WorldWideScience

Sample records for chemical feedstocks

  1. Chemical or feedstock recycling of WEEE products

    NARCIS (Netherlands)

    Tukker, A.

    2012-01-01

    This chapter reviews initiatives with regard to chemical or feedstock recycling of plastics waste from electrical and electronic products. eurostat estimates the amount of waste from electrical and electronic products that is collected is 2.2 million tonnes. Roughly 20% of this waste consists of pla

  2. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  3. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  4. Green feedstock for the chemical industry. Ambition and reality

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    One of the findings of the High Level Group on the Competitiveness of the European Chemicals Industry was that whilst the chemical industry will remain predominantly reliant on petrochemical-based feedstock in the next decades, there is definitely scope for an increased use of renewables as feedstock in the chemical industry. This paper does not envisage to exhaustively cover all developments in the area of bio-based feedstock, but rather to highlight some key barriers impeding much larger uptake of bio-based feedstock in Europe. For example, higher feedstock costs which lead to the placing of new investments outside Europe or to plant closures in Europe, etc. In particular it addresses problems caused by discriminatory effects of regulation or trade measures (e.g. measures favouring energy / fuel use over feedstock use, CAP related import barriers in the EU, export taxes in third countries). Again the full value chain needs to be taken into consideration, which puts significantly extra emphasize on the bio-based feedstock elements of the Biotechnology opportunities.

  5. Arid lands plants as feedstocks for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.J.

    1983-01-01

    The purpose of this paper is to review the recent research on arid-adapted plants that have potential as producers of fuels or chemicals. The major focus will be on plant species that appear to have commercial value. Research on guayule (Parthenium argentatum) and jojoba (Simmondsia chinensis) will be mentioned only briefly, since these plants have been discussed extensively in the literature, and excellent reviews are already in existence. In this review the literature on arid-adapted plants that have potential uses for solid fuels, liquid fuels, and chemical feedstocks is summarized, followed by an overview of the research directions and types of development that are needed in order for bio-energy production systems to reach the commercial stage. 127 references.

  6. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  7. Closing the loop: Captured CO2 as a feedstock in the chemical industry

    OpenAIRE

    Otto, Alexander; Grube, Thomas; Schiebahn, Sebastian; Stolten, Detlef

    2015-01-01

    The utilization of ‘captured’ CO2 as a feedstock in the chemical industry for the synthesis of certain chemical products offers an option for preventing several million tons of CO2 emissions each year while increasing independence from fossil fuels. For this reason, interest is increasing in the feasibility of deploying captured CO2 in this manner. Numerous scientific publications describe laboratory experiments in which CO2 has been successfully used as a feedstock for the synthesis of vario...

  8. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  9. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  10. Renewable raw materials new feedstocks for the chemical industry

    CERN Document Server

    Ulber, Roland; Hirth, Thomas

    2011-01-01

    One of the main challenges facing the chemical industry is the transition to sustainable operations. Industries are taking initiatives to reduce resource intensities or footprints, and by adopting safer materials and processes. Such efforts need to be supported by techniques that can quantify the broad economic and environmental implications of industrial operations, retrofi t options and provide new design alternatives. This contemporary overview focuses on cradle-to-grave life cycle assessments of existing or conceptual processes for producing valueadded fuels, chemicals, and/or material

  11. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  12. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    OpenAIRE

    Nhuan P. Nghiem; Justin Montanti; Johnston, David B

    2016-01-01

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions an...

  13. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    OpenAIRE

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M

    2012-01-01

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical...

  14. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  15. Biocatalysis for the application of CO2 as a chemical feedstock

    Directory of Open Access Journals (Sweden)

    Apostolos Alissandratos

    2015-12-01

    Full Text Available Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  16. Biocatalysis for the application of CO2 as a chemical feedstock

    Science.gov (United States)

    Easton, Christopher J

    2015-01-01

    Summary Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy. PMID:26734087

  17. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    Science.gov (United States)

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.

    2012-01-01

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks. PMID:23300786

  18. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.

    Science.gov (United States)

    Cetinkol, Özgül Persil; Smith-Moritz, Andreia M; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A; Heazlewood, Joshua L; Holmes, Bradley M

    2012-01-01

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks. PMID:23300786

  19. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.; Zabotina, Olga A.

    2012-12-28

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  20. Comparison of the chemical, physical and microbial properties of composts produced by conventional composting or vermicomposting using the same feedstocks.

    Science.gov (United States)

    Haynes, R J; Zhou, Y-F

    2016-06-01

    The chemical, physical and microbial properties of thermophilic composts and vermicomposts were compared using the same municipal green waste-based feedstocks: (i) municipal green waste alone, (ii) 75 % municipal green waste/25 % green garden waste and (iii) 75 % municipal green waste/25 % cattle manure. Temperatures reached 37 °C during composting of municipal green waste alone but when garden waste or cattle manure were added, temperatures reached 47 and 52 °C, respectively. At the end of vermicomposting (using Eisenia fetida), the number of earthworms present was greater than that added for the cattle manure-amended feedstock but much less for both the garden waste and municipal green waste alone treatments. The products formed in all treatments generally fell within suggested maturity indices for composts. Greater organic matter decomposition occurred during composting than vermicomposting resulting in composts having a significantly lower organic C content and a greater content of total N, extractable Mg, K, Na, P, and mineral N, a higher EC and a lower C/N ratio than the vermicomposts. For all three feedstocks, vermicomposts had a lower bulk density and greater total porosity and macroporosity than composts. For the garden waste- and cattle manure-amended feedstocks, vermicomposts had a higher microbial biomass C than the composts and for all three feedstocks, basal respiration and metabolic quotient were greatest for vermicomposts. It was concluded that composting is a robust process suitable for treatment of a range of organic wastes but, because of the nutritional requirements of the earthworms, vermicomposting is a much less robust and was only suitable for the cattle manure-amended feedstock. PMID:26888641

  1. Two-stage thermal conversion of inedible lipid feedstocks to renewable chemicals and fuels.

    Science.gov (United States)

    Asomaning, Justice; Mussone, Paolo; Bressler, David C

    2014-04-01

    The aim of this work was to study the conversion of inedible, low cost lipid feedstocks to renewable hydrocarbons using a two stage thermal hydrolysis-pyrolysis method. Beef tallow, yellow grease, brown grease and cold pressed camelina oil were first hydrolyzed and the fatty acids produced were recovered and pyrolyzed in batch reactors. The pyrolysis products were identified and quantified using gas chromatography and mass spectrometry. The pyrolysis product yields were similar for all the feedstock used with the organic liquid fraction (OLF) accounting for 76-80% of the product. The OLF consisted predominantly of n-alkanes. Approximately 30% OLF constituted a gasoline-equivalent fraction and 50% a diesel fraction. Other fuel property test showed that the OLF met the specifications set out by the Canadian general standards board. This research demonstrated a novel two-stage thermal hydrolysis-pyrolysis conversion method for producing OLF from inedible and low-value lipids. PMID:24583215

  2. Conversion of cellulosic feedstocks to ethanol and other chemicals using TVA's dilute sulfuric acid hydrolysis process

    International Nuclear Information System (INIS)

    The Tennessee Valley Authority (TVA) has been involved in the conversion of cellulosic feedstocks to ethanol and other products for over 10 years. Laboratory- and bench-scale research has been conducted to develop a two-stage, dilute sulfuric acid hydrolysis process. The process, based on work previously conducted at the Forest Products Laboratory, Madison, Wisconsin, uses high temperatures and pressures and short retention times to convert the hemicellulose and cellulose in biomass to fermentable sugars. Using hardwoods as the primary feedstock, evaluations of the process have resulted in sugar yields equivalent to 60 gallons of ethanol per ton of feedstock. Based on the results of bench-scale work, a two-ton-per-day pilot plant has been constructed and operated to further develop the process. Hydrolysis yields from the pilot-scale facility have been comparable to those achieved in the laboratory. Preliminary estimates have been prepared to determine capital and production costs for a 10-million-gallon-per-year ethanol-from-hardwoods facility. The effect of coproducts such as furfural, acetic acid, and carbon dioxide on production costs was also examined. This paper presents the results of bench- and pilot-scale research along with preliminary economics of TVA's dilute sulfuric acid hydrolysis process

  3. Biomass as feedstock for chemicals and energy on the threshold of the 21st. century

    International Nuclear Information System (INIS)

    A historical background is first given in which the role of biomass is described in relation to its competition with fossil biomass for the production of chemicals and energy. Occurrences of reserves from both sources are then compared. Petrochemical and biomass routes are then analyzed in terms of their relative competitive advantages. The oleochemical and biotechnology cases are analyzed in more detail as examples of biomass utilization. Latin American examples of industrial manufacturing of biomass derived chemicals are then provided. Alcochemicals are analyzed in detail as well as essential oils and other chemicals. Finally, references are made to regional Latin American initiatives regarding biomass and the objectives, organization and nature of the initiative are presented

  4. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  5. Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition.

    Science.gov (United States)

    Wang, Huan; Zhou, Yu; Wu, Di; Liao, Lei; Zhao, Shuli; Peng, Hailin; Liu, Zhongfan

    2013-04-22

    Substitutionally boron-doped monolayer graphene film is grown on a large scale by using a sole phenylboronic acid as the source in a low-pressure chemical vapor deposition system. The B-doped graphene film is a homogeneous monolayer with high crystalline quality, which exhibits a stable p-type doping behavior with a considerably high room-temperature carrier mobility of about 800 cm(2) V(-1) s(-1) . PMID:23463717

  6. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  7. Evaluation of the potential for using old-field vegetation as an energy feedstock: Biomass yield, chemical composition, environmental concerns, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, J.W. Jr.

    1990-07-01

    The major focus of current research on production of biomass for use as energy feedstock involves selection of species and genotypes best suited for specific regions of the United States and development of crop management techniques that maximize biomass productivity while minimizing environmental impacts and economic costs. The two experimental sites, and abandoned soybean field (AS) and an abandoned pasture (AP) were studied. At the AS site, the effects of two harvest frequencies (1 or 2 harvests annually), two nitrogen fertilizer treatments (1 or 2 harvests annually), two nitrogen fertilizer treatments (0 or 87 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}), and two phosphorous fertilizer treatments (0 or 111 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}) were determined. At the AP site, the effects of two harvest treatments (1 or 2 harvests annually), two fertilizer treatments (56:56:135 kg of N:P:K{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}), and two lime treatments (0 or 4600 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}) were determined. At both sites, treatments were arranged in a randomized complete block 2 {times} 2 {times} 2 factorial experiment. The results of this research indicated that old-field vegetation is: (1) sufficiently productive to provide significant quantities of energy feedstock; (2) chemically suitable as an energy feedstock; (3) environmentally benign with respect to impacts related to soil erosion and nutrient depletion; (4) relatively unresponsive to fertilizer and lime inputs; and (5) economically competitive with other biomass energy feedstock candidates. 38 refs., 8 figs., 68 tabs.

  8. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina;

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also be...... used as a versatile feedstock in the chemical industry. Currently the production of carbon-containing commodity chemicals is dependent on fossil resources, and more than 95% of these chemicals are produced from non-renewable carbon resources. The question is: what will be the optimal use of bioethanol...

  9. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1-August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-08-01

    Studies concerning the cellobiose properties of Clostridium thermocellum were started to determine if the cellulose degradation end products can be enhanced for glucose (with a subsequent decrease in cellobiose). Implications of preliminary studies indicate that the cells or the enzyme(s) responsible for converting cellobiose to glucose can be manipulated environmentally and genetically to increase the final yield of glucose. The second area of effort is to the production of chemical feedstocks. Three fermentations have been identified for exploration. Preliminary reports on acrylic acid acetone/butanol, and acetic acid production by C. propionicum, C. acetobutylicum, and C. thermoaceticum, respectively, are included. (DMC)

  10. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced

  11. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Final report, February 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This is a coordinated program to effect the microbiological degradation of cellulosic biomasses and will focus on the use of anaerobic microorganisms which possess cellulolytic enzyme. The studies will attempt to increase the enzyme levels through genetics, mutation and strain selection. In addition, the direct conversion from cellulosic biomasses to liquid fuel (ethanol) and/or soluble sugars by the cellulolytic, anaerobic organism is also within the scope of this program. Process and engineering scale-up, along with economic analyses, will be performed throughout the course of the program. The second area of our major effort is devoted to the production of chemical feedstocks. In particular, three fermentations have been identified for exploration. These are: acrylic acid, acetone/butanol and acetic acid. The main efforts in these fermentations will address means for the reduction of the cost of manufacturing for these large volume chemicals.

  12. Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks.

    Science.gov (United States)

    Thomas, John Meurig

    2014-07-01

    This article reviews, first, the prospects, practices and principles of generating solar fuels. It does so with an analysis of recent progress in the light-driven emission of H2 (and other fuels) as well as O2 from water. To place this challenge in perspective, some current practices entailing the use of well-proven solid catalysts developed for fossil-based feedstocks, are described. The massive differences between proven methods of generating fuel and chemicals from non-renewable and from solar radiation are emphasized with the aid of numerous quantitative examples. Whilst it is acknowledged that a key action in reducing the liberation of greenhouse gases (GHG) is to tackle the challenge of decreasing their evolution in power generation and in the production of steel, aluminium and other bulk commodities (metals, alloys, concrete and ceramics), nevertheless much can be done to diminish the emission of CO2 (and to use it as feedstock) through the agency of new, designed solid catalysts and microalgae. Solar-thermal converters are also attractive alternatives, even though they are more likely to be used centrally rather than in small modular units like 'artificial leaves,' some of which are promising for the purposes of generating energy (and perhaps fuel) in a delocalized, modular manner. PMID:24988917

  13. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, September 1-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-11-01

    Studies on the accumulation of glucose during the fermentation of cellulose by Clostridium thermocellum are discussed. Production of ethanol and its relationship to growth rate in C. thermocellum is reported. Different biomasses were tested for ethanol yields. These included exploded poplar, sugar cane, bagasse, corn cobs, sweet gum, rice straw, and wheat straw. Thermophilic bacteria were tested to determine relationship of temperature to yield of ethanol. A preliminary report on isolating plaque forming emits derived from C. thermocellum is presented as well as the utilization of carbohydrates in nutrition. A cellulose enzyme is being purified from C. thermocellum. The production of chemical feedstocks by fermentation is reported. Acrylic acid, acetone/butanol, and acetic acid, produced by C. propionicum, C. acetobutylicum, and C. thermoaceticum, are discussed. (DC)

  14. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  15. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  16. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  17. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  18. Gas Fermentation – A Flexible Platform for Commercial Scale Production of Low Carbon Fuels and Chemicals from Waste and Renewable Feedstocks

    Directory of Open Access Journals (Sweden)

    FungMin eLiew

    2016-05-01

    Full Text Available There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2 and carbon monoxide (CO can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues or industrial off gasses (e.g., from steel mills or processing plants. Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  19. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    Science.gov (United States)

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  20. Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks

    Science.gov (United States)

    Liew, FungMin; Martin, Michael E.; Tappel, Ryan C.; Heijstra, Björn D.; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  1. Biodiesel from conventional feedstocks.

