. Ultrasound has both physical and chemical effects on the polymer melt. In our study with specific polymer and ultrasound system, we determined that the chemical effect makes up 35-40% of the total effect of ultrasound on the apparent viscosity reduction of PP melts at most of the studied intensities. The physical effect plays a more important role in the ultrasound-applied extrusion than the chemical effect. This chemical effect is an irreversible and permanent change in molecule weight and the molecular-weight distribution due to ultrasound. As the ultrasound intensity increases, the molecular weight of PP reduces and its molecular-weight distribution becomes narrower; the orientation of PP molecules along the flow direction reduces (in melt state) and the crystallinity of PP samples (in solid state) decreases by applying the ultrasound vibration. Ultrasound vibration increases the motion of molecular chains and makes them more disorder; it also affects the relaxation process of polymer melts by shortening the relaxation time of chain segments, leading to weakening the elastic effect and decreasing the extruding swell ratios. All the factors discussed above reduce the non-Newtonian flow characteristics of the polymer melt and result in the viscosity drop of the polymer melt in extrusion.

  8. Frictional melting dynamics in the upper conduit: A chemical answer to a complex physical question (United States)

    Henton De Angelis, S.; Lavallee, Y.; Kendrick, J. E.; Hornby, A.; von Aulock, F. W.; Clesham, S.; Hirose, T.; Perugini, D.


    During volcanic eruptions the generation of frictional heat along the walls of the shallow conduit leads to melting of the rocks along the slip interface. Frictional melting has previously been described as a process out of thermodynamic equilibrium, but upon slip and mingling of the melt batches, homogeneity can be achieved, and may have an h important rheological control on the dynamics of slip. To test melt homogenization in the frictional melt zones of volcanic conduits we performed constant-rate slip experiments under controlled stress conditions using a high-velocity rotary shear apparatus. Volcanic dome samples from three different volcanoes (Volcán De Colima, Soufrière Hills Volcano and Santiaguito Volcano) were investigated. Each sample was subjected to a stress of 1 MPa and slip rate of 1 m/s. For each sample set 5 experiments were conducted: 1) experiment stopped at the onset of melting; 2) experiment stopped on the formation of a full melt layer; 3) experiment stopped after 5m of slip at steady state conditions; 4) experiment stopped after 10m of slip at steady state conditions; 5) experiment stopped after 15m of slip at steady state conditions. We analyzed the resulting proto-melt zones using micron sized X-ray spectroscopy in the high-brightness synchrotron beamline I18 (at Diamond Light Source UK). Particular focus was given to the concentration variance analysis of Rare Earth Elements as their mobilities can be used to precisely quantify the degree and timescale of homogenisation involved during frictional melting. This study refines our understanding of the chemical process of melting and mixing which carry important consequences for the rheological control on the physical dynamics of slip.

  9. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.


    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  10. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing (United States)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.


    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  11. Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution (United States)

    Plesa, A.-C.; Breuer, D.


    In the present work, we investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution. Two of these reservoirs can be sustained during the entire evolution - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites.

  12. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals. (United States)

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola


    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown.

  13. Influence of temperature and chemical composition on phase transformations of selected oxide melts

    Directory of Open Access Journals (Sweden)

    J. Dobrovská


    Full Text Available The paper deals with structural changes of solid phase of selected oxide systems during their transition into liquid state. Analyses concerned poly-component systems forming basis of casting powders for CCM mould. Industrially used oxide system with prevailing contents of CaO–Al2O3–SiO2 components and with numerous accompanying admixtures was tested. Investigation was focused on temperatures, during which individual phases disappear and precipitate, as well as on influence of CaO content on phase composition at selected temperatures. The experiments were realised with use of original methodology consisting of shock cooling of the tested melt in liquid nitrogen. Thus obtained samples were further investigated by X-ray diffraction phase analyses at ambient temperatures. The obtained results provide additional data on physical-chemical properties of oxide systems, such as surface tension, viscosity, sintering intervals, etc., which can be used in technological practice for appropriate lubrication effect of casting powders in the mould.

  14. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T


    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants.

  15. Lithological, Chemical and Chronological Constraints on Melt Extraction from the Mantle Section of the ~492 Ma Shetland Ophiolite Complex, Scotland (United States)

    O'Driscoll, B.; Walker, R. J.; Clay, P. L.; Day, J. M.; Ash, R. D.; Daly, J. S.


    The mantle sections of ophiolites offer a means of studying the composition and structure of the oceanic mantle. In particular, the relations between different lithologies can be established in the field, permitting an assessment of the relative timing of processes such as melt extraction and melt-rock reaction. The Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (≥70 vol.%), with dominantly chondritic present-day 187Os/188Os compositions1. Melt extraction and melt-rock reaction is evident in the form of dunite and chromitite layers and lenses, with thicknesses ranging from millimetres-to-metres. These lithologies are characteristic of supra-subduction zone processing and are considered to relate to closure of the Iapetus Ocean at ~492 Ma1. However, evidence of much earlier melt extraction has been suggested for some SOC harzburgites, which have relatively unradiogenic 187Os/188Os compositions that yield TRD model ages as old as ~1.4 Ga1. In order to assess the scales at which such compositional heterogeneities are preserved in the mantle, a small (45 m2) area of the SOC mantle section was selected for detailed lithological mapping and sampling. A selection of harzburgites (n=8), dunites (n=6) and pyroxenites (n=2) from this area has been analysed for their Os isotope and highly-siderophile element (HSE) compositions. Six of the harzburgites and four of the dunites have relative HSE abundances and gOs values that are approximately chondritic, with gOs ranging only from -0.6 to +2.7 (n=10). Two dunites have more radiogenic gOs (up to +7.5), that is correlated with enhanced concentrations of accessory base-metal sulphides, suggesting formation via melt percolation and melt-rock reaction. The two remaining harzburgites have less radiogenic gOs (-3.5 and -4), yielding Mesoproterozoic TRD ages. The new data indicate that a comparable range of Os isotope compositions to that previously measured across the

  16. Impact of melt migration on the evolution of major and trace element composition in a crystalline mush: Implications for chemical differentiation in the continental crust (United States)

    Jackson, M.; Solano, J.; Sparks, R. S.; Blundy, J.


    Migration of melt through a crystalline mush is common within the continental crust, occurring in magma chambers and lava flows. Mush formation and associated migration of the buoyant melt along grain boundaries is inevitable during melting of initially solid rock, or cooling and crystallisation of magma. Because there is efficient exchange of heat and mass between melt and solid phases, they remain in local thermal and chemical equilibrium. The composition of the melt therefore evolves as it migrates through the mush and, to properly capture this, models are required that include chemical reaction. However, although reactive transport models have been developed for the mantle, none have yet been presented that are applicable to the continental crust. Models developed for the mantle are not directly applicable to the crust, because the initial and boundary conditions are different. We present the first quantitative model of heat, mass and both major and trace element transport in a mush undergoing compaction which accounts for component transport and chemical reaction during melt migration and which is applicable to crustal systems. The model describes the phase behaviour of binary systems (both eutectic and solid solution), with melt and solid composition determined from phase diagrams using the local temperature and bulk composition. Trace element concentration is also determined. The results demonstrate that component transport and chemical reaction generates compositional variation in both major and trace elements that is not captured by existing geochemical models. Even for the simplest case of a homogenous, insulated column that is instantaneously melted then allowed to compact, we find that component transport and reaction leads to spatial variations in major element composition, and produces melt that is more enriched in incompatible elements than predicted by batch melting. In deep crustal hot zones (DCHZ), created by the repeated intrusion of hot, mantle

  17. Chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O (United States)

    Mibe, K.; Kawamoto, T.; Ono, S.


    Knowing the chemical compositions of fluid and melt is fundamental in understanding the magma genesis and chemical differentiation in the Earth's interior. We investigated the stability fields of aqueous fluid, silicate melt, and supercritical fluid magma using in-situ x-ray radiography and the second critical endpoint in the system peridotite-H2O was determined to be around 3.8 GPa (Mibe et al., 2007, JGR). Using the quenched recovered samples obtained by Mibe et al. (2007), we determined the chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O by EPMA analyses. A 10- to 30-μm diameter electron beam was used to obtain the composition of quenched materials from aqueous fluid, silicate melt, and supercritical fluid. The compositions of coexisting aqueous fluid and silicate melt were determined at 3.3 GPa and 3.6 GPa and 1180°C. In both samples, olivine coexists with aqueous fluid and silicate melt. In the run at 3.3 GPa, the composition of aqueous fluid was high-Mg dacitic, whereas the composition of silicate melt was hydrous peridotite. In the run at 3.6 GPa, the composition of aqueous fluid was high-Mg andesitic, whereas the composition of silicate melt was hydrous komatiitic. Although aqueous fluids in both runs are high-Mg, both MgO and FeO preferentially enters into silicate melt compared to aqueous fluid.

  18. Chemical and Isotopic Heterogeneities in the Deep Earth:Importance of Lower Mantle Carbonate-rich Melts (United States)

    Collerson, K. D.; Williams, Q.; Murphy, D.


    Evolution of mantle chemical heterogeneity reflects a spectrum of processes. Nature of reservoirs has been inferred from radiogenic isotope and trace element systematics of mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) [1]. Carbonatites, kimberlites and lamproites [2-4] also sample depleted and enriched reservoirs, however, their origin remains equivocal. Secular decrease in Th/U ratio in MORB mantle (DMM), homogeneity of Th/U inferred from Pb-isotopic data, and systematic variation in Nb/Th and Nb/U ratios in MORBs [5], show that recycled components in DMM are well mixed. Thus isotopically hererogeneous domains in DMM must be transient features and are unlikely to yield HIMU and EM chemistries. Explanations for HIMU and EM OIB chemistries include involvement of: (1) subcontinental lithospheric mantle; (2) subducted oceanic lithosphere; (3) subducted sediment; or (4) an enigmatic lower mantle (LM) "plume component". Elevated 3He/4He in OIBs and kimberlites [6] and excess 129Xe and high 40Ar/39Ar [e.g., 7-8] and solar 20Ne/22Ne [9] in carbonatites indicate that they were derived from a primitive, isolated, and less degassed source than MORB. Primordial compositions show that this reservoir escaped atmospheric contamination by Ar, Xe, and Ne and pollution by 4He-rich material (from recycled 238U) during subduction. This primitive reservoir likely exists below the depth subducted slabs obviously penetrate (ca. 1700 km) e.g., [10]. That kimberlites are deeply sourced is also shown by lower mantle inclusions in diamond, e.g., [11]. Importantly, Gp. 1 and 2 kimberlites are isotopically similar to HIMU and EM-1 OIBs [4]. We interpret Gp 1 kimberlites as mixtures of HIMU and EM sources, while Gp. 2 kimberlites (close to EM-1) are interpreted as melts of a Ca perovskite-rich reservoir, possibly from slabs in the LM. We model melting of LM phases to simulate evolution of EM1 and HIMU 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 207Pb/204Pb, 206Pb/204Pb and 208Pb/204

  19. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W. [Oak Ridge National Lab., TN (United States); Kenton, M.A. [Dames and Moore, Westmont, IL (United States)


    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations.

  20. 3D mapping of chemical distribution from melting at lower mantle conditions in the laser-heated diamond anvil cell (United States)

    Dorfman, S. M.; Nabiei, F.; Cantoni, M.; Badro, J.; Gaal, R.; Gillet, P.


    The laser-heated diamond anvil cell is a unique tool for subjecting materials to pressures over few hundreds of GPa and temperatures of thousands of Kelvins which enables us to experimentally simulate the inaccessible interiors of planets. However, small sample size, laser profile and thermally conductive diamonds cause temperature gradients of 1000s K over a few microns which also affects chemical and structural distribution of phases in the sample. We have examined samples of San Carlos olivine (Mg,Fe)2SiO3 powder melted in the diamond anvil cell by double-sided and single-sided laser heating for 3-6 minutes to ~3000 K at 35-37 GPa. Moreover, MgO is used as an insulating media in one of the sample. Recovered samples were analyzed by a combination of focused ion beam (FIB) and scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) detector. Images and chemical maps were acquired for ~300 slices with ~70 nm depth from each sample, comprising about half of the heated zone. Detailed chemical and structural analysis by transmission electron microscopy (TEM) of lamellas prepared from the remaining section of the samples will also be presented. In all samples the heated zone included (Mg,Fe)SiO3 perovskite-structured bridgmanite (PV) phase and two (Mg, Fe)O phases, one of which, magnesiowüstite (MW), is richer in iron than the other one, ferropericlase (FP). In double-side heated samples we observe a Fe-rich quenched melt core surrounded by MW phase. Our results show that with increasing heating time, Fe migrates to the molten center of the sample. In the single-side heated sample, the Fe-rich MW phase is concentrated in the center of heated zone. In all samples a FP crust was observed around the heated zone. This crust, however, is broken in the upper part (colder part) of the single-side heated sample due the high asymmetrical temperature gradient within the sample. The results confirm the importance of double-side heating and insulating media

  1. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model. (United States)

    Sellers, Michael S; Lísal, Martin; Brennan, John K


    We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (Tm). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point Tm = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.

  2. On the Chemical Evolution of Upper Mantle of the Early Earth—An Experimental Study on Melting of the Silicate Phase in Jilin Chondrite at High Pressures

    Institute of Scientific and Technical Information of China (English)

    谢鸿森; 方虹; 等


    Relatively old ages of chondrites(normally around 4.5Ga)suggest that their parent bodies did not experience any mely-fractionation under high temperature and high pressure conditions pertaining to the interior of terrestrial plaets.Therefore,it is reasonable to take chondrites as starting materials in the study of the chemical evolution of the early earth.The sillicate phase in the Jilin chondrite (H5)was chosen for this purpose because it possesses a chemical composition similar to that of the primitive mantle.The melting experiment was carried out at 20-30 k bar and has rsulted in a product which contains1-5% melts in addition to solid cryustal phase.The chemical composition of the melt phases and the partitioning of various elements between the coexisting silicate melts are geochemically similar to those of anatectic rocks on the earth.This can thus serve as the basis for discussing the chemical evolution of the early upper mantle.

  3. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat


    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  4. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn Alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal


    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively-coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.

  5. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, J.D.; Wood, B.J. (Bristol Univ. (England))


    The aim of this paper is to evaluate the factors which control the partitioning of alkaline earth elements (Ba and Sr) between plagioclase feldspar and silicate melts, specifically the respective role of crystal chemistry, melt chemistry, and temperature. We have selected plagioclase because of the wealth of volcanic and experimental data, the compositional simplicity of plagioclase, and its relevance to many petrological problems. We begin our study by examining experimental data on Sr partitioning between plagioclase and hydrothermal solutions in an attempt to constrain the role of crystal chemistry. We establish a simple thermodynamic model for trace element partitioning between plagioclase and hydrothermal solutions. This treatment is then extended to the plagioclase-melt system using available data from both experimental and volcanic systems in order to derive a general equation for Sr and Ba partitioning. Finally we consider the geochemical applications and implications of our findings.

  6. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    NARCIS (Netherlands)

    Bsat, S.; Yavari, S.; Munsch, M.; Valstar, E.R.; Zadpoor, A.A.


    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bi

  7. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal


    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.Defence Science Journal, 2011, 61(3, pp.270-274, DOI:

  8. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet (United States)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy


    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  9. The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm. (United States)

    Junka, Adam F; Szymczyk, Patrycja; Secewicz, Anna; Pawlak, Andrzej; Smutnicka, Danuta; Ziółkowski, Grzegorz; Bartoszewicz, Marzenna; Chlebus, Edward


    In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann-Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann-Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements.


    Directory of Open Access Journals (Sweden)

    L. V. Golubeva


    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  11. Selective Laser Sintering And Melting Of Pristine Titanium And Titanium Ti6Al4V Alloy Powders And Selection Of Chemical Environment For Etching Of Such Materials

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.


    Full Text Available The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

  12. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng


    Chemical striae are present in a broad range of glass products, but due to their negative impact on e.g., the optical and mechanical properties, elimination of striae from melts is a key issue in glass technology. By varying melting temperatures, retentions times and redox conditions of an iron......-bearing calciumaluminosilicate melt, we quantify the effect of each of the three melting parameters on the stria content in the melt. The quantification of the stria content in the melt is conducted by means of image analysis on casted melt samples. We find that in comparison to an extension of retention time an increase...... factors such as compositional fluctuation of melts and bubbling due to iron reduction on the stria content. During the melting process, striae with a chemical gradient in a more mobile species equilibrate faster than striae caused by a chemical gradient in a less mobile species. The temperature and time...

  13. Growth and Evolution of the Kerala Khondalite Belt, Southern India: Mineral and Whole rock Chemical Evidence for Intracrustal Melting and Magmatic Petrogenesis (United States)

    Gundlupet Rangasetty, R.; Chettootty, S.


    The Kerala Khondalite Belt (KKB) constitutes an important lower crustal segment in the southern Indian granulite terrain. Dominant rock types, except sillimanite bearing gneisses, are classified as sodic and potassic granitoids and a general supracrustal origin is ascribed to these rocks. We present here new results from our studies on mineral and whole rock major- and trace-element and REE systematic of major litho units of the belt. We address the petrogenesis, physical conditions during crystallization and tectonic setting of KKB rocks. Granitoids (gneiss and variants of charnockites) makeup more than 70% of exposed rock types in KKB. They are classified as sodic and potassic groups based on K2O/Na2O ratios. Mineral chemical analysis of granitoids, especially biotites from different groups document igneous parentage and as potential indicator of nature of the magma. Biotites from sodic group are Mg2+-rich (XMg:0.47-0.63), denote calc-alkaline host in contrast to those from potassic groups, which are Fe2+-types with much lower XMg (0.37-0.44) and suggest an alkaline host. Biotites in potassic group are poorer in A12O3 than sodic, indicating evolved nature of the magmatic protolith. Decrease in ΣAl with increasing Fe/(Fe+Mg) values of biotites indicate progressive oxidising condition during magma evolution. Compositional variation of biotite allow us to speculate that the host magmas of sodic charnockites as calc-alkaline, arc-type with features typical of Archaean TTGs and potassic groups as partial melts of meta-igneous lower crust with little mantle contribution. The sodic group has geochemical affinity to Archaean tonalities with low-K, calc-alkaline, metaluminous to peraluminous chemistry. Compositionally contrasting K-rich rocks are essentially of granitic composition. Most oxides in both the groups, with exceptions of K2O and Na2O, show negative correlation with SiO2. The sodic group is enriched in Sr and depleted in Rb and Th. They exhibit geochemical

  14. Study on the Physical and Chemical Conditions of Ore Formation of Hetai Ductile Shear Zone—Hosted Gold Deposit and Discovery of Melt Inclusions

    Institute of Scientific and Technical Information of China (English)

    李兆麟; 翟伟; 等


    The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated falut mylonite zone of the Sinian-Silurian metamorphic rock series.In this study there have been discovered melt inclusions,fluid-melt inclusions and organic inclusions in ore-bearing ruartz veins of the ore deposit and mylonite for the first time.The homogenization temperatures of the various types of inclusions are 160℃,180-350℃,530℃and 870℃ for organic inclusions,liquid inclsions two-phase immiscible liquid inclusions and melt inclusion,respectively,Ore fluid is categoriezed as the neutral to basic K+-Ca2+-Mg2+-Na+-SO42--HCO3-Cl- system.The contents of trace gases follow a descending order of H2O>CO2>CH4>(orCO>C2H2>C2H6>O2>N2.The concentrations of K+,Ca2+,SO42-,HCO3-,Cl-,H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in from different levels of the gold deposit.This is significant for deep ore prospecting in the region.Daughter minerals in melt inclusions were analyzed using SEM.Quartz,orthoclase,wollastonite and other silicate minerals were identified.They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins.Sedimentary metamophic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism,which possess melt-soulution characteristics.Ore formation is related to the multi-stage forming process of silicate melt and fluid.

  15. Study on the Physical and Chemical Conditions of Ore Formation of Hetai Ductile Shear Zone-Hosted Gold Deposit and Discovery of Melt Inclusions

    Institute of Scientific and Technical Information of China (English)

    李兆麟; 翟伟; 李文; 石贵勇; 文拥军


    The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated fault mylonite zone of the Sinian-Silurian metamorphic rock series. In this study there have been discovered melt inclusions, fluid-melt inclusions and organic inclusions in ore-bearing quartz veins of the ore deposit and mylonite for the first time. The homogenization temperatures of the various types of inclusions are 160℃, 180 - 350℃, 530℃ and 870℃ for organic inclusions, liquid inclusions, two-phase immiscible liquid inclusions and melt inclusions, respectively. Ore fluid is categorized as the neutral to basic K+ -Ca2+ -Mg2+ -Na+ - SO2- 4-HCO3-Cl- system. The contents of trace gases follow a descending order of H2O>CO2>CH4>(or < ) H2>CO>C2H2>C2I-I6>O2>N2.The concentrations of K , Ca2 + ,SO2-4,HCO3-,Cl- H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in ores from different levels of the gold deposit. This is significant for deep ore prospecting in the region. Daughter minerals in melt inclusions were analyzed using SEM. Quartz, orthoclase, wollastonite and other silicate minerals were identified. They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins. Sedimentary metamorphic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism, which possess melt-solution characteristics. Ore formation is related to the multi-stage forming process of silicate melt and fluid.

  16. [Chemical composition and daily variation of melt water during ablation season in monsoonal temperate Glacier region: a case study of Baishui Glacier No. 1]. (United States)

    Zhu, Guo-Feng; Pu, Tao; He, Yuan-Qing; Wang, Pei-Zhen; Kong, Jian-Long; Zhang, Ning-Ning; Xin, Hui-Juan


    Melt water samples collected continuously from 29 August to 3 September 2009 in the Baishui Glacier No. 1 at elevation of 4750 m were analyzed for pH, conductivity, delta18O and inorganic ions. The results showed that the pH had obvious diurnal variations and was increased slightly by the influence of precipitation. The dissolution of alkaline soluble salts in the dust was the main reason for the increase of melt water conductivity; the value of delta18O was relatively low in strong ablation period and high in slight ablation period. Different from other research areas, the concentrations of Na+, K+, which were influenced by lithological and marine water vapor, were higher than that of Mg2+ in the study area; HCO3- and Ca2+ accounted for more than 80% of total ions in snow and ice melt water, indicating that the ions mainly came from limestone and the melt water was a typical carbonate solution; The content of melt water had an obvious daily change with temperature change, but the response amplitudes were different; Monsoon transport, local rock lithology, human industrial and agricultural activities were the main sources of inorganic ions and the deciding factors of the ion composition in the Baishui Glacier No. 1.

  17. Methods for Melting Temperature Calculation (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  18. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, C. C.; Shaw, H. F.; Ryerson, F. J.; Williams, Q.; Gill, J.


    The partitioning of fifteen trace elements (Rb, Sr, Zr, Nb, Ba, La, Ce, Nd, Sm, Gd, Yb, Hf, Ta, Pb and Th) between clinopyroxene and synthetic melt has been studied in two compositions along an isotherm in the diopside-albite-anorthite ternary at 1 bar pressure. The two compositions correspond to ~ Di65An35 and ~ Di55Ab45 and produce clinopyroxenes distinct in chemistry while melt compositions range from 49 wt % SiO2 to 61 wt. % SiO2. The partition coefficients of high field strength elements (HFSE) increase by factors of 2 to 8 in Di-An experiments relative to Di-Ab experiments while other elements show very little change (+/- 20%) between compositions. The change in HFSE partitioning correlates with increases in tetrahedral Al2O3 (IVAl) content of clinopyroxenes in the anorthite-bearing experiments. Changes in DTa/DNb also correlate with IVA1 based on a survey of previously published determinations.

  19. Quantifying melting and mobilistaion of interstitial melts in crystal mushes (United States)

    Veksler, Ilya; Dobson, Katherine; Hess, Kai-Uwe; Ertel-Ingrisch, Werner; Humphreys, Madeleine


    The deformation of crystals mushes and separation of melts and crystals in is critical to understanding the development of physical and chemical heterogeneity in magma chambers and has been invoked as an eruption trigger mechanism. Here we investigate the behaviour of the melt in the well characterised, classic crystal mush system of the Skaergaard intrusion by combining experimental petrology and the non-destructive 3D imaging methods. Starting materials for partial melting experiments were four samples from the upper Middle Zone of the Layered Series. Cylinders, 15 mm in diameter and 20 mm in length, were drilled out of the rock samples, placed in alumina crucibles and held for 5 days in electric furnaces at atmospheric pressure and 1050-1100 °C. Redox conditions set by the CO-CO2 gas mixture were kept close to those of the FMQ buffer. We then use spatially registered 3D x-ray computed tomography images, collected before and after the experiment, to determine the volume and distribution of the crystal framework and interstitial phases, and the volume, distribution and connectivity the interstitial phases that undergo melting and extraction while at elevated temperature. Image analysis has allowed us to quantify these physical changes with high spatial resolution. Our work is a first step towards quantitative understanding of the melt mobilisation and migration processes operating in notionally locked crystal rich magmatic systems.

  20. Importance of the Small-Scale Processes Melting, Plate Boundary Formation and Mineralogy on the Large-Scale, Long-Term Thermo-Chemical Evolution of Earth's Mantle-Plate System (United States)

    Tackley, P.


    Seismic observations of the deep Earth reveal the presence of two large low shear velocity provinces (LLSVPs) that are typically inferred to be dense chemically-distinct material, as well as discontinuities that are typically linked to the post-perovskite (pPv) phase transition. Several possible origins of chemically-dense material have been proposed, including recycling of mid-ocean ridge basalt (MORB), primordial differentiation events, crystallisation of a basal magma ocean, or some combination of these creating a basal melange (BAM; Tackley 2012 Earth Sci. Rev.). Each of these possibilities would result in a different composition hence different mineralogy. In order to constrain this we have been running calculations of thermo-chemical mantle evolution over 4.5 billion years that include melting-induced differentiation, plate tectonics induced by strongly temperature-dependent viscosity and plastic yielding, core cooling and compressibility with reasonable assumptions about the pressure-dependence of other material properties. Some of our simulations start from a magma ocean state so initial layering is developed self-consistently. Already-published results (Nakagawa et al., 2009 GCubed, 2010 PEPI, 2012 GCubed) already indicate the importance of exact MORB composition on the amount of MORB segregating above the CMB, which in turn influences mantle thermal structure and the evolution of the core and geodynamo. In more recent results we have been additionally including primordial material. We find that melting-induced differentiation has several first-order effects on the dynamics, including (i) making plate tectonics easier (through stresses associated with lateral variations in crustal thickness) and (ii) reducing heat flux through the CMB (due to the build-up of dense material above the CMB); also (iii) tectonic mode (continuous plate tectonics, episodic lid or stagnant lid) also makes a first-order difference to mantle structure and dynamics. This emphasises

  1. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R


    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  2. Do Melt Inclusions Answer Big Questions? (United States)

    Hofmann, A. W.; Sobolev, A. V.


    In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of


    CERN Multimedia

    Medical Service


    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or Chemistry Service : TIS-GS-GC : 78546

  4. Physics of the Lindemann melting rule

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Andrew C [Los Alamos National Laboratory


    We investigate the thermodynamics of melting for 74 distinct chemical elements including several actinides and rare earths. We find that the observed melting points are consistent with a linear relationship between the correlation entropy of the liquid and the Grueneisen constant of the solid, and that the Lindemann rule is well obeyed for the elements with simple structures and less well obeyed for the less symmetric more open structures. No special assumptions are required to explain the melting points of the rare earths or light actinides.

  5. Rapidly solidified titanium alloys by melt overflow (United States)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III


    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  6. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug


    obtained during coal/straw co-firing, substantive sintering strength was observed to build up in the ashes below the melting onset. The strength obtained was thus assumed to be due to viscous flow sintering, and the sintering onset was for the four ashes investigated simultaneous to a calculated ash......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...

  7. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier


    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  8. Improved procedures for separating crystals from the melt

    NARCIS (Netherlands)

    Verdoes, D.; Arkenbout, G.J.; Bruinsma, O.S.L.; Koutsoukos, P.G.; Ulrich, J.


    Innovative separation techniques like melt crystallization have the potential to fulfil two important demands, namely: a significant reduction of energy consumption by the chemical industry, and the production of high quality products required by industry. Several industrial applications of melt cry

  9. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng


    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria e...

  10. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K


    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  11. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics. (United States)

    Meyer, Torsten; Lei, Ying Duan; Muradi, Ibrahim; Wania, Frank


    Large reservoirs of organic contaminants in seasonal snowpack can be released in short pulses during spring snowmelt, potentially impacting the receiving ecosystems. Laboratory experiments using artificial snow spiked with organic target substances were conducted to investigate the behavior of six organic contaminants with widely variable distribution properties in melting snow. Whereas the influence of a chemical's equilibrium phase partitioning on the elution behavior is explored in a companion paper, we discuss here the impact of snow properties and melt features, including the snowpack depth, the temperature at the interface between soil and snow, the meltwater content the internal ice surface area, and the existence of distinct snow layers. Water-soluble organic substances are released in high concentrations at the beginning of a melt period when a deep and aged snowpack undergoes intense melting. Warm ground can cause notable melting at the snow bottom leading to a delayed and dampened concentration peak. Hydraulic barriers in layered snow packs cause preferential meltwater flow which also mitigates the early contaminant flush. Hydrophobic organic pollutants that are associated with particles accumulate near the snow surface and are released at the end of melting. Dirt cones at the surface of a dense snowpack enhance this enrichment. The findings of this laboratory study will aid in the understanding of the behavior of organic pollutants during the melting of more complex, natural snow covers.

  12. A Model for Scrap Melting in Steel Converter (United States)

    Kruskopf, Ari


    A process model for basic oxygen furnace is in development. The full model will include a 2-D axisymmetric turbulent flow model for iron melt, a steel scrap melting model, and a chemical reaction model. A theoretical basis for scrap melting model is introduced in this paper and an in-house implementation of the model is tested in this article independently from the other parts of the full process model. The model calculates a melting curve for the scrap piece and the heat and carbon mass exchange between the melt and the scrap. A temperature and carbon concentration-dependent material data are used for heat capacity, thermal conductivity, and diffusion coefficient. The equations are discretized into a moving grid, which is uncommon in literature in the context of scrap melting. A good agreement is found between the modeling results and experiments from literature. Also a heat transfer correlation for dimensionless Nusselt number is determined using the numerical results.

  13. Melt Rate Improvement for DWPF MB3: Foaming Theory and Mitigation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.K.


    The objective of this research is to enhance the basic understanding of the role of glass chemistry, including the chemical kinetics of pre-melting, solid state reactions, batch melting, and the reaction pathways in glass and/or acid addition strategy changes on the overall melting process for the Defense Waste Processing Facility (DWPF) Macrobatch 3 (MB3).


    Directory of Open Access Journals (Sweden)

    Němec L.


    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  15. Thermoacoustic Streaming and Ultrasonic Processing of Low Melting Melts (United States)

    Trinh, E. H.


    Ultrasonic levitation allows the processing of low melting materials both in 1 G as well as in microgravity. The free suspension of the melts also facilitates undercooling, permitting the measurements of the physical properties of the metastable liquids.

  16. A multi-component evaporation model for beam melting processes (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin


    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  17. Thermodynamics of Oligonucleotide Duplex Melting (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.


    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  18. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.


    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  19. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.


    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  20. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.


    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.


    Institute of Scientific and Technical Information of China (English)

    FU Shuren; CHEN Taoyung


    Multiple melting behavior of nylon 1010 has been investigated by using DSC instrument. Effects of partial scanning, partial scanning and annealing, heating rate, cooling rate and stepwise annealing on the melting curve were studied. Experimental results indicate that the sample undergoes a process of continuous melting and recrystallization during DSC scanning. Nylon 1010 contains a distribution of crystallites of different degrees of perfection which is strongly dependent on its previous thermal history. From the structural reorganization point of view, the origin of double and multiple peaks of the melting curve is explained.

  2. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  3. Evolution of Shock Melt Compositions in Lunar Agglutinates (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.


    Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during smaller-scale (mostly micrometeorite) impacts. Agglutinate formation is a key space weathering process under which the optically-active component of nanophase metallic Fe (npFe(sup 0)) is added to the lunar regolith. Here we have used energy-dispersive X-ray (EDX) compositional spectrum imaging in the SEM to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principle chemical components contributing to the shock melt compositional variations.

  4. 氯盐融雪剂对城市道路绿化带土壤性状的影响%Effect of Snow Melt Agent Containing Chloride-salt on Soil Chemical Characters of Urban Road Greenbelt

    Institute of Scientific and Technical Information of China (English)

    王艳春; 白雪薇; 李芳


    2009年底至2010年初,北京市降雪非常集中且强度较大,为保障交通畅通,大量的氯盐融雪剂在北京城区的绿地上应用,其用量达3万t.路面撒施的融雪剂不可避免地进入分车带、绿化带等绿地,对绿地植物正常生长造成威胁.文章通过实地采集了45个绿地土样,研究了道路绿地土壤盐分等相关指标,结果表明,与对照相比,撒施融雪剂对道路绿化带土壤造成了严重的污染,土壤全盐量范围为0.11%~2.79%,最高值出现在西城区金融街;表层土壤氯化物含量范围为222~19 548 mg/kg;表层土壤水溶性钠分别达到了对照的18~780倍.从不同土层来看,0~10 cm的表层土壤全盐量、氯化物、水溶性钠的含量远远高于10~20 cm土层;地理分布上呈现出中心城区表层土壤全盐量总体高于外围城区,交通主干道高于次干道和交通支线的特点.最后,提出了减缓氯盐融雪剂危害的建议措施.%There were several heavy snowfalls during winter of 2009-2010 in Beijing and nearly 30,000 tons of snow melt agent containing chloride salt were used to guarantee the smooth and safe traffic flow. Snow melt agent containing chloride salt inevitably entered the greenbelt soil by the road, which* greatly threatened the growth of plants. Soil salt and chloride content were studied and analyzed after typical greenbelt soil samples were collected from main arterial traffic such as the 2nd, 3rd and 4th rings road. Results showed that snow melt agent containing chloride salt had caused serious soil pollution and soil salt, chloride and water soluble sodium content greatly increased, compared to check soil, with the highest salt content of 2.79% in Beijing Financial Street, chloride content in surface soil as 222 ~19,548mg/kg. Water soluble sodium content reached 18-780 times of the check. The contents of investigated indexes in surface soil (0-10 cm) were greatly higher than that in 10-20 cm soil. Central

  5. Crystallization behavior during melt-processing of ceramic waste forms (United States)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.; Marra, James C.; Amoroso, Jake


    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2.

  6. Melt pool dynamics during selective electron beam melting (United States)

    Scharowsky, T.; Osmanlic, F.; Singer, R. F.; Körner, C.


    Electron beam melting is a promising additive manufacturing technique for metal parts. Nevertheless, the process is still poorly understood making further investigations indispensable to allow a prediction of the part's quality. To improve the understanding of the process especially the beam powder interaction, process observation at the relevant time scale is necessary. Due to the difficult accessibility of the building area, the high temperatures, radiation and the very high scanning speeds during the melting process the observation requires an augmented effort in the observation equipment. A high speed camera in combination with an illumination laser, band pass filter and mirror system is suitable for the observation of the electron beam melting process. The equipment allows to observe the melting process with a high spatial and temporal resolution. In this paper the adjustment of the equipment and results of the lifetime and the oscillation frequencies of the melt pool for a simple geometry are presented.

  7. Photoluminescence dynamics in singlet fission chromophore liquid melts (United States)

    Piland, Geoffrey B.; Bardeen, Christopher J.


    The effect of high temperature melting on the photophysics of three prototypical singlet fission molecules is investigated. Time-resolved photoluminescence is used to look at the melt phase of the molecules tetracene, diphenylhexatriene and rubrene. Chemical decomposition of tetracene precluded any detailed measurements on this molecule. In the diphenylhexatriene melt, a rapid singlet state nonradiative relaxation process outcompetes singlet fission. In the rubrene melt, singlet fission occurs at a rate similar to that of the crystal, but the decay of the delayed fluorescence is much more rapid. The rapid decay of the delayed fluorescence suggests that either the triplet lifetime is shortened, or the fusion probability decreases, or that both factors are operative at higher temperatures.

  8. Beyond the Melting Pot Reconsidered. (United States)

    Anderson, Elijah


    Discusses the 1963 book, "Beyond the Melting Pot," which suggested that eventually the problem of different ethnicities in the U.S. would be resolved and society would become one melting pot. Examines how changes in immigration and economic structures have affected the issue, noting the devastating effect of the dominant culture's…

  9. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. (United States)

    Spandler, C; O'Neill, H St C; Kamenetsky, V S


    The chemical composition of basaltic magma erupted at the Earth's surface is the end product of a complex series of processes, beginning with partial melting and melt extraction from a mantle source and ending with fractional crystallization and crustal assimilation at lower pressures. It has been proposed that studying inclusions of melt trapped in early crystallizing phenocrysts such as Mg-rich olivine and chromite may help petrologists to see beyond the later-stage processes and back to the origin of the partial melts in the mantle. Melt inclusion suites often span a much greater compositional range than associated erupted lavas, and a significant minority of inclusions carry distinct compositions that have been claimed to sample melts from earlier stages of melt production, preserving separate contributions from mantle heterogeneities. This hypothesis is underpinned by the assumption that melt inclusions, once trapped, remain chemically isolated from the external magma for all elements except those that are compatible in the host minerals. Here we show that the fluxes of rare-earth elements through olivine and chromite by lattice diffusion are sufficiently rapid at magmatic temperatures to re-equilibrate completely the rare-earth-element patterns of trapped melt inclusions in times that are short compared to those estimated for the production and ascent of mantle-derived magma or for magma residence in the crust. Phenocryst-hosted melt inclusions with anomalous trace-element signatures must therefore form shortly before magma eruption and cooling. We conclude that the assumption of chemical isolation of incompatible elements in olivine- and chromite-hosted melt inclusions is not valid, and we call for re-evaluation of the popular interpretation that anomalous melt inclusions represent preserved samples of unmodified mantle melts.

  10. Using a Spreadsheet To Explore Melting, Dissolving and Phase Diagrams. (United States)

    Goodwin, Alan


    Compares phase diagrams relating to the solubilities and melting points of various substances in textbooks with those generated by a spreadsheet using data from the literature. Argues that differences between the diagrams give rise to new chemical insights. (Author/MM)

  11. Electrical Conductivity of Cryolite Melts (United States)

    Fellner, P.; Grjotheim, K.; Kvande, H.


    This paper proposes an equation for the electrical conductivity of multicomponent cryolite-based mixtures. The equation is based on a physical model which assumes that the conductivity is proportional to the number density of the effective electric charges in the melt. The various authors in the available literature show a great discrepancy in conductivity data of cryolite-based melts. The equation based on the physical model enables determination of which set of data is preferable. Special consideration in this respect is given to the influence of magnesium flouride and lithium flouride additions to the melt.

  12. Synthesis of Refractory Materials by Skull Melting Technique (United States)

    Osiko, Vyacheslav V.; Borik, Mikhail A.; Lomonova, Elena E.

    This chapter discusses methods of growing refractory oxide single crystals and synthesis of refractory glasses by skull melting technique in a cold crucible. It shows the advantages of radiofrequency (RF) heating of dielectric materials in a cold crucible and points out some specific problems regarding the process of growing crystals by directional crystallization from the melt and by pulling on a seed from the melt. The distinctive features of the method of directional crystallization from the melt are discussed in detail on the example of technology of materials based on zirconia, i.e., cubic single crystals and partly stabilized single crystals. It is shown that the size and quality of crystals are functions of the process conditions, such as thermal conditions under crystallization, growth rate, and chemical composition. We provide an overview of research on the structure, phase composition, and physicochemical properties of crystals based on zirconia. The optical, mechanical, and electric properties of these crystals make them suitable for a number of technical and industrial applications in optics, electronics, materials processing, and medicine. In this chapter, we also consider some problems regarding the synthesis of refractory glasses by skull melting technique. The physicochemical and optical properties of glasses are given and their practical applications in technology are discussed. We note that one of the better developed and most promising applications of skull melting technique is the immobilization of liquid and solid waste (also radioactive waste) into solid-state materials by vitrification.

  13. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)


    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  14. Laser melting of uranium carbides (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.


    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  15. Studying regimes of convective heat transfer in the production of high-temperature silicate melts (United States)

    Volokitin, O. G.; Sheremet, M. A.; Shekhovtsov, V. V.; Bondareva, N. S.; Kuzmin, V. I.


    The article presents the results of theoretical and experimental studies of the production of high-temperature silicate melts using the energy of low-temperature plasma in a conceptually new setup. A mathematical model of unsteady regimes of convective heat and mass transfer is developed and numerically implemented under the assumption of non-Newtonian nature of flow in the melting furnace with plasma-chemical synthesis of high-temperature silicate melts. Experiments on melting silicate containing materials were carried out using the energy of low-temperature plasma. The dependence of dynamic viscosity of various silicate materials (basalt, ash, waste of oil shale) was found experimentally.

  16. Chicxulub Impact Melts: Geochemical Signatures of Target Lithology Mixing and Post-Impact Hydrothermal Fluid Processes (United States)

    Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.


    Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.

  17. Phase change nanocomposites with tunable melting temperature and thermal energy storage density (United States)

    Liu, Minglu; Wang, Robert Y.


    Size-dependent melting decouples melting temperature from chemical composition and provides a new design variable for phase change material applications. To demonstrate this potential, we create nanocomposites that exhibit stable and tunable melting temperatures through numerous melt-freeze cycles. These composites consist of a monodisperse ensemble of Bi nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. The Bi NPs operate as the phase change component whereas the PI resin matrix prevents nanoparticle coalescence during melt-freeze cycles. We tune melting temperature and enthalpy of fusion in these composites by varying the NP diameter. Adjusting the NP volume fraction also controls the composite's thermal energy storage density. Hence it is possible to leverage size effects to tune phase change temperature and energy density in phase change materials.Size-dependent melting decouples melting temperature from chemical composition and provides a new design variable for phase change material applications. To demonstrate this potential, we create nanocomposites that exhibit stable and tunable melting temperatures through numerous melt-freeze cycles. These composites consist of a monodisperse ensemble of Bi nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. The Bi NPs operate as the phase change component whereas the PI resin matrix prevents nanoparticle coalescence during melt-freeze cycles. We tune melting temperature and enthalpy of fusion in these composites by varying the NP diameter. Adjusting the NP volume fraction also controls the composite's thermal energy storage density. Hence it is possible to leverage size effects to tune phase change temperature and energy density in phase change materials. Electronic supplementary information (ESI) available: Experimental details and additional DSC data on nanocomposites and pure PI resin. See DOI: 10.1039/c3nr02842a

  18. Lattice cluster theory for polymer melts with specific interactions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)


    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  19. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng


    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... and the crystal-memory effect of the liquids above their liquidus temperature are detected. Clear dependences of the structural heterogeneity of the liquids on the maximum upscan temperature and on the chemical composition are found by conducting calorimetric measurements. The origin of such dependences...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  20. Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite (United States)

    Rubin, Alan E.