    Science.gov (United States)

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted. PMID:22085921

  2. Green chemical feedstocks. Potential in the EU and sustainability aspects. Support for the Biofeedstocks Sub-commission of the Corbey Commission; Groene chemische grondstoffen, potentieel in de EU en duurzaamheidsaspecten. Ondersteuning van de Subcommissie Biochemie van de Commissie Corbey

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Bergsma, G.

    2012-09-15

    Besides applications for power generation and as a transport fuel, biomass can also be used as a chemical feedstock. If the chemical industry in Europe were to switch to 25% biofeedstocks, the sector's demand for biomass would approximate or even slightly exceed that of the transport sector. There are a number of options for biomass use in the chemical industry, with varying requirements for specific types of biomass. To a large extent, the raw biomass used by the chemical industry would be roughly equivalent to that currently used for transport biofuels, although certain routes would involve different bio resources. Compared with applications for transport fuels, use of biomass as a chemical feedstock often has greater environmental benefits, at lower cost. It would be very useful to establish sustainability criteria for the use of biomass by the chemical industry, too. Based partly on this study by CE Delft, the Commission for Sustainability Aspects of Biomass (the Corbey Commission) has drawn up an advisory document recommending introduction of sustainability criteria for use of biomass by the chemical industry [Dutch] Biomassa kan gebruikt wordt als bron voor elektriciteit en transportbrandstof maar ook als grondstof voor de chemie. Als de chemie in Europa voor 25% over zou schakelen op biomassa als grondstof dan zou de vraag vanuit deze sector naar vergelijkbaar of nog iets groter worden dan de vraag naar biomassa van de transportsector. Er zijn verschillende manieren om biomassa in te zetten in de chemie. Deze keuzes leiden tot een verschillende vraag naar soorten biomassa. Een groot deel van de grondstoffen voor biochemie komt overeen met grondstoffen voor de biotransportsector. Sommige routes vragen om andere grondstoffen. Vergeleken met biomassa in transport geeft inzet van biomassa in chemie vaak een hoger milieuvoordeel tegen lagere kosten. Het zou heel nuttig zijn om ook voor biomassa die gebruikt wordt door de chemie duurzaamheidscriteria op te

  3. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  4. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    NARCIS (Netherlands)

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  5. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  6. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  7. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  8. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  9. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  10. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  11. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  12. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    Energy Technology Data Exchange (ETDEWEB)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  13. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  14. Thermal characterization of tropical biomass feedstocks

    International Nuclear Information System (INIS)

    The processing of agricultural crops results in waste, which is a potential energy resource for alleviating commercial energy supply problems to agricultural-led economies like Tanzania. The energy content of the individual agricultural waste is largely dependent on its chemical composition (C, H and O) and it is negatively affected by the inclusion of inorganic elements and moisture. In this work, fifteen tropical agricultural wastes emanating from export crops for Tanzania were analyzed. The methods used to analyze involved performing proximate and ultimate analysis for determining the biomass composition. Thermal degradation characteristic was established to five selected wastes (coffee husks, sisal bole, cashew nut shells, palm stem, and bagasse) using a thermogravimetric analyzer type NETZSCH STA 409 PC Luxx at a heating rate of 10 K/min. On the basis of elemental composition, the palm fibre and cashew nut shells exhibited high energy content due to their higher H:C ratio with relatively low O:C ratio. Results of the thermal degradation characteristic study showed that the cashew nut shells were the most reactive feedstocks due to their highest overall mass loss and lowest burnout temperatures of 364 oC. Further, kinetic studies done to the five tropical biomass feedstocks under the pseudo single-component overall model established the activation energy for the bagasse, palm stem, and cashew nut shells to be 460 kJ/mole, 542 kJ/mole, and 293 kJ/mole, respectively. The respective activation energies for coffee husks and sisal bole were 370 kJ/mole and 239 kJ/mole. With the exception of the sisal bole, which exhibited zero order reaction mechanism, the remaining materials' reaction mechanism was of first order. These experimental findings form a basis for ranking these materials for energy generation and provide necessary input to equipment and process designers.

  15. Enhanced Feedstock Recycling of Post-Consumer Plastic

    OpenAIRE

    Aaron Akah, Jesus Hernandez-Martinez, Chandni Rallan, Arthur A. Garforth

    2015-01-01

    Feedstock recycling of waste plastics is becoming more crucial as a method to convert plastics back into a source of useful platform chemicals. Although thermal cracking presents easier options, the products have limited utility and present a higher energy burden than the method proposed in this paper, that of catalytichydrocracking a mildly exothermic process. This paper reports the use of metal loaded zeolite catalysts at much reduced temperatures (200 °C - 350 °C) to convert mixed plastic ...

  16. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof.

    Science.gov (United States)

    Michelin, Michele; Teixeira, José António

    2016-09-01

    Agricultural feedstocks (brewers' spent grain - BSG, corncob - CC, corn husk - CH, wheat straw - WS and Luffa sponge - LS) were pretreated by liquid hot water (LHW) in order to increase cellulose recovery and enzymatic saccharification. LHW-pretreatment resulted in hemicellulose solubilization, and solids enriched in cellulose. Chemical analysis showed different susceptibilities of the feedstocks to LHW-pretreatment and enzymatic hydrolysis. Pretreated feedstocks presented higher crystallinity (determined through X-ray diffraction) and thermal stability (determined through thermogravimetric analysis) than untreated feedstocks. SEM images confirmed the effect of LHW-pretreatment on structural changes. Moreover, enzymatic hydrolysis and cellulose conversion to glucose (CCG) were improved for pretreated feedstocks, with exception of LS. CCG (in relation to glucose potential on solids) followed the order: BSG>CH>WS>CC>LS. LHW-pretreatment showed to be a good technology to pretreat multi feedstocks and for improving the enzymatic hydrolysis of recalcitrant agricultural feedstocks to sugars, which can be further converted to ethanol-fuel and other value-added chemicals. PMID:27318165

  17. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.;

    2013-01-01

    to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for...... gasification of carbonaceous feedstocks. This work is categorized in this paper into patents and research/journal papers. © 2013 Elsevier Ltd....

  18. Dry reforming of hydrocarbon feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Yatish T. [Norfolk State University; Gardner, Todd H. [U.S. DOE

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  19. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  20. Transgenic Biofuel Feedstocks and Strategies for Biocontainment

    Science.gov (United States)

    There are several reasons to believe that transgenic plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels. Much of the commercialization potential for the use of transgenic plant cellulosic feedstocks may be impacted by regulatio...

  1. Demand for petrochem feedstock to buoy world LPG industry

    International Nuclear Information System (INIS)

    This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990

  2. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  3. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants. (author)

  4. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  5. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  6. Upgrading of solid biofuels and feedstock quality

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, Jan [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    1998-06-01

    This paper treats upgrading of biomass to pellets, briquettes and powder and the quality needed of the initial feedstock. The main raw materials are wood and reed canary grass (Phalaris arundinacea L.) 5 refs, 6 figs, 2 tabs

  7. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda;

    selection stage, and a PHA production phase. This work investigated the performance robustness and microbial population dynamics of a PHA producing MMC when subjected to a feedstock shift, mimicking a seasonal feedstock scenario, from cheese whey to sugar cane molasses. Research was focused on the......Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process consisting of an acidogenic stage, a PHA producing culture...... possibility of tailoring PHA through the selection of feedstock: either using feedstocks with different compositions or mixing two or more fermented substrates with different organic acid profiles. This knowledge is expected to contribute to the extended application of this promising process for resource...

  8. Physiochemical characterization of briquettes made from different feedstocks.

    Science.gov (United States)

    Karunanithy, C; Wang, Y; Muthukumarappan, K; Pugalendhi, S

    2012-01-01

    Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m(3) which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. PMID:22792471

  9. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  10. Physiochemical Characterization of Briquettes Made from Different Feedstocks

    Science.gov (United States)

    Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S.

    2012-01-01

    Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. PMID:22792471

  11. Effects of surfactant on properties of MIM feedstock

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; LIU Xiang-quan; LUO Feng-hua; YUE Jian-ling

    2007-01-01

    Effects of the surfactant for improving the properties of MIM feedstock were investigated. Feedstocks were prepared by 17-4PH stainless steel(SS) powder and paraffin wax-based binder containing different contents of stearic acid(SA) as the surfactant. The viscosity of the feedstock decreases significantly when the SA is added. Besides, the wetting angle of the binder against the 17-4PH SS powder decreases greatly and the critical solid loading increases with the adding of the SA. Fourier transformation infrared spectroscopy(FTIR) analysis was used to prove the interaction between the SA and the 17-4PH SS powder. Chemical bonding is found on the surface of 17-4PH SS powder after mixing and it helps a lot to enhance the interacting force between the binder and the powder. Then an adsorbing model was adopted to estimate the least content of the surfactant that formed a monolayer adsorption on the mono-sized spherical powder (with smooth surface). The least content of the surfactant is calculated to be 0.19%. Whereas, the experiments indicate that about 5% is the optimal value to improve the properties of the feedstock. The reason may come from two aspects: firstly, the powders used in current experiment are not all mono-sized spheres and the coarse surface of the powder has a great effect on the adsorptive capacity of the powder; secondly, multilayer adsorption is likely to occur on the powder surface, which will also increase the adsorptive capacity.

  12. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  13. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  14. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  15. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  16. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    Science.gov (United States)

    Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...

  17. Biomass Feedstock Availability in the United States: 1999 State Level Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Marie E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perlack, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de la Torre Ugarte, Daniel [Univ. of Tennessee, Knoxville, TN (United States); Becker, Denny A. [Science Applications International Corporation, Oak Ridge, TN (United States); Graham, Robin L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Slinsky, Stephen E. [Univ. of Tennessee, Knoxville, TN (United States); Ray, Daryll E. [Univ. of Tennessee, Knoxville, TN (United States)

    2000-01-01

    Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental United States.

  18. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg;

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  19. Balancing feedstock economics and ecosystem services

    Science.gov (United States)

    The purpose of this analysis is to examine the economic balance between production of cellulosic biofuel feedstocks and ecosystem services at the farm level. A literature review of the economics of ecosystem services, ecosystem service impacts of biofuel production, and economic factors influencing ...

  20. Halophytes Energy Feedstocks: Back to Our Roots

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2007-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  1. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks

    Institute of Scientific and Technical Information of China (English)

    Peter Shuttleworth; Vitaliy Budarin; Mark Gronnow; James H. Clark; Rafael Luque

    2012-01-01

    A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues.Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃ vs 250-400 ℃).The gas obtained from microwave-assistet pyrolysis was found to contain CO2,CH4 and CO as major components as well as other related chemicals (e.g.acids,aldehydes,alkanes) which were obtained in different proportions depending on the selected feedstock.

  2. Ecotoxicological characterization of biochars : role of feedstock and pyrolysis temperature

    OpenAIRE

    Domene, X.; Enders, A.; Hanley, K; Lehmann, J.

    2015-01-01

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350 °C) and high temperature (550 or 600 °C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In t...

  3. A survey of biodiesel feedstocks under performance perspectives

    Science.gov (United States)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, can be produced from an ever-growing number of feedstocks. The development of the various feedstocks is spurred to a significant extent by the issue of availability as there is no feedstock that can replace significant am...

  4. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  5. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  6. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  7. Hydrocarbonoclastic bacteria: from bioremediation to bioenergy feedstock

    OpenAIRE

    Carvalho, Ana Rita Castro

    2015-01-01

    Tese de Doutoramento em Engenharia Química e Biológica. Bacterial storage lipids are being considered as viable alternative feedstocks for industrial and biotechnological applications, compared to conventional ones. The production of these bacterial compounds can be obtained from different carbon sources, including inexpensive and recalcitrant wastes. This thesis explores the potential of using hydrocarbonoclastic bacteria to obtain lipid reserve substances from hydrocarbon-based wastes, p...

  8. Pretreatments of lignocellulosic feedstock for bioethanol production

    OpenAIRE

    Predojević Zlatica J.

    2010-01-01

    The use of renewable energy sources (biofuels), either as a component in the conventional fossil fuels, gasoline and diesel, or as a pure biofuel, contributes to energy saving and decrease of total CO2 emission. The use of bioethanol mixed with gasoline significantly decreases gasoline consumption and contributes to environment protection. One of the problems in the production of bioethanol is the availability of sugar and starch based feedstock used for its production. However, lignocellulos...

  9. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  10. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  11. Method and apparatus for treating a cellulosic feedstock

    Science.gov (United States)

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  12. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    Science.gov (United States)

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  13. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  14. Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks

    Science.gov (United States)

    Choi, Youn-Sang

    This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy

  15. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  16. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  17. Sorghum as Dry Land Feedstock for Fuel Ethanol Production

    Institute of Scientific and Technical Information of China (English)

    WANG Donghai; WU Xiaorong

    2010-01-01

    Dry land crops such as sorghums(grain sorghum,sweet sorghum and forage sorghum)have been identified aspromising feedstocks for fuel ethanol production.The major issue for using the sweet sorghum as feedstock is its stability at room temperature.At room temperature,the sweet sorghum juice could lose from 40%to50%of its fermentable sugars from 7to14 days.No significant sugar content and profile changes were observed in juice stored at refrigerator temperature in two weeks.Ethanolfermentation efficiencies of fresh and frozen juice were high(-93%).Concentrated juice(≥25%sugar)had significantly lower efficiencies and large amounts of fructose left in finished beer; however,winery yeast strains and novel fermentation techniques maysolve these problems.The ethanol yield from sorghum grain increased as starch content increased.No linear relationship betweenstarch content and fermentation efficiency was found.Key factors affecting the ethanol fermentation efficiency of sorghum includestarches and protein digestibility,amylose-lipid complexes,tannin content,and mash viscosity.Life cycle analysis showed a positivenet energy value(NEV)=25 500 Btu/gal ethanol.Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)were used to determine changes in the structure and chemical composition of sorghum biomasses.Dilute sulfuric acid pretreatment waseffective in removing the hemicellulose from biomasses and exposing the cellulose for enzymatic hydrolysis.Forage sorghum ligninhad a lower syringyl/guaiacyl ratio and its pretreated biomass was easier to hydrolyze.Up to 72% hexose yield and 94% pentoseyield were obtained by using a modified steam explosion with 2% sulfuric acid at 140"C for 30 min and enzymatic hydrolysis withcellulase.

  18. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw. PMID:26289326

  19. SUSTAINABLE PRODUCTION OF MICROALGAE OIL FEEDSTOCK USING MUNICIPAL WASTEWATER AND CO2 FERTILIZATION

    OpenAIRE

    Gina Chaput; Kyle Charmanski; Ihab H. Farag

    2012-01-01

    The increasing scarcity of fossil fuels has forced industry to look for new cost effective, clean,and sustainable sources of energy. With recent advances in technology, biofuels have become a more viableoption. Microalgae are cost effective and efficient feedstock for the production of biodiesel. One of the algae advantages is the ability to grow it in a wastewater media. This provides essential nutrients without the addition of chemicals. When grown in a photobioreactor, the algae can be cul...

  20. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae

    OpenAIRE

    Kuloyo, Olukayode O.; du Preez, James C.; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-01-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladod...

  1. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037

    OpenAIRE

    Andrés Felipe Hernández-Pérez; Priscila Vaz de Arruda; Maria das Graças de Almeida Felipe

    2016-01-01

    Abstract Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial ...

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  3. New technologies and alternative feedstocks in petrochemistry and refining. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M. (eds.)

    2013-11-01

    This international conference paper provides a forum for chemists and engineers from refinery, petrochemistry and the chemical industry as well as from academia to discuss new technologies and alternative feedstocks in petrochemistry and refining with the special topic ''Shale Gas, Heavy Oils and Coal''. 23 Lectures and 18 Posters are presented. All papers are analyzed for the ENERGY database.

  4. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  5. Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.

    Science.gov (United States)

    Carlsson, Anders S

    2009-06-01

    Our society is highly depending on petroleum for its activities. About 90% is used as an energy source for transportation and for generation of heat and electricity and the remaining as feedstocks in the chemical industry. However, petroleum is a finite source as well as causing several environmental problems such as rising carbon dioxide levels in the atmosphere. Petroleum therefore needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources, which can deliver a substantial part of what is needed to replace the petroleum used as feedstocks. Plant derived feedstock oils can be provided by two types of oil qualities, multi-purpose and technical oils. Multi-purpose oils represent oil qualities that contain common fatty acids and that can be used for both food and feedstock applications. Technical oil qualities contain unusual fatty acids with special properties gained from their unique molecular structure and these types of oils should only be used for feedstock applications. As a risk mitigation strategy in the selection of crops, technical oil qualities should therefore preferably be produced by oil crop platforms dedicated for industrial usage. This review presents a short survey of oil crop platforms to be considered for either multi-purpose or technical oils production. Included among the former platforms are some of the major oil crops in cultivation such as oil palm, soybean and rapeseed. Among the later are those that could be developed into dedicated industrial platforms such as crambe, flax, cotton and Brassica carinata. The survey finishes off by highlighting the potential of substantial increase in plant oil production by developing metabolic flux platforms, which are starch crops converted into oil crops. PMID:19375482

  6. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Science.gov (United States)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  7. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  8. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  9. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  10. Feedstock Quality Factor Calibration and Data Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  11. Syngas. The flexible solution in a volatile feed-stock market

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Air Liquide Global E und C Solutions c/o Lurgi GmbH, Frankfurt a.M. (Germany)

    2013-11-01

    The paper presents the versatility of syngas allowing the extended application of new feedstock sources such as shale gas or coal to deliver fuels and chemicals traditionally derived from crude oil. In order to provide a holistic view on this topic of current interest, the syngas market, the pre-dominant production technologies and main economic consideration for selected applications are presented and analyzed. It can be concluded that a broad portfolio of well-mastered and referenced syngas production technologies which are continuously improved to meet actual market requirements (e.g. ability to valorize biomass) will remain key to enable economic solutions in a world characterized by growing dynamics with regards to the supply of (carbonaceous) feedstock. (orig.)

  12. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2008-08-01

    Full Text Available Sunflower (Helianthus annuus L. oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported.

  13. Method for determining processability of a hydrocarbon containing feedstock

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  14. Waste paper as a biomass feedstock

    International Nuclear Information System (INIS)

    A study was undertaken to evaluate the availability and suitability of waste paper for conversion to biofuel in Canada and to examine the environmental impacts of waste paper processing. The total quantity of waste paper available in 1991 for each province and territory was determined and broken down into seven paper types. The total quantity across Canada was estimated at between 5.7 million and 7.6 million tonnes, of which old corrugated containers made up 23-26%. The variation in prices by waste paper type was also examined on a regional basis and a detailed analysis was made of the recent history of prices for several paper types. Waste paper prices have generally decreased, but since mid-1992, prices for certain types such as writing paper, computer output paper, and newsprint have increased steadily, partly due to increasing demand for recycled content in new paper. Utilization and disposal practices by region for waste paper generated in 1991, including recycling, conversion, and landfilling, were studied. National quantities of waste paper recycled, landfilled, and unavailable for recycling are estimated. The feasibility of using each type of waste paper as feedstock for each of three conversion processes (pyrolysis, incineration, fermentation) was examined. Scenarios were then developed for evaluating environmental impacts of each conversion technology. The environmental impacts of recycling, conversion, and landfilling practices are discussed qualitatively. 92 refs., 16 figs., 53 tabs

  15. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  16. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  17. Feedstock Supply and Logistics: Biomass as a Commodity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  18. Biodiesel production from low cost and renewable feedstock

    Science.gov (United States)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  19. Microbial renewable feedstock utilization: A substrate-oriented approach

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Gray, V.M.; Groenestijn, J.W. van; Overkamp, K.M.; Slomp, R.S.; Werf, M.J. van der; Punt, P.J.

    2010-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates consist of complex mixtures of different fermentable sugars, but also contain inhibitors and salts that affect the performance of the productgenerating microbes. The p

  20. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  1. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J. Jacobson; R. Mohammad; K. Cafferty; K. Kenney; E. Searcy; J. Hansen

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  2. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Science.gov (United States)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  3. Physiochemical Characterization of Briquettes Made from Different Feedstocks

    OpenAIRE

    Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S.

    2012-01-01

    Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particl...

  4. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. PMID:27396682

  5. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  6. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  7. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare;

    2008-01-01

    and educational tools are introduced to allow initial estimates of which chemical processes could be viable. Specifically, fossil and renewables value chains are used to indicate where renewable feedstocks can be optimally valorized. Additionally, C factors are introduced that specify the amount of CO2 produced...... to arrive at cost-competitive and environmentally friendly processes....

  8. Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL; Johnson, Jared A [ORNL

    2010-09-01

    Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO{sub 2} spanning greater than 50 years. The Fuel Cycle R&D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion (Modified Direct Denitration or MDD) and internal/external gelation (sol-gel). Each of these techniques has various advantages and disadvantages. The Fiscal Year 2010 feedstock development work at ORNL focused on the synthesis and characterization of one batch of UO{sub x} and one batch of U{sub 80}Ce{sub 20}O{sub x}. Oxide material synthesized at ORNL is being shipped to LANL for fuel fabrication process development studies. The feedstock preparation was performed using the MDD process which utilizes a rotary kiln to continuously thermally denitrate double

  9. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  10. Effects of milling and active surfactants on rheological behavior of powder injection molding feedstock

    Institute of Scientific and Technical Information of China (English)

    范景莲; 黄伯云; 曲选辉

    2001-01-01

    The effects of milling and active surfactants on the rheological behavior of powder injection molding feedstock were discussed. The feedstock consists of traditional compositional 90W-7Ni-3Fe powder mixture and a wax based polymer binder. Before mixing feedstock, the powder mixture was milled for different times in a QM-1 high-energy ball mill. The viscosity of the feedstock was examined in a capillary rheometer. The rheological behavior was evaluated from viscosity data. The results show that the feedstock belongs to a pseudoplastic fluid, milling decreases viscosity of the feedstock and the sensitivity of viscosity to shear strain rate. The flowability, rheology and powder loading of this feedstock are improved by milling. Active surfactants such as stearic acid (SA) and di-n-octyl-o-phthalate (DOP) have great influences on the rheological properties of the feedstock. DOP improves the flowability and rheological stability of the feedstock further.

  11. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  12. Impact of the lignin structure of three lignocellulosic feedstocks on their organosolv delignification. Effect of carbonium ion scavengers

    International Nuclear Information System (INIS)

    Effect of autohydrolysis and aromatic scavengers on delignification patterns were evaluated using miscanthus (MxG), empty palm fruit bunch (EFB) and typha grass residue as feedstocks. Autohydrolysis was carried out without naphthol and in the presence of naphthol followed by delignification by ethanol organosolv process. Despite their close chemical composition, the three feedstocks demonstrated quite different patterns of delignification under the same condition of pretreatment. Nuclear magnetic resonance (NMR) spectroscopic characterization of ethanol organosolv lignins (EOLs) extracted from the three feedstocks revealed information concerning syringyl, guaiacyl and hydroxyphenyl content (S/G/H ratios) which underpinned the differences among the feedstock behavior. The (S + H)/G ratios for MxG, EFB and typha were determined as 1.27, 2.33 and 2.70 respectively. The major cause of difference in behavior of feedstock during the pretreatment process was attributed to the variation in lignin composition. A good relationship was observed between S/G ratio and the scavenging effect of 2-naphthol. The effect of four additional aromatic scavengers viz. p-cresol, o-cresol, hydroquinone and dihydroxyanthraquinone (DHAQ) tested in miscanthus demonstrated a significant enhancement on delignification; the effect of p-cresol and DHAQ was tantamount to that of naphthol. Cellulolytic enzyme lignin (CEL) extracted from typha grass was also subjected to 13C NMR characterization in order to obtain a more complete picture of typha lignin. Comparison of NMR spectra of CEL and EOL from TC was performed for determining the processing effect in lignin structure. -- Highlights: ► Effect of autohydrolysis and aromatic scavengers on delignification patterns were evaluated. ► Ethanol organosolv lignins and Cellulolytic Enzyme Lignin extracted from typha were characterized. ► A correlation was observed between S + H/G ratio and the effect of aromatic scavengers

  13. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  14. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    Science.gov (United States)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources

  15. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  16. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  17. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  18. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Science.gov (United States)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  19. 26 CFR 48.4082-7 - Kerosene; exemption for feedstock purposes.

    Science.gov (United States)

    2010-04-01

    ... not used for a feedstock purpose when it is used to power machinery at a factory where paint is... feedstock purpose; or (ii) The kerosene is sold for use by the buyer for a feedstock purpose and, at the... paragraph (e) of this section) from the buyer and has no reason to believe any information in...

  20. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production

    Science.gov (United States)

    Fuel properties are largely dependent on the fatty acid (FA) composition of the feedstock from which biodiesel is prepared. Consequently, FA profile was employed as a screening tool for selection of feedstocks high in monounsaturated FAs for further evaluation as biodiesel. Those feedstocks screened...

  1. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel

    Science.gov (United States)

    The increased interest in and use of biodiesel renders the availability of a sufficient supply of feedstock ever more urgent. While commodity vegetable oils such as soybean, rapeseed (canola), palm and sunflower may be seen as "classical" biodiesel feedstocks, additional feedstocks are needed to me...

  2. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    Science.gov (United States)

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. PMID:23190163

  3. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  4. Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    LUO Yu; JIAO Yu-jie; ZHAO Xiao-rong; LI Gui-tong; ZHAO Li-xin; MENG Hai-bo

    2014-01-01

    Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73%and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537%more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.

  5. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process. PMID:24527651

  6. Rapid liquefaction of giant miscanthus feedstock in ethanol–water system for production of biofuels

    International Nuclear Information System (INIS)

    Highlights: • Rapid water/ethanol liquefaction system was proposed for giant miscanthus feedstock. • The optimum liquefaction conditions were 280 °C and 15 min at water/ethanol ratio 50%. • Application of ZnCl2 catalyst enhanced liquefaction process significantly. • 52% bio-oil yield and 1% residue were obtained after 5 min when ZnCl2 catalyst used. - Abstract: Energy issues nowadays are one of the critical priorities for the United States. There is a strong desire and tremendous efforts employed towards replacing fossil fuels with sustainable alternative sources of energy. In this study, hydrothermal liquefaction with ethanol and water as co-solvents was applied on giant miscanthus (Miscanthus giganteus) perennial biomass feedstock. Four temperatures and six ethanol ratios were chosen for the study. The optimum combination of temperature and water/ethanol ratio was 280 °C and 50%, respectively. The effect of time, biomass to solvent ratio and catalyst type was studied as well. The best liquefaction results without applying catalysts (53% oil yield and 8% solid residue) were obtained after 15 min. When zinc chloride was used as catalyst, more than 52% of oil yield with 1% solid residue was obtained after 5 min. The crude bio-oil chemical composition was identified by using gas chromatography/mass spectrometry (GC/MS)

  7. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    Science.gov (United States)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  8. Effects of feedstocks on the process integration of biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Foglia, Domenico; Wukovits, Walter; Friedl, Anton [Vienna University of Technology, Vienna (Austria); Ljunggren, Mattias; Zacchi, Guido [Lund University, P. O. Box 124, Lund (Sweden); Urbaniec, Krzysztof; Markowski, Mariusz [Warsaw University of Technology, Plock (Poland)

    2011-08-15

    Future production of hydrogen must be sustainable. To obtain it, renewable resources have to be employed for its production. Fermentation of biomasses could be a viable way. The process evaluated is a two-step fermentation to produce hydrogen from biomass. Process options with barley straws, PSP, and thick juice as feedstocks have been compared on the basis of process balances. Aspen Plus has been used to calculate mass and energy balances taking into account the integration of the process. Results show that the production of hydrogen as energy carrier is technically feasible with all the considered feedstocks and thanks to heat integration, second generation biomass (PSP and barley straws) are competitive with food crops (thick juice). (orig.)