    Al Haggounia 001 and paired specimens (including Northwest Africa [NWA] 2828 and 7401) are part of a vesicular, incompletely melted, EL chondrite impact melt rock with a mass of ~3 metric tons. The meteorite exhibits numerous shock effects including (1) development of undulose to weak mosaic extinction in low-Ca pyroxene; (2) dispersion of metal-sulfide blebs within silicates causing "darkening"; (3) incomplete impact melting wherein some relict chondrules survived; (4) vaporization of troilite, resulting in S2 bubbles that infused the melt; (5) formation of immiscible silicate and metal-sulfide melts; (6) shock-induced transportation of the metal-sulfide melt to distances >10 cm (7) partial resorption of relict chondrules and coarse silicate grains by the surrounding silicate melt; (8) crystallization of enstatite in the matrix and as overgrowths on relict silicate grains and relict chondrules; (9) crystallization of plagioclase from the melt; and (10) quenching of the vesicular silicate melt. The vesicular samples lost almost all of their metal during the shock event and were less susceptible to terrestrial weathering; in contrast, the samples in which the metal melt accumulated became severely weathered. Literature data indicate the meteorite fell ~23,000 yr ago; numerous secondary phases formed during weathering. Both impact melting and weathering altered the meteorite's bulk chemical composition: e.g., impact melting and loss of a metal-sulfide melt from NWA 2828 is responsible for bulk depletions in common siderophile elements and in Mn (from alabandite); weathering of oldhamite caused depletions in many rare earth elements; the growth of secondary phases caused enrichments in alkalis, Ga, As, Se, and Au.

  1. Melt-Enhanced Rejuvenation of Lithospheric Mantle: Insights from the Colorado Plateau

    CERN Document Server

    Roy, Mousumi; Holtzman, Ben; Gaherty, James


    The stability of the lithospheric mantle beneath the ancient cratonic cores of continents is primarily a function of chemical modification during the process of melt extraction. Processes by which stable continental lithosphere may be destabilized are not well-understood, although destabilization by thickening and removal of negatively-buoyant lithospheric mantle in "delamination" events has been proposed in a number of tectonic settings. In this paper we explore an alternative process for destabilizing continents, namely, thermal and chemical modification during infiltration of metasomatic fluids and melts into the lithospheric column. We consider observations pertinent to the structure and evolution of the Colorado Plateau within the western United States to argue that the physical and chemical state of the margins of the plateau have been variably modified and destabilized by interaction with melts. In the melt-infiltration process explored here, the primary mechanism for weakening and rejuvenating the pla...

  2. Toward a coherent model for the melting behavior of the deep Earth's mantle (United States)

    Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.


    Knowledge of melting properties is critical to predict the nature and the fate of melts produced in the deep mantle. Early in the Earth's history, melting properties controlled the magma ocean crystallization, which potentially induced chemical segregation in distinct reservoirs. Today, partial melting most probably occurs in the lowermost mantle as well as at mid upper-mantle depths, which control important aspects of mantle dynamics, including some types of volcanism. Unfortunately, despite major experimental and theoretical efforts, major controversies remain about several aspects of mantle melting. For example, the liquidus of the mantle was reported (for peridotitic or chondritic-type composition) with a temperature difference of ∼1000 K at high mantle depths. Also, the Fe partitioning coefficient (DFeBg/melt) between bridgmanite (Bg, the major lower mantle mineral) and a melt was reported between ∼0.1 and ∼0.5, for a mantle depth of ∼2000 km. Until now, these uncertainties had prevented the construction of a coherent picture of the melting behavior of the deep mantle. In this article, we perform a critical review of previous works and develop a coherent, semi-quantitative, model. We first address the melting curve of Bg with the help of original experimental measurements, which yields a constraint on the volume change upon melting (ΔVm). Secondly, we apply a basic thermodynamical approach to discuss the melting behavior of mineralogical assemblages made of fractions of Bg, CaSiO3-perovskite and (Mg,Fe)O-ferropericlase. Our analysis yields quantitative constraints on the SiO2-content in the pseudo-eutectic melt and the degree of partial melting (F) as a function of pressure, temperature and mantle composition; For examples, we find that F could be more than 40% at the solidus temperature, except if the presence of volatile elements induces incipient melting. We then discuss the melt buoyancy in a partial molten lower mantle as a function of pressure

  3. Magnetic Biocomposites for Remote Melting. (United States)

    Zhou, Mengbo; Liebert, Tim; Müller, Robert; Dellith, Andrea; Gräfe, Christine; Clement, Joachim H; Heinze, Thomas


    A new approach toward the fabrication of biocompatible composites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNP) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30-140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high quality products as confirmed by FTIR- and NMR spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in nanocomposite as revealed by scanning electron microscope. Samples of different geometries were exposed to high frequency alternating magnetic field. It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote control systems, which are suitable for controlled release applications or self-healing materials.

  4. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas


    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  5. Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence (United States)

    Rampone, Elisabetta; Piccardo, Giovanni B.; Hofmann, Albrecht W.


    Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere-lithosphere history of partial melting and subsequent multi-stage melt-rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting ( F = 5-10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling ( T = 970-1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt-rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt-rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt-rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt-rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt-rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the

  6. Impact ejecta-induced melting of surface ice deposits on Mars (United States)

    Weiss, David K.; Head, James W.


    , depending on crater diameter, ice thickness, surface temperature, and geothermal heat flux. Contact melting is predicted to produce fluvial features on the surface of ejecta and the interior crater walls, whereas basal melting is predicted to produce fluvial features only on the interior crater walls. Before basal melting initiates, the ice-cemented cryosphere underlying the crater ejecta is predicted to melt and drain downwards through the substratum, generating a source of water for chemical alteration and possibly subsurface clay formation. These candidate melting processes are predicted to occur under a wide range of parameters, and provides a basis for further morphologic investigation.

  7. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz


    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  8. Ash melting behavior by Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; QIU Xiao-sheng; TANG Yong-xin


    A Fourier Transform Infrared Spectroscopic (FTIR) method involving a Fe2O3 flux was used to learn how China's coal ash melts. The relationship between ash fusion temperature and chemical composition, as well as the effects of Fe2O3 flux on the ash fusion temperature were studied. The relationship between ash fusion temperature and chemical composition, mineralogical phases and functional groups was analyzed with the FTIR method. The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks, which is of great significance for the study of ash behavior.

  9. Melting Behaviour of Ferronickel Slags (United States)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Wenzl, Christine


    The industrial manufacturing of ferronickel in electric furnaces produces large amounts of slag with strong acidic character and high melting points, which seriously stresses the furnace refractory lining. In this study, the melting behavior of synthetically produced ferronickel slags on magnesia as refractory material was determined by means of a hot stage microscope. Therefore, slags comprising the main oxides SiO2 (35-70 wt.%), MgO (15-45 wt.%) and Fe2O3 (5-35 wt.%) were melted in a graphite crucible and afterwards analyzed by a hot stage microscope. The design of experiments, which was created by the statistic software MODDE®, included 20 experiments with varying slag compositions as well as atmospheres. The evaluation of the test results occurred at three different characteristic states of the samples like the softening point according to DIN 51730 and the temperatures at which the area of residual cross-section of the samples amounted to 30% and 40%, respectively, of the original value depending of their SiO2/MgO ratio and iron oxide content. Additionally, the thickness of the zone influenced by the slag was measured and evaluated.

  10. Melting of the Primitive Mercurian Mantle, Insights into the Origin of Its Surface Composition (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.


    Recent findings of the MESSENGER mission on Mercury have brought new evidence for its reducing nature, widespread volcanism and surface compositional heteregeneity. MESSENGER also provided major elemental ratios of its surface that can be used to infer large-scale differentiation processes and the thermal history of the planet. Mercury is known as being very reduced, with very low Fe-content and high S and alkali contents on its surface. Its bulk composition is therefore likely close to EH enstatite chondrites. In order to elucidate the origin of the chemical diversity of Mercury's surface, we determined the melting properties of EH enstatite chondrites, at pressures between 1 bar and 3 GPa and oxygen fugacity of IW-3 to IW-5, using piston-cylinder experiments, combined with a previous study on EH4 melting at 1 bar. We found that the presence of Ca-rich sulfide melts induces significant decrease of Ca-content in silicate melts at low pressure and low degree of melting (F). Also at pressures lower than 3 GPa, the SiO2-content decreases with F, while it increases at 3 GPa. This is likely due to the chemical composition of the bulk silicate which has a (Mg+Fe+Ca)/Si ratio very close to 1 and to the change from incongruent to congruent melting of enstatite. We then tested whether the various chemical compositions of Mercury's surface can result from mixing between two melting products of EH chondrites. We found that the majority of the geochemical provinces of Mercury's surface can be explained by mixing of two melts, with the exception of the High-Al plains that require an Al-rich source. Our findings indicate that Mercury's surface could have been produced by polybaric melting of a relatively primitive mantle.

  11. Mineralogical comparison and cooling history of lunar and chondritic vesicular melt breccias (United States)

    Miyamoto, M.; Takeda, H.; Ishii, T.


    Lunar sample 77135, an impact melt breccia full of vesicles, has been reinvestigated by electron microprobe and X-ray diffraction techniques and compared with a vesicular melt LL chondrite, Yamato 790964, in an attempt to understand their impact heating processes and subsequent cooling history. Notable similarities between the lunar and chondritic melt breccias include: abundant vesicles, similar pyroxene chemical zoning trends, the presence of variable amounts of clastic material, and similar chemical compositions except for K and Na contents of glass and mesostasis. Some constraints on the cooling history are estimated from Mg-Fe diffusion profiles in olivine and pyroxene. The burial depth of lunar sample 77135 during cooling was 0.2-100 m; the depth for the chondrite was probably smaller. Impact melts were probably produced and a layer of regolith retained on the parent body sufficiently thick to allow the olivines to homogenize during slow cooling.

  12. Magmatism vs mushmatism: Numerical modelling of melt migration and accumulation in partially molten crust (United States)

    Roele, Katarina; Jackson, Matthew; Morgan, Joanna


    We present a quantitative model of heat and mass transport in a compacting crustal mush created by the repetitive intrusion of mantle-derived basaltic sills. At very low sill emplacement rates, we find that the maximum melt fraction remains small, far below that required to create an eruptible magma, and consistent with purely thermal models published previously. However, at intermediate (and realistic) sill emplacement rates, we observe the formation of a high melt fraction layer within a low melt fraction background. The high melt fraction layer migrates upwards towards the top of the mush (which is defined by the location of the solidus isotherm) and, despite occupying a high melt fraction, the melt in the layer has a composition corresponding to a progressively larger degree of fractionation during upwards migration, because it locally equilibrates with mush at progressively lower temperature. Thus the composition of the melt in the high melt fraction layer becomes progressively more evolved. The high melt fraction layer resembles a conventional magma chamber, but is produced by changes in bulk composition in response to melt migration, rather than the addition of heat. Indeed, such a layer can form even when the mush is cooling overall. The magma within the layer is at sufficiently high melt fraction to be eruptible, but is not located in the hottest region of the mush where the temperature is highest. This is a new method to produce a magma chamber within a crustal mush, and also to evolve the composition of the melt in the chamber. Our results show that high melt fractions need not be associated with high temperature; they also show that eruptible melt fractions can be created at much lower emplacement rates than predicted by purely thermal models. These high melt fractions are transient, and spatially localized within larger mush zones. Moreover, chemical differentiation does not require fractional crystallisation in a largely liquid magma chamber. Our

  13. Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid-rock reactions in forearc mantle (United States)

    Cao, Yi; Song, Shuguang; Su, Li; Jung, Haemyeong; Niu, Yaoling


    The Songshugou ultramafic massif is located in the eastern segment of the Qinling orogenic belt, central China. It is a large spinel peridotite body dominated by coarse-grained, porphyroclastic, and fine-grained dunite with minor harzburgite, olivine clinopyroxenite, and banded/podiform chromitite. The compositions of the bulk-rock dunite and harzburgite, and the constituent olivine and spinel, together with the textures and chemical characteristics of multiphase mineral inclusions, point to the highly refractory nature of these rocks with complex histories of high-temperature boninite melt generation and boninitic melt-rock reaction, probably in a young, warm, and volatile-rich forearc lithospheric mantle setting. Additionally, a subsequent low-temperature fluid-rock reaction is also recorded by TiO2-rich spinel with Ti solubility/mobility enhanced by chloride- or fluoride-rich subduction-zone fluids as advocated by Rapp et al. (2010). The olivine clinopyroxenite, on the other hand, was likely crystallized from a residual boninitic melt that had reacted with harzburgitic residues. The ubiquitous occurrences of hydrous minerals, such as anthophyllite, tremolite, Cr-chlorite, and serpentine (stable at lower P-T crustal conditions) in the matrix, suggest that further low-temperature fluid-rock reaction (or retrograde metamorphism) has affected the original volatile-poor peridotites either in a mature and cool subduction zone, or in a continental crust during their exhumation into the Qinling collisional orogeny at early Paleozoic era, or both. The prolonged and intense ductile/brittle deformation can decrease the mineral grain size through dynamic recrystallization and fracturing, and thus aid the fluid-rock reaction or retrograde metamorphism and mineral chemical re-equilibration processes. Therefore, the Songshugou peridotites present a good example for understanding the petrogenesis and evolution of the mantle wedge, with the emphasis on the complex partial

  14. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    d?Oliveira A.S.C.M.


    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  15. Production of high melt strength polypropylene by gamma irradiation (United States)

    Lugão, A. B.; Artel, B. W. H.; Yoshiga, A.; Lima, L. F. C. P.; Parra, D. F.; Bueno, J. R.; Liberman, S.; Farrah, M.; Terçariol, W. R.; Otaguro, H.


    High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international producers of polypropylene. Therefore, BRASKEM, the leading Brazilian PP producer, together with EMBRARAD, the leading Brazilian gamma irradiator, and the IPEN (Institute of Nuclear Energy and Research) worked to develop a national technology for the production of HMS-PP. One of the effective approaches to improve melt strength and extensibility is to add chain branches onto polypropylene backbone using gamma radiation. Branching and grafting result from the radical combinations during irradiation process. Crosslinking and main chain scission in the polymer structure are also obtained during this process. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene with two different monomers, Tri-allyl-isocyanurate (TAIC) and Tri-methylolpropane-trimethacrylate (TMPTMA), with concentration ranging from 1.5 to 5.0 mmol/100 g of polypropylene. These samples were irradiated with a 60Co source at dose of 20 kGy. It used two different methods of HMS-PP processing. The crosslinking of modified polymers was studied by measuring gel content melt flow rate and rheological properties like melt strength and drawability. It was observed that the reaction method and the monomer type have influenced the properties. However, the concentration variation of monomer has no effect.

  16. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk


    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).

  17. Ocean Basalt Simulator version 1 (OBS1): Trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi


    present a new numerical trace element mass balance model for adiabatic melting of a pyroxenite-bearing peridotite for estimating mantle potential temperature, depth of melting column, and pyroxenite fraction in the source mantle for a primary ocean basalt/picrite. The Ocean Basalt Simulator version 1 (OBS1) uses a thermodynamic model of adiabatic melting of a pyroxenite-bearing peridotite with experimentally/thermodynamically parameterized liquidus-solidus intervals and source mineralogy. OBS1 can be used to calculate a sequence of adiabatic melting with two melting models, including (1) melting of peridotite and pyroxenite sources with simple mixing of their fractional melts (melt-melt mixing model), and (2) pyroxenite melting, melt metasomatism in the host peridotite, and melting of the metasomatized peridotite (source-metasomatism model). OBS1 can be used to explore (1) the fractions of peridotite and pyroxenite, (2) mantle potential temperature, (3) pressure of termination of melting, (4) degree of melting, and (5) residual mode of the sources. In order to constrain these parameters, the model calculates a mass balance for 26 incompatible trace elements in the sources and in the generated basalt/picrite. OBS1 is coded in an Excel spreadsheet and runs with VBA macros. Using OBS1, we examine the source compositions and conditions of the mid-oceanic ridge basalts, Loihi-Koolau basalts in the Hawaiian hot spot, and Jurassic Shatsky Rise and Mikabu oceanic plateau basalts and picrites. The OBS1 model shows the physical conditions, chemical mass balance, and amount of pyroxenite in the source peridotite, which are keys to global mantle recycling.

  18. Diffusive fractionation of trace elements in basaltic melt (United States)

    Holycross, Megan E.; Bruce Watson, E.


    The chemical diffusivities of 25 trace elements (Sc, V, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Th, and U) in basaltic melt were measured in diffusion couple experiments performed at 1 GPa pressure and temperatures from 1250 to 1500 °C. Trace element concentration gradients developed in the glasses were simultaneously characterized using laser ablation ICP/MS to create an internally consistent data set. A ratio-fitting technique was employed to accurately determine the relative diffusivities of the rare earth elements (REE). All diffusion coefficients conform to the expected Arrhenius relation D = D 0exp(- E a /RT), where the constant log( D 0, m2/s) ranges from -3.81 to -5.11 and E a ranges from 161.73 to 223.81 kJ/mol. The slowest diffusivities are obtained for the high-field-strength elements; the fastest diffusivities are obtained for the low-field-strength elements. Trace element diffusion in MORB follows the compensation law, where log D 0 is linearly correlated with E a. Arrhenius parameters for diffusion of trivalent REE monotonically increase from La to Lu and are near-linear functions of bond strength (the variation in Arrhenius parameters means that the diffusivities decrease monotonically from La to Lu at a given T). The new data for trace element diffusion in basaltic melt can be used to explore the potential for diffusive fractionation of trace elements using kinetic models. Concentrations of the slower-diffusing heavy REE may be altered relative to those of the faster-diffusing light REE as a diffusive boundary layer develops in melt-melt and crystal-melt systems. The results indicate that diffusion in basalt can be an effective mechanism to fractionate trace elements from one another.

  19. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.


    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  20. Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms (United States)

    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.


    The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.

  1. Crystal Melting and Toric Calabi-Yau Manifolds

    CERN Document Server

    Ooguri, Hirosi


    We construct a statistical model of crystal melting to count BPS bound states of D0 and D2 branes on a single D6 brane wrapping an arbitrary toric Calabi-Yau threefold. The three-dimensional crystalline structure is determined by the quiver diagram and the brane tiling which characterize the low energy effective theory of D branes. The crystal is composed of atoms of different colors, each of which corresponds to a node of the quiver diagram, and the chemical bond is dictated by the arrows of the quiver diagram. BPS states are constructed by removing atoms from the crystal. This generalizes the earlier results on the BPS state counting to an arbitrary non-compact toric Calabi-Yau manifold. We point out that a proper understanding of the relation between the topological string theory and the crystal melting involves the wall crossing in the Donaldson-Thomas theory.

  2. Volcanic ash melting under conditions relevant to ash turbine interactions. (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B


    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  3. Interfacial properties of statistical copolymer brushes in contact with homopolymer melts. (United States)

    Trombly, David M; Pryamitsyn, Victor; Ganesan, Venkat


    We use polymer self-consistent field theory to quantify the interfacial properties of random copolymer brushes (AB) in contact with a homopolymer melt chemically identical to one of the blocks (A). We calculate the interfacial widths and interfacial energies between the melt and the brush as a function of the relative chain sizes, grafting densities, compositions of the random copolymer in the brush, and degree of chemical incompatibility between the A and B species. Our results indicate that the interfacial energies between the melt and the brush increase (signifying expulsion of the free chains from the brush) with increasing grafting density, chemical incompatibility between A and B components, and size of the free chains relative to the grafted chains. We also compare the interfacial energies of random copolymers of different sequence characteristics and find that, except for the case of very blocky or proteinlike chains, blockiness of the copolymer has only little effect on interfacial properties. Our results for interfacial energies are rationalized based on the concept of an "effective volume fraction" of the brush copolymers, f(eff), which quantifies the chemical composition of the brush segments in the interfacial zone between the brush and melt copolymers. Using this concept, we modify the strong-stretching theory of brush-melt interfaces to arrive at a simple model whose results qualitatively agree with our results from self-consistent field theory. We discuss the ramifications of our results for the design of neutral surfaces.

  4. Snow Melting and Freezing on Older Townhouses

    DEFF Research Database (Denmark)

    Nielsen, Anker; Claesson, Johan


    The snowy winter of 2009/2010 in Scandinavia prompted many newspaper articles on icicles falling from buildings and the risk this presented for people walking below. The problem starts with snow melting on the roof due to heat loss from the building. Melt water runs down the roof and some...... of it will freeze on the overhang. The rest of the water will either run off or freeze in gutters and downpipes or turn into icicles. This paper describes use of a model for the melting and freezing of snow on roofs. Important parameters are roof length, overhang length, heat resistance of roof and overhang......, outdoor and indoor temperature, snow thickness and thermal conductivity. If the snow thickness is above a specific limit value – the snow melting limit- some of the snow will melt. Another interesting limit value is the dripping limit. All the melt water will freeze on the overhang, if the snow thickness...


    Institute of Scientific and Technical Information of China (English)

    C.J. Sun; H.R. Geng; Y.S. Shen; X.Y. Teng; Z.X. Yang


    The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80, alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20, alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.

  6. Evolution of Shock Melt Compositions in Lunar Regoliths (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.


    Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.

  7. Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust (United States)

    Ferrero, Silvio; Wunder, Bernd; Ziemann, Martin A.; Wälle, Markus; O'Brien, Patrick J.


    Carbonatites are peculiar magmatic rocks with mantle-related genesis, commonly interpreted as the products of melting of CO2-bearing peridotites, or resulting from the chemical evolution of mantle-derived magmas, either through extreme differentiation or secondary immiscibility. Here we report the first finding of anatectic carbonatites of crustal origin, preserved as calcite-rich polycrystalline inclusions in garnet from low-to-medium pressure migmatites of the Oberpfalz area, SW Bohemian Massif (Central Europe). These inclusions originally trapped a melt of calciocarbonatitic composition with a characteristic enrichment in Ba, Sr and LREE. This interpretation is supported by the results of a detailed microstructural and microchemical investigation, as well as re-melting experiments using a piston cylinder apparatus. Carbonatitic inclusions coexist in the same cluster with crystallized silicate melt inclusions (nanogranites) and COH fluid inclusions, suggesting conditions of primary immiscibility between two melts and a fluid during anatexis. The production of both carbonatitic and granitic melts during the same anatectic event requires a suitable heterogeneous protolith. This may be represented by a sedimentary sequence containing marble lenses of limited extension, similar to the one still visible in the adjacent central Moldanubian Zone. The presence of CO2-rich fluid inclusions suggests furthermore that high CO2 activity during anatexis may be required to stabilize a carbonate-rich melt in a silica-dominated system. This natural occurrence displays a remarkable similarity with experiments on carbonate-silicate melt immiscibility, where CO2 saturation is a condition commonly imposed. In conclusion, this study shows how the investigation of partial melting through melt inclusion studies may unveil unexpected processes whose evidence, while preserved in stiff minerals such as garnet, is completely obliterated in the rest of the rock due to metamorphic re

  8. Multiscale Models of Melting Arctic Sea Ice (United States)


    1 Multiscale Models of Melting Arctic Sea Ice Kenneth M. Golden University of Utah, Department of Mathematics phone: (801) has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding the evolution of melt ponds and sea...Models of Melting Arctic Sea Ice 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER

  9. Low Melt Height Solidification of Superalloys (United States)

    Montakhab, Mehdi; Bacak, Mert; Balikci, Ercan


    Effect of a reduced melt height in the directional solidification of a superalloy has been investigated by two methods: vertical Bridgman (VB) and vertical Bridgman with a submerged baffle (VBSB). The latter is a relatively new technique and provides a reduced melt height ahead of the solidifying interface. A low melt height leads to a larger primary dendrite arm spacing but a lower mushy length, melt-back transition length, and porosity. The VBSB technique yields up to 38 pct reduction in the porosity. This may improve a component's mechanical strength especially in a creep-fatigue type dynamic loading.

  10. Solute Redistribution in Directional Melting Process

    Institute of Scientific and Technical Information of China (English)


    @@The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.

  11. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. (United States)

    Miyahara, Masaaki; El Goresy, Ahmed; Ohtani, Eiji; Nagase, Toshiro; Nishijima, Masahiko; Vashaei, Zahra; Ferroir, Tristan; Gillet, Philippe; Dubrovinsky, Leonid; Simionovici, Alexandre


    Peace River is one of the few shocked members of the L-chondrites clan that contains both high-pressure polymorphs of olivine, ringwoodite and wadsleyite, in diverse textures and settings in fragments entrained in shock-melt veins. Among these settings are complete olivine porphyritic chondrules. We encountered few squeezed and flattened olivine porphyritic chondrules entrained in shock-melt veins of this meteorite with novel textures and composition. The former chemically unzoned (Fa(24-26)) olivine porphyritic crystals are heavily flattened and display a concentric intergrowth with Mg-rich wadsleyite of a very narrow compositional range (Fa(6)-Fa(10)) in the core. Wadsleyite core is surrounded by a Mg-poor and chemically stark zoned ringwoodite (Fa(28)-Fa(38)) belt. The wadsleyite-ringwoodite interface denotes a compositional gap of up to 32 mol % fayalite. A transmission electron microscopy study of focused ion beam slices in both regions indicates that the wadsleyite core and ringwoodite belt consist of granoblastic-like intergrowth of polygonal crystallites of both ringwoodite and wadsleyite, with wadsleyite crystallites dominating in the core and ringwoodite crystallites dominating in the belt. Texture and compositions of both high-pressure polymorphs are strongly suggestive of formation by a fractional crystallization of the olivine melt of a narrow composition (Fa(24-26)), starting with Mg-rich wadsleyite followed by the Mg-poor ringwoodite from a shock-induced melt of olivine composition (Fa(24-26)). Our findings could erase the possibility of the resulting unrealistic time scales of the high-pressure regime reported recently from other shocked L-6 chondrites.

  12. Coarse grained model of entangled polymer melts (United States)

    Rakshit, Abhik

    reptation behavior. Constraint release is additionally implemented by tracing the position of the ends of all chains in the system and performing a local relaxation of the chain backbones once end retraction is detected. This algorithm takes advantage of the multibody nature of the model and requires no heuristic input parameters that would control, for example, the frequency and the magnitude of these fluctuations. The model is used, without additional calibration, to study start-up and step strain shear flows and reproduces features observed experimentally such as the overshoot during start-up shear flow, the Lodge-Meissner law, the monotonicity of the steady state shear stress with the strain rate, and shear thinning at large ġ . Most of the simulations reported are performed in conditions in which using a fully refined model of the same system would have been extremely computationally demanding or simply impossible with the current methods. Chain diffusion is studied in mixtures of bi-disperse linear polymers of same chemical identity by means of the coarse grained model with no additional calibration. The two sub-populations are moderately to highly entangled, with the shorter chain length NS fulfilling NS/Ne ≥ 5. Its performance in reproducing chain dynamics in a polydisperse melt is tested by extensively comparing the results with those obtained from an equivalent fine scale representation of the same system. The coarse grained model is used further to investigate for the first time by means of simulations the scaling of the diffusion coefficient with the length of the two types of chains and its dependence on the respective fractions. The model reproduces many features observed experimentally. For example, the diffusion coefficient of one of the chain types decreases with increasing the length of the other type chains. It is shown that, in this model, this effect is not linked to constraint release. When the matrix chains become sufficiently long, their length

  13. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia (United States)

    Sisson, T.W.; Bronto, S.


    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  14. A benchmark initiative on mantle convection with melting and melt segregation (United States)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert


    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  15. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.


    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  16. Purification of Niobium by Electron Beam Melting (United States)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.


    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  17. Stability of foams in silicate melts (United States)

    Proussevitch, Alexander A.; Sahagian, Dork L.; Kutolin, Vladislav A.


    Bubble coalescence and the spontaneous disruption of high-porosity foams in silicate melts are the result of physical expulsion of interpore melt (syneresis) leading to bubble coalescence, and diffusive gas exchange between bubbles. Melt expulsion can be achieved either along films between pairs of bubbles, or along Plateau borders which represent the contacts between 3 or more bubbles. Theoretical evaluation of these mechanisms is confirmed by experimental results, enabling us to quantify the relevant parameters and determine stable bubble size and critical film thickness in a foam as a function of melt viscosity, surface tension, and time. Foam stability is controlled primarily by melt viscosity and time. Melt transport leading to coalescence of bubbles proceeds along inter-bubble films for smaller bubbles, and along Plateau borders for larger bubbles. Thus the average bubble size accelerates with time. In silicate melts, the diffusive gas expulsion out of a region of foam is effective only for water (and even then, only at small length scales), as the diffusion of CO 2 is negligible. The results of our analyses are applicable to studies of vesicularity of lavas, melt degassing, and eruption mechanisms.

  18. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational viscos...

  19. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng


    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubble...

  20. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng


    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...

  1. Shock-induced melting and rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Gourdin, W.H.; Maple, M.B.


    Model calculations are presented to estimate that approx.50 GPa is required to completely shock melt metal powders with quenching at rates up to 10/sup 8/ K/s. Experiments are discussed for powders of a Cu-Zr alloy compacted in the usual way at 16 GPa and melted by shocking to 60 GPa. 12 refs.


    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko


    Full Text Available It is shown that melting and molding of hypoeutectic silumin are difficult physical and chemical nanostructural processes. In them the major role is played by the centers of crystallization of primary dendrites of aluminum, aluminum nanocrystals, the dissolved and adsorbed hydrogen. The role of the modifying crystals of an intermetallid of TiAl3 is reduced to absorption of the dissolved hydrogen and an intensification of process of a koalestsention of nanocrystals of aluminum in the centers of crystallization of primary dendrites of aluminum.

  3. Size-dependent melting of Bi nanoparticles (United States)

    Olson, E. A.; Efremov, M. Yu.; Zhang, M.; Zhang, Z.; Allen, L. H.


    Nanocalorimetry was used to investigate the melting of Bi nanoparticles. The particles were formed by evaporating Bi onto a silicon nitride substrate, which was then heated. The particles self-assemble into truncated spherical particles. Below 5-nm average film thickness, mean particle sizes increased linearly with deposition thickness but increased rapidly for 10-nm-thick films. As expected, small particles were found to exhibit size-dependent melting temperatures less than the bulk melting temperature (e.g., ΔT =67K for a 3-nm radius particle). The measured melting temperatures for particles below ˜7nm in radius, however, were ˜50K above the value predicted by the homogeneous melting model. We discuss this discrepancy in terms of a possible size-dependent crystal structure change and the superheating of the solid phase.

  4. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)


    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  5. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato


    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  6. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O


    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon(®) VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon(®) VA 64, Soluplus(®) and Eudragit(®) E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon(®) VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon(®) VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  7. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)


    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  8. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.


    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  9. Viscosity of carbonate-rich melts under different oxygen fugacity conditions (United States)

    Di Genova, Danilo; Hess, Kai-Uwe; Cimarelli, Corrado; Dingwell, Donald B.


    Viscosity is a fundamental property of many materials and its changes affects the fluid dynamics of natural system as well as industrial processes. The mobility of carbonatitic melts, which are carbonate-rich and very fluid melts, has attracted renewed interest in both earth science and industry. In fact, these melts are considered the main transport agent of carbon from the mantle to the crust and may be intimately linked to the generation of kimberlites. At the same time lithium, potassium and sodium carbonate are used as electrolytes in molten carbonate fuel cells which operate at high temperatures (~650° C) for the production of electricity without CO2 emissions. Accurate measurement of the transport property (i.e. viscosity) of carbonatitic melts is a priority in order to understand the carbonatite mobility and reaction rates. Additionally, obtaining accurate viscosity measurements of such low viscosity melts is however an experimental challenge due to volatility, very low torques and chemical melt instability in the viscometer. To overcome these limitations we have customized a Modular Compact Rheometer (MCR 502 from Anton Paar) ad hoc equipped with 2 narrow gap concentric-cylinder geometries of steel and Pt-Au. The rheometer is characterized by an air-bearing-supported synchronous motor with torque ranging between 0.01 μNm and 230 mNm (resolution of 0.1 nNm), achieving very low viscosity measurements in the order of mPa s, temperatures up to 1000° C and shear rates ranging between 1 and 100 sec-1. These experimental conditions well match the temperature-viscosity-shear rate window relevant for carbonate melts. Here we present the calibration of the rheometer and the results of a rheological characterization study on a series of very low viscous synthetic and natural carbonatitic melts at different oxygen fugacity (air and CO2 saturated atmosphere). Viscosity measurements on carbonate melts have been performed in the temperature range between ~650 and 1000

  10. Ionic-polymeric models and the amphoteric behavior of water in silicate melts (United States)

    Moretti, R.


    In silicate melts it is almost impossible to readily distinguish solute and solvent like in aqueous solutions. The anionic framework of silicate melts, in fact, makes solute and solvents so intimately related that one cannot identify a solvation shell and identify directly, from structural studies, the complexes needed to define acid-base reactions. Therefore, the distinction between solute and solvent becomes blurred in systems such as silicate melts, because speciation is not only complex but changes with the marked depolymerization of the silicate framework that obtains from pure SiO2 to metal-oxide rich compositions. These features do not allow proper understanding of the actual physico-chemical role of many species detected by conventional techniques, a fact which can lead to confusing notation. However, these may not be serious limits to account correctly for the acid-base reactions that take place in every kind of magmatic setting, provided a 'syntax' describing the effective interactions among significative cationic and anionic entities. In particular, the syntax for acid-base exchanges is needed such that constituting oxides (i.e. chemical components) can be treated independently of (but not necessarily extraneous to) structural features in defining such entities. So-called ionic-polymeric models highlight the mutual correspondence between polymerization and acid-base properties of dissolved oxides through the Lux-Flood formalism for molten oxides. They thus provide the syntax to write chemical exchanges, but have no pretension to structural description. In fact the concept of melt polymerization is used to identify basic anions and cations that can be used, along with their formal charge, to describe effectively acid-base interactions taking place in melts. In this respect, an example is given by the description of the amphoteric behavior of water dissolved on melts, hence water autoprotolysis. Although it exerts a profound influence on properties of

  11. Analysis of Turf Fungicides in Snow Melt Runoff by LC/MS (United States)

    Fungicides are applied on turf grass, in autumn, to control snow mold in the north-central United States. Fungicides of varying chemical classes have been detected in snow melt runoff from turf. A multi-residue method for simultaneous sample extraction and analysis is needed to process a large quant...

  12. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  13. Redox Equilibria of Chromium in Calcium Silicate Base Melts (United States)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus


    The oxidation state of chromium has been determined at 1600 °C in CaO-SiO2-CrO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93, and 1.10, and 0.15 to 3.00 pct Cr2O3 (initial). A few experiments were also carried out with CaO-SiO2-Al2O3-CrO x melts at 1430 °C. The slag samples were equilibrated with gas phases of controlled oxygen pressure. Two techniques were applied to determine the oxidation state: thermogravimetry and quenching of the samples with subsequent wet chemical analysis. In the low-oxygen pressure range, the chromium is mainly divalent. In the high-oxygen pressure range, it is trivalent and hexavalent. It was found that the Cr3+/Cr2+ and Cr6+/Cr3+ ratios depend on oxygen pressure at a constant CaO/SiO2 ratio and a constant content of total chromium, according to the ideal law of mass action. According to the respective chemical reactions, these ratios change proportional to p_{{{text{O}}2 }}{}^{1/4} or p_{{{text{O}}_{ 2} }}{}^{3/4}, respectively. They also increase with increasing basicity. The data are used to compute the fractions of the different ions in the melt. There is a certain range of oxygen pressure in which all three valence states, Cr2+, Cr3+, and Cr6+, coexist. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  14. Investigation on contact melting of Cu/Al laminated composite

    Directory of Open Access Journals (Sweden)

    Dmitry V. Pronichev


    Full Text Available The study presents investigation of chemical composition, microhardness and electrical conductivity of Cu/Al laminated metal composite after heat treatment at temperatures higher than Cu–Al eutectic melting point. The Cu/Al bimetal was obtained via explosion welding. Chemical composition of the material after heat treatments was identified using EDS analysis. Eddy current testing was applied to investigate electrical conductivity of the composite’s components. Strain-hardened zones were identified in the explosion welded composite. The experimental value of electrical conductivity of explosion welded composite was in good coherence with calculated by additivity rule results. Heat treatments resulted in the formation of multiple interlayers which had high microhardness value and had intermetallics in composition. The electrical conductivity of the identified interlayers was significantly lower than of Cu and Al.

  15. The Reaction of Carbonates in Contact with Superheated Silicate Melts: New Insights from MEMIN Laser Melting Experiments (United States)

    Hamann, C.; Hecht, L.; Schäffer, S.; Deutsch, A.; Lexow, B.


    The reaction of carbonates in contact with silicate impact melts is discussed quite controversially in the impact community. Here, we discuss four MEMIN laser melting experiments involving carbonates in contact with superheated silicate melts.

  16. Interaction mechanism between niobium-silicide-based alloy melt and Y2O3 refractory crucible in vacuum induction melting process

    Directory of Open Access Journals (Sweden)

    Gao Ming


    Full Text Available The Y2O3 crucibles were introduced in the study as an alternative to the traditional ceramic ones in vacuum induction melting of multi-component Nb-16Si-22Ti-2Al-2Hf-17Cr (at.% alloys, to reveal the possible interactions between the alloy melt and the refractory crucible. Multiple melting time lengths and two cooling schemes were designed and used for the experiments. The chemical composition and microstructure of the tested alloy and the melt-crucible interaction were investigated and evaluated. In the experiments, Y2O3 crucible displays good physical-chemical compatibility. The results indicate that the increment of O element in the as-cast ingot is 0.03at.%-0.04at.% (72-97 ppm and the increment of Y element is very insignificant. The key features of the alloy melt interacting with Y2O3 ceramics are analyzed and concluded in the paper. As a result of the dissolution reaction xY2O3 (in molten alloy + (1-xHfO2 (impurity →Hf1-xY2xO2-x, a continuous double-layer solid film consisted of HfO2 solid solution (~2 μm and pure HfO2 (~5 μm is formed on the surface of the test ingot after cooled down in the crucible. The experimental results show that the Y2O3 crucible is applicable to the vacuum induction melting of Nb-Si based alloys.

  17. Origins of ultralow velocity zones through slab-derived metallic melt. (United States)

    Liu, Jiachao; Li, Jie; Hrubiak, Rostislav; Smith, Jesse S


    Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron-carbon system crosses the current geotherm near Earth's core-mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce the seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich postbridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth's core-mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle.

  18. Effect of Sulfur on Siderophile Element Partitioning Between Olivine and Martian Primary Melt (United States)

    Usui, T.; Shearer, C. K.; Righter, K.; Jones, J. H.


    Since olivine is a common early crystallizing phase in basaltic magmas that have produced planetary and asteroidal crusts, a number of experimental studies have investigated elemental partitioning between olivine and silicate melt [e.g., 1, 2, 3]. In particular, olivine/melt partition coefficients of Ni and Co (DNi and DCo) have been intensively studied because these elements are preferentially partitioned into olivine and thus provide a uniquely useful insight into the basalt petrogenesis [e.g., 4, 5]. However, none of these experimental studies are consistent with incompatible signatures of Co [e.g., 6, 7, 8] and Ni [7] in olivines from Martian meteorites. Chemical analyses of undegassed MORB samples suggest that S dissolved in silicate melts can reduce DNi up to 50 % compared to S-free experimental systems [9]. High S solubility (up to 4000 ppm) for primitive shergottite melts [10] implies that S might have significantly influenced the Ni and Co partitioning into shergottite olivines. This study conducts melting experiments on Martian magmatic conditions to investigate the effect of S on the partitioning of siderophile elements between olivine and Martian primary melt.

  19. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR (United States)

    Istomina, Larysa; Heygster, Georg


    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  20. A benchmark initiative on mantle convection with melting and melt segregation (United States)

    Schmeling, Harro; Dohmen, Janik; Wallner, Herbert; Noack, Lena; Tosi, Nicola; Plesa, Ana-Catalina; Maurice, Maxime


    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we initiate a benchmark comparison. In the initial phase of this endeavor we focus on the usefulness of the definitions of the test cases keeping the physics as sound as possible. The reference model is taken from the mantle convection benchmark, case 1b (Blanckenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and a Rayleigh number of 1e5. Melting is modelled assuming a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) three cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 includes batch melting, melt buoyancy (melt Rayleigh number Rm), depletion buoyancy and latent heat, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms) and qm approaching a statistical steady state. Case 3 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases should be carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction

  1. Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006 (United States)

    Blundy, Jon; Cashman, Katharine V.; Berlo, Kim; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.


    Major element, trace element, and volatile concentrations in 187 glassy melt inclusions and 25 groundmass glasses from the 1980-86 eruption of Mount St. Helens are presented, together with 103 analyses of touching FE-Ti oxide pairs from the same samples. These data are used to evaluate the temporal evolution of the magmatic plumbing system beneath the volcano during 1980-86 and so provide a framework in which to interpret analyses of melt inclusions from the current (2004-2006) eruption. Major and trace element concentrations of all melt inclusions lie at the high SiO2 end of the data array defined by eruptive products of the late Quaternary age from Mount St. Helens. For several major and trace elements, the glasses define a trend that is oblique to the whole-rock trend, indicating that different mineral assemblages were responsible for the two trends. The whole-rock trend can be ascribed to differentiation of hydrous basaltic parents in a deep-seated magma reservoir, probably at depths great enough to stabilize garnet. In contrast, the glass trends were generated by closed-system crystallization of the phenocryst and microlite mineral assemblages at low pressures. The dissolved H2O content of the melt inclusions from 1980-86, as measured by the ion microprobe, ranges from 0 to 6.7 wt. percent, with the highest values obtained from the plinian phase of May 18, 1980. Water contents decrease with increasing SiO2, consistent with decompression-driven crystallization. Preliminary data for dissolved CO2 in melt inclusions from the May 18 plinian phase from August 7, 1980, indicate that XH2O in a vapor phase was approximately constant at 0.80, irrespective of H2O content, suggestive of closed-system degassing with a high bubble fraction or gas streaming through the subvolcanic system. Temperature and f

  2. Melting behavior of mixed U-Pu oxides under oxidizing conditions (United States)

    Strach, Michal; Manara, Dario; Belin, Renaud C.; Rogez, Jacques


    In order to use mixed U-Pu oxide ceramics in present and future nuclear reactors, their physical and chemical properties need to be well determined. The behavior of stoichiometric (U,Pu)O2 compounds is relatively well understood, but the effects of oxygen stoichiometry on the fuel performance and stability are often still obscure. In the present work, a series of laser melting experiments were carried out to determine the impact of an oxidizing atmosphere, and in consequence the departure from a stoichiometric composition on the melting behavior of six mixed uranium plutonium oxides with Pu content ranging from 14 to 62 wt%. The starting materials were disks cut from sintered stoichiometric pellets. For each composition we have performed two laser melting experiments in pressurized air, each consisting of four shots of different duration and intensity. During the experiments we recorded the temperature at the surface of the sample with a pyrometer. Phase transitions were qualitatively identified with the help of a reflected blue laser. The observed phase transitions occur at a systematically lower temperature, the lower the Pu content of the studied sample. It is consistent with the fact that uranium dioxide is easily oxidized at elevated temperatures, forming chemical species rich in oxygen, which melt at a lower temperature and are more volatile. To our knowledge this campaign is a first attempt to quantitatively determine the effect of O/M on the melting temperature of MOX.