  9. Evaluating possible cap and trade legislation on cellulosic feedstock availability

    Energy Technology Data Exchange (ETDEWEB)

    Hellwinckel, Chad [Agricultural Policy Analysis Center, University of Tennessee; de la Torre Ugarte, Daniel [University of Tennessee; Perlack, Robert D [ORNL; West, T. O. [University of Maryland

    2010-11-01

    An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates. We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level. When comparing this scenario to the Baseline scenario, the agricultural sector realizes an economic benefit of US$156 billion by 2030 and emissions are reduced by 135 Tg C-equivalent (Eq) yr 1. Results also indicate that geographic location of cellulosic feedstocks could shift significantly depending on the final policies implemented in cap and trade legislation. Placement of cellulosic ethanol facilities should consider these possible shifts when determining site location.

  10. Understanding hydrothermal carbonization of mixed feedstocks for waste conversion

    Science.gov (United States)

    Lu, Xiaowei

    Hydrothermal carbonization (HTC) is an environmentally beneficial means to convert waste materials to value-added solid and liquid products with minimal greenhouse gas emission. Research is lacking on understanding the influence of critical process conditions on product formation and environmental implication associated with HTC of waste streams. This work was conducted to determine how reaction conditions and heterogeneous compound mixtures (representative of municipal wastes) influence hydrothermal carbonization processes. The specific experiments include: (1) determine how carbonization product properties are manipulated by controlling feedstock composition, process conditions, and catalyst addition; (2) determine if carbonization of heterogeneous mixtures follows similar pathways as that with pure feedstocks; and (3) evaluate and compare the carbon and energy-related implications associated with carbonization products with those associated with other common waste management processes for solid waste.

  11. Value-added Chemicals from Biomass by Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Voss, Bodil

    been implemented. The subject on chemical production has received less attention. This thesis describes and evaluates the quest for an alternative conversion route, based on a biomass feedstock and employing a heterogeneous catalyst capable of converting the feedstock, to a value-added chemical. The...... obtained for such a process and the hypothesis that process feasibility in comparison with the conventional synthesis gas based technologies may further be attainable, taking advantage of the conservation of chemical C-C bonds in biomass based feedstocks. With ethanol as one example of a biomass based...... feedstock, having retained one C-C bond originating from the biomass precursor, the aspects of utilising heterogeneous catalysis for its conversion to value added chemicals is investigated. Through a simple analysis of known, but not industrialised catalytic routes, the direct conversion of ethanol to...

  12. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Science.gov (United States)

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous). PMID:15217108

  13. Towards sustainable intensification of feedstock production with nutrient cycling

    OpenAIRE

    Seleiman, Mahmoud Fathy

    2014-01-01

    Sludge contains valuable nutrient sources such as N (3.1%), P (2.6%) and micronutrients as well as organic matter. Nevertheless, depending on the feedstock materials, sludge contains heavy metals and metalloids that can be partly taken up by plants. The continuing need for disposal of sludge is a challenge due to the increasing world population. Experiments were conducted at glasshouse and field at Viikki Experimental Farm, University of Helsinki, Finland, during 2008-2012, in order to s...

  14. RHEOLOGICAL STUDIES OF FEEDSTOCK FOR THE HYDROCRACKING OF WASTE PLASTICS

    OpenAIRE

    Nzerem, Petrus

    2013-01-01

    Hydrocracking of plastic wastes offers the best value in terms of quality of its process oil product among other feedstock recycling methods capable of recycling mixed plastic waste; a paraffin-rich synthetic crude similar in composition to gasoline and diesel is produced. Additional benefits of the process include heteroatom removal, catalyst conservation as well as a lower process temperature. However PVC content in mixed plastics waste and the high viscosity of plastics are prominent issue...

  15. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  16. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  17. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  18. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-04-15

    From the viewpoint of waste-to-energy, waste cooking oil is one of the attractive and available recycled feedstocks, apart from agricultural residues. The generation of energy from waste cooking oil is considered as an effective technique for waste management, as well as a beneficial form of energy recovery. Two alternative systems and a conventional system of waste cooking oil collection and conversion are evaluated by the cost benefit analysis in order to find a suitable method for waste-to-energy conversion. The results show that the collection of waste cooking oil with waste lubricating oil (System II) a useful alternative to the management of waste cooking oil (B/C > 1). The total heat produced by the combustion of pyrolytic oil at maximum and minimum conversion rates is also determined. The separate collection of waste cooking oil, subjected to chemical pre-treatment prior to introduction in a pyrolysis reactor (System III), is considered an undesirable option (B/C < 1) due to the cost of the chemicals involved. Although the exclusion of chemical pre-treatment makes System III a desirable option, the total amount of heat of combustion generated is less. The increased electricity cost required for the process has no effect on the benefit-cost ratio of System II. However, System III, excluding chemical pre-treatment, becomes an unprofitable alternative when the electricity cost reaches 100% of the fixed capital cost at the minimum conversion rate. (author)

  19. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion

    International Nuclear Information System (INIS)

    From the viewpoint of waste-to-energy, waste cooking oil is one of the attractive and available recycled feedstocks, apart from agricultural residues. The generation of energy from waste cooking oil is considered as an effective technique for waste management, as well as a beneficial form of energy recovery. Two alternative systems and a conventional system of waste cooking oil collection and conversion are evaluated by the cost benefit analysis in order to find a suitable method for waste-to-energy conversion. The results show that the collection of waste cooking oil with waste lubricating oil (System II) a useful alternative to the management of waste cooking oil (B/C > 1). The total heat produced by the combustion of pyrolytic oil at maximum and minimum conversion rates is also determined. The separate collection of waste cooking oil, subjected to chemical pre-treatment prior to introduction in a pyrolysis reactor (System III), is considered an undesirable option (B/C < 1) due to the cost of the chemicals involved. Although the exclusion of chemical pre-treatment makes System III a desirable option, the total amount of heat of combustion generated is less. The increased electricity cost required for the process has no effect on the benefit-cost ratio of System II. However, System III, excluding chemical pre-treatment, becomes an unprofitable alternative when the electricity cost reaches 100% of the fixed capital cost at the minimum conversion rate.

  20. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Boguta, Anna Monika; Bringel, Francoise; Martinussen, Jan;

    2014-01-01

    lactic acid bacteria was evaluated regarding their properties with respect to the conversion of lignocellulosic feedstocks. The strains were examined for their ability to utilize xylose and arabinose as well as their resistance towards common inhibitors from pretreated lignocellulosic biomass (furan...... derivatives, phenolic compounds, weak acids). Results: Among 296 tested Lactobacillus and Pediococcus strains, 3 L. pentosus, 1 P. acidilactici and 1 P. pentosaceus isolates were found to be both capable of utilizing xylose and arabinose and highly resistant to the key inhibitors from chemically pretreated...

  1. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  2. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  3. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  4. Investigation of mouldability for feedstocks used powder injection moulding

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Cetin [Gazi University, Faculty of Technology, Department of Mechanical Technology, Teknikokullar, 06500 Ankara (Turkey); Soezen, Adnan [Gazi University, Faculty of Technology, Department of Mechanical Technology, Teknikokullar, 06500 Ankara (Turkey)], E-mail: asozen@gazi.edu.tr; Arcaklioglu, Erol [The Scientific and Technological Research Council of Turkey, Tunus Caddesi No. 80 06100 Kavaklidere / Ankara (Turkey); Erguney, Sami [Gazi University, Faculty of Technology, Department of Mechanical Technology, Teknikokullar, 06500 Ankara (Turkey)

    2008-10-15

    In this study performed experimental and theoretical analysis of mouldability for feedstocks used powder injection moulding. This study covers two main subjects: (i) The experimental analysis: The barrel temperature, injection pressure and flow rate are factors for powder injection moulding (PIM). Powder-binder mixture using as feedstock as feedstock in PIM requires a little more attention and sensitivity. Obtaining the balance among with pressure, temperature and especially flow rate are the most important in aspect of undesirable conclusions such as powder-binder separation, sink marks and crack in moulded party structure. In this study; available feed stocks using in PIM were injected in three different cavities which consist of zigzag form, constant cross section and stair form (in five different thicknesses) mouldability them are measured. Because of difference between material and binder measured lengths were different. These were measured as 533 mm, 268 mm, 211 mm and 150 mm in advanced materials trade mark Fe-2Ni, BASF firm Catamould AO-F, FN02, 316L stainless steel, respectively. (ii) The theoretical analysis: The use of artificial neural network (ANN) has been proposed to determine the mouldability for feedstocks using in powder injection moulding using results of experimental analysis. In order to train the neural network, limited experimental measurements were used as training and test data. The best fitting training data set was obtained with three and four neurons in the hidden-layer, which made it possible to predict yield length with accuracy at least as good as that of the experimental error, over the whole experimental range. After training, it was found the R{sup 2} values are 0.999463, 0.999445, 0.999574 and 0.999593for Fe-2Ni, BASF firm Catamould AO-F, FN02, 316L stainless steel, respectively. Similarly, these values for testing data are 0.999129, 0.999666, 0.998612 and 0.997512, respectively. As seen from the results of mathematical modeling

  5. Evaluating possible cap and trade legislation on cellulosic feedstock availability

    Energy Technology Data Exchange (ETDEWEB)

    Hellwinckel, C.M.; West, Tristram O.; De La Torre Ugarte, D. G.; Perlack, Robert D.

    2010-09-08

    An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates.We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level.

  6. Pectin-rich biomass as feedstock for fuel ethanol production

    OpenAIRE

    Edwards, Meredith C.; Doran-Peterson, Joy

    2012-01-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most stu...

  7. Why did the price of solar PV Si feedstock fluctuate so wildly in 2004–2009?

    International Nuclear Information System (INIS)

    Great attention has been paid to the origin of observed wild price fluctuations of solar PV Si feedstock in both contract and spot markets during 2004–2009. This paper sheds light on this issue and tries to resolve it by addressing the following questions: what kind of structural shock is underlying the price fluctuations of PV Si feedstock? How can we quantify the magnitude, timing and relative importance of these shocks? What are their dynamic effects on the real price of PV Si feedstock? By carefully studying development conditions, the structural decomposition of the real price of PV Si feedstock is proposed: exchange rate shocks, production cost shocks, aggregate demand shocks and demand shocks specific to feedstock markets. With a Structural Vector Autoregression model, the paper quantifies and verifies the impact of structural shocks on PV Si feedstock real price changes. Based on national data, an analysis is further taken to confirm the essential role of demand shocks specific to feedstock markets in determining sharper price fluctuations during 2004–2009. The results of this study have important implications for national solar PV development, which can be better promoted and administrated if structural shocks in feedstock markets can be carefully evaluated and understood. - Highlights: ► The determination of solar PV Si feedstock price fluctuation is identified and quantified. ► Systematic structural shocks well explain 2004–2009 price fluctuations of PV Si feedstock. ► Production cost and aggregated demand shocks take longer effects on feedstock price. ► Exchange rate and feedstock specific demand shocks explain sharper price fluctuations. ► Development of national PV power should consider effects of structure shocks.

  8. Life-cycle assessment of local feedstock supply scenarios to compare candidate biomass sources

    OpenAIRE

    Godard, Caroline; Boissy, Joachim; Gabrielle, Benoit

    2011-01-01

    The use of Life Cycle Assessment (LCA) as a comprehensive tool to assess environmental impacts of bioenergies is recommended. Nevertheless, several methodological points remain under debate, particularly regarding the feedstock production step, which is a key stage of bioenergy chains. The present work focuses on field emissions during feedstock production, improving assessment methods by the use of process-based models. To do so, a real bioenergy chain, the local feedstock supply for a boile...

  9. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  10. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    International Nuclear Information System (INIS)

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr−1 to 240 000 t yr−1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached. (letter)

  11. SUSTAINABLE PRODUCTION OF MICROALGAE OIL FEEDSTOCK USING MUNICIPAL WASTEWATER AND CO2 FERTILIZATION

    Directory of Open Access Journals (Sweden)

    Gina Chaput

    2012-07-01

    Full Text Available The increasing scarcity of fossil fuels has forced industry to look for new cost effective, clean,and sustainable sources of energy. With recent advances in technology, biofuels have become a more viableoption. Microalgae are cost effective and efficient feedstock for the production of biodiesel. One of the algae advantages is the ability to grow it in a wastewater media. This provides essential nutrients without the addition of chemicals. When grown in a photobioreactor, the algae can be cultivated on non-arable land, preventing competition with food supply unlike other leading biodiesel feedstocks such as canola and soybean crop. The strain of algae used in this study was Chlorella sp. The primary goals of this project were to determine the viability of algae growth in a wastewater medium, test the effectiveness of an alternate nitrogen source, andexamine the effects of CO2 fertilization on algae growth and lipid content. Sodium bicarbonate was used to simulate CO2 fertilization. Results showed that: the use of a 50/50 wastewater/reverse osmosis (RO medium yielded 83% of the lipid productivity of a 100% RO medium while the 100% wastewater medium yielded 35% of the lipid productivity; urea as a substitute for KNO3 in 100% RO, 50/50, and 100% Wastewater medium increased lipid productivity by 1.4%, 52.3%, and 88.3%, respectively. The lipid productivity of urea 100% wastewater medium was increased by 68.9% when fertilized with sodium bicarbonate. The optimum trial, a urea 100% wastewater medium with daily additions of sodium bicarbonate, had a lipid productivity of 0.062 grams/liter of growth medium and a volumetric biomass yield of 0.15 grams per liter-day.

  12. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    Science.gov (United States)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A.; MacLean, Heather L.

    2015-12-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr-1 to 240 000 t yr-1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached.

  13. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  14. Biofuels feedstock development program. Annual progress report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

  15. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. (author)

  16. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  17. Security of feedstocks supply for future bio-ethanol production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Silalertruksa, Thapat; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Prachauthit Road, Bangkok 10140 (Thailand)

    2010-11-15

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. (author)

  18. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  19. The Impact of Feedstock Supply and Petroleum Price Variability on Domestic Biofuel and Feedstock Markets – The Case of the United States

    OpenAIRE

    Yano, Yuki; Blandford, David; Surry, Yves R.

    2010-01-01

    The promotion of biofuel use in preference to traditional petroleum-based transportation fuel has linked agricultural commodity markets and energy markets more closely together. Biofuel policies can involve multiple policy instruments, but studies examining their effects on biofuel feedstock and energy markets are scarce. In addition, the impact of alternative policy approaches in the context of variability in petroleum prices and the supply of biofuel feedstock has received limited attention...

  20. Investigating the impact of biomass quality on near-infrared models for switchgrass feedstocks

    Directory of Open Access Journals (Sweden)

    Lindsey M. Kline

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of incorporating switchgrass samples that have been in long term storage on the development of near-infrared (NIR multivariate calibration models and their predictive capabilities. Stored material contains more variation in their respective spectral signatures due to chemical changes in the bales with storage time. Partial least squares (PLS regression models constructed using NIR spectra of stored switchgrass possessed an instability that interfered with the correlation between the spectral data and measured chemical composition. The models were improved using calibration sample sets of equal parts stored and fresh switchgrass to more accurately predict the chemical composition of stored switchgrass. Acceptable correlation values (rcalibration were obtained using a calibration sample set composed of 25 stored samples and 25 samples of fresh switchgrass for cellulose (0.91, hemicellulose (0.74, total carbohydrates (0.76, lignin (0.98, extractives (0.92, and ash (0.87. Increasing the calibration sample set to 100 samples of equal parts stored to senesced material resulted in statistically increased (p = 0.05 correlations for total carbohydrates (0.89 and ash (0.96. When these models were applied to a separate validation set (equal to 10% of the calibration sample set, high correlation coefficients (r for predicted versus measured constituent content were observed for cellulose (0.94, total carbohydrates (0.98, lignin (0.91, extractives (0.97, and ash (0.90. For optimization of processing economics, the impact of feedstock storage must be investigated for implementation in conversion processes. While NIR is a well-known high-throughput technique for characterization of senesced switchgrass, the selection of appropriate calibration samples and consequent multivariate models must be taken into careful consideration for NIR application in a biomass storage facility for rapid chemical compositional

  1. Coke deactivation of catalysts for hydroprocessing of heavy petroleum feedstocks

    International Nuclear Information System (INIS)

    Harwell's principal contribution to the study of the role of coke in the deactivation of catalysts for hydroprocessing of heavy petroleum feedstocks has been the development and application of nuclear microprobe methods to measure the distributions of hydrogen, carbon, nitrogen and other elements in coked catalyst pellets. Nuclear microprobe methods have been developed that allow the measurement of the distribution of carbon, hydrogen, nitrogen and heavier elements in coked catalyst pellets. At present analysis by both deuteron and helium-4 ion beams is necessary to cover the complete range of elements. The potential of using helium-3 irradiation alone to measure all elements is as yet unrealised. Applications have included studies of the variability of profiles in batches of used pellets, investigation of interrelationships between coke components and limited kinetic studies. Many of these applications have proved to be successful and nuclear microprobe methods should continue to be exploited studies of catalyst coking. (au)

  2. New Zealand Coals - A Potential Feedstock for Deep Microbial Life

    DEFF Research Database (Denmark)

    Glombitza, Clemens

    2010-01-01

    metabolism. Thus, lithologies containing accumulated sedimentary organic matter (e.g. lignites and coals) may provide a large feedstock for deep microbial life releasing LMWOAs into the pore water during maturation. In this thesis, lignite and coal samples from sedimentary basins of New Zealand covering a......, the observed substrate release from lignites and coals over geological times must be influenced and slowed down by further processes such as e.g. pore space, permeability, pore water flow and diffusion. The calculated kinetic parameters point to structural alteration within the macromolecular network...... with more than one hydroxy groups represent important cross-linkage structures. In contrast to the terminal ether-bound monoalcohols which show a rapid decrease during diagenetic alteration, these compounds show relatively high concentrations even in the more mature coals suggesting that these cross...

  3. Cuphea oil as a potential biodiesel feedstock to improve fuel properties

    Science.gov (United States)

    One of the approaches to improving the fuel properties of biodiesel, a fuel derived from vegetable oils, animal fats, or other triacylglycerol-containing materials, is to use a feedstock with an inherently different fatty acid profile than most common feedstocks such as commodity vegetable oils. Cup...

  4. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.;

    2014-01-01

    pretreatment on methane yield and on the structural characteristics of the feedstocks was assessed. A detailed characterization of the pretreated feedstocks through techniques such as scanning electron microscopy (SEM), X-Ray diffraction (XRD) and IR spectroscopy will also be presented. References [1] Kim, M...

  5. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  6. Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels

    International Nuclear Information System (INIS)

    Highlights: • Optimization of pretreatment methods for Parthenium hysterophorus for bioalcohol production. • Physical, chemical and physicochemical pretreatments methods employed. • Most efficient treatment: autoclaving 121 °C, 15 psi for 30 min in 1% H2SO4 solution. • TFS (total fermentable sugar) yield after pretreatment and enzymatic hydrolysis = 397.7 mg/g raw biomass. • Parthenium hysterophorus is at par with agro- and forest residues as biofuels feedstock. - Abstract: Parthenium hysterophorus world’s seven most devastating and hazardous weeds, and is abundantly available in several parts of the world. This study treats the subject of effective utilization of this waste biomass (which has cellulose content of 45.2 ± 1.81% w/w) for biofuels production. We have presented a comprehensive and comparative assessment of numerous pretreatment strategies for P. hysterophorus, comprising of all major physical, chemical and physicochemical methods. The yardstick of assessment has been amount of fermentable sugars released during the pretreatment and the post-treatment enzymatic hydrolysis of pretreated biomass. Carboxymethylcellulase (1.0 U/mg, 1.7 mg/mL) produced by an isolate Bacillus amyloliquefaciens SS35 and β-glucosidase (Novozyme 188), have been used for enzymatic hydrolysis of pretreated biomass. Among the different methods employed for pretreatment, the most efficient treatment has been revealed to be autoclaving of biomass at 121 °C and 15 psi pressure for 30 min in acidic (1% v/v, H2SO4) environment. Total reducing sugar (TRS) yield during this pretreatment, mainly due to hydrolysis of hemicellulosic fraction of biomass, has been 285.3 mg/g of raw biomass. Further enzymatic hydrolysis resulted in reducing sugar yield of 187.4 mg/g of pretreated biomass (9.37 g/L). The total fermentable sugar (TFS) yield from the optimized pretreatment was 397.7 mg/g raw biomass (39.77 g/100 g raw biomass). The effects of different pretreatment methods on

  7. Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply

    OpenAIRE

    Gabrielle, Benoit; Bamière, Laure; Caldes, Natalia; Cara, Stéphane; Decocq, Guillaume; Ferchaud, Fabien; Lechon, Yolanda; Loyce, Chantal,; Pelzer, Elise; Wohlfahrt, Julie; Richard, Guy

    2013-01-01

    submitted to Renewable and Sustainable Energy Reviews Meeting future policy targets for bioenergy development worldwide poses major challenges for biomass feedstock supply chains in terms of competitiveness, reliability and sustainability. This paper reviews current knowledge on the sustainability of agricultural feedstock supply chains and emphasize future research needs. It covers annual and perennial feedstocks, and environmental, economic and social aspects. Knowledge gaps and technolo...

  8. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2009-01-15

    In recent years, the acceptance of fatty acid methyl esters (biodiesel) as a substitute to petroleum diesel has rapidly grown in Greece. The raw materials for biodiesel production in this country mainly include traditional seed oils (cotton seed oil, sunflower oil, soybean oil and rapeseed oil) and used frying oils. In the search for new low-cost alternative feedstocks for biodiesel production, this study emphasizes the evaluation of pumpkin seed oil. The experimental results showed that the oil content of pumpkin seeds was remarkably high (45%). The fatty acid profile of the oil showed that is composed primarily of linoleic, oleic, palmitic and stearic acids. The oil was chemically converted via an alkaline transesterification reaction with methanol to methyl esters, with a yield nearly 97.5 wt%. All of the measured properties of the produced biodiesel met the current quality requirements according to EN 14214. Although this study showed that pumpkin oil could be a promising feedstock for biodiesel production within the EU, it is rather difficult for this production to be achieved on a large scale. (author)

  9. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production.

    Science.gov (United States)

    Qin, Lei; Wang, Zhongming; Sun, Yongming; Shu, Qing; Feng, Pingzhong; Zhu, Liandong; Xu, Jin; Yuan, Zhenhong

    2016-05-01

    The potential of microalgae consortia used in dairy wastewater treatment combined with microalgae biodiesel feedstock production was evaluated by comparing the nutrient removal of dairy wastewater, the growth of cells, and the lipid content and composition of biomass between monoalgae and microalgae consortia cultivation system. Our results showed that higher chemical oxygen demand (COD) removal (maximum, 57.01-62.86 %) and total phosphorus (TP) removal (maximum, 91.16-95.96 %) were achieved in almost microalgae consortia cultivation system than those in Chlorella sp. monoalgae cultivation system (maximum, 44.76 and 86.74 %, respectively). In addition, microalgae consortia cultivation except the mixture of Chlorella sp. and Scenedesmus spp. reached higher biomass concentration (5.11-5.41 g L(-1)), biomass productivity (730.4-773.2 mg L(-1) day(-1)), and lipid productivity (143.7-150.6 mg L(-1) day(-1)) than those of monoalgae cultivation (4.72 g L(-1), 674.3, and 142.2 mg L(-1) day(-1), respectively) on the seventh day. Furthermore, the fatty acid methyl ester (FAME) profiles indicated the lipids produced from microalgae consortia cultivation system were more suitable for biodiesel production. The microalgae consortia display superiority in dairy wastewater treatment and the getting feedstock for biodiesel production. PMID:26780059

  10. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  11. Preliminary life-cycle assessment of biomass-derived refinery feedstocks for reducing CO2 emissions

    International Nuclear Information System (INIS)

    The US by ratification of the United Nations Framework Convention on Climate Change has pledged to emit no higher levels of greenhouse gases in the year 2000 than it did in 1990. Biomass-derived products have been touted as a possible solution to the potential problem of global warming. However, past studies related to the production of liquid fuels, chemicals, gaseous products, or electricity from biomass, have only considered the economics of producing these commodities. The environmental benefits have not been fully quantified and factored into these estimates until recently. Evaluating the environmental impact of various biomass systems has begun using life-cycle assessment. A refinery Linear Programming model previously developed has been modified to examine the effects of CO2-capping on the US refining industry and the transportation sector as a whole. By incorporating the results of a CO2 emissions inventory into the model, the economic impact of emissions reduction strategies can be estimated. Thus, the degree to which global warming can be solved by supplementing fossil fuels with biomass-derived products can be measured, allowing research and development to be concentrated on the most environmentally and economically attractive technology mix. Biomass gasification to produce four different refinery feedstocks was considered in this analysis. These biomass-derived products include power, fuel gas, hydrogen for refinery processing, and Fischer-Tropsch liquids for upgrading and blending into finished transportation fuels

  12. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation. PMID:25248867

  13. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    International Nuclear Information System (INIS)

    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  14. Desarrollo de feedstocks para el moldeo por inyección de metales (MIM).

    OpenAIRE

    Torralba Castelló, José Manuel; Jiménez Morales, Antonia

    2008-01-01

    En la actualidad, más del 90% del feedstock utilizado en Europa, es un feedstock que se vende bajo patente de la multinacional BASF, con escasas posibilidades de modificación en cuanto a composiciones y con poco margen de costes (en Japón o EEUU el porcentaje es muy inferior). Nuestro grupo de investigación, Grupo de Tecnología de Polvos (GTP), está capacitado para el desarrollo de feedstocks a medida y con posibilidad de ser desarrollado ‘in situ’ por y para cualquier fabricante de piezas ví...

  15. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  16. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  17. Characterization of food waste as feedstock for anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ruihong Zhang; El-Mashad, H.M.; Hartman, K.; Fengyu Wang; Guangqing Liu [University of California (United States). Biological and Agricultural Engineering; Choate, C.; Gamble, P. [Norcal Waste Systems, Inc., Dixon, CA (United States)

    2007-03-15

    Food waste collected in the City of San Francisco, California, was characterized for its potential for use as a feedstock for anaerobic digestion processes. The daily and weekly variations of food waste composition over a two-month period were measured. The anaerobic digestibility and biogas and methane yields of the food waste were evaluated using batch anaerobic digestion tests performed at 50 {sup o}C. The daily average moisture content (MC) and the ratio of volatile solids to total solids (VS/TS) determined from a week-long sampling were 70% and 83%, respectively. The nutrient content analysis showed that the food waste contained well balanced nutrients for anaerobic microorganisms. The methane yield was determined to be 348 and 435 mL/g VS, respectively, after 10 and 28 days of digestion. The average methane content of biogas was 73%. The average VS destruction was 81% at the end of the 28-day digestion test. The results of this study indicate that the food waste is a highly desirable substrate for anaerobic digester with regards to its high biodegradability and methane yield. (author)

  18. The potential of restaurant trap grease as biodiesel feedstock

    Directory of Open Access Journals (Sweden)

    Parichart Hasuntree

    2011-10-01

    Full Text Available The possibility of using restaurant trap grease as feedstock in the production of biodiesel via acid catalyzed esterificationis explored in this study. Sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid (FFA andmethanol. The FFA levels of restaurant trap greases were reduced from 60.38±2.22 mg KOH/g to 11.60±1.60 mgKOH/g whenconditions for biodiesel production are as follow: methanol-to-FFA ratio of 5:1, 5 wt.% H2SO4, and a reaction temperature at60°C with a reaction time of 60 min. During the acid-catalyzed esterification, the percentage of methyl esters resulting fromconversion of FFA in the obtained product was 83.59±1.51% based on the result of 1H NMR analysis. Data obtained from the23 full factorial designs revealed that methanol-to-FFA ratio term had the most significant effect on the percentage of methylesters, followed by the H2SO4 concentration. Conversely, reaction time between 1 and 3 hours had no significant effect on theesterification of trap greases.

  19. Corn-based feedstock for biofuels: Implications for agricultural sustainability

    Science.gov (United States)

    Tan, Z.