  3. Melting behavior of mixed U–Pu oxides under oxidizing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Strach, Michal [CEA, DEN, DTEC, SECA, LCC, Cadarache F-13108, Saint-Paul-Lez-Durance (France); IM2NP, UMR CNRS 7334 – Aix Marseille University, Case 251, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France); Manara, Dario [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Belin, Renaud C. [CEA, DEN, DTEC, SECA, LCC, Cadarache F-13108, Saint-Paul-Lez-Durance (France); Rogez, Jacques [IM2NP, UMR CNRS 7334 – Aix Marseille University, Case 251, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)


    In order to use mixed U–Pu oxide ceramics in present and future nuclear reactors, their physical and chemical properties need to be well determined. The behavior of stoichiometric (U,Pu)O{sub 2} compounds is relatively well understood, but the effects of oxygen stoichiometry on the fuel performance and stability are often still obscure. In the present work, a series of laser melting experiments were carried out to determine the impact of an oxidizing atmosphere, and in consequence the departure from a stoichiometric composition on the melting behavior of six mixed uranium plutonium oxides with Pu content ranging from 14 to 62 wt%. The starting materials were disks cut from sintered stoichiometric pellets. For each composition we have performed two laser melting experiments in pressurized air, each consisting of four shots of different duration and intensity. During the experiments we recorded the temperature at the surface of the sample with a pyrometer. Phase transitions were qualitatively identified with the help of a reflected blue laser. The observed phase transitions occur at a systematically lower temperature, the lower the Pu content of the studied sample. It is consistent with the fact that uranium dioxide is easily oxidized at elevated temperatures, forming chemical species rich in oxygen, which melt at a lower temperature and are more volatile. To our knowledge this campaign is a first attempt to quantitatively determine the effect of O/M on the melting temperature of MOX.

  4. Energy-Efficient Glass Melting: Submerged Combustion

    Energy Technology Data Exchange (ETDEWEB)



    Oxy-gas-fired submerged combustion melter offers simpler, improved performance. For the last 100 years, the domestic glass industry has used the same basic equipment for melting glass on an industrial scale.

  5. Principle of Melt-glue Cloth

    Institute of Scientific and Technical Information of China (English)

    陈人豪; 曹建达; 李济群; 张利梅; 何洋


    This paper advances a new concept of textile-meltglue cloth, and introduces the readers to the basic principle of melt-glue cloth. On the basis of melt spinning, the spinneret can be replaced by a spinning device that consists of an outer spinneret (a loop)and an inner spinneret ( a round plate), and between them there is an interval circle on which the centers of the holes are evenly distributed. When the machine is running, the outer spinneret (or the inner one) is fixed, the inner spinneret (or the outer one)is spinning, and a columnar net will be obtained.Then it will be excided with the help of a cutter in transporting it. Finally the once-forming melt-glue cloth will be produced. Compared with the traditional woven fabric, melt-glue cloth has a lot of special features and a bright future of application.

  6. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith


    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  7. Melt Dispersion and Direct Containment Heating (DCH) Experiments für KONVOI reactors (KIT Scientific Reports ; 7567)


    Meyer, Leonhard


    The DISCO-H test facility was used to perform scaled experiments that simulate melt ejection scenarios under low system pressure in Severe Accidents in Pressurized Water Reactors (PWR). These experiments are designed to investigate the fluid-dynamic, thermal and chemical processes during melt ejection out of a breach in the lower head of a PWR pressure vessel at pressures around and below 2 MPa with an iron-alumina melt and steam. The report presents results from a test series with the geomet...

  8. Terrestrial analogues for lunar impact melt flows (United States)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.


    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  9. Electrochemical Studies in Aluminum Chloride Melts (United States)


    Molten Salt Systems", Symposium on Molten Salts, Symposium Volume, The Electrochemical Society , in press (1976). Manuscripts in Preparation--Related to...Fused Salt Technology, Electrochemical Society Meeting, Chicaao, May 8-13, 1973. R. A. Osteryoung, R. H. Abel, L. G. Boxall and B. H. Vassos, "An...aluminate Melts", Electrochemical Society , San Francisco, CA, May, 1974. R. A. Osteryoung, "Chemistry in Aluminum Chloride Melts", Fifth International

  10. The melting and solidification of nanowires (United States)

    Florio, B. J.; Myers, T. G.


    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  11. Melting behavior of large disordered sodium clusters

    CERN Document Server

    Aguado, A


    The melting-like transition in disordered sodium clusters Na_N, with N=92 and 142 is studied by using a first-principles constant-energy molecular dynamics simulation method. Na_142, whose atoms are distributed in two (surface and inner) main shells with different radial distances to the center of mass of the cluster, melts in two steps: the first one, at approx. 130 K, is characterized by a high intrashell mobility of the atoms, and the second, homogeneous melting, at approx. 270 K, involves diffusive motion of all the atoms across the whole cluster volume (both intrashell and intershell displacements are allowed). On the contrary, the melting of Na_92 proceeds gradually over a very wide temperature interval, without any abrupt step visible in the thermal or structural melting indicators. The occurrence of well defined steps in the melting transition is then shown to be related to the existence of a distribution of the atoms in shells. Thereby we propose a necessary condition for a cluster to be considered r...

  12. Manufacturing laser glass by continuous melting

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K


    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  13. Si- and alkali-rich melt inclusions in minerals of mantle peridotites from eastern China: Implication for lithospheric evolution

    Institute of Scientific and Technical Information of China (English)

    FAN; Qicheng; SUI; Jianli; XU; Ping; LI; Ni; SUN; Qian; WANG; Tuanhua


    Minerals of spinel- and garnet-facies mantle xenoliths entrained in Cenozoic basalts from eastern China (North China, Northeastern China and Southeastern China coastal area) contains lots of melt inclusions. Studies on these melt inclusions show that the glass inclusions are rich in SiO2 (60%―68%) and alkalis (K2O+Na2O=5%―11%, especially for K2O) as well as volatiles such as H2O and CO2 (2%―7%), which belong to dacites and andesites of the high-K calcic alkali series rocks with few shoshonites. High Al and Ca diopside in melt inclusion is the product of melt crystallization at high temperature and pressure, rather than the product of devitrification. Results show that these K-rich (in general K2O>3%) intermediate-acidic silicate melt inclusions have characteristics of continent without a genetical link to host basalts and their phenocrystic minerals. Thus, these trapped melt inclusions represent melts of Mesozoic lithospheric mantle-crust interaction and imply that the continental lithospheric mantle beneath eastern China had undergone fragmentation and recreation processes during the Mesozoic and Cenozoic periods. This result undoubtly provides important implication for the evolution of sub-continental lithosphere beneath eastern China. We propose that these Si- and alkalis-rich melts should be responsible for the mantle chemical heterogeneity underneath eastern China.

  14. Target-projectile interaction during impact melting at Kamil Crater, Egypt (United States)

    Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi


    In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as

  15. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey


    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freezeup, and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freezeup. Using this method we analyze trends in melt onset and freezeup for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (0.4 d decade-1), trends in melt onset are negative, i.e., toward earlier melt. The trends range from -1.0 d decade-1 for the Bering Sea to -7.3 d decade-1 for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend toward later autumn freeze onset. The Chukchi/Beaufort seas and Laptev/East Siberian seas observe the strongest trends with 7 d decade-1. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 10 d decade-1 are seen for Hudson Bay, the East Greenland Sea, the Laptev/East Siberian seas, and the Chukchi/Beaufort seas. Those trends are statistically significant at the 99% level.

  16. Melt-intercalation studies of polystyrene ionomers in pristine montmorillonite (United States)

    Bhiwankar, Nikhil N.

    The main objective of this study was to examine the use of ionomers, specifically alkylamine-neutralized sulfonated polystyrene (SPS) for promoting intercalation into unmodified sodium montmorillonite clay and its use as a compatabilizer for intercalating another polymer into unmodified silicate clay. The processing parameters and chemical structure of polymers which led to the formation of partially intercalated/exfoliated morphologies were investigated. Melt-intercalated polymer layered silicate nanocomposites (PLSNs) are made by mixing polymers and organically modified silicates by the application of shear forces. However, the thermal decomposition temperatures of the organic modifications are usually comparable to the processing temperatures of most of the polymers. Hence, in this work modification of the polymer, rather than the clay, for promoting melt intercalation, specifically the introduction of alkyl ammonium salt groups along the polymer chain was considered. In this study the effects of viscosity, shear rates and mixing times on the morphology of nanocomposites were investigated. The effect of ionic content in the polymer chain of SPS in the batch mixtures of SPS and PS was researched. We also compared the effect on the extent of intercalation in these silicate clay galleries as a function of size of the counter-ions by varying the alkyl chain length and as a function of basicity of these counter-ions by varying the number of alkyl substituents that are attached on the N of the amine. The melt mixing of pristine Na-Mmt with alkyl ammonium and quaternary ammonium salts of SPS ionomers, resulted in an increase in the silicate gallery spacing consistent with intercalation. Mixtures of the ionomer with PS exhibited similar gallery spacing increases, indicating that the ionomer is an effective compatibilizing agent for the melt-intercalation of hydrophobic polymers into the clay. The extent of intercalation was independent of the melt processing conditions

  17. A melt inclusion study of the Sudbury Igneous Complex (Ontario, Canada): preliminary results (United States)

    Watts, Kathleen; Hanley, Jacob; Kontak, Daniel; Ames, Doreen


    The 1.85 Ga Sudbury Igneous Complex (SIC), Ontario, Canada, is an intrusive complex representing the crystallized melt sheet that formed within a large impact crater. The SIC has been extensively studied due to its rich endowment in magmatic sulfide ores (Ni-Cu-PGEs). The nature and origin of the SIC melt sheet and its subsequent evolution still remain controversial. In this study, analyses of primary melt inclusions hosted in cumulus apatite within three mafic units of the SIC (gabbro, norite and sublayer quartz diorite) are used to decipher the thermometric and chemical characteristics of the evolving melt sheet as it crystallized. Apatite-hosted melt inclusions commonly display a negative crystal shape, occur parallel to the c-axis, and often occur within a central growth zone, which suggest a primary origin. The compositions of coeval (co-entrapped) melt inclusions are distinct and may represent either the products of immiscibility (low or high temperature field; c.f. the Skaergaard Intrusion: Jakobsen et al., Geology, 2005), or a product of early, high-temperature, impact-generated emulsification (prior to and independent of crystallization of the melt sheet). The compositions of homogenized (1100-1200oC for 3 hrs) melt inclusions, determined by SEM-EDS and EMP analyses of opened, homogenized melt inclusions, equate to two distinct compositions: (1) Type-I are SiO2-rich, ranging from tonalitic to granodioritic in composition (60-70 wt% SiO2, up to 11 wt% FeO); and (2) Type-II are Fe-rich with syenogabbroic to essexitic to alkali gabbroic compositions (27-49 wt% SiO2, 16-44 wt% FeO). Trace element data, obtained by LA-ICPMS analyses of single inclusions and surrounding host apatite, are used to infer D values between apatite and the two melt types, and between the coexisting melt types. Apparent Dap-melt values for both Type-I and Type-II inclusions show that the REE, Sr, and Y are compatible in apatite, and As is weakly compatible or incompatible in apatite


    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.


    A collaborative study has been established under the U.S. Department of Energy (DOE) Office of Environmental Management International Program between the Savannah River National Laboratory (SRNL) and the V. G. Khlopin Radium Institute (KRI) in St. Petersburg, Russia, to investigate potential improvements in melt rate via chemical additions to the glass frit. Researchers at KRI suggested a methodology for selecting frit additives based on empirical coefficients for optimization of glass melting available in the Russian literature. Using these coefficients, KRI identified B{sub 2}O{sub 3}, CuO, and MnO as frit additives that were likely to improve melt rate without having adverse effects on crystallization of the glass or its chemical durability. The results of the melt rate testing in the SMK melter showed that the slurry feed rate (used as a gauge of melt rate) could be significantly increased when MnO or CuO were added to Frit 550 with the SMR-2 sludge. The feed rates increased by about 27% when MnO was added to the frit and by about 26% when CuO was added to the frit, as compared to earlier results for Frit 550 alone. The impact of adding additional B{sub 2}O{sub 3} to the frit was minor when added with CuO. The additional B{sub 2}O{sub 3} showed a more significant, 39% improvement in melt rate when added with MnO. The additional B{sub 2}O{sub 3} also reduced the viscosity of the glasses during pouring. Samples of the glasses from the melt rate testing characterized at SRNL showed that there were no significant impacts on crystallization of the glasses. All of the glasses had very good chemical durability. Chemical composition measurements showed that the frit additives were present in concentrations below the targeted values in some of the glasses. Therefore, it is possible that higher concentrations of these additives may further improve melt rate, although the impacts of higher concentrations of these components on crystallization and durability would need to

  19. Vacuum Arc Melting Processes for Biomedical Ni-Ti Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Tsai De-Chang


    Full Text Available This study primarily involved using a vacuum arc remelting (VAR process to prepare a nitinol shape-memory alloy with distinct ratios of alloy components (nitinol: 54.5 wt% to 57 wt%. An advantage of using the VAR process is the adoption of a water-cooled copper crucible, which effectively prevents crucible pollution and impurity infiltration. Optimising the melting production process enables control of the alloy component and facilitates a uniformly mixed compound during subsequent processing. This study involved purifying nickel and titanium and examining the characteristics of nitinol alloy after alloy melt, including its microstructure, mechanical properties, phase transition temperature, and chemical components.

  20. Patterns in new dimensionless quantities containing melting temperature, and their dependence on pressure

    Directory of Open Access Journals (Sweden)



    Full Text Available The relationships existing between melting temperature and other
    macroscopic physical quantities are investigated. A new dimensionless
    quantity Q(1 not containing the Grtineisen parameter proves to be suited for serving in future studies as a tool for the determination of the melting temperature in the outer core of the Earth. The pressure dependence of more general dimensionless quantities Q„ is determined analytically and, for the chemical elements, numerically, too. The patterns of various interesting dimensionless quantities are shown in the Periodic Table and compared.

  1. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar


    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  2. Ingredient Losses during Melting Binary Ni-Ti Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    S.K. Sadrnezhaad; S. Badakhshan Raz


    Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100℃ above the melting point inside the crucible.Chemical analysis showed that there existed an optimum holding time of 3 min during which the alloying elements were only dropped to a predictable limit. Microstructure, chemical composition, shape memory and mechanical properties of the cast metal ingots were determined to indicate the appropriate achievements with the specified 3 min optimum holding time.

  3. Integral coolant channels supply made by melt-out method (United States)

    Escher, W. J. D.


    Melt-out method of constructing strong, pressure-tight fluid coolant channels for chambers is accomplished by cementing pins to the surface and by depositing a melt-out material on the surface followed by two layers of epoxy-resin impregnated glass fibers. The structure is heated to melt out the low-melting alloy.

  4. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam


    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  5. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold (United States)

    Liu, Zhong-Li; Sun, Jun-Sheng; Li, Rui; Zhang, Xiu-Lu; Cai, Ling-Cang


    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. Supported by the National Natural Science Foundation of China under Grant No. 41574076 and the NSAF of China under Grant No. U1230201/A06, and the Young Core Teacher Scheme of Henan Province under Grant No. 2014GGJS-108

  6. Polyether Based Thermoplastic Polyurethane Melt Blown Nonwovens

    Directory of Open Access Journals (Sweden)

    Terezie Zapletalova


    Full Text Available A series of melt blown samples were produced from three hardness grades of ether based thermoplastic polyurethane elastomers (TPU. The fabrics were tested to investigate their structure-property relationship in a melt blown process. Solution viscosities of the web were only 20-26% of there original values indicating a large loss in polymer molecular weight during melt blowing. Fiber diameter distributions measured on melt blown samples were found comparable to those made with more conventional polymers. The fiber orientation distribution functions (ODF suggest slight fiber orientation in machine direction. Tensile and elongation properties depended on die-to-collector distance (DCD, polymer hardness and fiber ODF. A strong relationship between the tensile strength and die-to-collector distance was identified and attributed to reduced interfiber adhesion in the web with increasing DCD. The reduction in adhesion was attributed to greater extents of solidification before reaching the forming belt for longer DCDs. This paper is the first in a series relating the influence of the melt blowing process parameters on the polymer properties and the nonwoven fabric properties for block thermoplastic elastomers.


    Institute of Scientific and Technical Information of China (English)


    Differential scanning calorimetry was used to study the crystallization and melting of nylon 610. For nylon 610 crystallized from the melt state (260℃), the overall rate of bulk crystallization can be described by a simple Avrami equation with Avrami exponent n≈2, independent of crystallization temperature. With the experimentally obtained Tm0 (235℃~255℃) of nylon 610, the fold surface free energy σe was determined to be 35~38 erg/cm2. The effects of annealing temperature and time on the melting of quenched nylon 610 were also investigated. For nylon 610 quenched at room temperature there is only one DSC endotherm peak DSC scans on annealed samples exhibited an endotherm peak at approximately 10℃ above the annealing temperature. The size and position of the endothermic peak is strongly related to annealing temperature and time. An additional third melting was observed when quenched nylon 610 was annealed at high temperature for a sufficiently long residence time. The existence of the third melting peak suggests that more than one kind of distribution of lamella thickness may occur when quenched nylon610 is annealed. The implications of these results in terms of crystal thickening mechanism were discussed.

  8. Melting of the Earth's inner core. (United States)

    Gubbins, David; Sreenivasan, Binod; Mound, Jon; Rost, Sebastian


    The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.

  9. Origin of impact melt rocks in the Bununu howardite (United States)

    Klein, L. C.; Hewins, R. H.


    The Bununu howardite is a polymict regolith breccia which contains impact melt that is largely restricted to a 1-cm thick intrusion containing residual glass. As in Malvern, the melt rock contains melt with meteoritic Ni-Co contents. The cooling rate, interpreted for forming glass from this composition, is a few tenths of a degree per minute. The intrusive melts rock, which is a feature unique to Bununu, may indicate that Bununu was consolidated at the time of impact melting.

  10. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers (United States)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim


    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.

  11. On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt (United States)

    Kudryashova, Olga; Vorozhtsov, Sergey


    One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported.

  12. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers (United States)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim


    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  13. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. (United States)

    Helmy, Hassan M; Ballhaus, Chris; Fonseca, Raúl O C; Wirth, Richard; Nagel, Thorsten; Tredoux, Marian


    In low temperature aqueous solutions, it has long been recognized by in situ experiments that many minerals are preceded by crystalline nanometre-sized particles and non-crystalline nanophases. For magmatic systems, nanometre-sized precursors have not yet been demonstrated to exist, although the suggestion has been around for some time. Here we demonstrate by high temperature quench experiments that platinum and arsenic self-organize to nanoparticles, well before the melt has reached a Pt-As concentration at which discrete Pt arsenide minerals become stable phases. If all highly siderophile elements associate to nanophases in undersaturated melts, the distribution of the noble metals between silicate, sulphide and metal melts will be controlled by the surface properties of nano-associations, more so than by the chemical properties of the elements.

  14. Study on melting conditions of radioactive miscellaneous solid waste. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiki; Nakashio, Nobuyuki; Isobe, Motoyasu; Otake, Atsushi; Wakui, Takuji; Nakashima, Mikio [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Hirabayashi, Takakuni [Radiation Application Develpment Association, Tokai, Ibaraki (Japan)


    Improvement of fluidity of molten slag is one of the most important factors for plasma melting treatment of low level radioactive miscellaneous wastes generated from nuclear facilities. In general, it is considered that elevating molten slag temperature of addition of flux is of certain use in improvement of fluidity of molten slag. However, these ways are not necessarily suitable from the viewpoints of refractory erosion or reduction of waste volume. In this report, we suggested that fluidity of molten slag could be improved by controlling chemical compositions of molten slag. On the Basic of the investigation using phase diagram and viscosity data, FeO was selected as a key component for improving fluidity: Viscosity and melting point of molten slag decreased with increasing relative concentration of FeO in molten slag. Accordingly, we concluded that it is important to adjust basicity of molten slag for melting treatment of low-level radioactive miscellaneous solid wastes. (author)

  15. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyuk, A.N.; Trigub, N.P.; Zamkov, V.N.; Ivasishin, O.M.; Markovsky, P.E.; Teliovich, R.V.; Semiatin, S.L


    The chemical homogeneity, microstructure, texture, and mechanical properties of Ti-6Al-4V ingots synthesized via electron-beam melting were established. Despite large aluminum losses during melting, very uniform compositions well within the specification for the alloy were obtained in both 200- and 400-mm diameter ingots. The local conditions of melting and solidification produced essentially texture-free as-cast material with a largely equiaxed beta grain structure. Following hot working via rolling at various temperatures, a wide range of microstructures and textures similar to those found in conventionally-processed Ti-6Al-4V was obtained. The resulting mechanical properties were comparable to or better than those found in Ti-6Al-4V synthesized via vacuum arc remelting.

  16. On the occurrence and implications of Jurassic primary continental boninite-like melts in the Zagros orogen (United States)

    Esna-Ashari, A.; Tiepolo, M.; Hassanzadeh, J.


    Ultramafic rocks, ranging from pyroxenites to hornblendites, are associated with granitoids of the Aligoodarz intrusive complex in the central Sanandaj-Sirjan Zone, representing the Mesozoic continental arc segment of the Zagros orogen. As inferred from the ultramafic whole rock composition and the most primitive clinopyroxene composition in pyroxenites, the geochemical signature of primary melt is significantly different from that of the continental arc basalts. In particular, primary melt is characterized by extremely low concentrations of incompatible elements and high concentrations of Mg and refractory elements typical of boninites. Amphibole is a late crystallizing mineral in these rocks and is in textural and chemical disequilibrium with olivine + orthopyroxene + clinopyroxene. Amphibole crystallized from a liquid underwent differentiation through a process of melt-rock reaction. In particular, early differentiated boninitic cumulates reacted with later melts with a strong crustal signature similar to Aligoodarz granodiorite. Usbnd Pb zircon geochronology from ultramafic rocks and surrounding quartz-diorite yield similar ages and indicate that they are coeval with Aligoodarz granitoids (ca. 165-170 Ma). However, the occurrence of a marked negative Eu anomaly in zircon from the ultramafic rocks, which is absent in the boninitic primary melt, indicates that zircons crystallized from the infiltrating melt and in turn date the timing of melt infiltration. The interaction between ultramafic cumulates and infiltrated melt has generated a new liquid compositionally similar to high-Mg andesites and to the quartz-diorites hosting the ultramafic cumulates. The scenario that better account for the genesis of boninitic melts in the Sanandaj-Sirjan Zone is partial melting of a depleted mantle wedge in response to the onset of NeoTethys subduction. According to this hypothesis, middle Jurassic calc-alkaline magmatism in the Sanandaj-Sirjan Zone represents the mature stage

  17. Melting Processes and Mantle Heterogeneity Recorded by Individual Phases from Mid-Ocean Ridge Basalts (United States)

    Burton, K. W.; Parkinson, I. J.


    Isotope and elemental studies of mantle rocks and oceanic basalts demonstrate that Earth's mantle is heterogeneous, comprising distinct components that have experienced isolated long-term evolution, on both global and local scales. In principle, such heterogeneity will control the onset of melting and at least some of the chemical variation seen in Mid-Ocean Ridge Basalts (MORB) (e.g. [1]). But, the high degrees of melting that generate MORB, together with magma mixing and assimilation, have the effect of homogenising the compositions of lavas erupted at the surface, concealing the true extent of the variability in the mantle source. This study presents high-precision double-spike Pb isotope data for the consituent phases of MORB from a single ridge segment from the FAMOUS region (36°50'N) on the Mid-Atlantic ridge. Separated phases from individual basalts show a remarkable variation in Pb isotope composition, greater than that seen for all samples previously analysed from this ridge segment, and encompassing >70% of the variation seeen globally in MORB. These variations cannot be explained by assimilation of seawater altered oceanic crust or by contamination from the Azores, both of which carry a radiogenic Pb isotope siganture. Rather they indicate mixing between an early extremely unradiogenic melt, from which plagioclase, clinopyroxene and sulphide crystallised, sourced by material showing long-term depletion of U, and a later more radiogenic melt that produced the final glass host. Elemental and isotope data suggest that the source of this early melt was ancient, enriched, with a crust-like chemical signature, producing a relatively volatile-rich melt. This study confirms that signficant information may be preserved in the early crystallising minerals at slow spreading ridges, either phenocryst phases or the melt inclusions that they host (e.g. [2]). Overall, these results suggest that there is a simple relationship between the scale and nature of mantle

  18. Chemical Emergencies (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  19. Melting and Reactive Flow of Carbonated Peridotite Beneath Mid-Ocean Ridges (United States)

    Keller, T.; Katz, R. F.


    The mantle carbon reservoir is four orders of magnitude more massive than that of the atmosphere and ocean combined. The behaviour of carbon in the mantle, especially its transport and extraction, is thus of crucial importance to understanding the coupling between the deep interior and the surface environment of Earth. Laboratory experiments indicate that even small concentrations of carbon dioxide (and other volatiles like H2O) in the upper mantle significantly affect silicate melting [HK96,DH06] by stabilising carbon-rich melt at high pressure. The presence of carbon in the mantle substantially extends the region where partial melt is stable and has important consequences for the dynamics of magma transport and chemical differentiation [H10,DH10]. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+carbonated MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84]. The thermo-chemical formulation of the system is represented by a novel, disequilibrium, multi-component melting model based on thermodynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. First results show that carbon and other volatiles cause a qualitative difference to the style of melt transport, potentially enhancing its extraction efficiency - measured in the carbon mass flux arriving at the mid-ocean ridge axis - by at least an order of magnitude. The process that controls magma transport in our models is a volatile flux-induced reactive infiltration instability, causing carbonated melt to rise from depth in localized channels. These results add to our understanding of melt formation and transport at mid-ocean ridges (the most important magmatic system in the mantle) and may have important implications for subduction zones. REFERENCESHK96 Hirth

  20. A model for melting of confined DNA

    CERN Document Server

    Werner, E; Ambjörnsson, T; Mehlig, B


    When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this "melting" transition have been intensively investigated. Recently there has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.

  1. Analysis of Picosecond Pulsed Laser Melted Graphite (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  2. Scleral melt following Retisert intravitreal fluocinolone implant

    Directory of Open Access Journals (Sweden)

    Georgalas I


    Full Text Available Ilias Georgalas,1 Chrysanthi Koutsandrea,1 Dimitrios Papaconstantinou,1 Dimitrios Mpouritis,1 Petros Petrou1,2 1Ophthalmology Department, University of Athens, Athens, Greece; 2Moorfields Eye Hospital, London, UKAbstract: Intravitreal fluocinolone acetonide implant (Retisert has a high potency, a low solubility, and a very short duration of action in the systemic circulation, enabling the steroid pellet to be small and reducing the risk of systemic side effects. Scleral melt has not been reported as a possible complication of Retisert implant. The authors describe the occurrence of scleral melt 18 months after the implantation of fluocinolone acetonide implant in a 42-year-old Caucasian woman. To the authors’ knowledge, this is the first report of this possible complication.Keywords: Retisert, scleral melt, complication, surgical management

  3. First Kinetic Reactive-Flow and Melting Calculations for Entropy Budget and Major Elements in Heterogeneous Mantle Lithologies (Invited) (United States)

    Asimow, P. D.


    The consequences of source heterogeneity and reactive flow during melt transport in the mantle can be classified by scale. At the smallest spatial and longest temporal scales, we can assume complete equilibrium and use batch melting of homogenized sources or equilibrium porous flow treatments. At large enough spatial scale or short enough temporal scale to prevent any thermal or chemical interaction between heterogeneities or between melt and matrix, we can assume perfectly fractional melting and transport and apply simple melt-mixing calculations. At a somewhat smaller spatial or longer temporal scale, thermal but not chemical interactions are significant and various lithologies and channel/matrix systems must follow common pressure-temperature paths, with energy flows between them. All these cases are tractable to model with current tools, whether we are interested in the energy budget, major elements, trace elements, or isotopes. There remains, however, the very important range of scales where none of these simple theories applies because of partial chemical interaction among lithologies or along the flow path. Such disequilibrium or kinetic cases have only been modeled, in the case of mantle minerals and melts, for trace elements and isotopes, with fixed melting rates instead of complete energy budgets. In order to interpret volumes of magma production and major element basalt and residue compositions that might emerge from a heterogeneous mantle in this last range of scales, we must develop tools that can combine a kinetic formulation with a major element and energy-constrained thermodynamic calculation. The kinetics can be handled either with a chemical kinetic approach with rate constants for various net transfer and exchange reactions, or with a physical diffusion-limited approach. A physical diffusion-limited approach can be built with the following elements. At grain scale, spherical grains of an arbitrary number of solid phases can evolve zoning profiles

  4. Water content variability in Ignimbrite Campana melts. New insights on magma chamber history (United States)

    Marianelli, P.; Proto, M.; Sbrana, A.


    The Ignimbrite Campana (39 ka) represents the most powerful eruption characterizing the volcanic history of the Campi Flegrei caldera. The study is based on melt inclusions investigations in phenocrysts of juvenile pumice from the fallout unit and from the Breccia Museo Unit. The aim of this work is the determination of both the chemical composition and the pre-eruptive volatile content of Ignimbrite Campana magmas. Glass compositions fall in the trachyte field close to the trachyte-phonolite boundary, similarly to the others Ignimbrite Campana products. FTIR analyses on double-polished melt inclusions were carried out in order to investigate H_2O and CO_2 contents. CO_2 was below detection limit. Melt inclusions from Breccia Museo products and from the fallout layer show a very large range of H_2O contents with a mode of 2--4wt% and higher values of about 5--6%wt%. The variability of water content is independent of the evolutive degree of the melt (CaO=2.5--1.5wt%), and therefore cannot be ascribed to differentiation processes. Minimum pressures of crystallization are estimated assuming saturation conditions for the trapped melts and using the H_2O solubility model of Carroll and Blank (1997). Most of crystallization pressures are in the range 20--60 MPa, whereas a few values are between 100 and 150 MPa. We suggest that the higher values could indicate the pressure of crystallization in a magma chamber, located at a depth of about 4.5--6 Km. The abundance of melt inclusions with lower water content could testify an abrupt change in pre-eruptive conditions of the Ignimbrite Campana magma chamber, such as degassing due to magma rising or opening and decompression of the magma chamber. References Carroll M.R. and Blank J.G. (1997): The solubility of H_2O in phonolitic melts. American Mineralogist, 82: 549--556.

  5. How to identify garnet lherzolite melts and distinguish them from pyroxenite melts (United States)

    Grove, T. L.; Holbig, E.; Barr, J. A.; Till, C.; Krawczynski, M. J.


    Liquids form in equilibrium with garnet lherzolite sources when the Earth's mantle melts at depths of greater than ~ 60 km. We present a phase equilibrium investigation of Tibetan plateau olivine leucitites from 2.2 to 2.8 GPa and 1380 to 1480 °C. The resulting liquids were multiply saturated with spinel and garnet lherzolite assemblages (olivine, orthopyroxene, clinopyroxene and spinel +/-garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data have been used to develop a new model that parameterizes the major element compositions of garnet lherzolite partial melts, allowing the prediction of melt compositions from depleted to metasomatically enriched peridotite. The model is calibrated over the pressure range of 1.9 to 6 GPa. The model also predicts the suprasolidus pressure and temperature of the spinel to garnet lherzolite phase transition for natural peridotite compositions. Combined with the recent parameterization of melting in the plagioclase- and spinel- lherzolite facies (Till et al., 2012, JGR, 117, B06206), the new model distinguishes between melts of garnet vs. spinel vs. plagioclase lherzolites, but can also be used to distinguish between melts of lherzolitic vs. pyroxenitic source regions, allowing source lithology to be uniquely identified. Pyroxenite melts fall into two compositionally distinct groups; an olivine-normative, SiO2-undersaturated group and quartz-normative, SiO2-oversaturated group. Melts of plagioclase, spinel, and garnet lherzolite plot between these two types of pyroxenitic melts in mineral normative composition space. When our model is applied to high-K lavas erupted in the Tibetan plateau, we find that these magmas are derived from both pyroxenite and lherzolite source regions. Distinctive enrichments in compatible trace elements (Ni, Cr) are observed in the lherzolite-derived magmas. Applied to Hawaiian basalts, our model suggests the transitional and weakly alkaline pre

  6. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...

  7. Experimental observation of Minkowski spacetime melting

    CERN Document Server

    Smolyaninov, Igor I


    Cobalt nanoparticle-based ferrofluid in the presence of an external magnetic field forms a self-assembled hyperbolic metamaterial, which may be described as an effective 3D Minkowski spacetime for extraordinary photons. If the magnetic field is not strong enough, this effective Minkowski spacetime gradually melts under the influence of thermal fluctuations. On the other hand, it may restore itself if the magnetic field is increased back to its original value. Here we present direct microscopic visualization of such a Minkowski spacetime melting/crystallization, which is somewhat similar to hypothesized formation of the Minkowski spacetime in loop quantum cosmology.

  8. Influence of Grain Boundary on Melting

    Institute of Scientific and Technical Information of China (English)

    王暾; 周富信; 刘曰武


    The temperature behaviour of an Al bicrystal with surfaces consisting of (110) and (111) crystals is simulated using molecular dynamics. The result shows that the (110) crystal losses its crystalline order at 820K, whereas the disorder does not propagate through the (111) crystal at this temperature. Instead, some disordered atoms are recrystallized into the (111) crystal and the initial grain boundary changes into a stable order-disorder interface. Thus, it was discovered that at a temperature near its melting point, the (111) crystal grew and obstructed the propagation of disorder. Such an obstruction is helpfulfor understanding melting.

  9. Thermal melting studies of ligand DNA interactions. (United States)

    Guédin, Aurore; Lacroix, Laurent; Mergny, Jean-Louis


    A simple thermal melting experiment may be used to demonstrate the stabilization of a given structure by a ligand (usually a small molecule, sometimes a peptide). Preparation of the sample is straightforward, and the experiment itself requires an inexpensive apparatus. Furthermore, reasonably low amounts of sample are required. A qualitative analysis of the data is simple: An increase in the melting temperature (T(m)) indicates preferential binding to the folded form as compared to the unfolded form. However, it is perilous to derive an affinity constant from an increase in T(m) as other factors play a role.

  10. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.;


    The latent heat for solidification of **3He has been measured along the **3He melting curve between 23 and 1 mK. A temperature scale is established which depends only on measurements of heat, pressure and volume, and on the condition that the entropy of solid **3He approaches R ln 2 at high...... temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...

  11. U-238 - Th-230 - Ra-226 disequilibria in volcanics: A new insight into melting conditions (United States)

    Chabaux, Francois; Allegre, Claude J.


    Using new mass spectrometry techniques developed for the analysis of Ra isotopes, we present U-238 - Th-230 - Ra-226 disequilibria data from a variety of volcanic settings, and compare them with previously published data. Two correlations are observed with alkali volcanic data, one between (Th-230/U-238) and (Th-230/Ra-226) and another between the intensity of the disequilibria and the buoyancy flux of the underlying plume. These two correlations prove that partial melting is the major cause of U-Th-Ra fractionations in this volcanic context. The U-238 - Th-230 - Ra-226 disequilibria then place new constraints on some parameters of the classical melting models (batch melting and dynamic melting). The comparison of U-238 - Th-230 - Ra-226 disequilibria in alkali volcanics, carbonatites and subduction zones shows a clear parallel between the disequilibria value and the type of volcanic context. Such a parallel reflects the diversity of the conditions of magma generation, and shows that the U-238 - Th-230 - Ra-226 disequilibria systematics are very dependent on the chemical composition of liquids produced during magmatic processes. A systematic difference is observed between disequilibria in MORB and in alkali volcanics, which could indicate that the melting processes in these two volcanic contexts are very different.

  12. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.


    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  13. Viscosity Measurements of Eclogite Melt up to 5.6 GPa and 2000 K (United States)

    Liu, H.; Fei, Y.; Han, L.; Kono, Y.; Hou, M.; Zhao, Z.; Du, J.


    The melting and rheology of eclogite is critical for understanding the dynamics of the subduction zone and plate tectonic. Viscosity of eclogite melt as a function of depth is a key parameter to model the long-term chemical evolution of the subduction zone and volcanic magma. It also plays an important role in earthquakes and continent formation. However, the viscosity and rheology of eclogite melt remain poorly understood at high pressure and temperature. In this study, we have carried out in-situ falling-sphere viscometry measurements to determine the viscosity of eclogite melt from 1.3 to 5.6 GPa at temperatures between 1500 and 2000 K, using the Paris-Edinburgh cell at the 16-BM-B beamline of the High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source. We used a natural eclogite sample with 47.7wt% SiO2. The viscosity (η) was calculated with the Stokes' equation. The viscosity of eclogite melt decreases between 1.3 and 5.6 GPa at 2000K. At 1.4 GPa and 2000K the viscosity is 0.43 Pa·s, whereas at 5.6 GPa and 2000 K it is 0.13Pa·s. No minimum in the viscosity of eclogite was found in the measured pressure range up to 5.6 GPa.

  14. Surface valence transformation during thermal activation and hydrogenation thermodynamics of Mg-Ni-Y melt-spun ribbons (United States)

    Zhang, Tiebang; Song, Wenjie; Kou, Hongchao; Li, Jinshan


    In this work, phase compositions and chemical valence states on the surface and subsurface of Mg67Ni33-xYx (x = 0, 1, 3, 6) ribbons during thermal activation have been investigated by X-ray photoelectron spectroscopy (XPS). The results indicate that the surface contaminants of melt-spun ribbons are mainly MgO, NiO, Y2O3 and organics. The oxides/hydroxides of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are removed from the surface during thermal activation. Surface chemical valence firstly transforms from oxidized state to the metallic one during thermal activation, which accounts for hydrogenation of Mg67Ni33-xYx melt-spun ribbons. Hydrogen absorption capacities of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are enhanced with the increase of cycle numbers during thermal activation. Hydrogenation thermodynamics of activated Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons have been also compared and correlated with the surface valence transformation. The obtained enthalpy of hydride formation is -55.5, -50.5, -46.9 and -48.6 kJ/mol for Mg67Ni33-xYx melt-spun ribbons with x = 0, 1, 3 and 6, respectively.

  15. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts (United States)

    Mangan, M.; Sisson, T.


    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  16. High Power Selective Laser Melting (HP SLM) of Aluminum Parts (United States)

    Buchbinder, D.; Schleifenbaum, H.; Heidrich, S.; Meiners, W.; Bültmann, J.

    Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies that enables the production of light weight structured components with series identical mechanical properties without the need for part specific tooling or downstream sintering processes, etc. Especially aluminum is suited for such eco-designed components due to its low weight and superior mechanical and chemical properties. However, SLM's state-of-the-art process and cost efficiency is not yet suited for series-production. In order to improve this efficiency it is indispensable to increase the build rate significantly. Thus, aluminum is qualified for high build rate applications using a new prototype machine tool including a 1 kW laser and a multi-beam system.

  17. Universality between Experiment and Simulation of a Diblock Copolymer Melt (United States)

    Beardsley, Thomas M.; Matsen, Mark W.


    The equivalent behavior among analogous block copolymer systems involving chemically distinct molecules or mathematically different models has long hinted at an underlying universality, but only recently has it been rigorously demonstrated by matching results from different simulations. The profound implication of universality is that simple coarse-grained models can be calibrated so as to provide quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice model. The simulation successfully predicts the peak in the disordered-state structure function, the position of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with experiment. This could mark a new era of precision in the field of block copolymer research.

  18. Effect of impurities in industrial salts on aluminum scrap melting

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J.; Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Revet, A. [Kalium Canada, ltd., Regina, Saskatchewan (Canada)


    Aluminum scrap such as Used Beverage Containers (UBC) is melted under a protective molten salt cover. An appropriate salt protects metal from oxidation, promotes coalescence of molten droplets, and separates clean metal from the oxide contamination. Generally, the salt compositions for aluminum scrap recycling are based on equimolar mixtures of NaCl and KCl. A small amount of fluoride is also added in the salt. In the past, laboratory research at universities and industrial laboratories have been limited to pure salts. However, the industrial salts have impurities such as sulfates and other insoluble materials. These impurities have a pronounced effect on the efficiency of the scrap remelting process. In this paper, the role of impurities in industrial salts in terms of their chemical interactions with the metal are summarized. The efficiency of different industrial grade salts containing varying amounts of sulfates and other insoluble impurities for scrap recycling is compared.

  19. InP Bulk Crystals Grown from Various Stoichiometric Melt

    Institute of Scientific and Technical Information of China (English)


    InP crystal was grown from stoichiometric or non-stoichiometric melt, including P-rich and In-rich condition by the P-injection synthesis LEC method. Owing to the non-stoichiometric condition, there are many pores in the tail of the P-rich ingot. Samples were characterized by high speed photoluminescence mapping and E.P.D. mapping. The perfection (dislocation, stoichiometry and uniformity) of these samples were studied and compared. The PL peak intensity standard deviation of the 4-inch InP wafer is higher. The EPDs around the pores are higher than the other regions. Besides the stress releasing, the pores and the high concentration of dislocations around them are the leading factors causing the inhomogeneity of the wafer. By adjusting the thermal field and ensuring the chemical stoichiometry, InP crystals of larger diameters and better performance can be developed.

  20. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min


    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey’s multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods. PMID:27391895

  1. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Electron beam melting (EBM and selective laser melting (SLM are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT and Computer-aided Design (CAD data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  2. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min


    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  3. High-temperature apparatus for chaotic mixing of natural silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)


    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  4. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey


    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  5. Development of melt dilute technology for disposition of aluminum based spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.F. [Nuclear Material Management Division Westinghouse Savannah River Company, Savannah River Site Building 707-C, Aiken, SC 29808 (United States)


    The US Department of Energy (DOE) has for many years had a program for receipt and disposition of spent nuclear fuels of US origin from research reactors around the world. The research reactor spent nuclear fuel that consists of aluminum alloy composition has historically been returned to the Savannah River Site (SRS) and dispositioned via chemical reprocessing. In 1995, the DOE evaluated a number of alternatives to chemical reprocessing. In 2000, the DOE selected the melt-dilute alternative as the primary disposition path and direct disposal as the backup path. The melt-dilute technology has been developed from lab-scale demonstration up through the construction of a pilot-scale facility. The pilot-scale L-Area Experimental Facility (LEF) has been constructed and is ready for operation. The LEF will be used primarily, to confirm laboratory research on zeolite media for off- gas trapping and remote operability. Favorable results from the LEF are expected to lead to final design of the production melt-dilute facility identified as the Treatment and Storage Facility (TSF). This paper will describe the melt-dilute process and provide a status of the program development. (author)

  6. Analysis of an EBeam melting process (United States)

    Schunk, P. R.

    Electron-Beam (EBeam) melting furnaces are routinely used to minimize the occurrence of second-phase particles in the processing of segregation-sensitive alloys. As one part of the process, a circulating electron beam impinges the surface of a crucible melt pool to help control the shape of the solidification front below. By modeling melt pool hydrodynamics, heat transfer, and the shape of solidification boundaries, we plan to optimize the dwell pattern of the beam so that the material solidifies with a composition as spatially homogeneous as possible. Both two-and three-dimensional models are being pursued with FIDAP 5.02, the former serving as a test bed for various degrees of model sophistication. A heat flux distribution is specified on the top of the domain to simulate the EBeam dwell pattern. In two dimensions it is found that an inertially-driven recirculation in the melt pool interacts with a counter-rotating buoyancy-driven recirculation, and that both recirculation influence heavily the shape of the solidification front. In three dimensions the inertial cell decays quickly with distance from the position of the inlet stream. Because the Rayleigh number can exceed 10(exp 7) for materials and operating conditions of interest, stability and the possibility of spontaneous transients are explored.

  7. Surface-Induced Melting of Metal Nanoclusters

    Institute of Scientific and Technical Information of China (English)

    YANG Quan-Wen; ZHU Ru-Zeng; WEI Jiu-An; WEN Yu-Hua


    @@ We investigate the size effect on melting of metal nanoclusters by molecular dynamics simulation and thermodynamic theory based on Kofman's melt model. By the minimization of the free energy of metal nanoclusters with respect to the thickness of the surface liquid layer, it has been found that the nanoclusters of the same metal have the same premelting temperature Tpre = T0 - T0(γsv -γlv -γst)/(ρLξ) (T0 is the melting point of bulk metal, γsv the solid-vapour interfacial free energy, γlv the liquid-vapour interfacial free energy, γsl the solid-liquid interfacial free energy, ρ the density of metal, L the latent heat of bulk metal, and ξ the characteristic length of surface-interface interaction) to be independent of the size of nanoclusters, so that the characteristic length ξ ofa metal can be obtained easily by Tpre, which can be obtained by experiments or molecular dynamics (MD) simulations. The premelting temperature Tpre of Cu is obtained by MD simulations, then ξ is obtained.The melting point Tcm is further predicted by free energy analysis and is in good agreement with the result of our MD simulations. We also predict the maximum premelting-liquid width of Cu nanoclusters with various sizes and the critical size, below which there is no premelting.

  8. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.


    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing...

  9. Using Melting Ice to Teach Radiometric Dating. (United States)

    Wise, Donald Underkofler


    Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)

  10. Spontaneous Breakup of Extended Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Yu, Kaijia


    We apply continuum mechanical based, numerical modeling to study the dynamics of extended monodisperse polymer melts during the relaxation. The computations are within the ideas of the microstructural ‘‘interchain pressure’’ theory. The computations show a delayed necking resulting in a rupture...

  11. Melting Metal on a Playing Card (United States)

    Greenslade, Thomas B., Jr.


    Many of us are familiar with the demonstration of boiling water in a paper cup held over a candle or a Bunsen burner; the ignition temperature of paper is above the temperature of 100°C at which water boils under standard conditions. A more dramatic demonstration is melting tin held in a playing card. This illustration is from Tissandier's book on…

  12. Intracavity DNA melting analysis with optofluidic lasers. (United States)

    Lee, Wonsuk; Fan, Xudong


    DNA melting analysis holds great promise for simple and fast DNA sequence discrimination. However, conventional fluorescence-based methods suffer from a small differential signal and demanding melting curve analysis, both of which make it difficult to distinguish the target DNA from the mismatched one. Herein, we propose and demonstrate a highly specific intracavity DNA melting analysis scheme utilizing an optofluidic laser. The laser optically amplifies the small yet intrinsic thermal dynamic difference between the target and the single-base-mismatched DNA, resulting in a differential signal that is orders of magnitude greater than with fluorescence-based methods. In particular, the existence of a phase transition between the stimulated laser emission and fluorescence (i.e., spontaneous emission) enables accurate determination of the DNA transition temperature difference. Furthermore, the high differential signal in the intracavity detection allows for scanning of the laser excitation at a fixed temperature to distinguish two DNA sequences, which provides another means for rapid DNA analysis. In this paper, we first theoretically investigate DNA melting analysis using an optofluidic laser and then experimentally explore this scheme with a high-quality optofluidic ring resonator. Distinction of two DNA sequences of up to 100 bases long is demonstrated. The intracavity detection developed here will lead to novel optofluidic devices that enable rapid and simple analysis of DNAs with very long sequences.

  13. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.


    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  14. Record Summer Melt in Greenland in 2010

    NARCIS (Netherlands)

    Tedesco, M.; Fettweis, X.; van den Broeke, M.R.; van de Wal, R.S.W.; Smeets, C.J.P.P.; van de Berg, W.J.; Serreze, M.C.; Box, J.E.


    As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass balance of the Greenland ice sheet requires appreciation of the close links among changes in surface a

  15. Geometry and Combinatorics of Crystal Melting

    CERN Document Server

    Yamazaki, Masahito


    We survey geometrical and especially combinatorial aspects of generalized Donaldson-Thomas invariants (also called BPS invariants) for toric Calabi-Yau manifolds, emphasizing the role of plane partitions and their generalizations in the recently proposed crystal melting model. We also comment on equivalence with a vicious walker model and the matrix model representation of the partition function.

  16. Electrical conductivity measurements on silicate melts using the loop technique (United States)

    Waff, H. S.


    A new method is described for measurement of the electrical conductivity of silicate melts under controlled oxygen partial pressure at temperatures to 1550 C. The melt samples are suspended as droplets on platinum-rhodium loops, minimizing iron loss from the melt due to alloying with platinum, and providing maximum surface exposure of the melt to the oxygen-buffering gas atmosphere. The latter provides extremely rapid equilibration of the melt with the imposed oxygen partial pressure. The loop technique involves a minimum of setup time and cost, provides reproducible results to within + or - 5% and is well suited to electrical conductivity studies on silicate melts containing redox cations.

  17. Glacier melt on the Third Pole (United States)

    Yao, T.


    With an average elevation above 4,000 metres, the Third Pole (TP) is a unique region with many high mountains centered on the Tibetan Plateau stretching over 5 million square kilometers. Major environmental changes are taking place on the TP characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes. These processes are critical for the well-being of the three billion people inhabiting the plateau and the surrounding regions. Glacier melt is one of the most significant environmental changes observed on the TP. Over the past decade, most of the glaciers on the TP have undergone considerable melt. The Third Pole Environment (TPE) has focused on the causes of the glacier melt by conducting large-scale ground in-situ observation and monitoring, analyzing satellite images and remote sensing data, and applying numerical modeling to environmental research on the TP. The studies of long-term record of water stable isotopes in precipitation and ice core throughout the TP have revealed different features with regions, thus proposing significant influence of atmospheric circulations on spatial precipitation pattern over the TP. Validation of the result by isotope-equipped general circulation models confirms the spatial distribution of different atmospheric circulation dominances on the TP, with northern part dominated by the westerlies, southern part by the summer monsoon, and central part featuring the influences of both circulation systems. Such unique circulation patterns also bear directly on the status of glaciers and lakes over the TP and its surroundings. The studies therefore found the largest glacier melt in the monsoon-dominated southern part, moderate melt in the central part of transition, and the least melt, or even slight advance in the westerlies-dominated northern TP. It is clear that some mountains on the TP are undergoing rapid melt and the consequence of without ice and snow will be very soon. The

  18. Chemical Composition and Daily Variation of Melt Water During Ablation Season in Monsoonal Temperate Glacier Region:A Case Study of Baishui Glacier No.1%典型季风型温冰川消融期融水化学日变化特征

    Institute of Scientific and Technical Information of China (English)

    朱国锋; 蒲焘; 何元庆; 王培震; 孔建龙; 张宁宁; 辛惠娟


    Melt water samples collected continuously from 29 August to 3 September 2009 in the Baishui Glacier No.1 at elevation of 4 750 m were analyzed for pH,conductivity,δ18 O and inorganic ions.The results showed that the pH had obvious diurnal variations and was increased slightly by the influence of precipitation.The dissolution of alkaline soluble salts in the dust was the main reason for the increase of melt water conductivity;the value of δ18 O was relatively low in strong ablation period and high in slight ablation period.Different from other research areas,the concentrations of Na+,K+,which were influenced by lithological and marine water vapor,were higher than that of Μg2+ in the study area;HCO-3 and Ca2+ accounted for more than 80% of total ions in snow and ice melt water,indicating that the ions mainly came from limestone and the melt water was a typical carbonate solution;The content of melt water had an obvious daily change with temperature change,but the response amplitudes were different;Monsoon transport,local rock lithology,human industrial and agricultural activities were the main sources of inorganic ions and the deciding factors of the ion composition in the Baishui Glacier No.1.%分析了玉龙雪山白水1号冰川区2009年8月29日~9月3日4 750 m处冰雪融水的pH、电导率、无机离子和δ18O的化学特征,结果表明,消融期日尺度上pH值受气温变化影响较大.碱性尘埃中的可溶盐溶解导致融水电导率增大.一天中消融速率快时δ18O值较低,消融速率慢时δ18O值较高.受岩石岩性和海洋水汽影响,研究区Na+、K+的平均浓度高于Μg2+的平均浓度.融水中阳离子主要来源于石灰岩风化,属典型的碳酸盐溶滤水.融水中无机离子的总含量随气温的变化而变化,具有明显的周期性,但是不同可溶性离子对气温变化所导致的消融速率响应幅度不一致.局地岩石岩性、季风输送和人类活动是白水1号冰川融水中无机离子的主要来源.

  19. Communication: Theory of melt-memory in polymer crystallization (United States)

    Muthukumar, M.


    Details of crystallization processes of a polymer at the crystallization temperature Tc from its melt kept initially at the melt temperature Tm depend profoundly on the nature of the initial melt state and often are accompanied by memory effects. This phenomenon is in contrast to small molecular systems where the supercooling (Tm0-Tc), with Tm0 being the equilibrium melting temperature, and not (Tm - Tc), determines the nature of crystallization. In addressing this five-decade old puzzle of melt-memory in polymer crystallization, we present a theory to describe melt-memory effects, by invoking an intermediate inhomogeneous melt state in the pathway between the melt and crystalline states. Using newly introduced dissolution temperature T10 for the inhomogeneous melt state and the transition temperature Tt0 for the transition between the inhomogeneous melt and crystalline states, analytical formulas are derived for the nucleation rate as a function of the melt temperature. The theory is general to address different kinds of melt-memory effects depending on whether Tm is higher or lower than Tm0. The derived results are in qualitative agreement with known experimental data, while making predictions for further experiments on melt-memory.

  20. The influence of partial melting and melt migration on the rheology of the continental crust (United States)

    Cavalcante, Geane Carolina G.; Viegas, Gustavo; Archanjo, Carlos José; da Silva, Marcos Egydio


    The presence of melt during deformation produces a drastic change in the rheological behavior of the continental crust; rock strength is decreased even for melt fractions as low as ∼7%. At pressure/temperature conditions typical of the middle to lower crust, melt-bearing systems may play a critical role in the process of strain localization and in the overall strength of the continental lithosphere. In this contribution we focus on the role and dynamics of melt flow in two different mid-crustal settings formed during the Brasiliano orogeny: (i) a large-scale anatectic layer in an orthogonal collision belt, represented by the Carlos Chagas anatexite in southeastern Brazil, and (ii) a strike-slip setting, in which the Espinho Branco anatexite in the Patos shear zone (northeast Brazil) serves as an analogue. Both settings, located in eastern Brazil, are part of the Neoproterozoic tectonics that resulted in widespread partial melting, shear zone development and the exhumation of middle to lower crustal layers. These layers consist of compositionally heterogeneous anatexites, with variable former melt fractions and leucosome structures. The leucosomes usually form thick interconnected networks of magma that reflect a high melt content (>30%) during deformation. From a comparison of previous work based on detailed petrostructural and AMS studies of the anatexites exposed in these areas, we discuss the rheological implications caused by the accumulation of a large volume of melt "trapped" in mid-crustal levels, and by the efficient melt extraction along steep shear zones. Our analyses suggest that rocks undergoing partial melting along shear settings exhibit layers with contrasting competence, implying successive periods of weakening and strengthening. In contrast, regions where a large amount of magma accumulates lack clear evidence of competence contrast between layers, indicating that they experienced only one major stage of dramatic strength drop. This comparative

  1. Modeling the Temperature Fields of Copper Powder Melting in the Process of Selective Laser Melting (United States)

    Saprykin, A. A.; Ibragimov, E. A.; Babakova, E. V.


    Various process variables influence on the quality of the end product when SLM (Selective Laser Melting) synthesizing items of powder materials. The authors of the paper suggest using the model of distributing the temperature fields when forming single tracks and layers of copper powder PMS-1. Relying on the results of modeling it is proposed to reduce melting of powder particles out of the scanning area.

  2. Thermodynamic Calculations of Melt in Melt Pool During Laser Cladding High Silicon Coatings

    Institute of Scientific and Technical Information of China (English)

    DONG Dan-yang; LIU Chang-sheng; ZHANG Bin


    Based on the Miedema's formation heat model for binary alloys and the Toop's asymmetric model for terna-ry alloys, the formation heat, excess entropy, and activity coefficients of silicon ranging from 1 900 K to 4 100 K in the Fe-Si-C melt formed during the laser cladding high silicon coatings process were calculated. The results indicated that all values of InγOSi, εCSi, ρSiSi and ρCSi are negative in the temperature range and these values increase as the tempera-ture increases. And all values of εSiSi and ρSi-CSi are positive and these values decrease with increasing temperature. The iso-activity lines of silicon are distributed axisymmetrically to the incident laser beam in the melt pool vertical to the laser scanning direction. And the iso-activity lines of silicon in the front of the melt pool along the laser scanning direction are more intensive than those in the back of the melt pool. The activity of silicon on the bottom of the melt pool is lower than that in the effecting center of laser beam on the top surface of the melt pool and it may be the im-portant reason for the formation of the silicides and excellent metallurgical bonding between the laser cladding coating and the substrate.

  3. Formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact (United States)

    Johnson, B. C.; Melosh, H. J.


    We present a model that describes the formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact. Using the iSALE hydrocode, coupled to the ANEOS equation of state for silica, we create high-resolution two-dimensional impact models to track the motion of impact ejecta. We then estimate the size of the ejecta products using simple analytical expressions and information derived from our hydrocode models. Ultimately, our model makes predictions of how the size of the ejecta products depends on impactor size, impact velocity, and ejection velocity. In general, we find that larger impactor sizes result in larger ejecta products and higher ejection velocities result in smaller ejecta product sizes. We find that a 10 km diameter impactor striking at a velocity of 20 km/s creates millimeter scale melt droplets comparable to the melt droplets found in the Chicxulub ejecta curtain layer. Our model also predicts that melt droplets, melt fragments, and accretionary impact lapilli should be found together in well preserved ejecta curtain layers and that all three ejecta products can form even on airless bodies that lack significant volatile content. This prediction agrees with observations of ejecta from the Sudbury and Chicxulub impacts as well as the presence of accretionary impact lapilli in lunar breccia.

  4. Dynamic properties of Aluminum-Lithium and Aluminum-Magnesium melts (United States)

    Kiselev, A. I.


    A comparison of calculated concentration dependences of the electrical resistivities of the Al-Li and Al-Mg systems suggests that a metal-nonmetal phase transition takes place in the Al-Li system. This assumption casts some doubt on the mechanism of quasi-chemical electron localization used to explain the metal-nonmetal phase transition in Pb-Li and Sn-Li melts.

  5. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation


    Patil, Hemlata; Tiwari, Roshan V.; Repka, Michael A.


    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, th...

  6. Melting and reactive flow of a volatilized mantle beneath mid-ocean ridges: theory and numerical models (United States)

    Keller, Tobias; Katz, Richard F.


    Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES

  7. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.;


    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds......, vertical seepage, and horizontal permeability. The model is initialized with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice. We predict that there are large differences in the depth of melt ponds and the area of coverage between the two types...... of ice. We also find that the vertical seepage rate and the melt rate of unponded ice are important in determining the total surface ablation and area covered by melt ponds....

  8. Sea Ice Melt Pond Data from the Canadian Arctic (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  9. Primitive, high-Mg basaltic andesites: direct melts of the shallow, hot, wet mantle (United States)

    Andrews, A.; Grove, T. L.


    Direct mantle melts are rare in subduction zone settings. Such melts are identified by Mg #s (Mg # = Mg / (Mg+Fe)) greater than ~0.73, indicating chemical equilibrium with Fo90 mantle olivine. Most of these primitive arc melts are basaltic, characterized by SiO2 contents of ~48-50 wt % and MgO contents ranging from 8-10 wt %. However, primitive basaltic andesites with mantle-equilibrated Mg #s have also been found at subduction zones worldwide. These basaltic andesites have higher SiO2 contents (53-58 wt %) than typical primitive basalts as well as high MgO (8-10 wt %). Because these rocks have high SiO2 contents and yet retain evidence for chemical equilibrium with the mantle (Mg #s), their petrogenesis has sparked intense debate as researchers have tried to discern how these samples fit into the paradigm of mantle melting at subduction zones. Through an understanding of the conditions and processes that produce the SiO2 enrichment in these rocks, we also aim to understand the role of these melts in producing the observed andesitic compositional characteristics of the continental crust. To understand the petrogenesis of primitive, high-Mg basaltic andesites, this study investigates the experimental melts of undepleted mantle peridotite plus a slab component (Na-2O + K2O) from 1,205-1,470°C at 1.0-2.0 GPa under water-undersaturated conditions (0-5 wt % H2O). At 1.0 and 1.2 GPa, the experimental melts reproduce the compositions of natural primitive, high-Mg basaltic andesites in all major elements (SiO2, TiO2, Al2O3, FeO, MnO, MgO, and Na2O+K2O) except CaO. CaO contents are higher than the range of the natural samples by ~2 wt % at the highest silica contents of the experiments (54-56 wt% SiO2). This suggests that at 1.0-1.2 GPa, a higher percent of melting (30-35 %) with 3-5 wt % H2O is required to drive the chemical compositions of the experiments toward the representative compositions of the natural rocks. The experimental melts also show that mantle-wall rock

  10. The Global Array of Primitve Arc Melts (United States)

    Schmidt, M. W.; Jagoutz, O. E.


    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  11. Conditions of crystallization of the Ural platinum-bearing ultrabasic massifs: evidence from melt inclusions (United States)

    Simonov, Vladimir; Puchkov, Victor; Prikhod'ko, Vladimir; Stupakov, Sergey; Kotlyarov, Alexey


    Conditions of the Ural platinum-bearing ultramafic massifs formation attract attention of numerous researchers. A most important peculiarity of such plutons is their dunite cores, to which commercial Pt deposits are related. There are a different opinions about genesis of these massifs and usual methods not always can solve this question. As a result of melt inclusions study in the Cr-spinel the new data on physical and chemical parameters of dunite crystallization of the Nizhnii Tagil platinum-bearing ulrabasic massif (Ural) was obtained. The comparative analysis of Cr-spinels, containing melt inclusions, has shown essential differences of these minerals from chromites of the ultrabasic ophiolite complexes and of modern oceanic crust. Contents of major chemical components in the heated and quenched melt inclusions are close to those in the picrite and this testifies dunite crystallization from ultrabasic (to 24 wt.% MgO) magma. On the variation diagrams for inclusions in Cr-spinel the following changes of chemical compositions are established: during SiO2 growth there is falling of FeO, MgO, and increase of CaO, Na2O contents. Values of TiO2, Al2O3, K2O and P2O5 remain as a whole constant. Comparing to the data on the melt inclusions in Cr-spinel from the Konder massif, we see that values of the most part of chemical components (SiO2, TiO2, K2O, P2O5) are actually overlapped. At the same time, for the Nizhnii Tagil platinum-bearing massif the big maintenances of FeO and CaO in inclusions are marked. Distinct dependence of the majority of components from the MgO content in inclusions is observed: values TiO2, Al2O3 FeO, CaO and Na2O fall at transition to more magnesia melts. On the peculiarities of distribution of petrochemical characteristics melt inclusions in considered Cr-spinels are co-ordinated with the data on evolution of compositions of melts and rocks of model stratified ultramafic plutons during their crystallization in the magmatic chambers. On the

  12. Multiple Melting Endotherms of Syndiotactic Polystyrene in β Crystalline Form

    Institute of Scientific and Technical Information of China (English)


    A series of syndiotactic polystyrene (SPS) samples in β crystalline form were prepared by cooling from the melt at various cooling rates. The effects of cooling rate from the melt, and DSC heating rate on the multiple melting behaviors of β crystals were investigated by differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC), from which the nature of the multiple melting behavior was ascribed to the occurring of a recrystallization process.

  13. Transition in the fractal geometry of Arctic melt ponds


    Hohenegger, C.; B. Alali; K. R. Steffen; D. K. Perovich; K. M. Golden


    During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate...

  14. A Disequilibrium Melting Spectrum: Partially Melted Crustal Xenoliths from the Wudalianchi Volcanic Field, NE China. (United States)

    McLeod, C. L.; McGee, L. E.


    Disequilibrium melting has been established as a common process occurring during crustal anatexis and thus demonstrates that crustal assimilation by ascending mantle-derived magmas is likley not a closed system. Observations of extreme compositional heterogeneity within partial melts derived from crustal xenoliths have been documented in several recent examples, however, the retention or transfer of elements to and from residues and glasses, and their relative contributions to potential crustal contaminants warrants further investigation. Sampled lavas from the Huoshaoshan volcano in the Holocene Wudalianchi volcanic field of Northeast China contain crustal xenoliths which preserve a spectrum of partial melting both petrographically and geochemically, thus providing an excellent, natural example of crustal anatexis. Correlations exist between the volume of silicic glass preserved within the xenoliths and bulk rock SiO2 (70-83 wt%), Al2O3 (16-8 wt%), glass 87Sr/86Sr (0.715-0.908), abundances of elements common in feldspars and micas (Sr, Ba, Rb) and elements common in accessory minerals (Y, Zr, Nb). These correlations are likely associated with the consumption of feldspars and micas and the varying retention of accessory phases during partial melting. The xenoliths which contain the greater volumes of silicic glass and residual quartz (interpreted as being the most melted) were found within pahoehoe lava, whilst the least melted xenoliths were found within scoria of the summit cone of Huoshaoshan; thus it is interpreted that the extent of melting is linked to the immersion time in the lava. Small-scale (mm) mingling and transfer of material from the enclosing lava to the xenolith is observed, however, modelling of potential contaminant compositions is inconsistent with crustal contamination during lava petrogenesis. It is inferred that crustal contamination in sampled lavas is localized within the open magmatic system and most likely occurs at the contact zone

  15. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle

    Institute of Scientific and Technical Information of China (English)

    ZHANG HongFu


    This paper presents an overview of recent studies dealing with different ages of mantle peridotitic xenoliths and xenocrysts from the North China Craton, with aim to provide new ideas for further study on the destruction of the North China Craton. Re-Os isotopic studies suggest that the lithospheric mantle of the North China Craton is of Archean age prior to its thinning. The key reason why such a low density and highly refractory Archean lithospheric mantle would be thinned is changes in composition, thermal regime, and physical properties of the lithospheric mantle due to interaction of peridotites with melts of different origins. Inward subducUon of circum craton plates and collision with the North China Craton provided not only the driving force for the destruction of the craton, but also continuous melts derived from partial melting of subducted continental or oceanic crustal materials that resulted in the compositional change of the lithospheric mantle. Regional thermal anomaly at ca. 120 Ma led to the melting of highly modified iithospheric mantle. At the same time or subsequently lithospheric extension and asthenospheric upwelling further reinforced the melting and thinning of the lithospheric mantle. Therefore, the destruction and thinning of the North China Craton is a combined result of peridotite-melt interaction (addition of volatile), enhanced regional thermal anomaly (temperature increase) and lithospheric extension (decompression). Such a complex geological process finally produced a "mixed" lithospheric mantle of highly chemical heterogeneity during the Mesozoic and Cenozoic. It also resulted in significant difference in the composition of mantle peridotitic xenoliths between different regions and times.

  16. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.


    mechanism for melting in monolayers of flexible rod-shaped molecules. Melting requires the formation of vacancies in the monolayer by molecular motion perpendicular to the surface. This ‘‘footprint reduction’’ mechanism implies that strictly two-dimensional theories of melting are inapplicable...

  17. How to detect melting in laser heating diamond anvil cell

    Institute of Scientific and Technical Information of China (English)



    Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now, large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.

  18. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongation...

  19. The thermal physical properties and structure of In-In2Bi eutectic at melting-crystallization process

    Directory of Open Access Journals (Sweden)

    V. Prokhorenko


    Full Text Available The physical properties of In-In2Bi liquid eutectic alloy as well as structure has been studied at different temperature. Structure data are used for calculation of configuration entropy. The change of structure upon melting is analyzed in comparison with change chemical bonding. The data on acoustic emission studies at meting and crystallization processes are analyzed too.

  20. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf;


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain....

  1. Are polymer melts “ideal”? (United States)

    Wittmer, J. P.; Beckrich, P.; Crevel, F.; Huang, C. C.; Cavallo, A.; Kreer, T.; Meyer, H.


    It is commonly accepted that in concentrated solutions or melts high-molecular weight polymers display random-walk conformational properties without long-range correlations between subsequent bonds. This absence of memory means, for instance, that the bond-bond correlation function, P(s), of two bonds separated by s monomers along the chain should exponentially decay with s. Presenting numerical results and theoretical arguments for both monodisperse chains and self-assembled (essentially Flory size-distributed) equilibrium polymers we demonstrate that some long-range correlations remain due to self-interactions of the chains caused by the chain connectivity and the incompressibility of the melt. Suggesting a profound analogy with the well-known long-range velocity correlations in liquids we find, for instance, P(s) to decay algebraically as s. Our study suggests a precise method for obtaining the statistical segment length b in a computer experiment.

  2. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)


    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  3. Melts at the Lithosphere-Asthenosphere Boundary beneath the Basin and Range, US (Invited) (United States)

    Plank, T.; Gazel, E.; Bendersky, C.; Forsyth, D. W.; Rau, C. J.; Lee, C.


    The Transportable Array component of EarthScope is providing an unparalleled view of the seismic structure of the mantle beneath the North American continent. In volcanically active regions such as the Basin and Range province of the western US, petrological data can also be used to constrain the temperature, water content, and depth of melting within the mantle, all of which may contribute to seismic velocity anomalies. Of particular interest to dynamic models is the location and evolution of the lithosphere-asthenosphere boundary (LAB), for which petrological and seismological data yield complementary constraints. The LAB is a rheological boundary that may strongly relate to the locus and mode of melting, whether by upwelling, hydration or extension. Here we present a preliminary integration of mantle melting depths, derived from the chemical composition of basaltic scoria from recent cinder cones across the Basin and Range, with shear velocity structure derived from inversion of Rayleigh waves. Primitive basaltic magmas record in their major element composition the pressures and temperatures of last equilibration in the mantle. Specifically, the Fe content of primary melts scales with melting temperature (through olivine-melt equilibrium) and the Si content scales inversely with pressure (through olivine-orthopyroxene melt equilibrium). Independent of these relationships, the water content of magmas affects estimated temperatures (roughly 100 C per 3 wt percent H2O), and the ferric Fe component affects estimated pressures or depths (15-20 km per 15 percent Fe3+). Our efforts have thus gone into measuring the pre-eruptive H2O content of Basin and Range magmas, using undegassed melt inclusions trapped in olivine, and their oxidation state, based on sulfur and vanadium speciation. Our results thus far for volcanic fields in the Western Grand Canyon (AZ), St. George (UT), and Crater Flat (NV) regions, indicate melt equilibration depths around 55-70 km. These depths

  4. Nuclear reactor melt arrest and coolability device

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.


    Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.

  5. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)


    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  6. Polarization effects in ionic solids and melts


    Salanne, Mathieu; Madden, Paul A.


    Ionic solids and melts are compounds in which the interactions are dominated by electrostatic effects. However, the polarization of the ions also plays an important role in many respects as has been clarified in recent years thanks to the development of realistic polarizable interaction potentials. After detailing these models, we illustrate the importance of polarization effects on a series of examples concerning the structural properties, such as the stabilization of particular crystal stru...

  7. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite (United States)

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.


    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  8. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng


    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass....... However, this proportionality is only valid for comparison of the glasses in the same series of compositions. The eutectic composition of anorthite-wollastonite-tridymite is found to exhibit the highest GFA of the melts under investigation....

  9. Processing metallic glasses by selective laser melting

    Directory of Open Access Journals (Sweden)

    Simon Pauly


    Full Text Available Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs, can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processing routes, such as casting, melt spinning or gas atomization, have intrinsic limitations regarding the complexity and dimensions of the geometries. Here, it is shown that selective laser melting (SLM, which is usually used to process conventional metallic alloys and polymers, can be applied to implement complex geometries and components from an Fe-base metallic glass. This approach is in principle viable for a large variety of metallic alloys and paves the way for the novel synthesis of materials and the development of parts with advanced functional and structural properties without limitations in size and intricacy.

  10. Nucleation and undercooling of metal melt

    Institute of Scientific and Technical Information of China (English)


    The effects of thermodynamic and dynamic factors on nucleation process have been integrated in a theoretical formula representing the dependence of undercooling on parameters concerned. Moreover, a method to determine the kind and amount of the most effective catalyst in an undercooled melt has been acquired. The results show that the undercooling increases with the decreasing surface area of the most effective catalyst and the increasing cooling rate as the kind of the most effective catalyst is constant. It increases to a maximum value when the ratio of the surface area of catalyst (SvV) to the cooling rate of melt (Rc) decreases to a critical value. The maximum undecooling not only depends on the ratio of non-dimensional factor of activation energy for an atom to diffuse (φ) to non-dimensional factor of driving force for nucleus to form (ψ), but also depends on the contact angle of the most effective catalyst; the smaller the ratio of φ to ψ, the higher the maximum undercooling, but it does not exceed the value of 2/3 melting point; the smaller the contact angle of the most effective catalyst, the lower the maximum undercooling, and the smaller the requisite value of SvV/Rc for the maximum undercooling also.

  11. Energetics of melts from thermal diffusion studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lesher, C.E.


    Most processes in geology are a consequence at some level of the flow of energy or mass. Heat conduction and chemical diffusion are examples of two of these sorts of flows which are driven by temperature and chemical potential imbalances, respectively. In the general case these flows may be coupled so that, for instance, a temperature gradient may result in a flow of mass as well as heat. This effect in liquids was demonstrated by Soret (1879) and bears his name. In gases or solids the phenomenon is given the general name thermal diffusion. It was the purpose of this research program to examine the Soret effect in molten silicates under laboratory conditions. Results of these experiments are used to evaluate the form and quantitative values of many thermodynamic and kinetic properties of silicate melts over a range of temperature, pressure, and bulk composition. The author published a comprehensive review and synthesis with a microscopic theoretical explanation for the effect at low pressure in silicate liquids of geological interest. He conducted experimental investigations of molecular diffusion in the absence of a thermal gradient through experiments involving dissolution of solid silicates in molten silicate and interdiffusion of species between miscible silicate liquids. Collectively these results enable the author to construct a more comprehensive model of molecular diffusion in magmatic liquids. He has applied this model to problems of magma mixing and crustal assimilation.

  12. Studies of thermal dissolution of RDX in TNT melt (United States)

    Suvorova, N. A.; Hamilton, V. T.; Oschwald, D. M.; Balakirev, F. F.; Smilowitz, L. B.; Henson, B. F.


    The thermal response of energetic materials is studied due to its importance in issues of material safety and surety. Secondary high explosives which melt before they thermally decompose present challenging systems to model due to the addition of material flow. Composition B is a particularly challenging system due to its multiphase nature with a low melt component (TNT) and a high melt component (RDX). The dissolution of RDX crystals in molten TNT at the temperature below RDX melting point has been investigated using hot stage microscopy. In this paper, we present data on the dissolution rate of RDX crystals in molten TNT as a function of temperature above the TNT melt.

  13. Regional variability in sea ice melt in a changing Arctic


    Perovich, Donald K.; Richter-Menge, Jacqueline A.


    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of...

  14. New Evidences on the Process Sensitivity of Some Renewable Blends Based on Starch considering Their Melt Rheological Properties

    Directory of Open Access Journals (Sweden)

    Doina Dimonie


    Full Text Available The degradability and processability of new renewable materials based on starch and PVOH were studied using the melt flow index (MFI method by measuring the melt rheological properties which depend not only on the extrusion conditions and material formulation but also on the macromolecule characteristics which can be modified by chemical degradation. These results were correlated with other material properties like color and cross-linking degree. The obtained results show that flowing in the melted state of the studied materials is accompanied by a second process of chains chemical degradation. It was observed that, at the same level of additivation, under identical extrusion conditions, the melted blends with corn starch as main component are highly mechanically sensitive and degrade mostly by chains scission and those with PVOH as major component are highly temperature sensitive and degrade mainly by cross-linking. The obtained results show also that each PVOH-starch blend requires particular formulation and individual windows of melt processing conditions. These results are a good proof that the MFI method is a good path to study the degradability and moldability of process sensitive polymeric materials like those based on starch and PVOH.

  15. Continental Crust Growth as a Result of Continental Collision: Ocean Crust Melting and Melt Preservation (United States)

    Niu, Y.; Zhao, Z.; Zhou, S.; Zhu, D.; Dong, G.; Mo, X.; Xie, G.; Dong, X.


    The significance of the continental crust (CC) on which we live is self-evident. However, our knowledge remains limited on its origin, its way and rate of growth, and how it has acquired the “andesitic” composition from mantle derived magmas. Compared to rocks formed from mantle derived magmas in all tectonic settings, volcanic arc rocks associated with oceanic lithosphere subduction share some common features with the CC; both are relatively depleted in “fluid-insoluble” elements (e.g., Nb, Ta and Ti), but enriched in “fluid-soluble” elements (e.g., U, K and Pb). These chemical characteristics are referred to as the “arc-like signature”, and point to a genetic link between subduction-zone magmatism and CC formation, thus leading to the “island-arc” model widely accepted for the origin of the CC over the past 40 years. However, it has been recognized also that this “island-arc” model has several difficulties. These include (1) bulk arc crust (AC) is basaltic, whereas the bulk CC is andesitic [1]; (2) AC has a variably large Sr excess whereas the CC is Sr deficient [2]; and (3) AC production is mass-balanced by subduction-erosion and sediment recycling, thus contributing no new mass to CC growth, at least in the Phanerozoic [3,4]. Our data on magmatic rocks (both volcanic and intrusive) formed during the India-Asia continental collision (~65 - ~45Ma) [5] show a remarkable compositional similarity to the bulk CC with the typical “arc-like signature” [6]. Also, these syncollisional felsic rocks exhibit strong mantle isotopic signatures, implying that they were recently derived from a mantle source. The petrology and geochemistry of these syncollisional felsic rocks is most consistent with an origin via partial melting of upper oceanic crust (i.e., last fragments of underthrusting oceanic crust) under amphibolite facies conditions, adding net mantle-derived materials to form juvenile CC mass. This leads to the logical and testable hypothesis

  16. Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state due to stress-induced localized melting and recrystallization. (United States)

    Lu, Ying; Wang, Yaotao; Fu, Lianlian; Jiang, Zhiyong; Men, Yongfeng


    Crystalline lamellar thickness in syndiotactic polypropylene (sPP) during crystallization from either isothermal molten or stretching induced localized melt states and during subsequent heating was investigated by means of temperature dependent small-angle X-ray scattering techniques. Well-defined crystallization lines where the reciprocal lamellar thickness is linearly dependent on crystallization temperature were observed. Unlike in the case of polybutene-1 where stretching crystallization line was shifted to direction of much smaller lamellar thickness (Macromolecules 2013, 46, 7874), the stretching induced crystallization line for sPP deviates from its corresponding isothermal crystallization line only slightly. Such phenomenon could be attributed to the fact that both crystallization processes from quiescent melt and stress induced localized melt are mediated in a mesomorphic phase in sPP. Subsequent heating of sPP after crystallization revealed the same melting behavior in both systems for the two kinds of crystallites obtained from either quiescent melt or stretching induced localized melt. Both of them underwent melting and recrystallization when the lamellar thickness was smaller than a critical value and melting directly without changing in thickness when the lamellar thickness was larger than the critical value. The melting behavior in sPP systems can be understood by considering the chain relaxation ability within crystalline phase and also can be used as evidence that the crystallization from molten state and stress-induced crystallization passed through the intermediate phase before forming crystallites.

  17. Calculation Model of Mass Action Concentration for Mg-Al, Sr-Al and Ba-Al Melts and Determination of Their Thermodynamic Parameters

    Institute of Scientific and Technical Information of China (English)


    Based on the phase diagrams and the mass action law in combination with the coexistence theory of metallic melts structure, the calculation model of mass action concentration for Mg-Al, Sr-Al and Ba-Al was built, and their thermodynamic parameters were determined. The agreement between calculated and measured results shows that the model and the determined thermodynamic parameters can reflect the structural characteristics of relevant melts. However, the fact that the thermodynamic parameters from literature don′t give the value agree with the measured result may be due to unconformity of these parameters to real chemical reactions in metallic melts.

  18. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center


    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  19. Regional variability in sea ice melt in a changing Arctic. (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A


    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover.

  20. Gallery of melt textures developed in Westerly Granite during high-pressure triaxial friction experiments (United States)

    Moore, Diane E.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.


    IntroductionMelting occurred during stick-slip faulting of granite blocks sheared at room-dry, room-temperature conditions in a triaxial apparatus at 200–400 megapascals (MPa) confining pressure. Petrographic examinations of melt textures focused largely on the 400-MPa run products. This report presents an overview of the petrographic data collected on those samples, followed by brief descriptions of annotated versions of all the images.Scanning electron microscope (SEM) images of the starting materials and the three examined 400-MPa samples are presented in this report. Secondary-electron (SE) and backscattered-electron (BSE) imaging techniques were used on different samples. The SE images look down on the sawcut surfaces, yielding topographic and three-dimensional textural information. The BSE imaging was done on samples cut to provide cross-sectional views of the glass-filled shear band (or zone) that developed along the sawcut. Brightness in the BSE images increases with increasing mean atomic number of the material. Additional chemical information about the quenched melt and adjoining minerals was obtained using the energy dispersive system of the SEM during BSE examinations. However, the very narrow shear-band thicknesses and common occurrence of very fine lamellar compositional layering limited the usefulness of this technique for estimating melt chemistry.

  1. Can slabs melt beneath forearcs in hot subduction zones? (United States)

    Ribeiro, J.; Maury, R.; Gregoire, M.


    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.


    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Miller, D.; Edwards, T.


    The Liquid Waste Organization (LWO) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 6 (SB6) composition projection in March 2009. Based on this projection, frit development efforts were undertaken to gain insight into compositional effects on the predicted and measured properties of the glass waste form and to gain insight into frit components that may lead to improved melt rate for SB6-like compositions. A series of Sludge Batch 6 (SB6) based glasses was selected, fabricated and characterized in this study to better understand the ability of frit compositions to accommodate uncertainty in the projected SB6 composition. Acceptable glasses (compositions where the Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) predicted acceptable properties, good chemical durability was measured, and no detrimental nepheline crystallization was observed) can be made using Frit 418 with SB6 over a range of Na{sub 2}O and Al{sub 2}O{sub 3} concentrations. However, the ability to accommodate variation in the sludge composition limits the ability to utilize alternative frits for potential improvements in melt rate. Frit 535, which may offer improvements in melt rate due to its increased B2O3 concentration, produced acceptable glasses with the baseline SB6 composition at waste loadings of 34 and 42%. However, the PCCS MAR results showed that it is not as robust as Frit 418 in accommodating variation in the sludge composition. Preliminary melt rate testing was completed in the Melt Rate Furnace (MRF) with four candidate frits for SB6. These four frits were selected to evaluate the impacts of B{sub 2}O{sub 3} and Na{sub 2}O concentrations in the frit relative to those of Frit 418, although they are not necessarily candidates for SB6 vitrification. Higher concentrations of B{sub 2}O{sub 3} in the frit relative to that of Frit 418 appeared to improve melt rate. However, when a higher concentration of B{sub 2}O{sub 3} was coupled

  3. Trace element evidence for anatexis at oceanic magma chamber roofs and the role of partial melts for contamination of fresh MORB (United States)

    Fischer, Lennart A.; Erdmann, Martin; France, Lydéric; Wolff, Paul E.; Deloule, Etienne; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen


    At oceanic spreading centers, interactions between magma and hydrothermal convecting systems trigger major physical, thermal, and chemical exchanges. The two-pyroxene hornfels recovered from the base of the sheeted dike sequence at Integrated Ocean Drilling Program (IODP) Site 1256 (equatorial Eastern Pacific) are interpreted as a conducting boundary layer between the underlying axial melt lens and the hydrothermally cooled sheeted dikes. They are cut by numerous small, felsic veins, which were recently interpreted as a product of hydrous partial melting of sheeted dikes. Here, we present trace element compositions of products (melts and residues) of hydrous partial melting experiments using basalts and hornfels from IODP Site 1256 as starting material. The experimental products generated between 910 °C and 970 °C match the natural lithologies from Site 1256 in terms of major and trace element compositions. The compositions of the anatectic melts correspond to the compositions of the felsic veins, while the residual minerals match the compositions of the two-pyroxene hornfels, evidencing that hydrous partial melting is an important magmatic process in the gabbro/dike transition of fast-spreading mid-oceanic ridges. Our results complement previous experimental studies on anatectic processes occurring at the roof of the magma chambers from fast-spreading mid-ocean ridges. Moreover, calculations of mixing and assimilation fractional crystallization using the experimental partial melts as contaminant/assimilant showed that anatectic melts can only be a minor contributor to the contamination process.

  4. Experimental Results on Pouring and Underwater Liquid Melt Spreading and Energetic Melt-coolant Interaction


    Konovalenko, Alexander; Karbojian, Aram; Kudinov, Pavel


    In a hypothetical light water reactor (LWR) core-melt accident with corium release from the reactor  vessel,  the  ultimate  containment  integrity  is  contingent  on  coolability  of  the decay-heated core debris. Pouring of melt into a pool of water located in the reactor cavity is considered in several designs of existing and new LWRs  as a part of severe accident (SA) management strategies. At certain conditions of melt release into the pool (e.g. large ratio of the  vessel  breach  size...

  5. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts (United States)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper


    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  6. Effect of low temperature melt on solidification structure of A356 alloy with melt thermal treatment

    Institute of Scientific and Technical Information of China (English)

    何树先; 王俊; 孙宝德; 周尧和


    The influence of the low temperature melt (LTM) structure on solidification structure of the sample with melt thermal treatment (MTT) process was studied. And the mechanism of the MTT process was analyzed with cluster theory. It is shown that the final solidification structure is dependent mainly on the structure of LTM. Dendrites will appear in the solidification structure if the structure of LTM is dendritic before MTT. Otherwise, non-dendritic grains will appear in the solidification structure. And the lower the temperature of LTM, the more remarkable the effect of the LTM structure is.

  7. Silicic Arc Magmas And Silicic Slab Melts: The Melt-Rock Reaction Link (United States)

    Straub, S. M.; Gomez-Tuena, A.; Bolge, L. L.; Espinasa-Perena, R.; Bindeman, I. N.; Stuart, F. M.; Zellmer, G. F.


    While a genetic link between silicic arc magmas and silicic melts from the subducted slab has long been proposed, this hypothesis is commonly refuted because most arc magmas lack a 'garnet-signature' which such slab melts must have. A comprehensive geochemical study of high-Mg# arc magmas from the Quaternary central Mexican Volcanic Belt (MVB), however, shows that this conflict can be reconciled if melt-rock reaction processes in the mantle wedge were essential to arc magma formation. In the central MVB, monogenetic and composite volcanoes erupt high-Mg# basalts to andesites with highly variable trace element patterns. These magmas contain high-Ni olivines (olivine Ni higher than permissible for olivines in partial peridotite melts) with high 3He/4He = 7-8 Ra that provide strong evidence for silicic slab components that infiltrate the subarc mantle to produce olivine-free segregations of 'reaction pyroxenite' in the sources of individual volcanoes. Melting of silica-excess and silica-deficient reaction pyroxenites can then produce high-Mg# basaltic and dacitic primary melts that mix during ascent through mantle and crust to form high-Mg# andesites. Mass balance requires that reaction pyroxenites contain at least >15-18 wt%, and likely more, of slab component. However, because the HREE of the slab component are efficiently retained in the eclogitic slab, elements Ho to Lu in partial melts from reaction pyroxenites remain controlled by the mantle and maintain MORB-normalized Ho/Lun ˜1.15 close to unity. In contrast, the MREE to LREE and fluid mobile LILE of the arc magmas are either controlled, or strongly influenced, by slab-contributions. The origin from hybrid sources also shows in the major elements that are blends of mantle-derived elements (Mg, Ca, Mn, Fe, Ti) and elements augmented by slab contributions (Si, Na, K, P, and possibly Al). Moreover, strong correlations between bulk rock SiO2, 87Sr/86Sr and δ18O (olivines) can be interpreted as mixtures of subarc

  8. Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting

    Energy Technology Data Exchange (ETDEWEB)

    Drapala, Jaromir; Skotnicova, Katerina [VSB-Technical University of Ostrava (Czech Republic). Dept. of Non-ferrous Metals, Refining and Recycling


    The aim of the work was to study the creation of micro- and macro-segregation of iridium in low-alloyed molybdenum single crystals after electron beam zone melting (floating zone technique) depending on various conditions of crystallization. In order to evaluate relations between the chemical inhomogeneity and structural defects and their influence on properties of single crystals, the dependence of concentration and character of distribution of admixtures under various crystallization conditions on the origin of concentration undercooling and dislocation substructure of molybdenum single crystals prepared by electron beam floating zone melting was experimentally investigated.