    2010-12-01

    Crop residue as a source of feedstock for biofuels production must retain ecosystem services and be sustainable. The challenge is to develop cropping system management strategies that balance the demand for increasing biofuel needs with ecosystem sustainability. This study was designed to evaluate impacts of changes in land use and management caused by corn-based biofuel production (grain, cob, stover) on soil fertility and ecosystem sustainability. Our specific goal was to investigate how the levels of corn residue removal influence current soil carbon and nutrient budgets and how these budgets are maintained under proposed production scenarios. Soil organic carbon (SOC), an important carbon component in the life cycle of biofuel production, is a sensitive indicator of cropping system sustainability. We used a soil carbon and nutrient balance approach developed from published field observations and a validated mechanistic model to analyze historical corn grain yields and fertilizer usage associated with various management practices at the county scale across the United States. Our analyses show that ecosystem carbon flux demonstrates significant spatial variability, relying heavily on the total biomass production level and residue harvest intensity; SOC budgets depend mainly on the proportion of residue removal, tillage type, and previous SOC stock level. Our results also indicate that corn cob removal for biofuel has little effect on soil carbon and nutrient balances under conventional management practices, while necessary irrigation can contribute greatly to corn-based biofuel production and ecosystem sustainability in the western side of the Great Plains and the eastern foothills of the Rocky Mountains.

  20. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Garold Linn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, Kevin Louis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  1. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  2. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [ORNL; Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be

  3. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    International Nuclear Information System (INIS)

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R and D (FCR and D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be ∼90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co

  4. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro H.; Hernandez, Rafael; French, William Todd; Estevez, L. Antonio; Meckes, Mark; Trillo, Marlene; Hall, Jacqueline

    2011-12-01

    The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 × 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletion was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 × 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.

  5. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical resources

  6. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-11-01

    Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

  7. Petroleum and petroleum/coal blends as feedstocks in laboratory-scale and pilot-scale cokers to obtain carbons of potentially high value

    Science.gov (United States)

    Escallon, Maria M.

    2008-12-01

    The main goal of this research is to understand how the chemical composition of the feedstock and reactor design affects the quality of the coke toward the formation of a needle (premium) coke. Although a lot of information has been published related to the production of the premium coke, via mesophase formation, some contradictory results have been reported because the conclusions are reached based on chemical composition of the feedstock alone or reactor design alone. A raw decant oil, EI-107, was hydrotreated to different levels giving origin to six derivatives. Based on greater differences in chemical composition between the hydrotreated decant oils and the raw decant oil, and the sample quantity, three out of six derivatives were selected to continue with the carbonization process. It was found that the quality of the coke obtained through the pyrolysis of the four decant oils using the reactor operated at atmospheric pressure and 465°C (LSCopen) is related to the chemical composition of the decant oil. The coke that displays the lowest coke quality is EI-135, which is explained by the presence of five-membered rings and biphenyls in the decant oil that are detrimental to the mesophase formation due to the loss of planarity and free rotation. Even though this decant oil has alkylbenzenes which improve the mesophase formation, it appears that the amount of these compounds is not enough to compensate the negative effect that five-membered rings and biphenyls exert on the mesophase. The next best coke in quality is EI-107. While its feedstock (EI-107) has the lowest amount of alkylbenzenes and naphthenic compounds, the decant oil EI-107 displays little or no presence of five-membered rings and biphenyls making its quality higher than coke EI-135. The cokes EI-134 and EI-138 display, respectively, the highest coke quality among the four cokes tested. Their feedstocks have the highest amount of alkylbenzenes and naphthenic compounds but an intermediate content of

  8. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  9. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. PMID:27491712

  10. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

    2008-12-01

    With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

  11. Policies to Facilitate Conversion of Millions of Acres to the Production of Biofuel Feedstock

    OpenAIRE

    Epplin, Francis M.; Haque, Mohua

    2011-01-01

    First-generation grain ethanol biofuel has affected the historical excess capacity problem in U.S. agriculture. Second-generation cellulosic ethanol biofuel has had difficulty achieving cost-competitiveness. Third-generation drop-in biofuels are under development. If lignocellulosic biomass from perennial grasses becomes the feedstock of choice for second- and third-generation biorefineries, an integrated system could evolve in which a biorefinery directly manages feedstock production, harves...

  12. Process grease : a possible feedstock for biodiesel production / Roelof Jacobus Venter.

    OpenAIRE

    Venter, Roelof Jacobus

    2013-01-01

    The utilisation of waste process grease (WPG) as feedstock for biodiesel production was investigated in this study. WPG is a lubrication oil used in the metalworking industry and is considered a hazardous waste material. WPG contains vegetable oil and animal fat which are used as base oils in the lubricant formulation. Three different production routes were followed to produce biodiesel using WPG as feedstock. The first production route involved the conventional two-step production proces...

  13. The effect of feedstock cost on biofuel cost as exemplified by biomethane production from grass silage.

    OpenAIRE

    McEniry, J.; O’Kiely, P.; Crosson, P.; Groom, Elaine; Murphy, J. D.

    2011-01-01

    Abstract: The potential variance in feedstock costs can have signifi cant implications for the cost of a biofuel and the fi nancial viability of a biofuel facility. This paper employs the Grange Feed Costing Model to assess the cost of on-farm biomethane production using grass silages produced under a range of management scenarios. These costs were compared with the cost of wheat grain and sugarbeet roots for ethanol production at an industrial scale. Of the three feedstocks examined, grass s...

  14. A Baseline Study of Biofuel Feedstock Growth on Non-Traditional Agronomic Land in Utah

    OpenAIRE

    Hanks, Dallas A.

    2012-01-01

    The goal of the Non-Traditional Agronomic Land (NTAL) Project is to develop sustainable, agronomic, crop growth methods that will allow biofuel feedstock production to occur on marginal or non-traditional plots of land, e.g., roadways, railroads, airports, and military installations. Recent economic feasibility models by Utah State University (USU) indicate these lands could, in theory, produce one billion gallons of economically viable new feedstock annually. Specifically, USU models show th...

  15. Assessment on the Use of Marginal Areas for Cultivation of Feedstock for Biofuel

    OpenAIRE

    Briones, Roehlano M.

    2011-01-01

    The Philippines has made a major push toward development of biofuel, enacting biofuels mandates and subsidies by the Biofuels Law. To maintain food security, biofuels policies currently restrict feedstock production to marginal lands. This raises its own issues related to commercial viability, small farmer livelihood, and environmental sustainability. This study conducts a field investigation of these issues, covering small holder feedstock producers producing sugarcane, cassava, and coconut....

  16. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    OpenAIRE

    Berenika Hausnerova; Ivo Kuritka; Davit Bleyan

    2014-01-01

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions co...

  17. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    OpenAIRE

    He, Wei

    2011-01-01

    Liquid fuels produced via the steam hydrogasification of biomass feedstock followed by downstream gas to liquid processes appears to be a cost effective approach to replace fossil fuels, to decrease the dependence of imported oil and to decrease greenhouse gas emissions. A critical technical obstacle of using biomass feedstock effectively in many gasification processes, including steam hydrogasification, is the need to prepare a high carbon concentrated (i.e., high energy) slurry that can b...

  18. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  19. Chemical hazards analysis of resilient flooring for healthcare.

    Science.gov (United States)

    Lent, Tom; Silas, Julie; Vallette, Jim

    2010-01-01

    This article addresses resilient flooring, evaluating the potential health effects of vinyl flooring and the leading alternatives-synthetic rubber, polyolefin, and linoleum-currently used in the healthcare marketplace. The study inventories chemicals incorporated as components of each of the four material types or involved in their life cycle as feedstocks, intermediary chemicals, or emissions. It then characterizes those chemicals using a chemical hazard-based framework that addresses persistence and bioaccumulation, human toxicity, and human exposures. PMID:21165873

  20. Evaluating silicon concentrations in biofuel feedstock crops Miscanthus and switchgrass

    International Nuclear Information System (INIS)

    Silicon (Si) concentrations in biofuel feedstock crops have a critical role in combustion processes. The purpose of this study was to quantify Si concentrations in plant biomass samples and to evaluate the contributing factors for Si concentrations. We determined total Si concentrations in Miscanthus x giganteus (M. x giganteus) collected from various research trial plots in the eastern U.S. and in Miscanthus spp. and Panicum virgatum, 'Cave-in-Rock' (switchgrass) from an additional eight trial plots established across Illinois. Whole aboveground plant biomass at each site were air-dried and ground. Total Si concentrations in plant samples were determined by dry-ashing plant tissue in a muffle furnace, followed by alkaline fusion and then colorimetric analysis. Average Si concentrations in statewide M. x giganteus plant samples ranged from 0.72% to 1.6% and samples from within Illinois ranged from 0.55% to 2.4%. The overall median value of concentrations in M. x giganteus samples among all sites was 1.08%. The median value in switchgrass samples (1.5%) was 1.4 times higher than that for M. x giganteus. Among six other Miscanthus spp. samples from the Urbana trial plot in Illinois, Si concentrations were about 1/3 that of M. x giganteus. Variation in Si concentrations tended to be associated with temperature and precipitation of the location where the biofuel crops are being grown. We did not find any relationship between soil type and plant Si concentrations. Long-term evaluations of soil mineral concentrations and additional environmental factors are required to better understand the contributing factors for Si concentrations. -- Highlights: → Si concentrations were determined in Miscanthus and switchgrass biomass. → Biomass samples were from trials in the eastern USA. → Median switchgrass Si concentration was 1.4 times higher than Miscanthus. → Temperature and precipitation seemed to control Si concentrations. → Soil mineral and additional environmental

  1. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg-1, respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg-1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K+ and Mg2+, with the maximum concentration of 1.35 and 0.43 g L-1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  2. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  3. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. PMID:22695801

  4. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    International Nuclear Information System (INIS)

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  5. The top 50 commodity chemicals: Impact of catalytic process limitations on energy, environment, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Tonkovich, A.L.Y.; Gerber, M.A.

    1995-08-01

    The production processes for the top 50 U.S. commodity chemicals waste energy, generate unwanted byproducts, and require more than a stoichiometric amount of feedstocks. Pacific Northwest Laboratory has quantified this impact on energy, environment, and economics for the catalytically produced commodity chemicals. An excess of 0.83 quads of energy per year in combined process and feedstock energy is required. The major component, approximately 54%, results from low per-pass yields and the subsequent separation and recycle of unreacted feedstocks. Furthermore, the production processes, either directly or through downstream waste treatment steps, release more than 20 billion pounds of carbon dioxide per year to the environment. The cost of the wasted feedstock exceeds 2 billion dollars per year. Process limitations resulting from unselective catalysis and unfavorable reaction thermodynamic constraints are the major contributors to this waste. Advanced process concepts that address these problems in an integrated manner are needed to improve process efficiency, which would reduce energy and raw material consumption, and the generation of unwanted byproducts. Many commodity chemicals are used to produce large volume polymer products. Of the energy and feedstock wasted during the production of the commodity chemicals, nearly one-third and one-half, respectively, represents chemicals used as polymer precursors. Approximately 38% of the carbon dioxide emissions are generated producing polymer feedstocks.

  6. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  7. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production

    International Nuclear Information System (INIS)

    Fuel properties are largely dependent on the fatty acid (FA) composition of the feedstock from which biodiesel is prepared. Consequently, FA profile was employed as a screening tool for selection of feedstocks high in monounsaturated FAs for further evaluation as biodiesel. Those feedstocks included ailanthus (Ailanthus altissima L.), anise (Pimpinella anisum L.), arugula (Eruca vesicaria L.), cress (Lepidium sativum L.), cumin (Cuminum cyminum L.), Indian cress (Tropaeolum majus L.), shepherd’s purse (Capsella bursa-pastoris L.) and upland cress (Barbarea verna (Mill.) Asch.). Other selection criteria included saturated FA content, iodine value (IV), content of FAs containing twenty or more carbons and content of trienoic FAs. Anise oil satisfied all selection criteria and was therefore selected for further investigation. Arugula, cumin and upland cress oils were selected as antagonists to the selection criteria. Preparation of FA methyl esters (FAMEs, ≥ 92 wt % yield) following conventional alkaline-catalyzed methanolysis preceded fuel property determination. Of particular interest were oxidative stability and cold flow properties. Also measured were kinematic viscosity (40 °C), IV, acid value, free and total glycerol content, sulfur and phosphorous content, cetane number, energy content and lubricity. FAMEs prepared from anise oil yielded properties compliant with biodiesel standards ASTM D6751 and EN 14214 whereas the antagonists failed at least one specification contained within the standards. As a result, FA profile was an efficient predictor of compliance with biodiesel standards and is therefore recommended as a screening tool for investigation of alternative feedstocks. -- Highlights: ► Fatty acid methyl esters were prepared from several alternative feedstocks. ► Fatty acid composition was a principal factor influencing fuel properties. ► Oxidative stability and cold flow properties of biodiesel were examined in detail. ► Limits were developed

  8. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries.

    Science.gov (United States)

    Scoma, Alberto; Rebecchi, Stefano; Bertin, Lorenzo; Fava, Fabio

    2016-01-01

    Availability of bio-based chemicals, materials and energy at reasonable cost will be one of the forthcoming issues for the EU economy. In particular, the development of technologies making use of alternative resources to fossil fuels is encouraged by the current European research and innovation strategy to face the societal challenge of natural resource scarcity, fossil resource dependence and sustainable economic growth. In this respect, second- generation biorefineries, i.e. biorefineries fed with biowastes, appear to be good candidates to substitute and replace the present downstream processing scheme. Contrary to first-generation biorefineries, which make use of dedicated crops or primary cultivations to achieve such a goal, the former employ agricultural, industrial, zootechnical, fishery and forestry biowastes as the main feedstock. This leaves aside any ethical and social issue generated by first-generation approaches, and concomitantly prevents environmental and economical issues associated with the disposal of the aforementioned leftovers. Unfortunately, to date, a comprehensive and updated mapping of the availability and potential use of bioresources for second-generation biorefineries in Europe is missing. This is a lack that severely limits R&D and industrial applications in the sector. On the other hand, attempts at valorizing the most diverse biowastes dates back to the nineteenth century and plenty of information in the literature on their sustainable exploitation is available. However, the large majority of these investigations have been focused on single fractions of biowastes or single steps of biowaste processing, preventing considerations on an integrated and modular (cascade) approach for the whole valorization of organic leftovers. This review aims at addressing these issues by gathering recent data on (a) some of the main high-impact biowastes located in Europe and in particular in its Southern part, and (b) the bio-based chemicals, materials

  9. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Hernández-Pérez

    2016-06-01

    Full Text Available Abstract Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH42SO4, and full supplementation with (NH42SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30 °C, 200 rpm, for 48 h in 125 mL Erlenmeyer flasks containing either 25 or 50 mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67 g g-1 was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34 g L-1 h-1 was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate.