  9. Lithosphere and Asthenosphere Properties beneath Oceans and Continents and their Relationship with Domains of Partial Melt Stability in the Mantle (United States)

    Dasgupta, R.


    The depth of the lithosphere-asthenosphere boundary (LAB) and the change in properties across the lithosphere, asthenosphere, and LAB in various tectonic settings are captured in a variety of geophysical data, including seismic velocities and electrical conductivity. A sharp drop in shear wave velocity and increase in electrical conductivity can potentially be caused by the appearance of partial melt at or below the LAB but the chemical and dynamic stability of partial melt across lithosphere and at LAB remain debated. Here I apply the recent models of mantle melting in the presence of water and carbon [1, 2] to evaluate the domains of stability of partial melt both beneath continents and oceans. The model allows prediction of the possible presence, the fraction, and composition of partial melt as a function of depth, bulk C and H2O content, and fO2 [3] in various geologic/tectonic settings. The results show that while a hydrous, carbonated melt is stable only beneath LAB and in the asthenospheric mantle beneath oceans, continental mantle can contain a carbonate-rich melt within the lithosphere. For geotherms corresponding to surface heat flux (SHF) of 40-50 mW m-2, which also match P-T estimates beneath cratons based on thermo-barometry of peridotite xenoliths [4], the solidus of fertile peridotite with trace amount of CO2 and H2O is crossed at depths as shallow as 80-120 km [5]. If elevated geotherms of the Proterozoic and Phanerozoic terrains are applied, carbonatitic melt becomes stable somewhat shallower. These depths are similar to those argued for a mid-lithospheric discontinuity (MLD) where a negative velocity gradient has been detected much shallower than the proposed depth of LAB in many places. With a drop in oxygen fugacity with depth, a freezing of carbonatitic melt may be expected at intermediate depths (~150-200 km). At 200-250 km a hydrous, carbonated silicate melt may reappear owing to the interplay of fO2 and freezing point depression effect of CO

  10. Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano (United States)

    Yu, Xun; Lee, Cin-Ty A.


    The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from 30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.

  11. Chemistry of Impact-Generated Silicate Melt-Vapor Debris Disks

    CERN Document Server

    Visscher, Channon


    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O2 at lower temperatures (< 3000 K) and SiO, O2, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O2, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor...

  12. Manufacturing of implants by selective laser melting

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin


    Full Text Available In recent years, digitizing and automation have gained an important place in fabrication of medical parts. Rapid Prototyping could be very suitable for medical applications due to their complex geometry, low volume and strong individualization. The presented study investigates the possibility to produce medical or dental parts by Selective Laser Melting (SLM. The SLM process is optimized and fully characterized for different biocompatible metal alloys, such as: TiAl6V4 and CoCrMo. The potential of SLM as medical manufacturing technique is proved by a developed procedure to fabricate frameworks for complex dental prostheses.

  13. Thermodynamic Properties of Mn-C Melts

    Institute of Scientific and Technical Information of China (English)

    CHEN Er-bao; WANG Shi-jun


    Carbon solubility in Mn-Fe melts (xMn=0.161-0.706, xFe=0.034-0.633) was measured experimentally at various temperatures. By thermodynamic derivation and calculation, the relationship between activity coefficient of carbon in infinite dilute solution of manganese in Mn-C system and temperature was obtained. Using Gibbs-Duhem relationship, the experimental results of this study, and experimental data reported in references, the relationship between other thermodynamic properties in Mn-C system and temperature were obtained by thermodynamic derivation and calculation.

  14. Analogue models of melt-flow networks in folding migmatites (United States)

    Barraud, Joseph; Gardien, Véronique; Allemand, Pascal; Grandjean, Philippe


    We have modelled the formation and the layer-parallel shortening of layered (stromatic) migmatites. The model consists of thin superposed layers of partially molten microcrystalline wax. The melt (30 vol.%) has a negative buoyancy and a high viscosity contrast with its solid matrix. As soon as the shortening begins, melt-filled veins with high aspect ratios open along foliation. The melt is segregated into the veins, forming a stromatic layering. During incipient folding, crescent-shaped saddle reefs open at the hinges of open sinusoidal folds. Further shortening and melt-enhanced shear displacements on interlayer interfaces cause chevron folds to develop and the saddle reefs to become triangular. In comparison, a melt-free experiment shows only a few layer-parallel openings and no saddle reefs in chevron folds. On the basis of our experimental results, we propose that in migmatites: (1) mesoscale melt migration is a combination of flow in immobile veins and movements of veins as a whole; (2) the changes in the geometry of the mesoscale melt-flow network create the pressure gradients that drive melt migration; (3) the melt-flow network does not need to be fully interconnected to allow local expulsion; (4) melt expulsion is episodic because the temporal evolution of the network combines with the spatial heterogeneity of the deformation.

  15. Chemical use (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  16. Chemical Reactors. (United States)

    Kenney, C. N.


    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  17. Exploring new concepts in directional solidification by electron beam melting and selective laser melting (United States)

    Martinez, Edwin

    Unlike more conventional directional solidification, electron and laser-beam melting technologies involve building 3D components through layer-by-layer melt/solidification thermal cycling which creates novel, directional microstructural architectures. In this study we compared various the columnar microstructures of various components manufactured by EBM and SLM; image composite observations of columnar microstructural architectures in Cu, Co-29-Cr-6Mo-0.2C alloy, Ni-22Cr-9Mo-4Nb (alloy 625) fabricated by electron beam melting (EBM), and Ni-19Cr-19Fe-5Nb-1Al (alloy 718) by selective laser melting (SLM) as well as stainless steel 17-4 PH (SLM). Cu produced discontinuous columns of Cu2O precipitates while the Co-base alloy exhibited similar columns of Cr 23C6 precipitates. The alloy 625 produced columns of Ni 3Nb (Upsilon"-bct) precipitates. All of the EBM-produced columnar microstructure arrays were spaced ˜2 microm. In contrast, the SLM fabricated alloy 718 contained columnar microstructural arrays of Ni3 Nb (Upsilon") spaced ˜ 0.8microm, the 17-4 PH stainless steel produced martensitic structures dependent on the gas used for manufacturing. The manufactured components were observed by optical microscopy, SEM, XRD and by TEM in order to understand the microstructural development.

  18. Rheological signatures of gelation and effect of shear melting on aging colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Jatav, Shweta; Joshi, Yogesh M, E-mail: [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India)


    Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work, we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time, tan δ is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with an increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.

  19. Densification and grain coarsening of melting snow

    Institute of Scientific and Technical Information of China (English)

    周石硚; 中尾正义; 桥本重将; 坂井亚规子; 成田英器; 石川信敬


    A field work was conducted at Moshiri in Japan.The work included intensive snow pit work, taking snow grain photos, recording snow and air temperatures, as well as measuring snow water content.By treating the snow as a viscous fluid, it is found that the snow compactive viscosity decreases as the density increases, which is opposite to the relation for dry snow.Based on the measurements of snow grain size, it is shown that, similar to the water-saturated snow, the frequency distributions of grain size at different times almost have the same shape.This reveals that the water-unsaturated melting snow holds the same grain-coarsening behavior as the water-saturated snow does.It is also shown that the water-unsaturated melting snow coarsens much more slowly than the water-saturated snow.The C value, which is the viscosity when the snow density is zero, is related to the mean grain size and found to decrease with increasing grain size.The decreasing rate of C value increases with decreasing grain-coarsening rate.

  20. Nucleation and undercooling of metal melt

    Institute of Scientific and Technical Information of China (English)

    坚增运; 常芳娥; 马卫红; 严文; 杨根仓; 周尧和


    The effects of thermodynamic and dynamic factors on nucleation process have been integrated in a theoretical formula representing the dependence of undercooling on parameters concerned. Moreover, a method to determine the kind and amount of the most effective catalyst in an undercooled melt has been acquired. The results show that the undercooling increases with the decreasing surface area of the most effective catalyst and the increasing cooling rate as the kind of the most effective catalyst is constant. It increases to a maximum value when the ratio of the surface area of catalyst ( Sv V) to the cooling rate of melt ( Rc) decreases to a critical value. The maximum undecooling not only depends on the ratio of non-dimensional factor of activation energy for an atom to diffuse (φ) to non-dimensional factor of driving force for nucleus to form (ψ), but also depends on the contact angle of the most effective catalyst; the smaller the ratio of φ to ψ, the higher the maximum undercooling, but it does not

  1. Melting curve of materials: theory versus experiments (United States)

    Alfè, D.; Vocadlo, L.; Price, G. D.; Gillan, M. J.


    A number of melting curves of various materials have recently been measured experimentally and calculated theoretically, but the agreement between different groups is not always good. We discuss here some of the problems which may arise in both experiments and theory. We also report the melting curves of Fe and Al calculated recently using quantum mechanics techniques, based on density functional theory with generalized gradient approximations. For Al our results are in very good agreement with both low pressure diamond-anvil-cell experiments (Boehler and Ross 1997 Earth Planet. Sci. Lett. 153 223, Hänström and Lazor 2000 J. Alloys Compounds 305 209) and high pressure shock wave experiments (Shaner et al 1984 High Pressure in Science and Technology ed Homan et al (Amsterdam: North-Holland) p 137). For Fe our results agree with the shock wave experiments of Brown and McQueen (1986 J. Geophys. Res. 91 7485) and Nguyen and Holmes (2000 AIP Shock Compression of Condensed Matter 505 81) and the recent diamond-anvil-cell experiments of Shen et al (1998 Geophys. Res. Lett. 25 373). Our results are at variance with the recent calculations of Laio et al (2000 Science 287 1027) and, to a lesser extent, with the calculations of Belonoshko et al (2000 Phys. Rev. Lett. 84 3638). The reasons for these disagreements are discussed.

  2. Synthesis of SiC/Al Co-Continuous Composite by Spontaneous Melt Infiltration

    Institute of Scientific and Technical Information of China (English)


    @@Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration of melt Al into SiC preform with continuous porosity. The critical temperature for spontaneous infiltration occurrence can be lowered and spontaneous infiltration rate increased by doping a small amount of Mg into the Al alloy. Adding fine SiO2 powders into the ceramic preform can play the similar role as Mg-doping by increasing wetting through the chemical reaction of 3SiO2+4Al=2Al2O3+3Si at the infiltration front. Infiltration rate can also be increased by Si-doping to lower the viscosity of the molten Al alloy. In addition, sufficient Si content in the molten Al is also indispensable to avoid the formation of Al4C in the synthesized composite.

  3. Separation of primary solid phases from Al-Si alloy melts

    Directory of Open Access Journals (Sweden)

    Ki Young Kim


    Full Text Available The iron-rich solids formed during solidification of Al-Si alloys which are known to be detrimental to the mechanical, physical and chemical properties of the alloys should be removed. On the other hand, Al-Si hypereutectic alloys are used to extract the pure primary silicon which is suitable for photovoltaic cells in the solvent refining process. One of the important issues in iron removal and in solvent refining is the effective separation of the crystallized solids from the Al-Si alloy melts. This paper describes the separation methods of the primary solids from Al-Si alloy melts such as sedimentation, draining, filtration, electromagnetic separation and centrifugal separation, focused on the iron removal and on the separation of silicon in the solvent refining process.

  4. Study of Reactive Melt Processing Behavior of Externally Plasticized Cellulose Acetate in Presence of Isocyanate

    Directory of Open Access Journals (Sweden)

    Rafael Erdmann


    Full Text Available Two types of externally plasticized cellulose acetate (CA were chemically modified using 4,4'-methylene diphenyl diisocyanate (MDI as crosslinking agent. Crosslinking was performed in the molten state by means of melt mixing in an internal mixer. The viscoelastic properties of the non-crosslinked, externally plasticized CA show typical temperature dependence, similar to conventional thermoplastics. A strong increase in storage modulus is observed with increasing crosslink density indicating that the crosslinked compounds exhibit predominately elastic response. The complex viscosity also increases considerably with increasing crosslink density and does not reach the typical Newtonian plateau at low radial frequencies any more. The viscoelastic properties correlate well with the data recorded online during reactive melt processing in the internal mixer. In comparison to the non-crosslinked CA, the crosslinked compounds show higher glass transition temperature, higher VICAT softening temperatures, improved thermal stability and lower plasticizer evaporation at evaluated temperatures.

  5. Separation of primary solid phases from Al-Si alloy melts

    Institute of Scientific and Technical Information of China (English)

    Ki Young Kim


    The iron-rich solids formed during solidification of Al-Si aloys which are known to be detrimental to the mechanical, physical and chemical properties of the aloys should be removed. On the other hand, Al-Si hypereutectic alloys are used to extract the pure primary silicon which is suitable for photovoltaic cells in the solvent refining process. One of the important issues in iron removal and in solvent reifning is the effective separation of the crystalized solids from the Al-Si aloy melts. This paper describes the separation methods of the primary solids from Al-Si aloy melts such as sedimentation, draining, ifltration, electromagnetic separation and centrifugal separation, focused on the iron removal and on the separation of silicon in the solvent refining process.

  6. Facile synthesis of a melt-spinnable polyborazine from asymmetric alkylaminoborazine

    Institute of Scientific and Technical Information of China (English)

    Yong Peng Lei; Ying De Wang; Yong Cai Song; Yi He Li; Hao Wang; Cheng Deng; Zheng Fang Xie


    A novel asymmetric alkylaminoborazine monomer,2-propylamino-4,6-bis(methylamino)borazine,was synthesized for the first time,and directly polymerized to give a melt-spinnable polyborazine(PBN).This asymmetric alkylaminoborazine was synthesized by an aminolysis reaction of 2,4,6-trichloroborazine(TCB)with different amines under mild conditions.This route turns out to be much cheaper and simpler than the conventional routes.The chemical composition,structure,molecular weights and ceramic yield were investigated by EA,FTIR,NMR,GPC and TG analysis.The PBN exhibits suitable rheological property for melt-spinning,which suggests that it is a potential precursor for BN fibers.

  7. Distribution of siderophile and other trace elements in melt rock at the Chicxulub impact structure (United States)

    Schuraytz, B. C.; Lindstrom, D. J.; Martinez, R. R.; Sharpton, V. L.; Marin, L. E.


    Recent isotopic and mineralogical studies have demonstrated a temporal and chemical link between the Chicxulub multiring impact basin and ejecta at the Cretaceous-Tertiary boundary. A fundamental problem yet to be resolved, however, is identification of the projectile responsible for this cataclysmic event. Drill core samples of impact melt rock from the Chichxulub structure contain Ir and Os abundances and Re-Os isotopic ratios indicating the presence of up to approx. 3 percent meteoritic material. We have used a technique involving microdrilling and high sensitivity instrumental neutron activation analysis (INAA) in conjunction with electron microprobe analysis to characterize further the distribution of siderophile and other trace elements among phases within the C1-N10 melt rock.

  8. The Gao-Guenie impact melt breccia—Sampling a rapidly cooled impact melt dike on an H chondrite asteroid? (United States)

    Schmieder, Martin; Kring, David A.; Swindle, Timothy D.; Bond, Jade C.; Moore, Carleton B.


    The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo80-82. The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 °C s-1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000-40,000 °C yr-1. A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike ~0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.

  9. Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability (United States)

    Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.


    Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.

  10. Temperature dependence of densities of Sb and Bi melts

    Institute of Scientific and Technical Information of China (English)

    GENG HaoRan; SUN ChunJing; WANG Rui; QI XiaoGang; ZHANG Ning


    The densities of Sb and Bi melts were investigated by an improved Archimedean method. The results show that the density of the Sb melt decreases linearly with increasing temperature, but the density of the Bi melt firstly increases and then decreases as the temperature increases. There is a maximum density value of 10.002 g/cm3 at 310℃, about 39℃ above the melting point. The temperature dependence of the Sb melt is well fitted with the expression ρ= 6.8590-5.8105×10-4T, and that of the Bi melt is fitted with ρ=10.3312-1.18×10-3T. The results were discussed from a microstructure viewpoint.

  11. Surface reconstruction precursor to melting in Au309 clusters


    Fuyi Chen; Li, Z. Y.; Roy L. Johnston


    The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm) decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. ...

  12. Theoretical study of a melting curve for tin

    Institute of Scientific and Technical Information of China (English)

    Xi Feng; Cai Ling-Cang


    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the meltingcurve of polymorphic material Sn.

  13. Melting of the Abrikosov flux lattice in anisotropic superconductors (United States)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.


    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  14. Study of Contact Melting Inside Isothermally Heated Vertical Cylindrical Capsules

    Institute of Scientific and Technical Information of China (English)

    ChenWenzhen; ChengShangmo; 等


    Close-contact melting processes of phase change material(PCM) inside vertical cylindrical capsule are studied.PCM are heated bhy the capsule isothermalyy at the bottom and side.The theoretical formulas of the melting rate and thickness of liquid layer during the heat transfer process are obtained by analysis,which are convenient for engineering predictions.Finally,the factors that affect melting are discussed.and conclusions are drawn.

  15. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio


    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  16. CFD Modeling of Melt Spreading on the Reactor Cavity Floor

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Wan Sik; Bang, Kwang Hyun [Korea Maritime University, Busan (Korea, Republic of); Cho, Young Jo; Lee, Jae Gon [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)


    In the very unlikely event of a severe reactor accident involving core melt and reactor pressure vessel failure, it is important to provide an accident management strategy that would allow the molten core material to cool down, resolidify and bring the core debris to a stable coolable state for Light Water Reactors (LWRs). One approach to achieve a stable coolable state is to quench the core melt after its relocation from the reactor pressure vessel into the reactor cavity. This approach typically requires a large cavity floor area on which a large amount of core melt spreads well and forms a shallow melt thickness for small thermal resistance across the melt pool. Spreading of high temperature (approx3000 K), low superheat (approx200 K) core melt over a wide cavity floor has been a key question to the success of the ex-vessel core coolability and it has brought a number of experimental work (CORINE, ECOKATS, VULCANO) and analytical work (CORFLOW, MELTSPREAD, THEMA). These computational models are currently able to predict well the spreading of stimulant materials but yet have shown a limitation for prototypic core melt of UO{sub 2}+ZrO{sub 2} mixture. A computational model for the melt spreading requires a multiphase treatment of liquid melt, solidified melt, and air. Also solidification and thermal radiation physics should be included. The present work uses ANSYS-CFX code to simulate core melt spreading on the reactor cavity. The CFX code is a general-purpose multiphase code and the present work is focused on exploring the code's capability to model melt spreading problem in a step by step approach

  17. Tidal Heating and Melt Segregation and Migration within Io (United States)

    Rajendar, A.; Paty, C. S.; Dufek, J.; Roberts, J. H.


    Io's volcanic activity is driven by the dissipation of energy in its interior due to tidal forces exerted by Jupiter, maintained by its orbital resonances with Europa and Ganymede. The 2011 discovery of a global partial melt layer beneath Io's surface has raised further questions about the structure of the Galilean moon and the processes that shape it. In this study we use two coupled simulations, the MFIX multiphase dynamics and the TiRADE tidal heating models, to investigate the location and extent, thermal state, melt fraction, stability, and migration of melt Io's viscous asthenosphere. We explore the feedback between melt migration and production, taking into account the rate of tidal heating and melt migration through the magma ocean layer. We begin with an assumed 1D layered internal structure based on previous investigations. This structure is input into TiRADE, which solves the equations of motion for forced oscillations in a layered spherical body using the propagator matrix method to obtain the displacements and strains due to tidal forcing. From this, we obtain the radial distribution of tidal heat generation within Io. This heating profile is then used as input for the MFIX multiphase fluid model in order to obtain the vertical flow of partially molten material, as well as the radial temperature distribution and thus the material properties and melt fractions. In the multiphase model, individual phases (melt and solid residue) separately conserve mass, momentum and enthalpy allowing us to explore melt segregation phenomena. Enthalpy closure is provided by the MELTS thermodynamics algorithm, which is called at each point in space, accounting for the partitioning between latent and sensible heat, and updating the physical properties of the melt and solid phases. This approach allows us to explore the sensitivity of melt generation to internal structure, as well as the time scales that govern melt production and eruption (i.e.: the residence and migration

  18. Nitrogen distribution between aqueous fluids and silicate melts (United States)

    Li, Yuan; Huang, Ruifang; Wiedenbeck, Michael; Keppler, Hans


    The partitioning of nitrogen between hydrous fluids and haplogranitic, basaltic, or albitic melts was studied at 1-15 kbar, 800-1200 °C, and oxygen fugacities (fO2) ranging from the Fe-FeO buffer to 3log units above the Ni-NiO buffer. The nitrogen contents in quenched glasses were analyzed either by electron microprobe or by secondary ion mass spectrometry (SIMS), whereas the nitrogen contents in fluids were determined by mass balance. The results show that the nitrogen content in silicate melt increases with increasing nitrogen content in the coexisting fluid at given temperature, pressure, and fO2. Raman spectra of the silicate glasses suggest that nitrogen species change from molecular N2 in oxidized silicate melt to molecular ammonia (NH3) or the ammonium ion (NH4+) in reduced silicate melt, and the normalized Raman band intensities of the nitrogen species linearly correlate with the measured nitrogen content in silicate melt. Elevated nitrogen contents in silicate melts are observed at reduced conditions and are attributed to the dissolution of NH3/NH4+. Measured fluid/melt partition coefficients for nitrogen (DNfluid/ melt) range from 60 for reduced haplogranitic melts to about 10 000 for oxidized basaltic melts, with fO2 and to a lesser extent melt composition being the most important parameters controlling the partitioning of nitrogen. Pressure appears to have only a minor effect on DNfluid/ melt in the range of conditions studied. Our data imply that degassing of nitrogen from both mid-ocean ridge basalts and arc magmas is very efficient, and predicted nitrogen abundances in volcanic gases match well with observations. Our data also confirm that nitrogen degassing at present magma production rates is insufficient to accumulate the atmosphere. Most of the nitrogen in the atmosphere must have degassed very early in Earth's history and degassing was probably enhanced by the oxidation of the mantle.

  19. Differential melt scaling for oblique impacts on terrestrial planets (United States)

    Abramov, Oleg; Wong, Stephanie M. Wong; Kring, David A. Kring


    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ∼1.6 times less melt volume than a vertical impact, and ∼1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous–Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  20. Melt dispersion and direct containment heating (DCH) experiments in the DISCO-H test facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.; Albrecht, G.; Kirstahler, M.; Schwall, M.; Wachter, E.; Woerner, G.


    The DISCO-H Test Facility at Forschungszentrum Karlsruhe was set up to perform scaled experiments that simulate melt ejection scenarios under low system pressure in Severe Accidents in Pressurized Water Reactors (PWR). These experiments are designed to investigate the fluid-dynamic, thermal and chemical processes during melt ejection out of a breach in the lower head of a PWR pressure vessel at pressures below 2 MPa with an iron-alumina melt and steam. In the past, a detailed study of pressure and geometry effects on the fluid dynamics of the melt dispersion process had been performed with cold model fluids in the facility DISCO-C. The main components of the facility are scaled about 1:18 linearly to a large European pressurized water reactor. Standard test results are: pressure and temperature history in the RPV, the cavity, the reactor compartment and the containment, post test melt fractions in all locations with size distribution of the debris, video film in reactor compartment and containment (timing of melt flow and hydrogen burning), and pre- and post test gas analysis in the cavity and the containment. The results of six experiments are presented here. All experiments were done with 10.6 kg of iron-alumina melt (scaling to 16 m{sup 3} corium), and a hole of 56 mm diameter (1 m scaled) or 28 mm at the center of the lower head. For comparison with a similar experiment conducted in a larger scale (1:10), the basis experiment was performed with an open path from the reactor pit to the containment (open pit), with prototypical conditions concerning the steam driven ejection out of the RPV, and a containment atmosphere, that was part air and part steam at an elevated pressure, with 3 mole-% hydrogen. In this and other tests, hydrogen production and combustion occurred. In one experiment the hydrogen effect was excluded by using only nitrogen as driving gas and a pure air atmosphere in the containment. In some tests the direct path to the containment was closed

  1. Creep of mafic dykes infiltrated by melt in the lower continental crust (Seiland Igneous Province, Norway) (United States)

    Degli Alessandrini, G.; Menegon, L.; Malaspina, N.; Dijkstra, A. H.; Anderson, M. W.


    A dry mafic dyke from a continental lower-crustal shear zone in the Seiland Igneous Province (northern Norway) experienced syn-kinematic melt-rock interaction. Viscous shearing occurred at T ≈ 800 °C, P ≈ 0.75-0.95 GPa and was coeval with infiltration of felsic melt from adjacent migmatitic metapelites. The dyke has a mylonitic microstructure where porphyroclasts of orthopyroxene, clinopyroxene and plagioclase are wrapped by a fine-grained (4-7 μm) polyphase mixture of clinopyroxene + orthopyroxene + plagioclase + quartz + ilmenite ± K-feldspar ± apatite. Microstructural observations and electron backscatter diffraction analysis indicate that the porphyroclasts deformed by a combination of dislocation glide and fracturing, with only a limited record of dislocation creep, recovery and dynamic recrystallization. We identified diffusion creep as the dominant deformation mechanism in the mixture based on the small grain size, phase mixing and weak crystallographic preferred orientation of all phases (interpreted as the result of oriented grain growth during viscous flow). The polyphase mixture did not form by dynamic recrystallization or by mechanical fragmentation of the porphyroclasts, but rather by melt-rock interaction. Thermodynamic models indicate that the syn-kinematic mineral assemblage results from the chemical interaction between a pristine mafic dyke and ca. 10 vol.% of felsic melt infiltrating from the adjacent partially molten metapelites. Extrapolation of laboratory-derived flow laws to natural conditions indicates that the formation of interconnected layers of fine-grained reaction products deforming by diffusion creep induces a dramatic weakening in the mafic granulites, with strain rates increasing up to 2-3 orders of magnitude. The reaction weakening effect is more efficient than the weakening associated with melt-assisted diffusion creep in the presence of up to 10 vol.% of infiltrated melt without formation of fine-grained reaction products

  2. Impact melt of the lunar Crisium multiring basin (United States)

    Spudis, P. D.; Sliz, M. U.


    New geological mapping of the Crisium basin on the Moon has revealed exposures of the basin impact melt sheet. The melt sheet has a feldspathic highland composition, somewhat more mafic than the melt sheet of the Orientale basin, but less mafic than comparable deposits around the Imbrium basin. These newly recognized deposits would be ideal locations to directly sample Crisium basin impact melt, material whose study would yield insight into the composition of the lunar crust, the time of formation of the basin, and the large impact process.

  3. Variation of hydrogen level in magnesium alloy melt

    Institute of Scientific and Technical Information of China (English)

    XU Si-xiang; WU Shu-sen; MAO You-wu; AN Ping; GAO Pei-qing


    At present there is no commercial instrument available for measurement of hydrogen level in magnesium alloy melt in front of melting fumace. In this paper the equations of solubility of hydrogen in pure magnesium and magnesium alloy have been modified based on thermodynamic analysis. A fast measurement system for hydrogen content in magnesium melt was set up. With this instrument,measurement experiments have been carried out to determine hydrogen level in AZ91 melt. The hydrogen level varies from 6 cm3/100 g to 14 cm3/100 g at the temperature range between 650 ℃and 750 ℃.

  4. Unified analysis of pressure melting of ice around horizontal columns

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; CHEN Wenzhen; MENG Bin; GONG Miao


    The contact melting processes of ice, caused by pressure under the two-dimension axisymmetric horizontal columns, are generally studied. The unified mathematical expressions of the characteristic parameters for the pressure contact melting processes are obtained. Applying these expressions to the analysis of the pressure contact melting of ice around the horizontal cylinder, elliptical cylinder and flat plate, the related results in the published literatures are obtained, which prove the correctness and validity of the expressions. In addition, the expressions for the pressure contact melting of ice around the wedge-shaped object are also derived.

  5. Melting of bcc Transition Metals and Icosahedral Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Boehler, R; Japel, S


    In contrast to polyvalent metals, transition metals have low melting slopes(dT/dP) that are due to partially filled d-bands that allow for a lowering of liquid phase energy through s-d electron transfer and the formation of local structures. In the case of bcc transition metals we show the apparent discrepancy of DAC melting measurements with shock melting of Mo can be understood by reexamining the shock data for V and Ta and introducing the presence of an icosahedral short range order (ISRO) melt phase.

  6. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen


    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  7. Experimental Studies on Partial Melting of Massive Samples of Granite

    Institute of Scientific and Technical Information of China (English)

    林强; 吴福元


    As a basis of modern petrology,the equilibrium relations describing the melting of granite were established mainly on melting experiments of Powder samples.Such experiments,however,have serious limitations in providing information about the variations in compositional and fabric features of the minerals and in the composition and distribution of the melt.Our experiments using massive samples indicate that melt occure mainly at the quartz-plagioclase and quartz-potash feldspar boundaries and the composition of the melt is dependent on local characteristics in the melting system,showing no correlation with the bulk composition of the rock samples.At lower temperatures(740-760℃,0.2GPa),the melt plots at or near the eutectic point in Q-Ab-Or-An-H2O diagram,indicating equilibrium melting.At higher temperatures(790-800℃,0.2GPa)the melt becomes lower in SiO2 and higher in Na2O,deviating makedly from the eutectic line but without disappearance of any mineral phase,suggesting a non-equilibrium process.It is obvious that the phase-equilibrium relations in natural massive granites may be greatly different from those deduced from powder experiments.

  8. Partial melting of metavolcanics in amphibolite facies regional metamorphism

    Indian Academy of Sciences (India)

    Alan Bruce Thompson


    Metavolcanic rocks containing low-Ca amphiboles (gedrite, cummingtonite) and biotite can undergo substantial dehydration-melting. This is likely to be most prominent in Barrovian Facies Series (kyanite-sillimanite) and occurs at the same time as widespread metapelite dehydration- melting. In lower pressure facies series, metavolcanics will be represented by granulites rich in orthopyroxene when dehydration occurs at much lower temperatures than melting. In higher pressure facies series it is not well known whether metavolcanic rocks dehydrate or melt at temperatures lower or similar to that of metapelites.

  9. Mg Alloy Foam Fabrication via Melt Foaming Method

    Institute of Scientific and Technical Information of China (English)

    Donghui YANC; Changhwan SEO; Bo-Young HUR


    For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.

  10. Analysis of solidification and melting of Pcm with energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, Latif M. [Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031 (United States); Gaye, Salif [Ecole Superieure Polytechnique, Enseignant a l' ESP BP A10, Universite Cheikh Anta Diop, Thies (Senegal)


    One-dimensional solidification and melting of a slab with uniform volumetric energy generation is examined analytically. A sudden change in surface temperature triggers phase transformation and interface motion. Analytic solutions are obtained using a quasi-steady approximation. Unlike solidification, the melting case is characterized by a pure liquid phase and a mixture of solid and liquid at the fusion temperature. The solution is governed by a single energy generation parameter. Temperature profiles, interface location and steady state conditions are presented for solidification and melting. Results are applied to two examples: solidification of a nuclear material and melting of ice. [Author].

  11. Arctic melt ponds and bifurcations in the climate system

    CERN Document Server

    Sudakov, Ivan; Golden, Kenneth M


    Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo $-$ a key parameter in climate modeling. Here we explore the possibility of a simple sea ice climate model passing through a bifurcation point $-$ an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a nonlinear phase transition model for melt ponds, and bifurcation analysis of a simple climate model with ice - albedo feedback as the key mechanism driving the system to a potential bifurcation point.

  12. Redox Equilibrium of Niobium in Calcium Silicate Base Melts (United States)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus


    The oxidation state of niobium has been determined at 1873 K (1600 °C) in CaO-SiO2-NbO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93 and 1.10, and 5.72 to 11.44 pct Nb2O5 (initial). The slag samples were equilibrated with gas phases of controlled oxygen pressure, then quenched to room temperature and analyzed chemically. The niobium is mainly pentavalent with small amounts in the tetravalent state. It was found that the Nb5+/Nb4+ ratio increases with oxygen pressure at a constant CaO/SiO2 ratio and constant content of total niobium, closely according to the ideal law of mass action, which is proportional to {text{p}}_{{{text{O}}2 }}^{1/4} . The ratio also increases with total niobium content, and it seems to have a maximum at a basicity of about 0.93. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  13. The Dynamics of Nanoparticles in Polymer Solutions and Melts (United States)

    Mukhopadhyay, Ashis; Alam, Sharmine; Kohli, Indermeet


    Polymer nanocomposites (PNCs) has received a lot of attention in the recent years because of their potential applications in fabricating materials with novel mechanical, electrical, and photonic properties. The mobility of nanoparticles (NPs) play crucial role in determining various properties of PNC systems. Computer simulations and recent experiments have suggested that properties such as the toughness of a composite depend upon particle mobility. Even nanocomposites with ``self-healing'' properties that can restore strength in damaged regions have been proposed and some early work of their feasibility has been demonstrated. In this talk I will present some of our experimental work on the diffusion of nano-sized gold particles in polymer solutions and melt. Unusually fast diffusion of NPs when their size is smaller than the tube diameter in an entangled polymer was observed. Comparison with current theories and simulations will be shown. If time permits, our recent results on gold nanorod diffusion in polymer solution using polarized fluorescence correlation spectroscopy will be presented. Acknowledgements are made to the Donors of the American Chemical Society Petroleum Research fund (PRF # 51694-ND10) for support of this research.

  14. Hot-melt extrusion technology and pharmaceutical application. (United States)

    Wilson, Matthew; Williams, Marcia A; Jones, David S; Andrews, Gavin P


    The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production.

  15. Steroid monochloroacetates : Physical-chemical characteristics and use in gas-liquid chromatography

    NARCIS (Netherlands)

    Molen, H.J. van der; Groen, D.; Maas, J.H. van der


    Synthesis and physical-chemical characteristics (melting points, infrared-, visible- and ultraviolet spectra, paper-,thin-layer- and gas-liquid Chromatographie behaviour) of monochloroacetate derivatives of steroids representing the androstane-, pregnane-, estrane- and cholestane series are describe

  16. Thermal barrier ZrO2 - Y2O3 obtained by plasma spraying method and laser melting

    Directory of Open Access Journals (Sweden)

    K. Kobylańska–Szkaradek


    Full Text Available Purpose: Purpose: The aim of the paper is to determine the influence of laser melting upon the selected physical properties of ZrO2 - Y2O3 ceramic coatings deposited by APS (Air Plasma Spraying method on super-alloys which function as TBC (Thermal Barriers Coatings.Design/methodology/approach: Laser melting which helps eliminate pores and other structural defects of coatings should contribute to the improvement of their density and durability as thermal barriers. In order to prove the assumptions made in the paper, coatings featuring varied porosity and deposited upon the nickel base super-alloys surface with the initially sprayed NiCrAlY bond coat have been subjected to laser melting and then their structure, thermal conductivity and thermal life prediction in the conditions of cyclic temperature changes from 20 to 1200ºC have been examined.Findings: It has been revealed that the coatings featuring low porosity laser melted on part of their thickness and heated up to about 700ºC demonstrate the highest thermal life prediction under the conditions mentioned and at slightly lower thermal conductivity.Research limitations/implications: Low wettability of metal by ceramic which results from various surface tensions of these materials is the cause of their lower adhesion to the substrate during laser melting all through their thickness. It is so because delaminations occur between phases the boundary and cracks.Practical implications: The worked out conditions of laser melting might be used in the process of creation of TBC which feature high working durability upon super-alloy elements.Originality/value: It has been found that homogenization of chemical composition of coatings occurs during laser melting leading to the reduction of ZrO2 - Y2O3 phase with monoclinic lattice participation as well as to the reduction of structural stresses which accompany this phase transformation during heating and cooling process.

  17. Melting curve of the deep mantle applied to properties of early magma ocean and actual core-mantle boundary (United States)

    Andrault, Denis; Lo Nigro, Giacomo; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed


    Our planet experienced partial melting early in its history as a consequence of energy release due to accretion. Partial mantle melting could still happen today in the lowermost mantle. Occurrence of melting is primordial for the chemical segregation between the different Earth's reservoirs and for the dynamics of the whole planet. Melting of iron-alloys is relatively easy to achieve, but the silicated mantle happens to be more refractory. We investigated experimentally melting properties of two starting material, forsterite and chondritic-mantle, at pressures ranging from 25 to 140 GPa, using laser-heated diamond anvil cell coupled with synchrotron radiation. We show that partial melting in the lowermost mantle, as suggested by seismology on the basis of the ultra-low velocity zones (ULVZ), requires temperatures above 4200 K at the core-mantle boundary. At low pressures, our curve plots significantly lower than previous reports. Compared to recent estimates of mantle geotherm, while this temperature remains possible if the Earth's core is very hot, it is more likely that ULVZs correspond to high concentration of incompatible elements driven down to the D"-layer by subducting slabs or extracted out from the outer core. When our chondritic melting curve is coupled with recent isentropic temperature profiles for a magma ocean, we obtain a correlation between magma ocean depth and the potential temperature (Tp) at its surface; an ocean depth of 1000 km (equivalent to ~40 GPa) corresponds to Tp=2000 K, which happens to be significantly hotter than the estimated surface temperature of a sustained magma ocean. It emphasizes the importance of a lid at the magma ocean surface at an epoch as early as that of core-mantle segregation.

  18. Using a low melting solvent mixture to extract value from wood biomass (United States)

    Hiltunen, Jaakko; Kuutti, Lauri; Rovio, Stella; Puhakka, Eini; Virtanen, Tommi; Ohra-Aho, Taina; Vuoti, Sauli


    Green chemistry, sustainability and eco-efficiency are guiding the development of the next generation of industrial chemical processes. The use of non-edible lignocellulosic biomass as a source of chemicals and fuels has recently raised interest due to the need for an alternative to fossil resources. Valorisation mainly focuses on cellulose, which has been used for various industrial scale applications for decades. However, creating an economically more viable value chain would require the exploitation of the other main components, hemicellulose and lignin. Here, we present a new low melting mixture composition based in boric acid and choline chloride, and demonstrate its efficiency in the fractionation of wood-based biomass for the production of non-condensed lignin, suitable for further use in the search for sustainable industrial applications, and for the selective conversion of hemicelluloses into valuable platform chemicals.

  19. Constraints on Structure and Melting of Heterogeneous Plumes From Laboratory Experiments With Three Components (United States)

    Harris, A. C.; Kincaid, C.; Kelley, K. A.


    Many studies of chemical geodynamics consider the fate of a single, compositionally distinct layer at the base of the mantle, but subducted oceanic lithosphere introduces two distinct lithologies (higher-density eclogite and lower-density harzburgite) into the mantle (a third lithology, intermediate-density lherzolitic peridotite). To address the dynamic complexities of interactions between these materials, we conducted three-dimensional laboratory experiments that use glucose syrup (Rayleigh number: 106\\)) to model the mantle and a two-layer subducted lithosphere. The viscosity and density of the syrup are controlled by its water content, which is varied to simulate the distinct physical properties of each of the three lithologies. Experiments were conducted in a 20cc tank, heated from below to create a basal thermal boundary layer (BTBL). The two-layer glucose slab was frozen and placed within the tank, where it sank into the BTBL. These experiments produced heterogeneous upwellings with temporal and spatial variations in both temperature and composition that are much more complex than predicted by classic plume theory. Temperature, composition, and distribution of material in the tank through space and time were recorded during each experiment. We scale these data to mantle-equivalent conditions and address the observational implication for melting such heterogeneous plumes, both within larger (200 - 600 km) plume heads and smaller (<100 km) trailing conduits. Results show length scales of chemical heterogeneity range from <10 km up to 300 km. Thermal heterogeneity was often correlated with composition, where the denser, eclogite analog had higher temperatures than the lighter, harzburgite analog. Distinct domains form within plumes and melting begins at different depths, dependent on the temperature and composition of each domain and the solidus of each composition (e.g. eclogite melts at lower temperatures than harzburgite). The combination of thermo-chemical

  20. Mantle differentiation and chemical cycling in the Archean (Invited) (United States)

    Lee, C.


    Differentiation of Earth’s silicate mantle is largely controlled by solid-state convection. Today, upwelling mantle leads to decompression melting. Melts, being of low density, rise to form the continental and oceanic crusts. Because many trace elements, such as heat-producing U, Th and K, as well as the noble gases, preferentially partition into melts, melt extraction concentrates these elements into the crust or atmosphere. However, one by-product of whole-mantle convection is that melting during the Earth’s first billion years was likely deep and hot. Such high pressure melts may have been dense, allowing them to stall, crystallize and later founder back into the lower mantle. These sunken lithologies would have ‘primordial’ chemical signatures despite a non-primordial origin. As the Earth cools, the proportion of upwards melt segregation relative to downwards melt segregation increases, removing volatiles and other incompatible elements to the surface. Recycling of these elements back into the Earth’s interior occurs by subduction, but because of chemical weathering, hydrothermal alteration and photosynthetic reactions occurring in the Earth’s exosphere, these recycled materials may re-enter the mantle already chemically transformed. In particular, photosynthetic production of oxygen and, especially, the progressive oxygenation of the Earth’s atmosphere require removal of reduced carbon from the Earth’s surface. If such removal occurred by subduction, the mantle would have become progressively reduced. During the Archean and early Proterozoic, much of this material may have contributed to making cratonic mantle, and if so, cratonic mantle may have been assembled by reduced building blocks, perhaps explaining the origin of diamonds with organic carbon isotopic signatures. The origin of peridotitic diamonds in cratonic mantle could then be explained if the underlying convecting mantle was in fact more oxidizing such that carbonatitic liquids

  1. Kinetic Pathways of the DNA Melting Transition

    CERN Document Server

    Santos, Aaron


    We investigate kinetic pathways of the DNA melting transition using variable-range versions of the Poland-Scheraga (PS) and Peyrard-Dauxois-Bishop (PDB) models of DNA. In the PS model, we construct a phi^4-field theory to calculate the critical droplet profile, the initial growth modes, and the exponent characterizing the divergence of the susceptibility near the spinodal. In the PDB model, we use a mean field analysis to calculate susceptibility exponent. We compare these theoretical results with Monte Carlo and Brownian dynamic simulations on the PS and PDB models, respectively. We find that by increasing the range of interaction, the system can be brought close to a pseudospinodal, and that in this region the nucleating droplet is diffuse in contrast to the compact droplets predicted by classical nucleation theory.

  2. Pb isotopes during mingling and melting

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles E.


    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...... fail to model the Pb isotope systematics. Selective contamination during diffusional exchange, which can explain the complex Sr and Nd isotope compositions of the hybrid rocks (Blichert-Toft et al., 1992), cannot fully account for the variability of the Pb isotopic data using the identified crustal end......-members. The crustal anatectic end-member, although similar in Sr and Nd isotope composition, has a markedly different Pb isotopic composition than its source gneiss. The differences are consistent with preferential incorporation of radiogenic Pb from accessory phases such as metamict zircon or loosely-bound Pb from...

  3. Spherical foam growth in Al alloy melt

    Institute of Scientific and Technical Information of China (English)

    SHANG; Jintang; HE; Deping


    Due to the demand of high-tech Al alloy foam with spherical pores, high strength and high energy-absorption capacity has become one of the research foci. The aim of this study is to ascertain the growth regularity of spherical foam in Al alloy melt. Three-dimensional packing model such as face-centered cubic is established to study the spherical foam growth. Theoretical results are compared with experimental ones, and the face-centered cubic model corresponds well with the experiment. It is reasonable to assume that the pores have the same radius, the total pore number keeps unchanged and spherical foam grows with face-centered cubic packing mode. This study presents a useful help to control the average pore radius and film thickness.

  4. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...... or more different polymers in addition to additives, fillers or solvents in order to modify the properties of the final product. Usually, it is also desired to improve the processability. For example the supplement of a high molecular weight component improves the stability in elongational flows....... On the other hand, addition of low-volatility solvents to polymers is also a common industrial practice that others a means for lowering the Tg of the polymers. Moreover industrial polymers present a wide distribution of chain lengths and/or branched architectures that strongly influence their response...

  5. Partial melting and the efficiency of mantle outgasing in one-plate planets (United States)

    Plesa, Ana-Catalina; Breuer, Doris


    The generation of partial melting can have a major impact on the thermo-chemical evolution of a terrestrial body by the depletion of the mantle material in incompatible elements such as radioactive elements and volatiles, crust formation and volcanic outgassing. During some period in the thermal history of a terrestrial planet, the temperature in regions of the upper mantle, either below tectonic plates or a stagnant lid, rises above the solidus - the temperature at which the mineral with the lowest melting temperature among those that form the silicate mantle mixture starts to melt. The melt than rises toward the surface, forms the crust, and releases volatiles into the atmosphere. In case of one-plate (stagnant lid) planets the thickness of the present-day crust can 'tell' us already about the efficiency of mantle melting and mantle degassing - the thicker the crust the more mantle material experienced melting and thus the more efficient can be the outgassing. However, it has been shown with parameterized convection models [1] but also 2-3D convection models [2] that crustal delamination is a common process in one-plate planets. Crustal delamination allows that possibly much more crust is produced during the entire evolution (and thus more mantle material experienced differentiation) than what is observed today, implying also more efficient outgassing than expected. Crustal delamination is therefore a process that may help to generate a substantial planetary atmosphere. In the present work we investigate the influence of partial melt on mantle dynamics and the volcanic outgassing of one-plate planets using the mantle convection code GAIA [3] in a 2D cylindrical geometry. We consider the depletion of the mantle, redistribution of radioactive heat sources between mantle and crust, as well as mantle dehydration and volcanic outgassing [4]. When melt is extracted to form the crust, the mantle material left behind is more buoyant than its parent material and depleted

  6. Uranium and neodymium partitioning in alkali chloride melts using low-melting gallium-based alloys

    Directory of Open Access Journals (Sweden)

    Melchakov Stanislav Yu.


    Full Text Available Partitioning of uranium and neodymium was studied in a ‘molten chloride salt - liquid Ga-X (X = In or Sn alloy’ system. Chloride melts were based on the low-melting ternary LiCl-KCl-CsCl eutectic. Nd/U separation factors were calculated from the thermodynamic data as well as determined experimentally. Separation of uranium and neodymium was studied using reductive extraction with neodymium acting as a reducing agent. Efficient partitioning of lanthanides (Nd and actinides (U, simulating fission products and fissile materials in irradiated nuclear fuels, was achieved in a single stage process. The experimentally observed Nd/U separation factor valued up to 106, depending on the conditions.

  7. Accretional Impact Melt From the L-Chondrite Parent Body (United States)

    Wittmann, A.; Weirich, J. R.; Swindle, T. D.; Rumble, D.; Kring, D. A.


    MIL 05029, a unique achondritic Antarctic meteorite with L-chondritic affinity, has a medium-grained, well equilibrated texture of large poikilitic low-Ca pyroxenes that overgrew smaller, euhedral olivines. Plagioclase filled interstitial spaces and has an abundance that is twice that typical for L-chondrites, while Fe-Ni metal and troilite are strongly depleted in that respect. No relic clasts or shock features were found in the thin section analyzed. However, based on its chemical affinity to L-chondrites, MIL 05029 was classified as an impact melt. This is confirmed by its olivine and low-Ca pyroxene compositions, the Co content in Fe-Ni metal, and its oxygen isotopic composition that lies very close to that of L-chondrites. An igneous origin of MIL 05029 cannot be ruled out but would have to be reconciled with thermochronometric constraints for the formation of the ordinary chondrite parent bodies. These studies infer delayed accretion of the parent asteroids of the ordinary chondrites and, thus, insufficient heating from short-lived radiogenic isotopes to produce endogenic magmatism. Metallographic cooling rates of ˜2-22 °C/Ma in the temperature range between ˜700-400°C were determined on five zoned metal particles of MIL 05029. Thermal modeling showed that such cooling rates relate to metamorphic conditions at depths of 5-12 km on the L-chondrite parent body. For an impact to deposit material at this depth, scaling relationships for an impact event on the 100-200 km diameter parent asteroid require a 15 to 60 km diameter simple crater that produced a basal melt pool, in which MIL 05029 crystallized. Further constraints for the formation conditions of MIL 05029 were derived from three whole-rock samples that gave well-defined Ar-Ar plateau ages of 4.53±0.02 Ga. This age indicates the time at which MIL 05029 cooled below ˜180°C, the Ar-closure temperature of plagioclase. Considering its slow metallographic cooling, the impact event that formed MIL 05029

  8. Water isotopic ratios from a continuously melted ice core sample

    Directory of Open Access Journals (Sweden)

    V. Gkinis


    Full Text Available A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS and a Continuous Flow Analysis (CFA system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the

  9. Water isotopic ratios from a continuously melted ice core sample

    Directory of Open Access Journals (Sweden)

    V. Gkinis


    Full Text Available A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS purchased from Picarro Inc. and a Continuous Flow Analysis (CFA system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW–SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to

  10. Alternatives to SF{sub 6} for magnesium melt protection

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, N.J. [CAST CRC-CSIRO Manufacturing and Materials Technology, Pullenvale (Australia)


    Molten magnesium is typically protected from oxidation with sulphur hexafluoride (SF{sub 6}), an extremely potent greenhouse gas (GHG) with a long atmospheric lifetime. This paper examined gas alternatives to SF{sub 6} and discussed reasons why alternative systems have not been readily adopted by manufacturers. AM-cover is a blend of HFC-134a that uses either carbon dioxide (CO{sub 2}) or nitrogen (N) as a carrier gas. AM-cover was designed as a drop-in replacement for SF{sub 6}, and has been demonstrated to work as well or better than SF{sub 6}. However, a license fee must be paid for its use, and the active gas still produces GHGs. The use of CO{sub 2} and nitrogen can also be prohibitively expensive for some operators. Novec 612 is a liquid fluorinated ketone for use in magnesium cover gas applications. Novec 612 has been tested in a number of primary magnesium production facilities, and has been shown to provide effective protection against oxidation. However, the active component is expensive, and is only available from 1 supplier. Air is added to the gas to reduce the potential for the formation of toxic PFCs and PFIBs. CO{sub 2} snow is used to cool the surface of molten magnesium, lowering the magnesium vapour pressure to the point where oxygen exclusion is an effective melt protection system. A significant amount of CO{sub 2} is needed to start the process. While boron trifluoride has been successfully used to protect molten magnesium, it is highly toxic, and decomposes readily in moist air. Sulphuryl fluoride (SO{sub 2}F{sub 2}) has been considered as a magnesium melt protection device. However, it is a toxic chemical traditionally used to fumigate houses. Hydrofluoroethers (HFEs) are volatile liquids that evaporate into a moving stream of diluent gas. However, the ready availability of HFE makes it an attractive option for further research. A wide range of HFC and HFE gases are both commercially available and have the potential as cover gases for

  11. Melt segregation evidence from a young pluton, Takidani Granodiorite (Japan) (United States)

    Hartung, Eva; Caricchi, Luca; Floess, David; Wallis, Simon; Harayama, Satoru; Chiaradia, Massimo; Kouzmanov, Kalin


    We are presenting new petrological data from one of the youngest exposed plutons in the world, the Takidani Granodiorite (Japan), which has been suggested as a source for large volume ignimbrites (> 300km3). Takidani Granodiorite (1.54 Ma ± 0.23 Ma) is located within the active Norikura Volcanic Chain in the Northen Japan Alps and has been previously linked to large andesitic (1.76 Ma ± 0.17 Ma) and rhyolitic eruptions (1.75 Ma ± 0.17 Ma). The pluton is vertically zoned and consists of granites (67 to 68 wt.% SiO2) in the lower section, granodiorites (65 to 66 wt.% SiO2) in the middle section, a chemically more evolved fine-grained porphyritic unit (67 to 71 wt.% SiO2) near the roof and a marginal granodiorite at the roof (67 to 68 wt.% SiO2). The porphyritic texture of the more evolved unit near the roof indicates rapid crystallisation, which could be the result of the late intrusion of this unit at the roof of the magmatic system. However, no sharp contact is found between the underlying granodiorite and the porphyritic unit. Instead, a gradual change in rock fabric, whole-rock chemistry and mineralogy is observed suggesting that melt was extracted from the granodiorite. Electron microprobe analyses of plagioclases show three main crystal populations (Type I, II and III) with distinct anorthite and Fe contents. Type I plagioclase (An30-40) occurs dominantly within the marginal granodiorite at the roof. Type II plagioclase (An40-45) are common in the granodiorite and porphyritic unit. Type III plagioclase (An45-50) is predominantly present in the granite. All plagioclase populations share a common sodic rim (An22) across the different units. Takidani Granodiorite rocks are compared to crystallisation experiments from similar magmatic suites. Emplacement conditions of the Takidani Granodiorite are obtained from the latter as well as barometry, thermometry and hygrometry indicating that magmas were ultimately emplaced at around 200 MPa, 850° C to 875° C and

  12. Observation of melting conditions in selective laser melting of metals (SLM) (United States)

    Thombansen, U.; Abels, Peter


    Process observation in 3D printing of metals currently is one of the central challenges. Many companies strive to employ this additive manufacturing process in their production chains in order to gain competitive advantages through added flexibility in product design and embedded features. The new degrees of freedom are accompanied with the challenge to manufacture every detail of the product to the predefined specifications. Products with filigree internal structures for example require a perfect build to deliver the performance that was designed into these structures. Melting conditions determine properties such as grain structure and density of the finished part before it is sent to post processing steps. Monitoring of such melting conditions is still a challenge where the use of photodiodes, pyrometry and camera systems contribute to an overall picture that might identify errors or deviations during the build process. Additional considerations must be made to decide if these sensors are applied coaxially or from a lateral perspective. Furthermore, setting parameters of focal plane array (FPA) sensors are discussed and events that are seen in the machine vision image are compared against the pyrometry data. The resume of the experiments suggests the application of multiple sensors to the selective laser melting process (SLM) as they jointly contribute to an identification of events. These events need to be understood in order to establish cause effect relationships in the future.

  13. Carbon-Carbon High Melt Coating for Nozzle Extensions Project (United States)

    National Aeronautics and Space Administration — The High Melt Coating system is applied to a carbon-carbon structure and embeds HfC, ZrB2 in the outer layers. ACC High Melt builds on the time tested base material...

  14. The investigation of melting process on the solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, S.Kh.; Bugakov, A.G. [Uubek Academy of Sciences, Materials Science Institute, Tashkent (Uzbekistan); Boehmer, M.; Fend, T. [DLR MD-ET, Cologne (Germany)


    The outcomes of a trial of new melting method on the solar furnace with horizontal optical axis by means of side fusion of rotatable ceramic sample with continuous restoration of the surface by charge is presented. The different development of the melting processes on the sample depending on the it's rotation speed is detected. (authors)

  15. Joint electroreduction of lanthanum, gadolinium and boron in halide melts

    Directory of Open Access Journals (Sweden)

    Khushkhov KH.B.


    Full Text Available The joint electroreduction of La, Gd and B from chloride-fluoride melts has been studied by cyclic voltametry. Based on the analysis of voltamograms the possibility of electrosynthesis of lanthanum-gadolinium borides from chloride-fluoride melts has been shown.

  16. Coatings with laser melt injection of ceramic particles

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Ocelik, V.; de Oliveira, U.; Seal, S; Dahotre, NB; Moore, JJ; Suryanarayana, C; Agarwal, A


    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on

  17. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, W.W.; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, H.J.M.


    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper pro

  18. Dislocations and melting in two and three dimensions

    DEFF Research Database (Denmark)

    Tallon, Jeffery L.


    Comments are presented on the recent theories of two-dimensional melting which envisage melting as proceeding via two second-order transitions comprising dislocation dipole dissociation followed by disclination dipole dissociation. It is suggested that if the configurational entropy is properly i...

  19. Electrochemistry of the Oxofluoro Complexes of Boron in Fluoride Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.


    Electrochemical behavior of oxofluoro complexes of boron, synthesized both in situ in FLINAK melt and added into the melt as Na3B3O3F6 compound, was by linear voltammetry within the range of 570-750 oC. It was shown that in lower part of this range the electrochemical reduction of BOF2- complexes...

  20. Heredity of Aluminum Melt Caused by Electric Pulse Modification (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-zhong; QI Jin-gang; DU Hui-ling; ZHANG Zhen-bin


    The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differential transferability of genetic carrier in activated melt among filial generations was validated with the aid of DSC.

  1. Hexa-n-alkylcyclotrisiloxanes - synthesis, melting behaviour and polymerization

    NARCIS (Netherlands)

    Out, Gerardus J.J.; Klok, Harm-Anton; Möller, Martin; Oelfin, Dieter


    A homologous series of hexa-n-alkylcyclotrisiloxanes and poly(di-n-alkylsiloxane)s has been prepared with alkyl side groups varying in length between 4 and 10 carbon atoms. Melting transition enthalpies of the hexa-n-alkylcyclotrisiloxanes indicated a reversed odd-even effect, showing higher melting

  2. Morphology and melt rheology of nylon 11/clay nanocomposites

    NARCIS (Netherlands)

    He, Xiaofeng; Yang, Jun; Zhu, Lianchao; Wang, Biao; Sun, Guangping; Lv, Pengfei; Phang, In Yee; Liu, Tianxi


    Nylon 11 (PA11)/clay nanocomposites have been prepared by melt-blending, followed by melt-extrusion through a capillary. Transmission electron microscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler loading

  3. Melt onset over Arctic sea ice controlled by atmospheric moisture transport (United States)

    Mortin, Jonas; Svensson, Gunilla; Graversen, Rune G.; Kapsch, Marie-Luise; Stroeve, Julienne C.; Boisvert, Linette N.


    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.

  4. Analysis of Contact Melting Driven by Surface Heat Flux Around a Cylinder

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zhao; W.Z. Chen; F.R. Sun; Z.Y. Chen


    The contact melting of phase change material around a moving horizontal cylindrical heat source, which descended under its own weight, is investigated in this article. A melting model under constant surface heat flux is established. The analytical results for thickness and pressure distributions inside melt layer and steady melting velocity are obtained by using contact melting theory. The melting law is discussed, and compared with that of contact melting driven by temperature difference. It is found that quasi-steady melting velocity is determined by heat flux of heat source, and the variation of heat source density has less effect on melting velocity.

  5. Melting in the FeOsbnd SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations (United States)

    Kato, Chie; Hirose, Kei; Nomura, Ryuichi; Ballmer, Maxim D.; Miyake, Akira; Ohishi, Yasuo


    Banded iron formations (BIFs), consisting of layers of iron oxide and silica, are far denser than normal mantle material and should have been subducted and sunk into the deep lower mantle. We performed melting experiments on Fe2SiO4 from 26 to 131 GPa in a laser-heated diamond-anvil cell (DAC). The textural and chemical characterization of a sample recovered from the DAC revealed that SiO2 is the liquidus phase for the whole pressure range examined in this study. The chemical compositions of partial melts are very rich in FeO, indicating that the eutectic melt compositions in the FeOsbnd SiO2 binary system are very close to the FeO end-member. The eutectic temperature is estimated to be 3540 ± 150 K at the core-mantle boundary (CMB), which is likely to be lower than the temperature at the top of the core at least in the Archean and Paleoproterozoic eons, suggesting that subducted BIFs underwent partial melting in a thermal boundary layer above the CMB. The FeO-rich melts formed by partial melting of the BIFs were exceedingly dense and therefore migrated downward. We infer that such partial melts have caused iron enrichment in the bottom part of the mantle, which may have contributed to the formation of ultralow velocity zones (ULVZs) observed today. On the other hand, solid residues left after the segregation of the FeO-rich partial melts have been almost pure SiO2, and therefore buoyant in the deep lower mantle to be entrained in mantle upwellings. They have likely been stretched and folded repeatedly by mantle flow, forming SiO2 streaks within the mantle "marble cake". Mantle packages enhanced by SiO2 streaks may be the origin of seismic scatterers in the mid-lower mantle.

  6. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Fereshteh Mirjalili


    Full Text Available Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM, FT-IR spectroscopy, differential scanning calorimetry (DSC, and tensile testing.

  7. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts (United States)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho


    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  8. Continuous melting and ion chromatographic analyses of ice cores. (United States)

    Huber, T M; Schwikowski, M; Gäggele, H W


    A new method for determining concentrations of organic and inorganic ions in ice cores by continuous melting and contemporaneous ion chromatographic analyses was developed. A subcore is melted on a melting device and the meltwater produced is collected in two parallel sample loops and then analyzed simultaneously by two ion chromatographs, one for anions and one for cations. For most of the analyzed species, lower or equal blank values were achieved with the continuous melting and analysis technique compared to the conventional analysis. Comparison of the continuous melting and ion chromatographic analysis with the conventional analysis of a real ice core segment showed good agreement in concentration profiles and total amounts of ionic species. Thus, the newly developed method is well suited for ice core analysis and has the advantages of lower ice consumption, less time-consuming sample preparation and lower risk of contamination.

  9. Effects of Melt Thermal Treatment on A356 Alloy

    Institute of Scientific and Technical Information of China (English)


    To increase the casting quality of hypoeutectic Al-Si alloys, the effects of melt thermal treatment on the solidification structure of the A356 alloy were analyzed by a factorial experiment, in which the overheated melt was mixed with the low temperature melt. Experimental results show that the elongation ratio and strength of the treated samples increase remarkably compared with the control sample. The primary dendrite size reduces dramatically and the dendrite changes from columnar to equiaxed, with a little change of the secondary dendrite arm spacing (SDAS).Combined with the measurement of the nucleation undercooling, it is concluded that the solidification structure and refining effect are dependent primarily on the low temperature melt. The refining mechanism is believed as a result of the multiplication of the nuclei in the melt thermal treatment procedure.

  10. Crystallisation and Melting Behavior of Methyl Esters of Palm Oil

    Directory of Open Access Journals (Sweden)

    Cheng S. Foon


    Full Text Available The methyl esters of palm oil, which consists of saturated and unsaturated esters (0.6 to 95.9% unsaturation of the C12 to C18 fatty acids, solidify at the two temperature ranges, -52 to -45°C and -24 to 21°C, when the esters are cooled. When the esters are heated, they melt at two distinct temperatures, -25 and -33°C and a broad peak at -9 to 28°C. The heating thermograms also showed an exothermic crystallisation peak in between two endothermic melting peaks, indicating the occurrence of re-crystallisation of low melting methyl esters into higher melting point crystal and then melt again at higher temperature.

  11. Modeling of velocity field for vacuum induction melting process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; JIANG Zhi-guo; LIU Kui; LI Yi-yi


    The numerical simulation for the recirculating flow of melting of an electromagnetically stirred alloy in a cylindrical induction furnace crucible was presented. Inductive currents and electromagnetic body forces in the alloy under three different solenoid frequencies and three different melting powers were calculated, and then the forces were adopted in the fluid flow equations to simulate the flow of the alloy and the behavior of the free surface. The relationship between the height of the electromagnetic stirring meniscus, melting power, and solenoid frequency was derived based on the law of mass conservation. The results show that the inductive currents and the electromagnetic forces vary with the frequency, melting power, and the physical properties of metal. The velocity and the height of the meniscus increase with the increase of the melting power and the decrease of the solenoid frequency.

  12. Melting Characteristics and Wettability of Binding Phase in Sinter

    Institute of Scientific and Technical Information of China (English)

    SHEN Feng-man; LI Guang-sen; DING Zhi-min; MU Lin


    The melting characteristics and wettability of the binding phase in high basicity sinter were studied.By changing nCaO:nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melting characteristics and wettability of the binding phase were discussed.The results indicated that the characteristic melting temperature was the lowest and wettability was the best at nCaO:nFe2O3=1:1 (without addition); the addition of MgO increased the characteristic melting temperature and contact angles; when the percentage of SiO2 or Al2O3 was 3%,the characteristic melting temperature was the lowest,whereas the contact angles increased with an increase in SiO2 and Al2O3 contents.

  13. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.;


    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume....... temperature of this spherical interface, with radius R, was found to scale linearly with the inverse radius 1/R. However, by varying the apex angle of the needles we show that the proportionality constant between the depressed melting temperature and the inverse radius changes significantly. This led us...

  14. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization (United States)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong


    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  15. Spontaneous corneal melting in pregnancy: a case report

    Directory of Open Access Journals (Sweden)

    Arya Sudesh K


    Full Text Available Abstract Background To report a case of spontaneous corneal melting in pregnancy. We reviewed the literature on corneal melting and the effect of pregnancy on cornea and collagen containing tissues. Case presentation A 29-year-old woman who underwent radial keratotomy in both eyes followed by trabeculectomy in her left eye developed corneal melting in the same eye, in her seventh month of pregnancy. Despite screening, no infectious or immune mediated condition could be identified. She was managed conservatively with cyanoacrylate glue, bandage contact lens, lubricants and antibiotics. Conclusion It may not always be possible to find the underlying cause of corneal melting but the more common underlying causes should be ruled out by proper investigations. Pregnancy with its host of hormonal changes could potentially have some effect on corneal collagen leading to corneal melting in compromised corneas.

  16. Melting of Boltzmann particles in different 2D trapping potential (United States)

    Bhattacharya, Dyuti; Filinov, Alexei; Ghosal, Amit; Bonitz, Michael


    We analyze the quantum melting of two dimensional Wigner solid in several confined geometries and compare them with corresponding thermal melting in a purely classical system. Our results show that the geometry play little role in deciding the crossover quantum parameter nX, as the effects from boundary is well screened by the quantum zero point motion. The unique phase diagram in the plane of thermal and quantum fluctuations determined from independent melting criteria separates out the Wigner molecule ``phase'' from the classical and quantum ``liquids''. An intriguing signature of weakening liquidity with increasing temperature T have been found in the extreme quantum regime (n). This crossover is associated with production of defects, just like in case of thermal melting, though the role of them in determining the mechanism of the crossover appears different. Our study will help comprehending melting in a variety of experimental realization of confined system - from quantum dots to complex plasma.

  17. Chemical sensors (United States)

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.


    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  18. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi


    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  19. Experimental investigation and modelling of heat capacity, heat of fusion and melting interval of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Leth-Miller, R.; Jensen, A.D.; Glarborg, P.; Jensen, L.M.; Hansen, P.B.; Joergensen, S.B


    The heat capacity and heat of fusion were measured for a number of minerals using differential scanning calorimetry (DSC). The DSC measurements showed that the heat of fusion for the minerals is very low compared to the heat of fusion for pure crystalline phases reported elsewhere. A model for the melting behaviour of mineral materials in terms of melting interval, heat capacities and heat of fusion has been developed. The only model input is the chemical composition of the mineral material. The model was developed to be implemented in a detailed model of a cupola furnace, thus the focus for the development was not only precision but also to obtain a model that was continuous and differentiable. The model is based on several different submodels that each covers a part of the heating and melting of rocks. Each submodel is based on large amounts of empirical data. Comparison of the model and the DSC measurements showed reasonable agreement for the model to be used when a fast estimate is needed and experimental data is not available.

  20. Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure (United States)

    Jackson, J.C.; Horton, J.W.; Chou, I.-Ming; Belkin, H.E.


    X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02-1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.

  1. High-temperature corrosion of metals in the salt and metallic melts containing rare earths (United States)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.


    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  2. Morphologies of ABC triblock terpolymer melts containing poly(Cyclohexadiene): Effects of conformational asymmetry

    KAUST Repository

    Kumar, Rajeev Senthil


    We have synthesized linear ABC triblock terpolymers containing poly(1,3-cyclohexadiene), PCHD, as an end block and characterized their morphologies in the melt. Specifically, we have studied terpolymers containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the other blocks. Systematically varying the ratio of 1,2- /1,4-microstructures of poly(1,3-cyclohexadiene), we have studied the effects of conformational asymmetry among the three blocks on the morphologies using transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and self-consistent field theory (SCFT) performed with PolySwift++. Our work reveals that the triblock terpolymer melts containing a high percentage of 1,2-microstructures in the PCHD block are disordered at 110 C for all the samples, independent of sequence and volume fraction of the blocks. In contrast, the triblock terpolymer melts containing a high percentage of 1,4-microstructure form regular morphologies known from the literature. The accuracy of the SCFT calculations depends on calculating the χ parameters that quantify the repulsive interactions between different monomers. Simulations using χ values obtained from solubility parameters and group contribution methods are unable to reproduce the morphologies as seen in the experiments. However, SCFT calculations accounting for the enhancement of the χ parameter with an increase in the conformational asymmetry lead to an excellent agreement between theory and experiments. These results highlight the importance of conformational asymmetry in tuning the χ parameter and, in turn, morphologies in block copolymers. © 2012 American Chemical Society.

  3. Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea (United States)

    Lee, Yuyoung; Cho, Moonsup


    The melting process of meta-igneous rocks was investigated via field, petrographic and geochemical analyses of the Neoarchean (~ 2.51 Ga) migmatite complex in Daeijak Island, western Gyeonggi Massif. This complex consists primarily of garnet-free amphibolites and tonalitic migmatites, both of which contain hornblende, plagioclase and quartz as major constituents. Neosomes and leucosomes in the migmatite have dioritic-tonalitic and tonalitic-trondhjemitic compositions, respectively. Compositions of hornblende (XFe = 0.39-0.42) and plagioclase (An24-27) vary little between the neosomes and leucosomes. The amphibolites show distinct depletions in Nb, Ta, Zr, and Ti relative to large ion lithophile elements, suggesting an arc-related origin for their basaltic protolith. Leucosomes have lower contents of K2O, MgO, FeO*, TiO2, Zr, Rb, and rare earth elements (REE) than amphibolites and neosomes, but are higher in SiO2, Na2O, and Sr contents. Leucosomes and neosomes have positive [(Eu/Eu*)N = 1.32-7.26] and negative (0.71-0.97) Eu anomalies, respectively, which are attributed to the variable degree of plagioclase fractionation during the partial melting. The P-T condition for the migmatite formation was estimated to be ~ 700-730 °C and 4.7-5.5 kbar, primarily based on the hornblende-plagioclase thermobarometry and phase equilibria. Various lines of textural evidence, such as the channel flow of melt along migmatitic layers and the segregation of melt into shear bands or boudin necks suggest a syn-deformation crystallization of melt. Chemical disequilibrium in migmatites is documented not only by petrographic and geochemical data but also by the REE modeling between melt product and source rock. Disequilibrium process is most likely attributed to the rapidity of melt extraction or migration, compared to chemical diffusion rate. In summary, the fluid-present disequilibrium melting of dioritic-tonalitic protoliths has produced tonalitic-trondhjemitic leucosomes in a dynamic

  4. Slab melting and magma generation beneath the southern Cascade Arc (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.


    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  5. Chemical and thermal unfolding of calreticulin. (United States)

    Duus, K; Larsen, N; Tran, T A T; Güven, E; Skov, L K; Jespersgaard, C; Gajhede, M; Houen, G


    Calreticulin is a soluble endoplasmic reticulum chaperone, which has a relatively low melting point due to its remarkable structure with a relatively high content of flexible structural elements. Using far ultraviolet circular dichroism (CD) spectroscopy and a fluorescent dye binding thermal shift assay, we have investigated the chemical and thermal stability of calreticulin. When the chemical stability of calreticulin was assessed, a midpoint for calreticulin unfolding was calculated to 3.0M urea using CD data at 222 nm. Using the fluorescent dye binding thermal shift assay, calreticulin was found to obtain a molten structure in urea concentrations between 1-1.5 M urea, and to unfold/aggregate at high and low pH values. The results demonstrated that the fluorescent dye binding assay could measure the thermal stability of calreticulin in aqueous buffers with results comparable to melting points obtained by other techniques.

  6. Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius (United States)

    Fulignati, Paolo; Kamenetsky, Vadim S.; Marianelli, Paola; Sbrana, Alessandro; Mernagh, Terrence P.


    Foid-bearing syenites and endoskarn xenoliths of the A.D. 472 Vesuvius eruption represent the magma chamber carbonate wall-rock interface. Melt inclusions hosted in crystals from these rocks offer a rare opportunity to depict the formation and the composition of metasomatic skarn-forming fluids at the peripheral part of a growing K-alkaline magma chamber disrupted by an explosive eruption. Four principal types of melt inclusions represent highly differentiated phonolite (type 1), hydrosaline melt (type 3), unmixed silicate salt melts (type 2), and a complex chloride-carbonate melt with minor sulfates (type 4). The high-temperature (700 800 °C) magmatic-derived hydrosaline melt is considered to be the main metasomatic agent for the skarn-forming reactions. The interaction between this melt (fluid) and carbonate wall rocks produces a Na-K-Ca carbonate-chloride melt that shows immiscibility between carbonate and chloride constituents at ˜700 °C in 1 atm experiments. This unmixing can be viewed as a possible mechanism for the origin of carbonatites associated with intrusion-related skarn systems.

  7. Channelling of Melt Above Plumes and Beneath MORs (United States)

    Mueller, K.; Schmeling, H.


    We investigate melt transportation in partially molten rocks under different stress fields above the head of a mantle plume or beneath a spreading mid-oceanic ridge under hydrous and anhydrous conditions. We model such aggregates with the 2D-FD code FDCON [1] by means of a porous deformable matrix with melt under the influence of a given stress field to clarify the following key questions: Could channeling occur in a matrix containing a random melt distribution under a given stress field? Which orientation does it take? Is it possible to achieve a focusing of melt towards a MOR (dykes)? Does applying simple or pure shear to the matrix result in a difference in the formation and orientation of channels? How does the channel instability evolve during finite simple shear? In a deforming partially molten aggregate, weakening of the solid matrix due to the presence of melt creates an instability in which melt is localized by the following mechanism: regions of initially high melt fraction are areas of low viscosity and pressure, so that melt is drawn into these regions from higher pressure surroundings. This further enhances the melt weakening, producing a self-excited localization mechanism [2]. The channeling developing in models with a random melt distribution of 3.5 +/- 0.5% shows that melt is accumulated preferably in inclined channels. For both, simple as well as pure shear, the growth rate is highest for an orientation parallel to the direction of the maximum compressive stress and proportional to applied stress and the reverse of the Melt Retention Number. This also confirms the theoretical growth rate found by Stevenson [2]. In our isothermal models we found that the influence of water reduces the growth rate, in contrast to non-isothermal models of Hall [3]. Under simple shear melt channels evolve from an irregular melt distribution at angles of 45 degrees to the direction of shear. Upon further straining they rotate out of the orientation of maximum growth

  8. Pressure-dependent compatibility of iron in garnet: Insights into the origin of ferropicritic melt (United States)

    Zhang, JunBo; Liu, YongSheng; Ling, WenLi; Gao, Shan


    Iron-rich silicate melts in the Earth's deep mantle have been seismologically and geochemically inferred in recent years. The origin of local enrichments in iron and low-velocity seismic anomalies that have been detected in dense mantle domains are critical to understanding the mantle's evolution, which has been canonically explained by long-term chemical reactions between the Earth's silicate mantle and its liquid iron outer core. However, the Pleistocene alkaline ferropicrites (∼0.73 Ma) from Wudi, North China, show chemical and Sr-Nd-Os isotopic features that suggest derivation from the preferential melting of silica-deficient eclogite, a lithology of delaminated mafic lower continental crust that had stagnated at mid-upper mantle depths during the Mesozoic decratonization of the North China block. These rocks are characterized by substantial enrichment in iron (14.9-15.2 wt% Fe2O3), relative depletion in silica (40-41 wt% SiO2) and decoupled Y and heavy rare earth element (HREE) compositions. These ferropicrites have particularly higher Y/Yb ratios than the other Cenozoic basalts from North China. The pressure-dependent compatibility of Fe, Y and Yb in eclogitic garnet can adequately explain the Fe-enrichment and Y-HREE decoupling of the Wudi ferropicrites and indicates that the eclogites were melted at pressures of 5-8 GPa, as also constrained by previous high-P-T experiments. This melting depth ties together a seismically imaged high-velocity anomaly that extends from 150 km to 350 km in depth under the study area, which has been commonly interpreted as evidence for the stagnation of the missing, delaminated continental lithosphere. Our findings provide an alternative mechanism to produce an extremely iron-rich mantle reservoir in addition to core-mantle interaction. Iron-rich silicate melts that form by this process are likely to be denser than the ambient mantle peridotite (and therefore drive flow downward) and may play a more significant role in the

  9. Making Ceramic Fibers By Chemical Vapor (United States)

    Revankar, Vithal V. S.; Hlavacek, Vladimir


    Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.

  10. In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography (United States)

    Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.


    based on various ex situ techniques. We measured the eutectic composition between Fe and Fe3C up to 44 GPa, and found that the carbon content of the eutectic drops rapidly above about 10 GPa, dropping to less that 1 wt% by 44 GPa. This result is generally consistent with the thermodynamic calculations of Wood [2]. Experiments on the Fe-FeSi eutectic yielded an increase in the Si content of the eutectic to 35 GPa, consistent with data from large volume press experiments [3] Notably, melting experiments at 35-43 GPa and ~2500 K on a boundary between Fe and FeO failed to yield evidence of a melt with a composition distinguishable from pure iron. However, an experiment at 12 GPa and 2700 K between Fe and FeO(OH) did yield a melt with a composition intermediate between the two end members. This suggests that O solubility in the Fe-O eutectic melt is low at mid-mantle pressures, but that H may dissolve into the melt by itself or in combination with O. [1] Walker, D., 2005. Core-Mantle chemical issues. Canad. Min., 43, 1553-1564 [2] Wood, B. J., 1993. Carbon in the core. Earth Planet Sci. Lett., 117, 593-607 [3] Kuwayama, Y. & Hirose, K., 2004. Phase relations in the system Fe-FeSi at 21 GPa. Am. Min., 89, 273-276.

  11. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. (United States)

    Reubi, Olivier; Blundy, Jon


    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  12. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi


    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  13. Why Permafrost Is Thawing, Not Melting (United States)

    Grosse, Guido; Romanovsky, Vladimir; Nelson, Frederick E.; Brown, Jerry; Lewkowicz, Antoni G.


    As global climate change is becoming an increasingly important political and social issue, it is essential for the cryospheric and global change research communities to speak with a single voice when using basic terminology to communicate research results and describe underlying physical processes. Experienced science communicators have highlighted the importance of using the correct terms to communicate research results to the media and general public [e.g., Akasofu, 2008; Hassol, 2008]. The consequences of scientists using improper terminology are at best oversimplification, but they more likely involve misunderstandings of the facts by the public. A glaring example of scientifically incorrect terminology appearing frequently in scientific and public communication relates to reports on the degradation of permafrost. Numerous research papers have appeared in recent years, broadly echoed in the news media, describing the “melting of permafrost,” its effects in the Arctic, and its feedbacks on climate through the carbon cycle. Although permafrost researchers have attempted to distinguish between the appropriate term “permafrost thawing” and the erroneous “permafrost melting” [e.g., van Everdingen, 2005; French, 2002], the latter is still used widely. A Web-based search using the phrase “permafrost melting” reveals hundreds of occurrences, many from highly regarded news and scientific organizations, including Reuters, New Scientist, ABC, The Guardian, Discovery News, Smithsonian magazine, the National Science Foundation, and others.

  14. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)


    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  15. Magnesium melt protection by covering gas

    Directory of Open Access Journals (Sweden)

    M. Holtzer


    Full Text Available Thc protcclion of liquid light metals Cmm oxidation is a major issue in recycling and mclting proccsscs in rhc light mctal industry. Thcprorcction of liquid magncsirrm surfacc was carried out by using salts. alloying clemcnts, incrt gascs or rcactivc gas mixture. Snlt bnscdprorcction is still ~hcm ost widely uscd technology in the recycling of magnesium, but gases arc more frcqucntly uscd in magnesiumc;lszing industry. Protcczing thc mottcn mctal undcr a blanket of an inert gas such as argon or helium is dangerous. bccausc no protcctivctaycr is hrrnorl on thc mctr surface and mctal is frcc to cvaporatc, resulting in safcty hazards when furnace ambicncc is cxposcd to air ducto a violcnt rcaction. Thc disadvantagcs of t hcse methods have been partially ovcrcomc by using reactive gas systcrn, in which n chcmicnlrcaction hctwccn a gas and thc moltcn mctal produces a fhin protective film on the surface of the melt. Rcaclive gascs likc SFI, or SOz donot mccr cnvironmcnral standards due to their cxtrcrnely high global warming ptentiat or toxicity. Thcreforc thc altcrnativc covcringgascs ror magncsium mclrbng arc ol big intcrcst. Gas mixturcs containing HE%-1 34a, Novec 6 12. BF3 (Magshictd systcrn and solid C02have hccn succcssfi~lyl ~cstcdin I he world.

  16. Slicing Strategy for Selective Laser Melting

    Institute of Scientific and Technical Information of China (English)

    SONG Xin; LIU Ji-quan; FAN Shu-qian


    Selective laser melting (SLM) is one of the most popular additive manufacturing (AM) technologies for metal parts. Slicing result, especially for the different dimensional slicing geometry and its topology, plays an important role because of the thermodynamic behavior of metal powders. To get correct geometry and reliable topology, a slicing strategy for SLM is proposed. The unavoidable numerical error caused by sampling and geometric transformation is suppressed firstly, according to shifting the z-coordinate of a vertex with a small value such the shifted vertex is on a slicing plane. The result of vertex-shifting makes it possible to identify different geometric features such as skin surfaces, overhang surfaces, extreme edges and volumetric solid. Second, from geometric primitives a hierarchy of axis-aligned bounding boxes (AABBs) is constructed and used to speed up intersection of slicing planes against sets of triangles. All intersecting segments are given different signs to depict their geometric or topological information. Based the different signs, the different dimensional geometry that is eventually represented by simple and anticlockwise oriented polygons, are identified. Finally, the polygons are classified and nested in a multi-tree data structure set to produce correct topological relations. The result of digital and physical experiments shows the proposed slicing strategy is feasible and robust.

  17. Holographic Picture of Heavy Vector Meson Melting

    CERN Document Server

    Braga, Nelson R F; Diles, Saulo


    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton proton collision, serves as an important indication of the formation of a thermal medium, the quark gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one fla...

  18. Charged Water Droplets can Melt Metallic Electrodes (United States)

    Elton, Eric; Rosenberg, Ethan; Ristenpart, William


    A water drop, when immersed in an insulating fluid, acquires charge when it contacts an energized electrode. Provided the electric field is strong enough, the drop will move away to the opposite electrode, acquire the opposite charge, and repeat the process, effectively 'bouncing' back and forth between the electrodes. A key implicit assumption, dating back to Maxwell, has been that the electrode remains unaltered by the charging process. Here we demonstrate that the electrode is physically deformed during each charge transfer event with an individual water droplet or other conducting object. We used optical, electron, and atomic force microscopy to characterize a variety of different metallic electrodes before and after drops were electrically bounced on them. Although the electrodes appear unchanged to the naked eye, the microscopy reveals that each charge transfer event yielded a crater approximately 1 micron wide and 50 nm deep, with the exact dimensions proportional to the applied field strength. We present evidence that the craters are formed by localized melting of the electrodes via Joule heating in the metal and concurrent dielectric breakdown of the surrounding fluid, suggesting that the electrode locally achieves temperatures exceeding 3400°C. Present address: Dept. Materials Sci. Engineering, MIT.

  19. Bidirectional optimization of the melting spinning process. (United States)

    Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping


    A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.

  20. Rheometry of polymer melts using processing machines (United States)

    Friesenbichler, Walter; Neunhäuserer, Andreas; Duretek, Ivica


    The technology of slit-die rheometry came into practice in the early 1960s. This technique enables engineers to measure the pressure drop very precisely along the slit die. Furthermore, slit-die rheometry widens up the measurable shear rate range and it is possible to characterize rheological properties of complicated materials such as wall slipping PVCs and high-filled compounds like long fiber reinforced thermoplastics and PIM-Feedstocks. With the use of slit-die systems in polymer processing machines e.g., Rauwendaal extrusion rheometer, by-pass extrusion rheometer, injection molding machine rheometers, new possibilities regarding rheological characterization of thermoplastics and elastomers at processing conditions near to practice opened up. Special slit-die systems allow the examination of the pressure-dependent viscosity and the characterization of cross-linking elastomers because of melt preparation and reachable shear rates comparable to typical processing conditions. As a result of the viscous dissipation in shear and elongational flows, when performing rheological measurements for high-viscous elastomers, temperature-correction of the apparent values has to be made. This technique was refined over the last years at Montanuniversitaet. Nowadays it is possible to characterize all sorts of rheological complicated polymeric materials under process- relevant conditions with viscosity values fully temperature corrected.

  1. Chemical intolerance

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Andersson, Linus; Nordin, Steven;


    Chemical intolerance (CI) is a term used to describe a condition in which the sufferer experiences a complex array of recurrent unspecific symptoms attributed to low-level chemical exposure that most people regard as unproblematic. Severe CI constitutes the distinguishing feature of multiple...... chemical sensitivity (MCS). The symptoms reported by CI subjects are manifold, involving symptoms from multiple organs systems. In severe cases of CI, the condition can cause considerable life-style limitations with severe social, occupational and economic consequences. As no diagnostic tools for CI...

  2. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts


    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  3. Melting the hydrous, subarc mantle: the origin of primitive andesites (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.