  10. Radiation methods for upgrading and refining of feedstock for oil chemistry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Upgrading and deep processing of heavy natural and artificial hydrocarbon mixes is a serious technological problem. Such countries as Canada, Kazakhstan, Russia, USA, and Venezuela are extremely rich with heavy hydrocarbon reserves such as heavy oil or bitumen, the giant Athabaska oil sand deposits. Commercial development of these resources has a global strategic importance. However, the presently applied classic thermocatalytic processing technology of bitumen and heavy oil has several serious technological problems is hamped further development of these fields because: Produced bitumen extracts and/or original heavy crudeoil are poorly flowing substances and can not be directly transported through pipelines - most effective transportation systems. They must be physically (using diluent) and/or chemically (by cracking) transformed into moveable substances. Nonupgraded bitumen extract and originally heavy crude are of low market value and also cannot be processed by majority existing refineries even in the countries of developed oil industry. When refined, non-upgraded bitumen extracts and heavy crude produces relatively small amounts of market valuable and satisfying environmental requirement products. Methods for oil feedstock radiation-induced conversion developed by the authors of the paper are based on original experiments on radiation processing of heavy and high-viscous oil, refining residue, heavy oil, oil product wastes, etc. Our analysis shows that radiation technology of hydrocarbon processing with its low capital and operational costs that several times lower than those for a conventional refinery, shall allow economically, technologically and environmentally overcoming noted problems by the most effective way. In this paper we discuss only applications of oil radiation processing for solution of transportation and refining problems of heavy oil crude and bitumen extract. Numerous laboratory experiments have

  11. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    Science.gov (United States)

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. PMID:26991282

  12. Technical and economic feasibility of utilizing apple pomace as a boiler feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, S.A.

    1983-01-01

    Apple pomace or presscake, was evaluated for suitability as a boiler feedstock for Michigan firms processing apple juice. Based upon the physical and chemical characteristics of pomace, handling/direct combustion systems were selected to conform with operating parameters typical of the industry. Fresh pomace flow rates of 29,030 and 88,998 kg/day (64,000 and 194,000 lb/day) were considered as representative of small and large processors, respectively, and the material was assumed to be dried to 15% moisture content (wet basis) prior to storage and combustion. Boilers utilizing pile-burning, fluidized-bed-combustion, and suspension-firing technologies were sized for each flow rate, resulting in energy production of 2930 and 8790 kW (10 and 30 million Btu/h), respectively. A life-cycle cost analysis was performed giving Average Annual Costs for the three handling/combustion system combinations (based on the Uniform Capital Recovery factor). An investment loan at 16% interest with a 5-year payback period was assumed. The break-even period for annual costs was calculated by anticipated savings incurred through reduction of fossil-fuel costs during a 5-month processing season. Large processors, producing more than 88,998 kg pomace/day, could economically convert to a suspension-fired system substituting for fuel oil, with break-even occurring after 4 months of operation of pomace per year. Small processors, producing less than 29,030 kg/day, could not currently convert to pomace combustion systems given these economic circumstances. A doubling of electrical-utility costs and changes in interest rates from 10 to 20% per year had only slight effects on the recovery of Average Annual Costs. Increases in fossil-fuel prices and the necessity to pay for pomace disposal reduced the cost-recovery period for all systems, making some systems feasible for small processors. 39 references, 13 figures, 10 tables.

  13. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel

    International Nuclear Information System (INIS)

    Scenedesmus obliquus was discussed by phycologists as a promising microalga for biofuel production based on its biomass and fatty acid productivity. In the present study, S. obliquus was pilot cultivated for large scale production in a semicontinuous culture for 3 months using polyethylene transparent bags. Cultivation of S. obliquus resulted in a maximum biomass productivity of 0.14 g L−1 d−1 and maximum esterified fatty acid productivity of 17.37 mg L−1 d−1 at light intensity of 130 μmol m−2 s−1. Using of different flocculants for biomass harvest showed maximum flocculation efficiency of 82% using 250 mg L−1 of NaOH for 2 h. Drying of the harvested biomass showed significant increase of esterified fatty acid content by 5 and 7% with respect to control at 75 and 100 °C, respectively. In addition, fatty acid profile and iodine number of S. obliquus oil meet biodiesel standard specifications which make the fatty acid of S. obliquus eligible for further research to be used as a feedstock for biofuel production. Furthermore, the present investigation showed that after oil extraction, the residual algal biomass increased survival and fresh weight of Artemia (brine shrimp) which confirms that the residual algal biomass can be significantly used as food additives for animal feeding. - Highlights: • Scenedesmus obliquus was cultivated in plastic bags in a semicontinuous culture for high biomass production. • Different flocculants were used for harvesting of S. obliquus and the oil was chemically extracted. • The residual algal biomass was used for feeding of Artemia. • The annual productivity of EFA from S. obliquus would be nearly 5 times higher than Jatropha. • The residual algal biomass increased survival and fresh weight of Artemia

  14. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Hailan; Markillie, Lye Meng; Culley, David E.; Mackie, Roderick I.; Hess, Matthias

    2013-03-28

    Metatranscriptomics—gene express profiling via DNA sequencing—is a powerful tool to identify genes that are ac- tively expressed and might contribute to the phenotype of individual organisms or the phenome (the sum of several phenotypes) of a microbial community. Furthermore, metatranscriptome studies can result in extensive catalogues of genes that encode for enzymes of industrial relevance. In both cases, a major challenge for generating a high quality metatranscriptome is the extreme lability of RNA and its susceptibility to ubiquitous RNAses. The microbial commu- nity (the microbiome) of the cow rumen efficiently degrades lignocelullosic biomass, generates significant amounts of methane, a greenhouse gas twenty times more potent than carbon dioxide, and is of general importance for the physio- logical wellbeing of the host animal. Metatranscriptomes of the rumen microbiome from animals kept under different conditions and from various types of rumen-incubated biomass can be expected to provide new insights into these highly interesting phenotypes and subsequently provide the framework for an enhanced understanding of this socio- economically important ecosystem. The ability to isolate large amounts of intact RNA will significantly facilitate accu- rate transcript annotation and expression profiling. Here we report a method that combines mechanical disruption with chemical homogenization of the sample material and consistently yields 1 mg of intact RNA from 1 g of rumen-in- cubated biofuel feedstock. The yield of total RNA obtained with our method exceeds the RNA yield achieved with pre- viously reported isolation techniques, which renders RNA isolated with the method presented here as an ideal starting material for metatranscriptomic analyses and other molecular biology applications that require significant amounts of starting material.

  15. Sorption Characteristic of Phenanthrene on Biochar-Amended Soils: Effect of feedstock, pyrolysis temperature, and aging duration

    Science.gov (United States)

    Hyun, S.; Kim, C.; Kim, Y. S.; Kim, J.

    2015-12-01

    The high sorption capacity of biochar is widely known in environmental studies. Especially, biochar is effective for removal of hydrophobic organic compounds (HOCs) due to high surface area and porosity. In this study, the sorption characteristic of biochar-amended soil was evaluated by sorption kinetic experiment of phenanthrene (PHE). For PHE sorption test, the effect of biochar feedstock (sludge waste char (SWC), municipal waste char (MWC) and wood char (WC), Giant Miscanthus (GM)), pyrolysis temperature (400°C, 500°C and 700°C,), and duration of amending period (0, 3, 6, and 12 months) was assessed. Field Emission-Scanning Electron Microscopy (FE-SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR) techniques were used to detect pore structure and the surface functional group of biochar amended soils. For all kinetic tests, apparent sorption equilibrium was attained in 24 hr. The result showed that sorption capacity of biochar amended soils was greatly influenced by biochar feedstock and pyrolysis temperature. For all samples, the sorption capacity of PHE by biochar amended soils decreased with aging period. This observation is due to the fact that the aromatic characters of biochar are different by feedstock and pyrolysis temperature and the amount of O-containing hydrophilic functional groups increased surfaces of biochar by natural oxidation (e.g. carboxyl groups) as confirmed by the result of FT-IR and FE-SEM. In addition, biochar pore blockage by inorganic minerals, which tended to increase with aging period, might attenuate the sorption capacity of samples. In conclusion, biochar derived from various feed stocks are all effective for PHE sorption. But the sorption capacity of biochar amended soils decreased with increasing aging duration most likely due to increasing hydrophilic functional groups of biochar surfaces and pore blockage by inorganic minerals in the weathering processes. Therefore, for the design of biochar amendment to attenuate

  16. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    OpenAIRE

    Uğur GÖKMEN; Türker, Mehmet; ÇİNİCİ, Hanifi

    2016-01-01

    In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm) were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG) based and can be dissolved in wate...

  17. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; Carpenter, Daniel L.

    2016-07-21

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 degrees C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 degrees C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease in lignin during torrefaction and switchgrass having the least. It is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

  18. The U.S. biodiesel use mandate and biodiesel feedstock markets

    International Nuclear Information System (INIS)

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm3 by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  19. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. PMID:26256682

  20. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water.

    Science.gov (United States)

    Sun, Kejing; Tang, Jingchun; Gong, Yanyan; Zhang, Hairong

    2015-11-01

    Hydrochars produced from different feedstocks (sawdust, wheat straw, and corn stalk) via hydrothermal carbonization (HTC) and KOH modification were used as alternative adsorbents for aqueous heavy metals remediation. The chemical and physical properties of the hydrochars and KOH-treated hydrochars were characterized, and the ability of hydrochars for removal of heavy metals from aqueous solutions as a function of reaction time, pH, and initial contaminant concentration was tested. The results showed that KOH modification of hydrochars might have increased the aromatic and oxygen-containing functional groups, such as carboxyl groups, resulting in about 2-3 times increase of cadmium sorption capacity (30.40-40.78 mg/g) compared to that of unmodified hydrochars (13.92-14.52 mg/g). The sorption ability among different feedstocks after modification was as the following: sawdust > wheat straw > corn stack. Cadmium sorption kinetics on modified hydrochars could be interpreted with a pseudo-second order, and sorption isotherm was simulated with Langmuir adsorption model. High cadmium uptake on modified hydrochars was observed over the pH range of 4.0-8.0, while for other heavy metals (Pb(2+), Cu(2+), and Zn(2+)) the range was 4.0-6.0. In a multi-metal system, the sorption capacity of heavy metals by modified hydrochars was also higher than that by unmodified ones and followed the order of Pb(II) > Cu(II) > Cd(II) > Zn(II). The results suggest that KOH-modified hydrochars can be used as a low cost, environmental-friendly, and effective adsorbent for heavy metal removal from aqueous solutions. PMID:26081779

  1. Strategy of changing cracking furnace feedstock based on improved group search optimization

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Nian; Zhenlei Wang; Feng Qian

    2015-01-01

    The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is pro-posed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the“excel-lent”infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Final y, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.

  2. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  3. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. (author)

  4. Effects of Humidity On the Flow Characteristics of PS304 Plasma Spray Feedstock Powder Blend

    Science.gov (United States)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2002-01-01

    The effects of environmental humidity on the flow characteristics of PS304 feedstock have been investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to a Tom temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative humidity (RH) The results suggest that the feedstock flow is slightly degraded with increasing humidity below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These results offer guidance that enhances the commercial potential for this material system.

  5. Sugar cane/sweet sorghum as an ethanol feedstock in Louisiana and Piedmont

    International Nuclear Information System (INIS)

    Cost to provide readily fermentable feedstock for a year round sweet sorghum-to-ethanol production facility, up to the point at which fermentation begins, was determined. It was assumed that sweet sorghum is produced on marginal crop lands in the Southeastern Piedmont, and is purchased, standing in the field by a central ethanol production facility. Feedstock cost varied from $1.96 to $2.98/gal of ethanol potential depending on harvest system and use of by-products. Major contributors to feedstock cost were field production, harvest/field processing, and cost to evaporate juice to a storable syrup. Cost to transport feedstock to a central production facility, and cost of storage were relatively minor components of total cost, contributing only $0.05 and $0.06/gal ethanol potential, respectively. For a point of comparison, cost of producing ethanol feedstock from sugar cane, based on current processing practices in Louisiana sugar mills, was determined to be $2.50/gal ethanol potential. This cost is higher than determined for most options in the Piedmont for two reasons: (1) sugar cane demands a higher price in Louisiana than was assumed for sweet sorghum in the Piedmont, and (2) little market exists in Louisiana for by-products of sugar milling, consequently, no by-product credit was assigned. Current market value of ethanol must approximately double before a sweet sorghum-to-ethanol industry in the Piedmont could be economically viable, as no opportunity was identified for a significant reduction in feedstock cost

  6. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  7. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  8. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  9. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve the...

  10. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  11. Biotechnology for producing fuels and chemicals from biomass. Volume 2: Fermentation chemicals from biomass

    Science.gov (United States)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing chemicals by fermentation is discussed: acetone; butanol; acetic acid; citric acid; 2,3-butanediol, and propionic acid. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5 percent to 7 percent/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. The feedstock cost is 15 to 20 percent of the overall cost of production. The anticipated 5 percent growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. The commercial fermentative production of propionic acid has not yet been developed.

  12. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. PMID:26683567

  13. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  14. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  15. Crop Residue as Feedstock for the New Bioeconomy: Opportunities and Roadblocks

    Science.gov (United States)

    Producing ethanol and bio-products from renewable feedstock is receiving great attention throughout the U.S., especially as fuel prices soar. Prior to the 20th Century, agriculture was a major energy producer. It is not surprising that crop residues have again been identified as an important renewab...

  16. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    Science.gov (United States)

    Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.

    2013-12-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.

  17. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    Science.gov (United States)

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  18. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.

    Science.gov (United States)

    Kwit, Charles; Stewart, C Neal

    2012-01-01

    There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks. PMID:22471071

  19. Towards fermentation of galacturonic acid-containing feedstocks with Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huisjes, E.H.

    2013-01-01

    The ambition to reduce our current dependence on fossil transportation fuels has driven renewed interest in bioethanol. Pectin-rich feedstocks like sugar beet pulp and citrus peel, which are currently sold as cattle feed, are promising raw materials for the production of bioethanol. This thesis expl

  20. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  1. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  2. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    OpenAIRE

    Johanna Niemisto; Paula Saavalainen; Eva Pongracz; Riitta L. Keiski

    2013-01-01

    This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is perform...