    This experimental study is the first comprehensive investigation of the melting behavior of an olivine + orthopyroxene ± spinel—bearing fertile mantle (FM) composition as a function of variable pressure and water content. The fertile composition was enriched with a metasomatic slab component of ≤0.5 % alkalis and investigated from 1135 to 1470 °C at 1.0-2.0 GPa. A depleted lherzolite with 0.4 % alkali addition was also studied from 1225 to 1240 °C at 1.2 GPa. Melts of both compositions were water-undersaturated: fertile lherzolite melts contained 0-6.4 wt% H2O, and depleted lherzolite melts contained ~2.5 wt% H2O. H2O contents of experimental glasses are measured using electron microprobe, secondary ion mass spectrometry, and synchrotron-source reflection Fourier transform infrared spectroscopy, a novel technique for analyzing H2O in petrologic experiments. Using this new dataset in conjunction with results from previous hydrous experimental studies, a thermobarometer and a hygrometer-thermometer are presented to determine the conditions under which primitive lavas were last in equilibration with the mantle. These predictive models are functions of H2O content and pressure, respectively. A predictive melting model is also presented that calculates melt compositions in equilibrium with an olivine + orthopyroxene ± spinel residual assemblage (harzburgite). This model quantitatively predicts the following influences of H2O on mantle lherzolite melting: (1) As melting pressure increases, melt compositions become more olivine-normative, (2) as melting extent increases, melt compositions become depleted in the normative plagioclase component, and (3) as melt H2O content increases, melts become more quartz-normative. Natural high-Mg# [molar Mg/(Mg + Fe2+)], high-MgO basaltic andesite and andesite lavas—or primitive andesites (PAs)—contain high SiO2 contents at mantle-equilibrated Mg#s. Their compositional characteristics cannot be readily explained by melting

  4. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin


    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  5. Greenland Ice Sheet surface melt:A review

    Institute of Scientific and Technical Information of China (English)

    Kang Yang; ManChun Li


    Surface melt has great impacts on the Greenland Ice Sheet (GrIS) mass balance and thereby has become the focus of significant GrIS research in recent years. The production, transport, and release processes of surface meltwater are the keys to understanding the poten-tial impacts of the GrIS surface melt. These hydrological processes can elucidate the following scientific questions:How much melt-water is produced atop the GrIS? What are the characteristics of the meltwater-formed supraglacial hydrological system? How does the meltwater influence the GrIS motion? The GrIS supraglacial hydrology has a number of key roles and yet continues to be poorly understood or documented. This paper summarizes the current understanding of the GrIS surface melt, emphasizing the three essential supraglacial hydrological processes:(1) meltwater production:surface melt modeling is an important approach to acquire surface melt information, and areas, depths, and volumes of supraglacial lakes extracted from remotely sensed imagery can also provide surface melt information;(2) meltwater transport:the spatial distributions of supraglacial lakes, supraglacial streams, moulins, and crevasses demonstrate the characteristics of the supraglacial hydrological system, revealing the meltwater transport process;and (3) meltwater release:the release of meltwater into the englacial and the subglacial ice sheet has important but undetermined impacts on the GrIS motion. The correlation between surface runoff and the GrIS motion speed is employed to understand these influences.

  6. Ice-sheet acceleration driven by melt supply variability. (United States)

    Schoof, Christian


    Increased ice velocities in Greenland are contributing significantly to eustatic sea level rise. Faster ice flow has been associated with ice-ocean interactions in water-terminating outlet glaciers and with increased surface meltwater supply to the ice-sheet bed inland. Observed correlations between surface melt and ice acceleration have raised the possibility of a positive feedback in which surface melting and accelerated dynamic thinning reinforce one another, suggesting that overall warming could lead to accelerated mass loss. Here I show that it is not simply mean surface melt but an increase in water input variability that drives faster ice flow. Glacier sliding responds to melt indirectly through changes in basal water pressure, with observations showing that water under glaciers drains through channels at low pressure or through interconnected cavities at high pressure. Using a model that captures the dynamic switching between channel and cavity drainage modes, I show that channelization and glacier deceleration rather than acceleration occur above a critical rate of water flow. Higher rates of steady water supply can therefore suppress rather than enhance dynamic thinning, indicating that the melt/dynamic thinning feedback is not universally operational. Short-term increases in water input are, however, accommodated by the drainage system through temporary spikes in water pressure. It is these spikes that lead to ice acceleration, which is therefore driven by strong diurnal melt cycles and an increase in rain and surface lake drainage events rather than an increase in mean melt supply.

  7. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake, E-mail: [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James C. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lin, Ye; Chen, Fanglin [University of South Carolina, Columbia, SC 29208 (United States); Su, Dong [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brinkman, Kyle S. [Clemson University, Clemson, SC 29634 (United States)


    Highlights: • We explored the feasibility of melt processing multiphase titanate-based ceramics. • Melt processing produced phases obtained by alternative processing methods. • Phases incorporated multiple lanthanides and transition metals. • Processing in reducing atmosphere suppressed un-desirable Cs–Mo coupling. • Cr partitions to and stabilizes the hollandite phase, which promotes Cs retention. - Abstract: Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction–oxidation (Redox) conditions suppressed undesirable Cs–Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  8. The Melting Curve and Premelting of MgO

    CERN Document Server

    Cohen, R E


    The melting curve for MgO was obtained using molecular dynamics and a non-empirical, many-body potential. We also studied premelting effects by computing the dynamical structure factor in the crystal on approach to melting. The melting curve simulations were performed with periodic boundary conditions with cells up to 512 atoms using the ab-initio Variational Induced Breathing (VIB) model. The melting curve was obtained by computing $% \\Delta H_m$ and agreement with previous estimates and we obtain a reasonable $\\Delta V_m$, but our melting slope dT/dP (114 K/GPa) is three times greater than that of Zerr and Boehler [1994] (35 K/GPa), suggesting a problem with the experimental melting curve, or an indication of exotic, non-ionic behavior of MgO liquid. We computed $S(q,\\omega )$ from simulations of 1000 atom clusters using the Potential Induced Breathing (PIB) model. A low frequency peak in the dynamical structure factor $% S(q,\\omega )$ arises below the melting point which appears to be related to the onset ...

  9. Interaction of rhyolite melts with monazite, xenotime, and zircon surfaces (United States)

    Rustad, James R.


    The interfacial contact region between a rhyolite melt and the accessory minerals monazite, xenotime, and zircon is investigated using molecular dynamics simulations. On all surfaces, major structural rearrangement extends about 1 nm into the melt from the interface. As evidenced by the structural perturbations in the ion distribution profiles, the affinity of the melt for the surface increases in going from monazite to xenotime to zircon. Alkali ions are enriched in the melt in contact with an inert wall, as well as at the mineral surfaces. Melt in contact with zircon has a particularly strong level of aluminum enrichment. In xenotime, the enrichment of aluminum is less than that in zircon, but still notable. In monazite, the aluminum enrichment in the contact layer is much less. It is expected that the relative surface energies of these accessory minerals will be a strong function of the aluminum content of the melt and that nucleation of zircon, in particular, would be easier for melts with higher aluminum concentration. The crystal growth rate for zircon is expected to be slower at a higher aluminum concentration because of the effectiveness of aluminum in solvating the zircon surface. The variable interfacial concentration profiles across the series of accessory minerals will likely affect the kinetics of trace element incorporation, as the trace elements must compete with the major elements for surface sites on the growing accessory minerals.

  10. Experiments on melt droplets falling into a water pool

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety


    This paper presents experimental data and analysis related to melt droplets falling into a water pool. A binary CaO-B{sub 2}O{sub 3} melt mixture is used to study the influence of melt superheat and water subcooling on droplet deformation and fragmentation. For the conditions studied (We {<=} 1000), the surface tension of the melt droplet and the film boiling stability greatly affect the fragmentation behaviour. If the melt temperature is between the liquidus and solidus point (mushy zone) or if the film boiling is stable due to a relatively low subcooling, the droplet deformation and fragmentation are mitigated. This behaviour can be related to the effective Weber number (We) of the melt droplet upon entry into the water pool. Similar phenomena can be expected also for interactions of corium (UO{sub 2}-ZrO{sub 2}) and water, which are characterized by a potentially fast transformation of melt into the mushy zone and by particularly stable film boiling. (author)

  11. The Partitioning of Tungsten bwtween Aqueous Fluids and Silicate Melts

    Institute of Scientific and Technical Information of China (English)

    许永胜; 张本仁; 等


    An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800℃ and 1.5kb with natural granite as the starting material,The effects of the solution on the partition coefficients of tungsten show a wequence of P>co32->B>H2O.The effects are limited(generally KD<0.3)and the tungsten shows a preferential trend toward the melt over the aqueous fiuid.The value of KD increases with increasing concentration of phosphorus;the KD increases first and then reduces with the concentration of CO32-;when temperature decreases,the KD between the solution of CO32- and the silicate melt increases,and that between the solution of B4O72- and the silicate melt decreases.The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts.The KD value for phosphorus is 0.38 and that for sodium is 0.56.Evidence shows that the elements tend to become richer and richer in the melts.

  12. Research on low emission MSW gasification and melting system

    Institute of Scientific and Technical Information of China (English)

    XIAO Gang; NI Mingjiang; CHI Yong; JIN Yuqi; ZHANG Jiaquan; MIAO Qi; CEN Kefa


    In order to eliminate secondary pollution caused by municipal solid waste (MSW) incineration,a MSW gasification and melting process is proposed.The process is expected to reduce the emission of pollutants,especially heavy-metals and dioxins.In this paper,the combustible components of MSW and simulated MSW were gasified in a lab-scale fluidized bed at 400℃-700℃ when the excess air ratio (ER) was between 0.2 and 0.8.The experimental results indicated that the MSW could be gasified effectively in a fluidized bed at approximately 600℃-700℃ when excess air ratio was 0.2-0.4.The melting characteristics of two typical fly ash samples from MSW incinerators were investigated.The results indicated that fly ash of pure MSW incineration could be melted at approximately 1,300℃ and that of MSW and coal co-combustion could be melted at approximately 1,400℃.When temperature was over 1,100℃,more than 99.9% of the dioxins could be decomposed and most of the heavy-metals could be solidified in the slag.Based on the above experiments,two feasible MSW gasification and melting processes were proposed for low calorific value MSW:(1) sieved MSW gasification and melting system,which was based on an idea of multi-recycle;(2) gasification and melting scheme of MSW adding coal as assistant fuel.

  13. Analysis of melt ejection during long pulsed laser drilling (United States)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu


    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  14. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger


    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2, whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  15. Calving on tidewater glaciers amplified by submarine frontal melting

    CERN Document Server

    O'Leary, Martin


    While it has been shown repeatedly that ocean conditions exhibit an important control on the behaviour of grounded tidewater glaciers, modelling studies have focused largely on the effects of basal and surface melting. Here, a finite-element model of stresses near the front of a tidewater glacier is used to investigate the effects of frontal melting on calving, independently of the calving criterion used. Applications of the stress model to idealized scenarios reveal that undercutting of the ice front due to frontal melting can drive calving at up to ten times the mean melt rate. Factors which cause increased frontal melt-driven calving include a strong thermal gradient in the ice, and a concentration of frontal melt at the base of the glacier. These properties are typical of both Arctic and Antarctic tidewater glaciers. The finding that frontal melt near the base is a strong driver of calving leads to the conclusion that water temperatures near the bed of the glacier are critically important to the glacier f...

  16. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger


    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area-perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2 whose boundaries resemble space filling curves with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  17. Calving on tidewater glaciers amplified by submarine frontal melting

    Directory of Open Access Journals (Sweden)

    M. O'Leary


    Full Text Available While it has been shown repeatedly that ocean conditions exhibit an important control on the behaviour of grounded tidewater glaciers, modelling studies have focused largely on the effects of basal and surface melting. Here, a finite-element model of stresses near the front of a tidewater glacier is used to investigate the effects of frontal melting on calving, independently of the calving criterion used. Applications of the stress model to idealized scenarios reveal that undercutting of the ice front due to frontal melting can drive calving at up to ten times the mean melt rate. Factors which cause increased frontal melt-driven calving include a strong thermal gradient in the ice, and a concentration of frontal melt at the base of the glacier. These properties are typical of both Arctic and Antarctic tidewater glaciers. The finding that frontal melt near the base is a strong driver of calving leads to the conclusion that water temperatures near the bed of the glacier are critically important to the glacier front, and thus the flow of the glacier. These conclusions are robust against changes in the basal boundary condition and the choice of calving criterion, as well as variations in the glacier size or level of crevassing.

  18. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy (United States)

    Yu, Guanqun; Gu, Dongdong; Dai, Donghua; Xia, Mujian; Ma, Chenglong; Chang, Kun


    A three-dimensional mesoscopic model, considering the powder-to-solid transition, motion of gas bubbles within molten pool and the effect of surface tension, has been established in order to investigate the evolution rule of pores and re-melting densification mechanism during selective laser melting of AlSi10Mg. The results indicated that re-melting phenomenon of previous fabricated layer induced by laser melting of current powder layer played a crucial role on the increase in densification rate. During the re-melting process, the trapped gas pores in previous layer rose up swiftly and came to the surface consequently, resulting in remarkably elevated densification in previous layer. The influences of laser scan speed on the single-track morphology, types of pores and laser penetration depth have also been studied. It showed that the maximum re-melting depth (31 µm) was attained, and meanwhile, pores left in preceding layer got eliminated completely due to the mass transfer within molten pool, when an appropriate laser scan speed (150 mm/s) was applied. In this case, reasonable laser energy per unit length and irradiation time tended to enhance the laser penetration depth for powder bed and decrease the porosity in as-fabricated layer. A series of experimental study were performed to verify the reliability of the above mesoscopic simulation, including the surface topography of single track and the types of pores. The redistribution of bubbles between the adjacent layers as well as the localized re-melting densification, which were observed from the longitudinal section of samples, was in good agreement with simulation results.

  19. ZnO homoepitaxy on the O polar face of hydrothermal and melt-grown substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.J. [Nanovation SARL, Orsay (France); Technical Univ. of Troyes (France); CNRS, Troyes (France); Hosseini Teherani, F. [Nanovation SARL, Orsay (France); Largeteau, A.; Demazeau, G. [ICMCB-CNRS, Bordeaux 1 University (Science and Technology), Pessac (France); Moisson, C.; Turover, D. [Novasic, Savoie Technolac, Arche Bat. 4, BP 267, Le Bourget du Lac (France); Nause, J. [Cermet Inc., Atlanta, GA (United States); Garry, G. [Thales Research, Domaine de Corbeville, Orsay (France); Kling, R.; Gruber, T. [Ulm University, Department of Semiconductor Physics, Ulm (Germany); Waag, A. [Braunschweig Technical University, Institute of Semiconductor Technology, Braunschweig (Germany); Jomard, F.; Galtier, P.; Lusson, A. [LPSC-CNRS, Meudon (France); Monteiro, T.; Soares, M.J.; Neves, A.; Carmo, M.C.; Peres, M. [University of Aveiro, Physics Department, Aveiro (Portugal); Lerondel, G.; Hubert, C. [Technical University of Troyes-CNRS (FRE2671), 12 rue Marie Curie, BP 2060, Troyes (France)


    2 cm diameter hydrothermal ZnO crystals were grown and then made into substrates using both mechanical and chemical-mechanical polishing (CMP). CMP polishing showed superior results with an (0002) {omega} scan full width half maximum (FWHM) of 67 arcsec and an root mean square (RMS) roughness of 2 Aa. In comparison, commercial melt-grown substrates exhibited broader X-ray diffraction (XRD) linewidths with evidence of sub-surface crystal damage due to polishing, including a downward shift of c-lattice parameter. Secondary ion mass spectroscopy revealed strong Li, Fe, Co, Al and Si contamination in the hydrothermal crystals as opposed to the melt-grown substrates, for which glow discharge mass spectroscopy studies had reported high levels of Pb, Fe, Cd and Si. Low temperature photoluminescence (PL) studies indicated that the hydrothermal crystal had high defect and/or impurity concentrations compared with the melt-grown substrate. The dominant bound exciton for the melt-grown substrate was indexed to Al. ZnO films were grown using pulsed laser deposition. The melt-grown substrates gave superior results with XRD (0002) {omega} and 2{theta}/{omega} WHM of 124 and 34 arcsec, respectively. Atomic force microscope measurements indicated a low RMS roughness (1.9 nm) as confirmed by fringes in the XRD 2{theta}/{omega} scan. It was suggested that the improvement in XRD response relative to the substrate might be due to ''healing'' of sub-surface polishing damage due to the elevated T{sub s} used for the growth. Indeed the c-lattice parameter for the homoepitaxial layer on the melt-grown substrate had become that which would be expected for strain-free ZnO. Furthermore, the stability of the PL peak positions relative to bulk ZnO, confirmed that the films appear practically strain free. (orig.)

  20. [Perilla nankinensis Decne by using melt granulation method]. (United States)

    Shashiashvili, N B; Berashvili, D T; Bakuridze, L A; Bakuridze, A D


    The aim of the research was to work out the technology and tablet composition from the overground parts of the Perilla nankinensis Decne on the base of complex research. The dry extract was prepared from dried overground parts of perilla introduced in Georgia. The structural-mechanical and technological character of tablets and their masses were identified by the known methodic. Friability was studied by defining the fluctuation and bending corner. Volume density was established by using vibration cylinder. Volume density of powders was studied by pyknometers. Porosity was calculated by the bearing of volume density of the masses. The size of pressing was established by defining the firmness of tablets. The granule composition was defined by analysis. Disintegration and dissolution were studied by using "rotating basket" and "basket-rack assembly". From the result we got it was clear that the dry extract for research don't have good fluctuation and pressing. It should be mentioned that it contained moisture and is hygroscopic. As the character of substances is not satisfied it was necessary to select new assisting substances and studying and using additional technological method. We have selected some more additional substances for optimal firmness and for the purpose of shortening the time of tablet dissolution. There were also selected parameters of optimal pressing force. Assisting substances are practically selected and theoretically accepted on the base of studying technological and physical-chemical character features of the substances of the dry extract from the over ground parts of Perilla nankinensis Decne. As a result optimal composition of tablets is delivered. It is also scientifically proved and practically offered optimal technological parameters of tablets forming melt granulation method.

  1. Modification of Nanocomposites by Melting Intercalation of Polypropylene in Montmorillonite

    Institute of Scientific and Technical Information of China (English)


    The polypropylene was modified by ultraviolet irradiation.The polypropylene-montmorillonite nanocomposites were prepared by direct melting intercalation of polypropylene powders.The structure of polypropylene,the polyproprlene irradiated, montmorillinote and polypropylene-montmorillonite composites were studied by XRD, IR and DSC. The results show that the PP molecules can are oxidized during ultraviolet irradiation,melt polypropylene can intercalate into montmorillonite layer.As a result,the layered distance (d001) of montmorillonite increases, and the melt absorption peak of polypropylene in layer is eliminated.

  2. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue


    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  3. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.; Rasmussen, D. J.; Weis, D.


    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO > 7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  4. Hysteresis in the melting kinetics of Bi nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Poniatowski, E.; Serna, R.; Afonso, C.N.; Jouanne, M.; Morhange, J.F.; Bosch, P.; Lara, V.H


    Structural properties as a function of temperature of bismuth nanocrystals embedded in amorphous germanium thin films, synthesised by laser ablation are investigated by Raman spectroscopy and X-ray diffraction. In addition to temperature anharmonic effects, Raman spectroscopy results reveal a melting solidification hysteresis, which takes place below the melting point of bulk bismuth. Furthermore, preliminary X-ray diffraction results suggest that the nanocrystals change in structure upon heating until melting occurs. However, the nanocrystals recover their original structure once the sample is cooled at room temperature.

  5. Molecular dynamics simulation of Ni3Al melting

    Institute of Scientific and Technical Information of China (English)

    Rongshan Wang; Huaiyu Hou; Xiaodong Ni; Guoliang Chen


    With the Voter-Chert version of embedded-atom model (EAM) potential and molecular dynamics, the melting of Ni3A1 alloy was simulated by one-phase (conventional) and two-phase approaches. It is shown that the simulated melting point is dependent on the potential and the simulation method. The structures of the melts obtained by different simulation methods were analyzed by the pair correlation function, the coordination number, and the distribution of atom pair type (indexed by the Honeycutt-Andersen pair analysis technique). The results show that the structures are very similar.

  6. ELM induced tungsten melting and its impact on tokamak operation (United States)

    Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Jachmich, S.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Knaup, M.; Komm, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.


    In JET-ILW dedicated melt exposures were performed using a sequence of 3MA/2.9T H-Mode JET pulses with an input power of PIN = 23 MW, a stored energy of ∼6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ∼ 30 Hz. In order to assess the risk of starting ITER operations with a full W divertor, one of the task was to measure the consequences of W transients melting due to ELMs. JET is the only tokamak able to produce transients/ ELMs large enough (>300 kJ per ELM) to facilitate melting of tungsten. Such ELMs are comparable to mitigated ELMs expected in ITER. By moving the outer strike point (OSP) onto a dedicated leading edge the base temperature was raised within ∼1 s to allow transient ELM-driven melting during the subsequent 0.5 s. Almost 1 mm (∼6 mm3) of W was moved by ∼ 150 ELMs within 5 subsequent discharges. Significant material losses in terms of ejections into the plasma were not observed. There is indirect evidence that some small droplets (∼ 80 μm) were ejected. The impact on the main plasma parameters is minor and no disruptions occurred. The W-melt gradually moved along the lamella edge towards the high field side, driven by j × B forces. The evaporation rate determined is 100 times less than expected from steady state melting and thus only consistent with transient melting during individual ELMs. IR data, spectroscopy, as well as melt modeling point to transient melting. Although the type of damage studied in these JET experiments is unlikely to be experienced in ITER, the results do strongly support the design strategy to avoid exposed edges in the ITER divertor. The JET experiments required a surface at normal incidence and considerable pre-heating to produce tungsten melting. They provide unique experimental evidence for the absence of significant melt splashing at events resembling mitigated ELMs on ITER and establish a unique experimental benchmark for the simulations being used to study transient shallow melting on ITER W

  7. Molecular dynamics of MgSiO3 perovskite melting

    Institute of Scientific and Technical Information of China (English)

    Liu Zi-Jiang; Cheng Xin-Lu; Yang Xiang-Dong; Zhang Hong; Cai Ling-Cang


    The melting curve of MgSiO3 perovskite is simulated using molecular dynamics simulations method at high pressure. It is shown that the simulated equation of state of MgSiO3 perovskite is very successful in reproducing accurately the experimental data. The pressure dependence of the simulated melting temperature of MgSiO3 perovskite reproduces the stability of the orthorhombic perovskite phase up to high pressure of 13OGPa at ambient temperature, consistent with the theoretical data of the other calculations. It is shown that its transformation to the cubic phase and melting at high pressure and high temperature are in agreement with recent experiments.


    Institute of Scientific and Technical Information of China (English)

    Tai-Yon Cho; Barbara Heck; Gert Strobl


    The large size of the crystallites in poly(L-lactide) and the low growth rate enable detailed time- and temperaturedependent X-ray scattering studies of the ordering processes to be carried out. A layer located intermediate between crystals and melt-like regions is observed which finally takes on crystalline order. Recrystallization processes during heating change the complete stack structure rather than the crystallites individually and produce voids in the stacks. Establishment of a new stable structure after a temperature jump in the melting range can be followed in time. DSC experiments indicate times of melting of the order of minutes.

  9. On the fluctuation mechanism of melting of supported gold nanoclusters. (United States)

    Pushkin, M A; Troyan, V I; Borisyuk, P V; Borman, V D; Tronin, V N


    The size dependence of the melting temperature of Au nanoclusters deposited on SiO2 and HOPG substrates, measured by the elastic-peak electron spectroscopy (EPES) is discussed. The observed behavior of the melting temperature with decrease in clusters' size is qualitatively explained in the framework of the fluctuation mechanism for surface melting. The interaction of nanoclusters with substrate is taken into account by means of the effective surface tension for spherical-segment shaped particles, corresponding to the contact angle of supported nanocluster.

  10. Gas atomization of cobalt ferrite-phosphate melts (United States)

    De Guire, Mark R.; O'Handley, R. C.; Kalonji, G.


    XRD, Moessbauer spectroscopy, and EDXS have been used to characterize a rapidly-solidified (Co,Fe)3O4 spinel generated in a cobalt-iron-phosphate glass matrix by gas atomization of melts. Of the two compositions tested, that containing 20 mol pct P2O5 exhibited randomly-oriented ferrite crystallization whose growth appears to have been diffusion-controlled. Unlike the ferrite, in which the iron has both tetrahedral and octahedral coordination, the iron in the glassy matrix was primarily of distorted-octahedral coordination. Calculations indicate that the cooling rates obtained with oxide melts vary strongly with droplet size, but less strongly with melt temperature.

  11. Arctic melt ponds and energy balance in the climate system (United States)

    Sudakov, Ivan


    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  12. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.


    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  13. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study (United States)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd


    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  14. Chemical and thermal unfolding of calreticulin

    DEFF Research Database (Denmark)

    Duus, K.; Larsen, N.; Tran, T. A. T.;


    was found to obtain a molten structure in urea concentrations between 1-1.5 M urea, and to unfold/aggregate at high and low pH values. The results demonstrated that the fluorescent dye binding assay could measure the thermal stability of calreticulin in aqueous buffers with results comparable to melting...... assay, we have investigated the chemical and thermal stability of calreticulin. When the chemical stability of calreticulin was assessed, a midpoint for calreticulin unfolding was calculated to 3.0M urea using CD data at 222 nm. Using the fluorescent dye binding thermal shift assay, calreticulin...

  15. Peltier Heats in Cryolite Melts With Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Flem, B.E.


    In the production of aluminium, improving the heat balance at the electrolytic cell may contribute to improve the energy conversion efficiency and the current efficiency of the process. The main purpose of this doctoral thesis was to measure Seebeck coefficients, or thermoelectric powers, to settle the question of reversible cooling or heating of the aluminium electrode and to decide the magnitude of the reversible Peltier effect of both the aluminium and the carbon electrode. The irreversible thermodynamics of thermocells is outlined. A thermocell using the binary system AlF{sub 3}-NaF and aluminium electrodes is described and the temperature dependence of the thermoelectric power is given. The system is extended by adding Al{sub 2}O{sub 3} to the molten electrolyte. Both thermocells with aluminium electrodes and oxygen electrodes are treated. The relevance of the thermocell measurements to the Hall-Heroult cell is discussed and an overview of trends in other thermocell systems is given. Measuring thermocell potentials of fluoride melts is complicated and so the experiments are covered in great detail. It is found that there is a reversible heat production at the cathode and a reversible cooling at the anode, which indicates that maximum temperature in the cell occurs at the cathode surface, not in the electrolyte as previously believed. When the electrolyte is saturated with both Al oxide and Al fluoride, the reversible heat effect at the cathode is approximately zero. This means that the cooling of the anode corresponds to the change of entropy in the reduction of Al oxide to Al and carbon dioxide. 186 refs., 23 figs., 25 tabs.

  16. Origin of Inhomogeneity in Glass Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    The homogeneity of a glass plays a crucial role in many applications as the inhomogeneities can provide local changes in mechanical properties, optical properties, and thermal expansion coefficient. Homogeneity is not a single property of the glass, instead, it consists of several factors...... such as bubbles, striae, trace element concentration, undissolved species, and crystallised species. As it is not possible to address all the factors in a single study, this work focuses on one of the major factors: chemical striae. Up to now, the quantification of chemical striae in glasses, particularly......, in less transparent glasses, has been a challenge due to the lack of an applicable method. In this study, we have established a simple and accurate method for quantifying the extent of the striae, which is based on the scanning and picture processing through the Fourier transformation. By performing...

  17. Melting behavior of low-level radioactive miscellaneous solid waste and characteristics of solidified products

    Energy Technology Data Exchange (ETDEWEB)

    Nakashio, Nobuyuki; Isobe, Motoyasu; Wakui, Takuji [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)] (and others)


    Melting tests of simulated miscellaneous solid wastes were conducted to clarify melting behavior of wastes and to characterize solidified products. Two heating modes were adopted in the tests: hybrid heating and induction heating modes. In the former, wastes were heated with both an induction furnace and a plasma torch, and in the latter, an electrical-conductive crucible was used with the induction furnace. The solidified products with no void, which may reduce the mechanical strength of them, were obtained by addition of deoxidizer. It was found that slag and metallic layers of the solidified products were almost homogeneous from the results of measurement of chemical composition and specific gravity. It was confirmed that the solidified products possessed compressive strength required for disposal. Chemical composition of solidified products was changed by corrosion of crucible or refractory material. Cobalt and cesium tracers were uniformly distributed in metallic and slag layers, respectively. It was found that the residual fraction of cesium is influenced by the heating mode. (author)

  18. Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications (United States)

    Beard, James S.; Lofgren, Gary E.; Sinha, A. Krishna; Tollo, Richard P.


    Melting experiments (P = 6.9 kbar, T = 850-950 deg C, NNO is less than fO2 is less than HM) were done on mafic to felsic charnockites, a dioritic gneiss, and a felsic garnet granulite, all common rock types in the Grenville basement of eastern North America. A graphite-bearing granulite gneiss did not melt. Water (H2O(+) = 0.60 to 2.0 wt %) is bound in low-grade, retrograde metamorphic minerals and is consumed during the earliest stages of melting. Most melts are water-undersaturated. Melt compositions range from metaluminous, silicic granodiorite (diorite starting composition) to peraluminous or weakly metaluminous granites (all others). In general, liquids become more feldspathic, less silicic, and less peraluminous and are enriched in FeO, MgO, and TiO2 with increasing temperature. Residual feldspar mineralogy controls the CaO, K2O, and Na2O contents of the partial melts and the behavior of these elements can be used, particularly if the degree of source melting can be ascertained, to infer some aspects of the feldspar mineralogy of the source. K-feldspar, a common restite phase in the charnockite and granulite (but not the diorite) should control the behavior of Ba and, possibly, Eu in these systems and yield signatures of these elements that can distinguish source regions and, in some cases, bulk versus melt assimilation. Apatite, a common restite phase, is enriched in rare earth elements (REE), especially middle REE. Retention of apatite in the restite will result in steep, light REE-enriched patterns for melts derived from the diorite and charnockites.

  19. Modeling the viscosity of silicate melts containing manganese oxide

    Directory of Open Access Journals (Sweden)

    Kim Wan-Yi


    Full Text Available Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnO-SiO2 and MnO-Al2O3-SiO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limits.

  20. Mechanisms of acoustic processing of a metal melt containing nanoparticles (United States)

    Kudryashova, O.; Vorozhtsov, S.; Dubkova, Ya.; Stepkina, M.


    Wave processing with the frequencies from subsound (vibration) to ultrasound is used to produce nanopowder-modified composite alloys. This work considers mechanisms of such processing of metal melts, which lead to deagglomeration and wettability of particles of a metal melt and to the destruction of growing crystals during solidification. The main dependences for the threshold of the turbulence and cavitation were obtained. Resonance phenomena that contribute to positive changes in the melt are discussed. Possible mechanisms of the destruction of growing crystals and agglomerates of particles at the high-frequency processing of the melt are considered, including the destruction of agglomerates in the front of an acoustic wave and the destruction of crystals by oscillating solid particles.

  1. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf


    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...... with different methods from Tg to the melt. The measured data were fitted and the activation energies calculated. Simple exponential behaviour was found only in very narrow temperature ranges. The effect of B2O3 in sodium borosilicate glasses and melts is discussed in comparison with sodium silicate glasses...

  2. Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts (United States)

    Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi


    By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems. PMID:28290546

  3. Purification effects of glass flux on A356 melt

    Institute of Scientific and Technical Information of China (English)

    倪红军; 孙宝德; 蒋海燕; 陈晨; 丁文江


    In order to remove hydrogen and inclusions from A356 alloy melt,a low melting-point glass flux,JDN-Ⅱ,was developed.The results indicated that JDN-Ⅱ flux has distinct effect of purification and protection on A356 alloy melt.When the dosage of the flux was 3%,the content of hydrogen in A356 melt was only 2.6 mL/kg at 857 ℃ and 0.7 mL/kg even at 750 ℃.In the meantime,the mechanical properties of the alloy increase greatly with the covering of 3% JDN-Ⅱ flux.Compared with no flux,the tensile strength of A356 alloy increases by 9.42% and the elongation increases by 22%.The purification mechanism of JDN-Ⅱ glass flux was discussed too.


    Directory of Open Access Journals (Sweden)

    Sahil Bansode* and S. S. Poddar


    Full Text Available Starting from plastic industry, today melt extrusion has found its place in the array of pharmaceutical manufacturing processes. Melt extrusion processes are currently applied in the pharmaceutical field for the formulation of variety of dosage forms such as granules, pellets, tablets, implants, transdermal systems & ophthalmic inserts. This technology represents an efficient pathway for increasing the solubility of poorly soluble drugs. The process forms a solid dispersion where the drug is presented in an amorphous & molecularly dispersed state in a carrier. This leads to an increase in solubility, as no lattice energy has to be overcome during dissolution. Melt extrusion is considered to be an efficient technology in the field of formulation of solid dispersions to improve bioavailability with particular advantages over solvent processes. This article highlights on the technology of Hot Melt Extrusion (HME.

  5. Impact-induced melting during accretion of the Earth

    CERN Document Server

    de Vries, Jellie; Melosh, H Jay; Jacobson, Seth A; Morbidelli, Alessandro; Rubie, David C


    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parametrised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's ac...

  6. Wear behaviour of laser melted an ion implanted materials.

    NARCIS (Netherlands)

    Beurs, Hans de


    The emphasis in this thesis is on the development of wear resistant materials by laser melting. Furthermore, the principle aim is to search for the dislocation characteristics common to the wear process in heterogeneous materials. ... Zie: Summary

  7. Modeling the melting temperature of nanoscaled bimetallic alloys. (United States)

    Li, Ming; Zhu, Tian-Shu


    The effect of size, composition and dimension on the melting temperature of nanoscaled bimetallic alloys was investigated by considering the interatomic interaction. The established thermodynamics model without any arbitrarily adjustable parameters can be used to predict the melting temperature of nanoscaled bimetallic alloys. It is found that, the melting temperature and interatomic interaction of nanoscaled bimetallic alloys decrease with the decrease in size and the increasing composition of the lower surface energy metal. Moreover, for the nanoscaled bimetallic alloys with the same size and composition, the dependence of the melting temperature on the dimension can be sequenced as follows: nanoparticles > nanowires > thin films. The accuracy of the developed model is verified by the recent experimental and computer simulation results.


    Directory of Open Access Journals (Sweden)

    V. V. Primachenko


    Full Text Available It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  9. Shocked Feldspar in L Chondrites: Deformation, Transformation and Local Melting (United States)

    Fudge, C.; Sharp, T. G.


    We present textures and compositional profiles of partially to completely transformed plagioclase to maskelynite. Evidence for transformation mechanisms, including solid state transformation and crystallization from melt will be discussed.

  10. Close—COntact Melting Around a Hot Sphere

    Institute of Scientific and Technical Information of China (English)

    YaojiangHu; MinghengShi


    A more general model describing PCM close-contact melting outside a hot sphere is developed with the aid of introducing a paramter α and presenting a supplementary equation for the first time in this paper.The governing integral-differential equations are solved by numerical method.The melt-film thickness variation along the surface of sphere is obtained reasonably due to the consideration of the interface shape more precisely,The calculation resultes of Peclet number,heat transferred and pressure distribution are also compared with that in literature,The model presented in this paper can describe the whole close-contact region and the whole contact melting process.Close-contact melting in spherical or cylindrical capsules to which the model can be extended is also discussed briefly.

  11. Dynamic and kinetic properties of Al-Li melts (United States)

    Kiselev, A. I.


    The dynamic and kinetic properties of Al-Li melts are calculated. The liquid phase of this system is shown to be characterized by three states with different ion distributions and different degrees of electron localization.

  12. A Modeling Approach to Fiber Fracture in Melt Impregnation (United States)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong


    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  13. Thermodynamic properties of under-cooled silver melts

    Institute of Scientific and Technical Information of China (English)


    Differential scanning calorimeter technique combined with the traditional fluxing treatment was used to investigate the specific heat and related thermodynamic properties of under-cooled pure silver melts. The specific heat of the under-cooled melt showed a linear dependence on the temperature in the range of the obtained under-cooling from 0 to 198 K. The related thermodynamic properties of silver, such as the entropy change, the enthalpy change and the Gibbs free energy difference between the under-cooled melt and the solid phase, were derived from the measured specific heat. The relations between the temperature and the thermal diffusion or the thermal conductivity of the under-cooled melt were analyzed respectively.

  14. High Quality Silica Bricks for Glass Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan


    @@ 1 Scope This standard specifies the classification, technical requirements, test method, inspection rules,marking,packing,transportation,storage and quality certification of high quality silica bricks for glass melting furnace.

  15. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per


    of the gating system causes pressure waves to form that eventually lead to defective castings. It is clear that sharp corners and dead ends in gating systems should be avoided, and that more stream lined, organic designs based on fluid dynamic principles will are necessary to design gating systems......Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow...... in the gating systems. Particular emphasis was on analysing local pressure and formation of pressure waves in the gating system. It was possible to compare melt flow patterns in experiments directly to modelled flow patterns. Generally there was good agreement between flow patterns and filling times. However...

  16. Plastic Melt Waste Compactor Flight Demonstrator Payload (PFDP) Project (United States)

    National Aeronautics and Space Administration — The PMWC Flight Demonstrator Payload is a trash dewatering and volume reduction system that uses heat melt compaction to remove nearly 100% of water from trash while...

  17. Shallow Melting and Underground Drainage in Utopia Planitia, Mars (United States)

    Costard, F.; Sejourne, A.; Kargel, J.; Soare, R.


    Based on the identification of sinuous and elongated pits in Utopia Planitia, we suggest that shallow melting and underground drainage are possible. We test that hypothesis using a thermal model that comprises a thick insulating dusty layer.

  18. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H


    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  19. Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury (United States)

    Namur, Olivier; Charlier, Bernard; Holtz, Francois; Cartier, Camille; McCammon, Catherine


    Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200-1750 °C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2- and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases with increasing reducing conditions (from 10 wt.% S at IW-8) and with increasing temperature. Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. We developed an empirical parameterization to predict SCSS in Mercurian magmas as a function of oxygen fugacity (fO2), temperature, pressure and silicate melt composition. SCSS being not strictly a redox reaction, our expression is fully valid for magmatic systems containing a metal phase. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. We make the realistic assumption that the oxygen fugacity of mantle rocks was set during equilibration of the magma ocean with the core and/or that the mantle contains a minor metal phase and combine our parameterization of SCSS with chemical data from MESSENGER to constrain the oxygen fugacity of Mercury's interior to IW- 5.4 ± 0.4. We also calculate that the mantle of Mercury

  20. Enthalpies of DNA melting in the presence of osmolytes. (United States)

    Spink, Charles H; Garbett, Nichola; Chaires, Jonathan B


    The melting of DNA in the presence of osmolytes has been studied with the intention of obtaining information about how base pair stability is affected by changes in solution conditions. In previous investigations, the melting enthalpies were assumed to be constant as osmolalities change, but no systematic evaluation of whether this condition is true has been offered. This paper presents calorimetric data on the melting of two synthetic DNA samples in the presence of a number of common osmolytes. Poly(dAdT)*poly(dTdA) and poly(dGdC)*poly(dCdG) melting have been examined by differential scanning calorimetry in solutions containing ethylene glycol, glycerol, sucrose, urea, betaine, PEG 200 and PEG 1450 at increasing osmolalities. The results show small, but significant changes in the enthalpy of melting of the two polynucleotides that are different, depending on the structure of the cosolvent. The polyols, ethylene glycol, glycerol, PEG 200 and also urea all show decreases in melting enthalpy, while betaine and sucrose display increases with increasing concentration of cosolvent. The large stabilizing PEG 1450 shows no change within the experimental errors. Using concepts relating to preferential interactions of the cosolvents with the DNA base pairs, it is possible to interpret some of the observed changes in the thermodynamic properties of melting. The results indicate that there is strong entropy-enthalpy compensation upon melting base pairs, but entropy increases dominate to cause the decreases in stability with increased cosolvent concentration. Excess hydration parameters are evaluated and their magnitudes discussed in terms of changes in cosolvent interactions with the DNA base pairs.


    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Fox, K; Pickenheim, B; Stone, M


    Savannah River National Laboratory (SRNL) was requested to provide the Defense Waste Processing Facility (DWPF) with a frit composition for Sludge Batch 5 (SB5) to optimize processing. A series of experiments were designed for testing in the Melt Rate Furnace (MRF). This dry fed tool can be used to quickly determine relative melt rates for a large number of candidate frit compositions and lead to a selection for further testing. Simulated Sludge Receipt and Adjustment Tank (SRAT) product was made according to the most recent SB5 sludge projections and a series of tests were conducted with frits that covered a range of boron and alkali ratios. Several frits with relatively large projected operating windows indicated melt rates that would not severely impact production. As seen with previous MRF testing, increasing the boron concentration had positive impacts on melt rate on the SB5 system. However, there appears to be maximum values for both boron and sodium above which the there is a negative effect on melt rate. Based on these data and compositional trends, Frit 418 and a specially designed frit (Frit 550) have been selected for additional melt rate testing. Frit 418 and Frit 550 will be run in the Slurry Fed Melt Rate Furnace (SMRF), which is capable of distinguishing rheological properties not detected by the MRF. Frit 418 will be used initially for SB5 processing in DWPF (given its robustness to compositional uncertainty). The Frit 418-SB5 system will provide a baseline from which potential melt rate advantages of Frit 550 can be gauged. The data from SMRF testing will be used to determine whether Frit 550 should be recommended for implementation in DWPF.

  2. Zn isotopic heterogeneity in the mantle: A melting control? (United States)

    Doucet, Luc S.; Mattielli, Nadine; Ionov, Dmitri A.; Debouge, Wendy; Golovin, Alexander V.


    We present new Zn elemental and isotope data on seventeen fertile and refractory mantle peridotite xenoliths. Eleven fertile peridotites are garnet and spinel lherzolites from Vitim and Tariat (Siberia and Mongolia) and represent some of the most pristine fertile peridotites available. Six refractory peridotites are spinel harzburgites from the Udachnaya kimberlite (Siberian craton) that are nearly pristine residues of high-degree polybaric melting at high pressure (7-4 GPa). Geochemical data suggest that Zn isotopic compositions in the peridotites have not been affected by post-melting processes such as metasomatism, contamination by the host-magmas or alteration. The fertile peridotites have uniform Zn concentrations (59 ± 2 ppm) and Zn isotopic compositions with δ66Zn (relative to JMC-Lyon-03-0749l) = +0.30 ± 0.03‰ consistent with the Bulk Silicate Earth estimates of δ66Zn = +0.28 ± 0.05‰ (Chen et al., 2013). The refractory peridotites have Zn concentrations ranging from 30 to 48 ppm and δ66Zn from + 0.10 ± 0.01 ‰ to + 0.18 ± 0.01 ‰ with an average of + 0.14 ± 0.03 ‰. Our data suggest that the lithospheric mantle has a heterogeneous Zn isotopic composition. Modeling of Zn isotope partitioning during partial melting of fertile mantle suggests that high degrees of melt extraction (>30%) may significantly fractionate Zn isotopes (up to 0.16‰) and that during mantle melting, Zn concentrations and isotopic compositions are mainly controlled by the stability of clinopyroxene and garnet within the melting residue. Because the stability of clinopyroxene and garnet is mainly pressure dependent we suggest that both the depth and the degrees of melt extraction may control Zn isotope fractionation during mantle melting.

  3. Primary carbonatite melt from deeply subducted oceanic crust


    Walter, Michael J.; Bulanova, Galina; Armstrong, Lora S; Keshav, S; Blundy, Jon D; Gudfinnsson, G; Lord, Oliver T.; Lennie, A; Clark, SM; Smith, C; Gobbo, L


    Partial melting in the Earth’s mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical ‘reservoirs’ and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that s...

  4. Melting Point Of Metals In Relation Io Electron Charge Density

    Directory of Open Access Journals (Sweden)

    Boczkal G.


    Full Text Available The concept of spatial criterion of the electron charge concentration is applied to determine the metal melting point. Based on the model proposed for bcc metals, a model for hcp metals and general form for others has been developed. To calculate the melting point, only structural data and atomic number are required. The obtained results show good consistency with the experimental data for metals with atomic number Z < 70.

  5. Reactive Melt Infiltration Of Silicon Into Porous Carbon (United States)

    Behrendt, Donald R.; Singh, Mrityunjay


    Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.

  6. H2O diffusion in Mount Changbai peralkaline rhyolitic melt (United States)

    Zhang, Y.; Xu, Z.; Wang, H.; Behrens, H.


    For quantitative modeling of bubble growth and volcanic eruption dynamics, it is necessary to know H2O diffusivity in the melt. Mount Changbai Volcano at the border of China and North Korea has produced explosive peralkaline rhyolitic eruptions, including a 30-km3 eruption with an age of 1 ky (Horn and Schmincke, 2000). H2O diffusivity is expected to be greater in a peralkaline rhyolitic melt than a calc-alkaline rhyolitic melt. We have experimentally investigated H2O diffusion in Mount Changbai peralkaline rhyolite. Because phenocryst-free glass is not available from Mount Changbai eruption products, the starting materials (nominally dry and hydrous) are synthesized. The diffusion couple technique, with one half dry and the other half wet, is adopted. Three high- temperature experiments have been carried out at 500 MPa and one at 1500 MPa in a piston-cylinder apparatus. After the experiment, the sample is prepared into a doubly-polished section of about 0.2 mm thickness, which is analyzed by a Perkin-Elmer FTIR microscope. The data are fit following the procedures of Zhang and Behrens (2000) and Ni and Zhang (2008). Preliminary data show that H2O diffusivity in peralkaline rhyolitic melt is greater than that in calc-alkaline rhyolitic melt (Zhang and Behrens, 2000), as expected. The exact difference depends on temperature and pressure, and the ratio of diffusivity in the peralkaline rhyolitic melt to that in the calc-alkaline rhyolitic melt ranges from 1 to 3. More experiments will be conducted on this melt to provide the basic data for specific modeling of bubble growth and volcanic eruption dynamics in past and future Mount Changbai eruptions and other peralkaline rhyolitic eruptions. References: Horn S and Schmincke H U (2000) Bull. Volcanol., 61, 537. Ni H and Zhang Y (2008) Chem. Geol., doi: 10.1016/j.chemgeo.2008.01.011. Zhang Y and Behrens H (2000) Chem. Geol., 169, 243.

  7. Floating Ice-Algal Aggregates below melting Arctic Sea Ice


    Philipp Assmy; Jens K. Ehn; Mar Fernández-Méndez; Haakon Hop; Christian Katlein; Arild Sundfjord; Katrin Bluhm; Malin Daase; Anja Engel; Agneta Fransson; Granskog, Mats A.; Hudson, Stephen R.; Svein Kristiansen; Marcel Nicolaus; Ilka Peeken


    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1 – 15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layer...

  8. Impact History on Vesta: Petrographic, Compositional and Future Chronological Studies of Melt Clasts in Howardites (United States)

    Cartwright, J. A.; Mittlefehldt, D. W.; Hodges, K. V.; Wadhwa, M.


    Howardite meteorites are polymict breccias composed mainly of eucritic and diogenitic material that likely originate from the surface of the Asteroid 4 Vesta. They can be separated into two subtypes: Regolithic, which represent the lithified remains of the active vestan regolith; Fragmental, which represent simpler polymict breccias. Amongst the regolithic features observed in the former, melt clasts are particularly striking for their appearance and compositional variability. They range from glassy spherules to finely crystalline (i.e., devitrified) clasts, and clasts containing only relict mineral grains to those containing only phenocrysts. Glasses can be separated into compositional sub-types including those with low FeO/MgO ratios (less than 5) -low alkali glasses, K-rich (K2O greater than 0.2 wt.%), Na-rich (Na2O greater than 0.6 wt.%) and CaO-rich, and those with high FeO/MgO ratios (greater than 10). There is also a distinction to be made between primary volcanic melt clasts and those produced by impacts. While suggested that a lack of chemical homogeneity among their studied melt clasts ruled out a primary volcanic origin, the low siderophile element contents observed in such clasts suggest less compositional influence from impactors than commonly assumed. Studying the chronology of the impact melt clasts in howardites can help us to better determine the timing of impact events on Vesta and the asteroid belt. In this research, we are launching an investigation into the petrology, composition (major/trace element and noble gas) and chronology of melt clasts in howardites. We have selected a set of howardites known to contain large quantities of melt clasts, and have begun the petrological and compositional studies of these materials. Once the melt clasts have been fully classified, we aim to perform chronological studies of individual clasts using both the Ar-40/Ar-39 and Pb-Pb chronometers, as well as determine the noble gas components present. Of

  9. Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction systems (United States)

    Zamboni, Denis; Gazel, Esteban; Ryan, Jeffrey G.; Cannatelli, Claudia; Lucchi, Federico; Atlas, Zachary D.; Trela, Jarek; Mazza, Sarah E.; De Vivo, Benedetto


    The complex geodynamic evolution of Aeolian Arc in the southern Tyrrhenian Sea resulted in melts with some of the most pronounced along the arc geochemical variation in incompatible trace elements and radiogenic isotopes worldwide, likely reflecting variations in arc magma source components. Here we elucidate the effects of subducted components on magma sources along different sections of the Aeolian Arc by evaluating systematics of elements depleted in the upper mantle but enriched in the subducting slab, focusing on a new set of B, Be, As, and Li measurements. Based on our new results, we suggest that both hydrous fluids and silicate melts were involved in element transport from the subducting slab to the mantle wedge. Hydrous fluids strongly influence the chemical composition of lavas in the central arc (Salina) while a melt component from subducted sediments probably plays a key role in metasomatic reactions in the mantle wedge below the peripheral islands (Stromboli). We also noted similarities in subducting components between the Aeolian Archipelago, the Phlegrean Fields, and other volcanic arcs/arc segments around the world (e.g., Sunda, Cascades, Mexican Volcanic Belt). We suggest that the presence of melt components in all these locations resulted from an increase in the mantle wedge temperature by inflow of hot asthenospheric material from tears/windows in the slab or from around the edges of the sinking slab.

  10. Partial crystallization of picritic melt and its applications for the genesis of high-Ti and low-Ti basalts (United States)

    Yang, J.; WANG, C.; Jin, Z.; Jin, S.; Yan, S.


    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces (LIPs). However the originate of these high-Ti and low-Ti magmas are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both high-Ti and low-Ti basalts are from mantle plume source, but the production of high-Ti basalts are associated with the thick lithosphere while the low-Ti basalts are controlled by the thin lithosphere (Arndt et al., 1993); (3) they are derived from the different degrees of melting, with high-Ti basalts representing low degree of partial melting of mantle plume (Xu et al., 2004). The low Mg# (below 0.7) of high-Ti and low-Ti basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath the LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts.In order to investigate the generation of high-Ti and low-Ti basalts, a series of high pressure and high temperature partial crystallization experiments were performed at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700℃. The starting material is picrate glass with relative high TiO2 (2.7 wt %), which is synthesized according to the chemical composition of primary magmas of Emeishan LIP (Xu et al., 2001). The experimental results show that: (1) At a given pressure, the TiO2 content is decreased with increasing melt fraction; (2) At a given melt fraction, the TiO2 content of melts is increased with increasing pressure. On

  11. Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda peridotite massif, southern Spain (United States)

    Marchesi, Claudio; Garrido, Carlos J.; Bosch, Delphine; Bodinier, Jean-Louis; Gervilla, Fernando; Hidas, Károly


    -peridotite interaction, such as secondary spinel lherzolite in Ronda, may nucleate magmatic channels that remain chemically isolated from the ambient mantle and act as preferential pathways for melts with the signature of recycled crust.

  12. Relationship between Oxygen Chemical Potential and Steel Cleanliness

    Institute of Scientific and Technical Information of China (English)

    Mansour Soltanieh; Yousef Payandeh


    To investigate inclusion formation in each step during steel making process, several samples were taken in different steps of the production of steel at Mobarakeh Steel Co of Esfahan to measure the oxygen chemical potential of the molten steel in each stage. The chemical compositions of the inclusions in samples were investigated lby scanning electron microscope. The chemical composition of the slag was analyzed. With the use of thermodynamic calculations and chemical analysis of the melt, at the working temperature, the relationship between dissolved oxygen and other elements were determined. Finally, it was found that there is a close relationship between inclusions formed in each step with the oxygen partial pressure.


    Directory of Open Access Journals (Sweden)

    A. N. Cherepanov


    Full Text Available The paper deals with usage of monoblock emitters for melting of synthetic fatty acids, which are delivered to plants in a solid state and are used in the production of detergents as liquids. In such emitters all lamps are arranged in a common case. Irradiation of the solid phase in the direction of the channel melting axis is done through an output quartz window. This method excludes the possibility of slowing down or stopping the process when one of the tubes is overheated. Halogen lamps are used as light sources, each one is placed in individual transparent body. Combined effect of thermal power supply and the light emission should provide a significant increase in the rate of the channel melting in the solid phase of the synthetic fatty acid. The results of evaluations for achievable rates of the channel melting in the solid phase of the synthetic fatty acids are presented. Melting of the channel with one meter depth can be reached in less than an hour when eight halogen lamps of 100 W power are used. To exclude the possibility of self-ignition of the liquid phase of synthetic fatty acid it is proposed to adjust the luminosity of the emitter and the surface temperature by selecting the number of lamps in the monoblock emitter cavity. The usage of cylindrical quartz tube as a case for monoblock emitter increases the diameter of the melting channel due to side effects of light on the solid and liquid phases.

  14. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)


    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  15. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Wilkening, D. [Columbia Falls Aluminum Co., 2000 Aluminum Dr., Columbia Falls, MT 59912 (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., P.O. Box 1071, Anaconda, MT 59711 (United States)


    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{sup TM} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast. (orig.) 18 refs.

  16. Voronoi Structural Evolution of Bulk Silicon upon Melting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shi-Liang; ZHANG Xin-Yu; WANG Lin-Min; QI Li; ZHANG Su-Hong; ZHU Yan; LIU Ri-Ping


    @@ The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation.At temperatures below the melting point, the solid state system is identified to have a four-fold coordination structure .As the temperature increases, the five-fold coordination and six-fold coordination structures and are observed.This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others.At temperatures above the melting point, nearly ali of the four-fold coordination structures grows into multiple-fold coordination ones.%The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation. At temperatures below the melting point, the solid state system is identified to have a four-told coordination structure (4,0,0,0). As the temperature increases, the five-fold coordination (2,3,0,0) and six-fold coordination structures (2,2,2,0) and (0,6,0,0) are observed. This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others. At temperatures above the melting point, nearly all of the four-fold coordination structures grows into multiple-fold coordination ones.

  17. Determination of Reactive Surface Area of Melt Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier,W.L.; Roberts, S.; Smith, D.K.; Hulsey, S.; Newton,L.; Sawvel, A.; Bruton, C.; Papelis, C.; Um, W.; Russell, C. E.; Chapman,J.


    A comprehensive investigation of natural and manmade silicate glasses, and nuclear melt glass was undertaken in order to derive an estimate of glass reactive surface area. Reactive surface area is needed to model release rates of radionuclides from nuclear melt glass in the subsurface. Because of the limited availability of nuclear melt glasses, natural volcanic glass samples were collected which had similar textures and compositions as those of melt glass. A flow-through reactor was used to measure the reactive surface area of the analog glasses in the presence of simplified NTS site ground waters. A measure of the physical surface area of these glasses was obtained using the BET gas-adsorption method. The studies on analog glasses were supplemented by measurement of the surface areas of pieces of actual melt glass using the BET method. The variability of the results reflect the sample preparation and measurement techniques used, as well as textural heterogeneity inherent to these samples. Based on measurements of analog and actual samples, it is recommended that the hydraulic source term calculations employ a range of 0.001 to 0.01 m{sup 2}/g for the reactive surface area of nuclear melt glass.

  18. Experimental study on MSW gasification and melting technology

    Institute of Scientific and Technical Information of China (English)


    In order to develop municipal solid waste (MSW) gasification and melting technology, two preliminary experiments and a principle integrated experiment were fulfilled respectively. The gasification characteristics of MSW are studied at 500-750℃ when equivalence ratio (ER) was 0.2-0.5 using a fluidized-bed gasifier. When temperature was 550-700℃ and ER was 0.2-0.4, low heat value (LHV) of syngas reaches 4000-12000 kJ/Nm3. The melting characteristics of fly ash were investigated at 1100-1460℃ using a fixed-bed furnace. It was proved that over 99.9% of dioxins could be decomposed and most heavy-metals could be solidified when temperature was 1100-1300℃. The principle integrated experiment was carried out in a fluidized-bed gasification and swirl-melting system. MSW was gasified efficiently at 550-650℃, swirl-melting furnace maintains at 1200-1300℃ stably and over 95% of fly ash could be caught by the swirl-melting furnace. The results provided much practical experience and basic data to develop MSW gasification and melting technology.

  19. Melt Protection of Mg-Al Based Alloys

    Directory of Open Access Journals (Sweden)

    María J. Balart


    Full Text Available This paper reports the current status of Mg melt protection in view to identify near-future challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially available technologies containing―HFC-134a, fluorinated ketone and dilute SO2―and developed technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the field of Mg melt protection. The near-future challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

  20. Modified enthalpy method for the simulation of melting and solidification

    Indian Academy of Sciences (India)

    Niranjan N Gudibande; Kannan N Iyer


    Enthalpy method is commonly used in the simulation of melting and solidification owing to its ease of implementation. It however has a few shortcomings. When it is used to simulate melting/solidification on a coarse grid, the temperature time history of a point close to the interface shows waviness. While simulatingmelting with natural convection, in order to impose no-slip and impermeability boundary conditions, momentum sink terms are used with some arbitrary constants called mushy zone constants. The values of these are very large and have no physical basis. Further, the chosen values affect the predictions and hence have to be tuned for satisfactory comparison with experimental data. To overcome these deficiencies, a new cell splitting method under the framework of the enthalpy method has been proposed. This method does not produce waviness nor requires mushy zone constants for simulating melting with natural convection. The method is then demonstrated for a simple onedimensional melting problem and the results are compared with analytical solutions. The method is then demonstrated to work in two-dimensions and comparisons are shown with analytical solutions for problems with planar and curvilinear interfaces. To further benchmark the present method, simulations are performed for melting in a rectangular cavity with natural convection in the liquid melt. The solid–liquid interface obtained is compared satisfactorily with the experimental results available in literature.

  1. A metastable liquid melted from a crystalline solid under decompression (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin


    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  2. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet (United States)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.


    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the

  3. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas (United States)

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.


    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná-Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and ferropicrite olivine-hosted melt inclusions are remarkably uniform and closely reflect those of the host whole-rocks, except in a small subset affected by hydrothermal alteration. The Paraná-Etendeka picrites and ferropicrites are petrogenetically related to the more evolved and voluminous flood basalts, and so we propose that compositional homogeneity at the melt inclusion scale implies that the CFB parental mantle melts were well mixed prior to extensive crystallisation. The incompatible trace element homogeneity of olivine-hosted melt inclusions in Paraná-Etendeka and Karoo primitive magmatic rocks has also been identified in other CFB provinces and contrasts with findings from studies of basalts from mid-ocean ridges (e.g. Iceland and FAMOUS on the Mid Atlantic Ridge), where heterogeneity of incompatible trace elements in olivine-hosted melt inclusions is more pronounced. We suggest that the low variability in incompatible trace element contents of olivine-hosted melt inclusions in near-primitive CFB rocks, and also ocean island basalts associated with moderately thick lithosphere (e.g. Hawaii, Galápagos, Samoa), may reflect mixing along their longer transport pathways during ascent and/or a temperature contrast between the liquidus and the liquid when it arrives in the crust. These thermal paths promote mixing of mantle melts prior to their entrapment by growing olivine crystals in crustal magma chambers. Olivine-hosted melt inclusions of ferropicrites from the Paran

  4. Termochemical Models For Slags and Silicate Melts, Review and Perspectives (United States)

    Ottonello, G.

    Thermochemical models devoted to the comprehension of reactive and mixing properties of silicate melts and slags may be roughly grouped into four main classes: 1) fictive chemical; 2) quasi chemical; 3) fictive structural; 4) polymeric. In the first class we may group the fictive regular mixture approach of Ghiorso and Carmichael [1,2]and its extensions [3-5]and the subregular model of Berman and Brown [6]. To the second class belong the modified quasi chemical approach of Pelton and coworkers [7,8] , and the Kapoor - Froberg cellular model and its extensions [9-11]. The third class has much to share with the second one (and indeed the cellular model could be ascribed to this class as well). To this class belong the "central surround model" of Sastri and Lahiri [12] , the associated solution models of Bjorkman [13], Hastie and coworkers [14]and Goel and coworkers [15], the two sublattice model of Hillert and coworkers [16]and the polynomial expansions of Hoch and Arpshofen [17] . The fourth class encompasses the models of Masson[18-20] , Toop-Samis [21,22]and its extensions [23-25] . The phylosophy beyond each one of the four classes is basically different. Benefits and drawbacks are present in any of them, and applications are often limited to simple systems (or to sufficiently complex systems, in the case of arbitrary deconvolutions of type 1) and to limited P-T ranges. The crucial aspects of the various models will be outlined to some extent. It will be shown that, often, model conflictuality is only appartent and that, in some cases, model failure is unperceived by acritical utilizers. New perspectives in the future research devoted to the comprehension of melt reactivity in compositionally complex systems, with special enphasis on the solubility of gaseous components and unmixing, will be finally discussed. References: [1] Ghiorso M.S. and Carmichael I.S.E. (1980) Contrib. Mineral. Petrol., 71, 323-342. [2] Ghiorso M.S., Carmichael I.S.E., Rivers M.L. and Sack

  5. Mixing Experiments with Natural Shoshonitic and Trachytic Melts (United States)

    de Campos, C. P.; Perugini, D.; Kolzenburg, S.; Petrelli, M.; Dorfman, A.; Dingwell, D. B.


    end-members, in different proportions, have been mixed together using a concentric cylinder viscometer. For the 2nd set of experiments forced convection has been simulated by stirring with a spindle. Experimental conditions were constrained by: 1) constant angular velocity (0.5 rotations per minute) and 2) constant temperature (1,300°C). The experiments terminated by stopping all movement, extracting the spindle from the sample and letting the sample cool to room temperature. Cylinders of the resultant mixed glasses were recovered by drilling and, prepared for microprobe analysis. Microprobe and ICP-MS analyses along longitudinal lines from sections of all the resulting products reveal a complex non-linear mixing process with different mobility for different elements. Chemical data from both experiments (with the centrifuge and the viscometer) will be discussed in a comparative way. Our results highlight the importance of chaotic dynamics for the efficiency of the mixing process in silicate melts.

  6. Chemical Mahjong (United States)

    Cossairt, Travis J.; Grubbs, W. Tandy


    An open-access, Web-based mnemonic game is described whereby introductory chemistry knowledge is tested using mahjong solitaire game play. Several tile sets and board layouts are included that are themed upon different chemical topics. Introductory tile sets can be selected that prompt the player to match element names to symbols and metric…

  7. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.


    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  8. Melt Segregation & LPO in Anorthite-Basalt Deformed in Torsion (United States)

    Zimmerman, M. E.; Kohlstedt, D. L.


    Deformation in the middle and lower crust is in large part controlled by the rheology of feldspar. Seismic studies have shown that the middle crust of orogenic belts is partially molten. Structural studies of mylonites and migmatites from these terrains record large strain deformation. Therefore, we performed torsional shear deformation experiments on fine grained (10 μ m) samples of Beaver Bay anorthite (An70) +/- 10 vol% basalt to shear strains γ = 2-6 to investigate the development of lattice preferred orientation (LPO) and melt segregation at large shear strains. We performed experiments in a gas medium apparatus equipped with an internal torque cell at T = 1450 K, P = 300 MPa, and constant twist rate. Melt segregated in the An70 + basalt samples into melt-rich bands oriented at ˜20° to the shear plane and antithetic to the shear direction. The spacing between bands is ˜0.5 mm. Distortion of the iron jacket demonstrates that strain localized in the melt-rich bands. We determined the LPO of An70 with scanning electron microscopy using electron back scatter diffraction (SEM-EBSD). In patterns from an An70+ basalt sample deformed to γ ≈ 2.5, (001) planes are aligned subparallel to the shear plane and [100] axes are concentrated close to the shear direction. Both the (001) and the [100] are rotated counter clockwise from the shear direction by 20-25° . The formation of melt-rich bands is consistent with results from simple shear experiments on olivine + chromite + basalt and olivine + FeS +/- basalt, as well as An70 + basalt and indicates that deformation can drive melt segregation. Deformation drives the self organization of melt-rich bands and decreases the effective viscosity of the rock. The LPO is consistent with results from experiments on albite in shear and anorthite in compression and compatible with slip dominantly on (001) with [100] as the slip direction. A similar back rotation, attributed to partitioning of the strain between melt-rich and

  9. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)


    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  10. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy

    Institute of Scientific and Technical Information of China (English)


    Evolution of the electrical resistivity of Sn-40wt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidification behavior and solidified structure has also been investigated. The results show that the melt structure transition revealed by the abnormal change of resistivity would take place within a certain holding time just when the holding temperature is above a certain critical, and that the higher the temperature above the critical, the shorter the "incubation period" of the melt structure transition, and the faster the transition speed. The results of solidification experiments suggest that the melt structure transition caused by different holding time at the same temperature can lead to a higher so-lidification undercooling degree, finer grain size and change of microscopic pattern. Further exploration indicates that the solidification undercooling degree can come to a head when the melt is held at the specific temperature for a given time. The functionary mechanism of the phenomena above is also discussed briefly.

  11. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN HongSheng; ZU FangQiu; OHEN Jie; ZOU Li; DING GuoHua; HUANG ZhongYue


    Evolution of the electrical resistivity of Sn-4Owt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidification behavior and solidified structure has also been investigated. The results show that the melt structure transition revealed by the abnormal change of resistivity would take place within a certain holding time just when the holding temperature is above a certain critical, and that the higher the temperature above the critical, the shorter the "incubation period" of the melt structure transition, and the faster the transition speed. The results of solidification experiments suggest that the melt structure transition caused by different holding time at the same temperature can lead to a higher so- lidification undercooling degree, finer grain size and change of microscopic pattern. Further exploration indicates that the solidification undercooling degree can come to a head when the melt is held at the specific temperature for a given time. The functionary mechanism of the phenomena above is also discussed briefly.

  12. Interpreting chemical compositions of small scale basaltic systems: A review (United States)

    McGee, Lucy E.; Smith, Ian E. M.


    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  13. Mineralogical and textural evidences of melt transfer in a granulite from the Paleoproterozoic Itabuna-Salvador-Curaça belt (Salvador da Bahia, Brazil) (United States)

    Goncalves, Philippe; Santos de Souza, Jailma; Barbosa, Johildo; Bourque, Hugo; Floess, David


    In pelitic rocks, the effect of melt transfer (loss and/or gain) on phase relations can be successfully predicted via phase equilibrium modeling and more particularly using pseudosections with bulk composition as a variable (e.g. White et al., 2001). One of the most obvious effect of melt loss is the dehydration of the rock that limits further melting and favors the preservation of peak metamorphic assemblage. However, in most cases, melt loss has a limited effect that can be hardly seen mineralogically. Indeed, composition of phases like garnet, cordierite or plagioclase, that are first-order metamorphic phase, will not be affected significantly by melt loss. Therefore, evidences of melt extraction must be evidenced texturally. The goal of this contribution is to present an example where both mineralogical and textural evidences of melt extraction have been inferred. The studied sample is a pelitic granulite from the Paleoproterozoic Itabuna-Salvador-Curaça belt (Salvador da Bahia, Brazil). It is located in the city of Salvador da Bahia, next to the Farol da Bara. Structurally, it is located in a steeply deeping high strain zone that could have play a major role on the segregation and transfer of melt. The gneissic foliation is marked by a compositional banding with centimer-wide quartzo-feldspathic leucosomes in a garnet-bearing granulite. Leucosomes are almost systematically surrounded by a darker layer that is quartz-undersaturated and enriched in spinel and primatic sillimanite. This silica undersaturation is interpreted as the effect of extreme melt extraction and was modeled using phase diagram section. An interesting feature of the rock is that garnet grain size decreases and the number of garnet grains increases in the melanosome away from the leucosome. Furthermore, the type, amount and shape of inclusions in garnet, chemical composition and zoning in garnet also varies greatly and continuously across the gneissic foliation. Texturally, the presence of

  14. Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites (United States)

    Ruscitto, D. M.; Wallace, P. J.; Kent, A. J. R.


    Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87-94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO ( 90 olivines. Restored low-CaO melt inclusions are HMAs (57-61 wt% SiO2; 4.9-10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51-56 wt% SiO2; 9.8-15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including

  15. Melt segregation in the Muroto Gabbroic Intrusion, Cape Muroto - Japan (United States)

    Floess, David; Caricchi, Luca; Wallis, Simon


    Melt segregation is a crucial process in igneous petrology and is commonly used to explain characteristic geochemical trends of magmatic rocks (e.g. Brophy 1991), as well as the accumulation of large amounts of eruptible magma (e.g. Bachmann & Bergantz, 2008). In order to gain further insight into the physical processes behind melt segregation we investigated a small-scale, natural setting. The Miocene Muroto Gabbroic Intrusion (MGI) is a 230m thick, layered sill located at Cape Muroto (Shikoku Island - Japan; Yoshizawa, 1953). It was rotated into a near-vertical (~70°) orientation after horizontal emplacement, allowing for easy sampling of the entire sill from bottom to top. We collected ~70 oriented samples for petrographic and geochemical analysis, as well as for structural analysis using Anisotropy of Magnetic Susceptibility (AMS). A well-defined horizon (zone I) between 50 and 125m from the bottom shows spectacular evidence for the segregation of felsic melts from the mafic mush (Hoshide et al. 2006). Individual, cm- to m-sized, anorthositic melt lenses mainly consist of plagioclase laths with minor cpx. Small diapirs emanate from the melt lenses and clearly indicate the paleo-upward direction of the sill. Zone I is overlaid by a coarse-grained gabbro (zone II) with cm-sized crystals of plag+cpx and no anorthositic segregations can be found. The MGI grades into fine-grained dolerite towards the top and bottom margins of the sill. We modeled the phase relations of a representative MGI gabbro composition (chilled margin) upon cooling using MELTS (Gualda et al. 2012). Extracted physical parameters (i.e. melt and solid densities, melt viscosity) were used as a proxy for melt mobility (Sakamaki et al. 2013). The temporal and spatial evolution of melt mobility within the sill was investigated using the temperature-time curve obtained through a thermal model for the MGI. We observed several peaks for the melt mobility, implying zones of melt drainage (when mobility

  16. 7 CFR 58.318 - Butter, frozen or plastic cream melting machines. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Butter, frozen or plastic cream melting machines. 58... Service 1 Equipment and Utensils § 58.318 Butter, frozen or plastic cream melting machines. Shavers, shredders or melting machines used for rapid melting of butter, frozen or plastic cream shall be...

  17. On edge melting under the Colorado Plateau margin (United States)

    Rudzitis, Sean; Reid, Mary R.; Blichert-Toft, Janne


    Asthenosphere beneath the relatively thin lithosphere of the Basin and Range province appears to be juxtaposed in step-like fashion against the Colorado Plateau's thick lithospheric keel. Primary to near-primary basalts are found above this edge, in the San Francisco-Morman Mountain volcanic fields, north central Arizona, western USA. We show that at least two distinct peridotite-dominated mantle end-members contributed to the origin of the basalts. One has paired Nd and Hf isotopic characteristics that cluster near the mantle array and trace element patterns as expected for melts generated in the asthenosphere, possibly in the presence of garnet. The second has isotopic compositions displaced above the ɛHf - ɛNd mantle array which, together with its particular trace element characteristics, indicate contributions from hydrogenous sediments and/or melt (carbonatite or silicate)-related metasomatism. Melt equilibration temperatures obtained from Si- and Mg-thermobarometry are mostly 1340-1425°C and account for the effects of water (assumed to be 2 wt.%) and estimated CO2 (variable). Melt equilibration depths cluster at the inferred location of the lithosphere-asthenosphere boundary at ˜70-75 km beneath the southwestern margin of the Colorado Plateau but scatter to somewhat greater values (˜100 km). Melt generation may have initiated in or below the garnet-spinel facies transition zone by edge-driven convection and continued as mantle and/or melts upwelled, assimilating and sometimes equilibrating with shallower contaminated mantle, until melts were finally extracted.

  18. Application of direct laser melting to restore damaged steel dies (United States)

    Jang, Jeong Hwan; Joo, Byeong Don; Mun, Sung Min; Sung, Min Young; Moon, Young Hoon


    Direct laser melting (DLM) technology can be applied to restore damaged steel dies. To understand the effects of DLM process parameters such as the laser power and scan rate, a series of experiments was conducted to determine the optimal operating parameters. To investigate the laser melting characteristics, the depth/height ratio, depth/width ratio and micro-hardness as a function of the laser energy density were analyzed. Fe-Cr and Fe-Ni layers were deposited on a steel die with 11.38 J/mm2 of energy input. The wear-resistance and the friction coefficient of the deposited layer were investigated by a pin-on-disk test. The penetration depth decreased as the scan rate increased as a consequence of the shorter interaction time. The depth/height ratio of the deposited layer decreased with an increase in the scan rate. The depth/width ratio increased as laser power increased and the scan rate decreased. The deposition shape of the Fe-Ni powder was relatively shallow and wide compared with that of the Fe-Cr powder. The scan rate had a substantial effect upon the deposition height, with the Fe-Cr powder melting more than the Fe-Ni powder. The micro-hardness of the layer melted from the powders is higher than that of the substrate, and the hardness of the laser-surface-melted layer without any metal powder is higher compared to that of the metal-powder-melted layer. The direct laser melting process with Fe-Ni powder represents a superior method when restoring a steel die when the bead shape and hardness of the restored surface are important outcome considerations.

  19. Mathematical Modelling of Melt Lake Formation On An Ice Shelf (United States)

    Buzzard, Sammie; Feltham, Daniel; Flocco, Daniela


    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.

  20. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air (United States)

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio


    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  1. Three Petrologic Classes of Impact Melt on Large Atmosphereless Bodies (United States)

    Warren, P. H.; Kallemeyn, G. W.


    Impacts have been important in the evolution of the Moon's crust and regolith, and impact melt products (breccias, glasses, and "highland basalts") account for a huge fraction of all sampled nonmare materials. As we endeavor to unravel the history of the Moon using these materials, it is important to understand that three fundamentally distinct types of impact melt occur. This discussion will focus on the Moon, but the same tripartite classification of impact melts should be applicable to Mercury. However, on Earth, Venus and to some extent Mars, atmosphere and even hydrosphere have major complicating influences. The fate of impact melt is closely tied to a parameter that Melosh has termed melting/displacement ratio, i.e., volume of impact melt over volume of transient crater; hereafter m/d. For any given energy of impact in large-scale cratering events, d is sensitive to the local gravity, g. As a result, m/d is systematically lower on a planet with modest g, such as the Moon, than it is on Earth. But also, for any given g, m/d increases with the energy (crater size) of the impact. As one consequence, it is easy to show that most of the total volume of impact melt throughout lunar history, M, was generated by a very small number (probably much less than 10) of the largest impacts. In "small" lunar events, with final crater D < ~ 100 km and m/d of order 1-4%, calculations based on Maxwell's z model indicate that roughly half of the impact melt is ejected from the transient crater; and the fraction not ejected will be dispersed within the thoroughly disintegrated but relatively cool shallow-subcrater crust. In the largest events (most notably South Pole-Aitken) that contribute most to M, m/d can be as high as 50%. The z models show that only about 1/4 of m is ejected from the transient crater, yet these largest events so dominate M that they still dominate the total inventory of ejected impact melt, M*. The ejected impact melt winds up cooling rapidly, dispersed in

  2. Stepwise magma migration and accumulation processes and their effect on extracted melt chemistry

    Directory of Open Access Journals (Sweden)

    Urtson, Kristjan


    Full Text Available Numerical and analogue models suggest that melt production, its segregation from the solid matrix and subsequent transport and accumulation are highly dynamic and stepwise processes exhibiting scale invariant patterns in both time and length scales, which is characteristic of self-organized critical systems. This phenomenon is also observed in migmatites at several localities, where the leucosome thickness statistics obey power laws. Stepwise melt transport and deformation-enhanced melt mobility affect melt production dynamics by determining the distribution of extracted melt batch sizes and residence times of melt pockets within the host rock, which in turn would influence the geochemistry of extracted melts. We introduce a numerical approach, which enables qualitative and quantitative assessment of the effects of stress-induced melt migration and accumulation on the chemistry of partial melts. The model suggests that apart from different sources and melting percentages, deformation can be an important factor in producing geochemical variations within and between intrusive/extrusive complexes.

  3. Tracking the Martian Mantle Signature in Olivine-Hosted Melt Inclusions of Basaltic Shergottites Yamato 980459 and Tissint (United States)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R.; Schmitt, A.; McKeegan, K.


    The Martian shergottite meteorites are basaltic to lherzolitic igneous rocks that represent a period of relatively young mantle melting and volcanism, approximately 600-150 Ma (e.g. [1,2]). Their isotopic and elemental composition has provided important constraints on the accretion, evolution, structure and bulk composition of Mars. Measurements of the radiogenic isotope and trace element concentrations of the shergottite meteorite suite have identified two end-members; (1) incompatible trace element enriched, with radiogenic Sr and negative epsilon Nd-143, and (2) incompatible traceelement depleted, with non-radiogenic Sr and positive epsilon 143-Nd(e.g. [3-5]). The depleted component represents the shergottite martian mantle. The identity of the enriched component is subject to debate, and has been proposed to be either assimilated ancient martian crust [3] or from enriched domains in the martian mantle that may represent a late-stage magma ocean crystallization residue [4,5]. Olivine-phyric shergottites typically have the highest Mg# of the shergottite group and represent near-primitive melts having experienced minimal fractional crystallization or crystal accumulation [6]. Olivine-hosted melt inclusions (MI) in these shergottites represent the most chemically primitive components available to understand the nature of their source(s), melting processes in the martian mantle, and origin of enriched components. We present trace element compositions of olivine hosted melt inclusions in two depleted olivinephyric shergottites, Yamato 980459 (Y98) and Tissint (Fig. 1), and the mesostasis glass of Y98, using Secondary Ionization Mass Spectrometry (SIMS). We discuss our data in the context of understanding the nature and origin of the depleted martian mantle and the emergence of the enriched component.

  4. Infrared emissivity studies of melting thresholds and structural changes of aluminium and copper samples heated by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L; Riou, O; Stenz, C; Tikhonchuk, V T [Centre Lasers Intenses et Applications, UMR 5107 CNRS-Universite Bordeaux 1-CEA, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)


    We propose a new method for studies of laser-induced heating and melting of metallic foils. The method is based on time-integrated measurements of the surface infrared thermal emission. The experimental data are compared with a model where two equations describe the evolution of electron and lattice temperatures and the emissivity is found from the Drude model with the temperature-dependent electron collision frequency. A good agreement between the experimental data and the model is found for the aluminium samples. It is less satisfactory for the copper, but a signature of phase melting can also be pointed out. A multi-pulse laser irradiation study indicates significant changes in the surface emittance, related to preheating, oxidation and/or chemical modification of the copper sample. The proposed method is relatively simple and complementary to the pump-probe technique.

  5. Peridotitic lithosphere metasomatised by volatile-bearing melts, and its association with intraplate alkaline HIMU-like magmatism

    DEFF Research Database (Denmark)

    Scott, James; Brenna, Marco; Crase, Jordan;


    .4 and eHf 0 +5 to +8) indistinguishable from the host low-silica basalts and, except for 207Pb/204Pb, overlapping with the HIMU mantle reservoir. Laser line scans across grain boundaries in the xenoliths show, however, that the host magma contribution is restricted to minor degrees of melt infiltration...... along grain boundaries during ascent, with the distinctive peridotite isotopic compositions having been imparted earlier by mantle metasomatism. Two mantle metasomatic styles are distinguished from pyroxene trace element concentrations (in particular, rare earth elements, Ti, Zr and Hf......) and are interpreted to be the result of reaction of peridotite with CO2- bearing magmas. The occurrence of two subtly chemically different but isotopically indistinguishable styles of metasomatism in rocks with the same equilibrium temperatures within the same mantle column may be due to separate volatile-rich melts...

  6. Rare-element pegmatite-forming melt during Variscan orogeny: genesis, propagation and consolidation (United States)

    Deveaud, Sarah; Guillou-Frottier, Laurent; Millot, Romain


    the main role of tectonic context during pegmatite-forming melt genesis and their propagation through activated shear-bands, opening of tensions gashes, magma pumping and space filling by pegmatite-melt crystallisation. Based on field observation such as mineralised ptygmatic veins, the role of chemistry and rheology of hosting-rocks on pegmatite differentiation type and on their morphology can be constrained. In particular, high permeability shear zones could play a crucial role in the ascent of low viscosity pegmatite-forming melts. To refine our results, preliminary numerical models have been developed to constrain the ascent of a pegmatitic melt from a deep crustal source. The "exotic" physico-chemical properties (large viscosity contrasts due to temperature- and water content-dependence) have been accounted for, and the experiments with large Peclet numbers reproduce individual patches of low viscosity melts disconnected from the parental source.

  7. Melt processed multiphase ceramic waste forms for nuclear waste immobilization (United States)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.


    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  8. Experimental evidence supports mantle partial melting in the asthenosphere. (United States)

    Chantel, Julien; Manthilake, Geeth; Andrault, Denis; Novella, Davide; Yu, Tony; Wang, Yanbin


    The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (V P) and shear (V S) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high V P/V S values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere.

  9. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion. (United States)

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A


    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN.

  10. Microstructure analysis of magnesium alloy melted by laser irradiation (United States)

    Liu, S. Y.; Hu, J. D.; Yang, Y.; Guo, Z. X.; Wang, H. Y.


    The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg 17Al 12 and α-Mg as well as some phases unidentified.

  11. Experimental evidence supports mantle partial melting in the asthenosphere (United States)

    Chantel, Julien; Manthilake, Geeth; Andrault, Denis; Novella, Davide; Yu, Tony; Wang, Yanbin


    The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (VP) and shear (VS) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high VP/VS values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere. PMID:27386548

  12. Differentiation of Planetesimals and the Thermal Consequences of Melt Migration

    CERN Document Server

    Moskovitz, Nicholas


    We model the heating of a primordial planetesimal by decay of the short-lived radionuclides Al-26 and Fe-60 to determine (i) the timescale on which melting will occur; (ii) the minimum size of a body that will produce silicate melt and differentiate; (iii) the migration rate of molten material within the interior; and (iv) the thermal consequences of the transport of Al-26 in partial melt. Our models incorporate results from previous studies of planetary differentiation and are constrained by petrologic (i.e. grain size distributions), isotopic (e.g. Pb-Pb and Hf-W ages) and mineralogical properties of differentiated achondrites. We show that formation of a basaltic crust via melt percolation was limited by the formation time of the body, matrix grain size and viscosity of the melt. We show that low viscosity (100 km in size. Differentiation would be mos t likely for planetesimals larger than 20 km in diameter that accreted within ~2.7 Myr of CAI formation.

  13. Component Evaporation of Ti-15-3 Melt during ISM Processing

    Institute of Scientific and Technical Information of China (English)


    How to control melt composition is the key for getting high quality alloy melt. The paper made the following efforts: (1) The activity coefficients in Ti-15-3 melt have been calculated. (2)Taking advantage of the activity coefficients, the evaporation losses of components in Ti-15-3melt during ISM process have been studied. The calculated results show that there is a critical vacuum degree (about 1.33 Pa) during melting process.

  14. Experimental studies of crystal-melt differentiation in planetary basalt compositions (United States)

    Grove, T. L.


    An important process that controls the evolution of magmas on and within planetary bodies is crystal-melt differentiation. Experimental studies of silicate melt solidification were performed on several planetary and terrestrial melt compositions, and experiments on one of these compositions in the microgravity environment of the space station would provide an opportunity to understand the factors that control crystal growth and crystal-melt exchange processes at crystal-melt interfaces during solidification. Experimental requirements are presented.

  15. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.


    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from

  16. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    Energy Technology Data Exchange (ETDEWEB)

    Alan Riga, D. [Professor of Chemistry, Cleveland State University and TechCon Inc., 6325 Aldenham Dr., Cleveland, OH 44143-3331 (United States)


    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization. (United States)

    Nigsch, Florian; Bender, Andreas; van Buuren, Bernd; Tissen, Jos; Nigsch, Eduard; Mitchell, John B O


    We have applied the k-nearest neighbor (kNN) modeling technique to the prediction of melting points. A data set of 4119 diverse organic molecules (data set 1) and an additional set of 277 drugs (data set 2) were used to compare performance in different regions of chemical space, and we investigated the influence of the number of nearest neighbors using different types of molecular descriptors. To compute the prediction on the basis of the melting temperatures of the nearest neighbors, we used four different methods (arithmetic and geometric average, inverse distance weighting, and exponential weighting), of which the exponential weighting scheme yielded the best results. We assessed our model via a 25-fold Monte Carlo cross-validation (with approximately 30% of the total data as a test set) and optimized it using a genetic algorithm. Predictions for drugs based on drugs (separate training and test sets each taken from data set 2) were found to be considerably better [root-mean-squared error (RMSE)=46.3 degrees C, r2=0.30] than those based on nondrugs (prediction of data set 2 based on the training set from data set 1, RMSE=50.3 degrees C, r2=0.20). The optimized model yields an average RMSE as low as 46.2 degrees C (r2=0.49) for data set 1, and an average RMSE of 42.2 degrees C (r2=0.42) for data set 2. It is shown that the kNN method inherently introduces a systematic error in melting point prediction. Much of the remaining error can be attributed to the lack of information about interactions in the liquid state, which are not well-captured by molecular descriptors.

  18. Experimental Constraints on the Chemical Differentiation of Mercurys Mantle (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.


    Mercury is known as being the most reduced terrestrial planet with the highest core/mantle ratio. Results from MESSENGER spacecraft have shown that its surface is FeO-poor (2-4 wt%) and S-rich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. In addition several features suggest important melting stages of the Mercurian mantle: widespread volcanic deposits on its surface, a high crustal thickness (approximately 10% of the planet's volume) and chemical compositions of its surface suggesting several stages of differentiation and remelting processes. Therefore it is likely that igneous processes like magma ocean crystallization and continuous melting have induced chemical and mineralogical heterogeneities in the Mercurian mantle. The extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Melting experiments with bulk Mercury-analogue compositions are scarce and with poorly con-trolled starting compositions. Therefore additional experimental data are needed to better understand the differentiation processes that lead to the observed chemical compositions of Mercury's surface.

  19. The Formation of Yanshanian Granitic Magma in Dabie Mountains:Dehydration or Aquifer Melting with Tiantangzhai and Jiuzihe Granites as Examples

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; ZHAO Zhenhua; QIU Jiaxiang; WANG Renjing; XU Jifeng


    There are large-areas of late Yanshanian granites in the Dabie Orogen, but the formation mode of the relevant granitic magma is still under discussion. Taking the typical Yanshanian granites in the North Dabie Block The TG and JG as examples, the Writers endeavor to discuss contain aspects of the formation mode of the granitic magma by studying the characteristics of the chemical compositions of biotite and amphibole of the granites and petrological features of enclaves in the intrusions, in the light of recent results of experimental petrology on dehydration melting and aquifer melting. It is suggested that: (1) Some biotites in the Tiantangzhai and the JGs and their enclaves were residual minerals; (2) Some of the amphiboles could be new-born minerals, and others, residual ones.(3) the banded bodies in granites were residuals of anatexis. (4) The TG and JG were formed by aquifer melting, and the South Dabie Block could be the important source region of water.

  20. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Energy Technology Data Exchange (ETDEWEB)

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)


    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and