  3. Biodiesel Derived from a Feedstock Enriched in Palmitoleic Acid, Macadamia Nut Oil

    Science.gov (United States)

    Numerous vegetable oils, animal fats or other feedstocks have been investigated for obtaining biodiesel, defined as the mono alkyl esters of vegetable oils and animal fats. While biodiesel is competitive with petrodiesel, technical problems facing biodiesel include cold flow and oxidative stability...

  4. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    Science.gov (United States)

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  5. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Science.gov (United States)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  6. Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol

    Science.gov (United States)

    Seashore mallow (Kosteletzkya pentacarpos) is a non-invasive perennial nonclonal halophytic oilseed-producing dicot that was investigated as a feedstock for production of biodiesel from seeds and ethanol from residual stem biomass. Seashore mallow seeds contained 19.3 mass % oil, which after extract...

  7. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    International Nuclear Information System (INIS)

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia

  8. Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Xianhua Liu; Guangyi Wang

    2011-01-01

    The overall goal of this work was to develop a saccharification method for the production of third generation biofuel(i.e.bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia.Under optimum conditions(120℃ and 2% sulfuric acid for 30 min), dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose(4.1mM or 4.3g glucose/kg fresh algal biomass). However, two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enzymatic hydrolysis) produced 13.8g of glucose from one kilogram of fresh algal feedstock. Batch fermentation analysis produced 79.1g EtOH from one kilogram of dried invasive algal feedstock using the ethanologenic strain Escherichia coli K011. Furthermore, ethanol production kinetics indicated that the invasive algal feedstock contained different types of sugar, including C5-sugar. This study represents the first report on third generation biofuel production from invasive macroalgae, suggesting that there is great potential for the production of renewable energy using marine invasive biomass.

  9. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  10. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Science.gov (United States)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  11. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  12. Sustainability of perennial grass yields as bioenergy feedstock for the southeast

    Science.gov (United States)

    Warm-season perennial grasses will be part of the biomass production system in the Southeast for the emerging bioenergy industry. Among the candidates for dedicated feedstocks are energy cane (Sacchurum sp.), Miscanthus x gigantius, switchgrass (Panicum virgatum), and napiergrass (Pennistem purpure...

  13. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Science.gov (United States)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  14. Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests

    International Nuclear Information System (INIS)

    Past research on identifying potentially negative impacts of forest management activities has primarily focused on traditional forest operations. The increased use of forest biomass for energy in recent years, spurred predominantly by policy incentives for the reduction of fossil fuel use and greenhouse gas emissions, and by efforts from the forestry sector to diversify products and increase value from the forests, has again brought much attention to this issue. The implications of such practices continue to be controversially debated; predominantly the adverse impacts on soil productivity and biodiversity, and the climate change mitigation potential of forest bioenergy. Current decision making processes require comprehensive, differentiated assessments of the known and unknown factors and risk levels of potentially adverse environmental effects. This paper provides such an analysis and differentiates between the feedstock of harvesting residues, roundwood, and salvage wood. It concludes that the risks related to biomass for energy outtake are feedstock specific and vary in terms of scientific certainty. Short-term soil productivity risks are higher for residue removal. There is however little field evidence of negative long-term impacts of biomass removal on productivity in the scale predicted by modeling. Risks regarding an alteration of biodiversity are relatively equally distributed across the feedstocks. The risk of limited or absent short-term carbon benefits is highest for roundwood, but negligible for residues and salvage wood. Salvage operation impacts on soil productivity and biodiversity are a key knowledge gap. Future research should also focus on deriving regionally specific, quantitative thresholds for sustainable biomass removal. -- Highlights: ► Synthesis of the scientific uncertainties regarding biomass for energy outtake. ► With specific focus on soil productivity, biodiversity, and carbon balance. ► Balanced determination of the risk levels

  15. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  16. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  17. Bio-energy feedstock yields and their water quality benefits in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  18. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  19. The role of microalgae as biodiesel feedstock in a tropical setting: Economics, agro-energy competitiveness, and potential impacts on regional agricultural feedstock production

    Science.gov (United States)

    Boll, Matias G.

    The objective of this study is to obtain a realistic evaluation of the potential role of microalgae as a biodiesel feedstock in a tropical setting. First, microalgae economics are estimated, including the detailed design of a 400 ha microalgae open pond production farm together with the microalgae biomass and crude oil production costs calculations. Sensitivity analysis and a stochastic evaluation of the microalgae venture chances for profit are also included. Next, microalgae potential for biodiesel production is compared to traditional oil crops such as soybeans and African palm. This comparison is performed using the Northeast Region (NER) of Brazil as background. Six potential biodiesel feedstock sources produced in the NER and microalgae are compared considering selected environmental, economic and social sustainability indicators. Finally, in the third chapter, the study proposes a cropland allocation model for the NER. The model aims to offer insights to the decision maker concerning biofuel development strategies and their impact on regional agricultural feedstock production. In the model, cropland allocation among three agriculture feedstock sectors, namely staple food, commodity export and biofuel is optimized through the use of the multiple objective technique referred to as compromise programming (CP). Our results indicate a projected microalgae total production cost of R 78,359 ha-1 (US43,533), which has a breakdown as follows: R 34,133 ha-1 (US18,963) for operating costs and R 44,226 ha-1 (US24,570) for overhead (ownership) costs. Our stochastic analysis indicates that microalgae production under the conditions assumed in the baseline scenario of this study has a 0% chance to present a positive NPV for a microalgae crude oil price of R 1.86. This price corresponds to an international oil price around US 77 bbl-1. To obtain a reasonable investment return (IRR = 12%) from the microalgae farm, an international oil price as high as US 461 bbl-1 is

  20. Fabrication of nuclear fuel by powder injection moulding: Study of the binders systems and the de-binding of feedstock containing actinide powder

    International Nuclear Information System (INIS)

    Powder Injection Moulding (PIM) is identified as an innovative process for the nuclear fuel fabrication. Technological breakthrough compared to the current process of powder metallurgy, the impact of actinide powder's specificities on the different steps of PIM is performed. Alumina powders simulating actinide powder have been implemented with a reference binders system. Thermal and rheological studies show the injectability and the de-binding of feedstocks with adequate solid loading (≥50 %vol), thanks to the de-agglomeration during the mixing step, which allow to obtain net shape fuel pellet. Specific surface area of powders, acting as a key role in behaviour's feedstocks, has been integrated in analysis models of viscosity prediction according to the shear rate. Also conducted studies on uranium oxide powder show that the selected binders systems, which have a compatible rheological behaviour with PIM process, impact the de-agglomeration of powder and final microstructure of the fuel pellet, consistent with the results obtained on alumina powders. Independent behaviour of binders and uranium oxide powder, showing no adverse chemical reaction against the PIM process, show a residual mass of carbon of about 150 ppm after sintering. Binders system using polystyrene, resistant to radiolysis phenomena and loadable more than 50 %(vol) of actinide powder, shows the promising potential of PIM process for the fuel fabrication. (author)

  1. Potential Land Competition Between Open-Pond Microalgae Production and Terrestrial Dedicated Feedstock Supply Systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Langholtz, Matthew; Coleman, Andre M.; Eaton, Laurence; Wigmosta, Mark S.; Hellwinckel , Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  2. A Paradigm Shift: Supply Chain Collaboration and Competition in and between Europe’s Chemical Clusters

    OpenAIRE

    Wassenhove, Luk; Lebreton, Baptiste; Letizia, Paolo

    2007-01-01

    textabstractWith the attention of the chemical industry focused on exploiting the low cost feedstocks in the Middle East and the growth markets of Brazil, Russia, India, China and South East Asia, this report provides a timely reminder to policy makers, chemical companies and logistics service providers of the significant opportunities for improving business potential in Europe’s chemical clusters. Europe is still the largest, most sophisticated global market for chemical products, with a wel...

  3. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  4. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  5. Growth of Y-junction bamboo-shaped CNx nanotubes on GaAs substrate using single feedstock

    International Nuclear Information System (INIS)

    Nitrogen-doped Y-junction bamboo-shaped carbon nanotubes were synthesized by chemical vapor deposition of monoethanolamine/ferrocene mixture on GaAs substrate at 950 deg. C. The use of monoethanolamine as the C/N feedstock simplifies the experimental arrangement by producing ammonia during the growth process. The structure, morphology and graphitization of as-grown nitrogen-doped carbon nanotubes (CNx) were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy analysis. TEM analysis indicates that nanotubes have a bamboo-like structure. The nitrogen concentration on as-grown CNx nanotube was found to be 7.8 at.% by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis also indicated that there are two different types of nitrogen atoms (pyridinic and graphitic) in these materials. The possible growth mechanism of formation of Y-junction CNx nanotubes was briefly discussed. Field emission measurement suggested that as-grown CNx nanotubes are excellent emitters with turn-on and threshold fields of 1.6 and 2.63 V/μm, respectively. The result indicated that monoethanolamine proves to be an advantageous precursor to synthesize Y-junction nitrogen-doped carbon nanotubes and such nanotubes might be an effective material to fabricate various field emission devices.

  6. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy.

    Science.gov (United States)

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Landis, Richard C

    2016-05-01

    Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700°C and by 40-90% for biochars produced at 300°C. Elevated concentrations of SO4(2-) (up to 1000mgL(-1)) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments. PMID:26844404

  7. BIOMASS AS A RENEWABLE SOURCE OF CHEMICALS FOR INDUSTRIAL APPLICATIONS

    OpenAIRE

    Ahmed, M. Murtala; Nasri, N. Shawal; Hamza, D. Usman

    2012-01-01

    Worldwide demand for cleaner burning fuels and ‘clean’ chemicals has been increasing from the global issues of environmental concern. This lead to a greater utilization of renewable resources to replace the old and existing fossil based feedstock for liquid fuels and chemicals. The ability to re-grow harvested biomass and recapture the carbon emitted to the atmosphere through photosynthesis allows the possibility of carbon neutrality encouraged the use of biomass. Moreso, the unstable rise of...

  8. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Lucero

    2009-03-25

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  9. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  10. Two novel approaches used to produce biodiesel from low-cost feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Chen, F. [Clemson Univ., SC (United States). Dept. of Food Science and Human Nutrition; Wang, X. [Clemson Univ., SC (United States). Dept. of Genetics and Biochemistry

    2010-07-01

    The cost of feedstock has a significant effect of the economic viability of biodiesel production. The paper discussed a preliminary study looking at 2 approaches used to economically produce biodiesel, one from waste cooking oil (WCO) and the other from flaked cottonseed. Ultrasound-assisted synthesis was used to produce biodiesel from WCO, and in situ transesterification was used to produce biodiesel from the flaked cottonseed. The use of WCO solves the problem of waste disposal and also generates an environmentally benign fuel while at the same time lowering the costs involved in producing biodiesel. Ultrasonification has proven to be an efficient, low-cost, energy saving means of producing biodiesel. In situ transesterification makes solvent extraction and oil cleanup prior to biodiesel synthesis unnecessary, thereby simplifying the reaction steps. Based on the results of gas chromatography and high-performance liquid chromatography tests, both approaches are feasible for the production of biodiesel from low-cost feedstock. 15 refs., 4 figs.

  11. Effect of thermo-mechanical properties of PIM feedstock on compacts shape retention during debinding process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it's necessary to understand the thermal and mechanical properties of powder injection molding feedstocks and to find the major causes responsible for molding difficulties and compacts shape retention during debinding process. The effects of thermo-mechanical properties of the PIM feedstock on the compacts shape retention during debinding process were discussed and explained from practical point of view. The results indicate that the heat of fusion affects the cooling time. The binder component with high heat of fusion and high-decomposed temperature is more effective as the second binder component for the compact to retain its shape during debinding.

  12. Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States

    International Nuclear Information System (INIS)

    This study examines the feasibility of producing sweet sorghum (Sorghum bicolor (L.) Moench) as an ethanol feedstock in the southeastern United States through representative counties in Mississippi. We construct enterprise budgets along with estimates of transportation costs to estimate sweet sorghum producers' breakeven costs for producing and delivering sweet sorghum biomass. This breakeven cost for the sweet sorghum producer is used to estimate breakeven costs for the ethanol producer based on wholesale ethanol price, production costs, and transportation and marketing costs. Stochastic models are developed to estimate profits for sweet sorghum and competing crops in two representative counties in Mississippi, with sweet sorghum consistently yielding losses in both counties. -- Highlights: → We examine the economic feasibility of sweet sorghum as an ethanol feedstock. → We construct enterprise budgets along with estimates of transportation costs. → We estimate breakeven costs for producing and delivering sweet sorghum biomass. → Stochastic models determine profits for sweet sorghum in two Mississippi counties.

  13. Slow pyrolysis: Australian demonstration plant successful on multi-feedstock's

    Energy Technology Data Exchange (ETDEWEB)

    Downie, A.; Munroe, P. (School of Materials Science and Engineering, University of New South Wales, Somersby (Australia)); Klatt, P.; Downie, R. (School of Materials Science and Engineering, University of New South Wales, Best Energies, Somersby (Australia))

    2007-07-01

    In 2006 BEST Energies Australia commissioned and ran their 300 kg/hr (dry basis) continuous demonstration slow pyrolysis plant on a range of low grade biomass feedstocks including; greenwaste, poultry litter, cow manure, wood waste, and paper sludge. The plant was designed and built as a recognised essential step in the commercialisation of this technology and provides proof of concept of both its technical and economic feasibility. It serves the multiple purposes of providing: data required for the development of detailed process flow diagrams (mass and energy balances) of the technology, production of carbon product (Agrichar) samples for use in market development, gas analysis of syngas for energy use specification, materials handling experience with the different feedstocks, and specific unit operations data required for the detailed design of commercial scale process equipment. The feasibility of the commercial implementation of the technology involves assessing niche opportunities where income streams can be maximised and advantages of the technology can be exploited. (orig.)

  14. Rheologic behavior and PIM processing of WC-TiC-Co powder feedstock

    Institute of Scientific and Technical Information of China (English)

    Xuanhui Qu; Jianxiang Gao; Mingli Qin; Changming Lei

    2004-01-01

    An improved wax-based binder was developed for the powder injection molding (PIM) of WC-TiC-Co cemented carbides.The critical powder loading and the rheologic behavior of the feedstock were determined. It was found that the critical powder loading could achieve up to 62.5% (volume fraction) and the feedstock exhibited a pseudo-plastic flow behavior. The injection molding,debinding and sintering processes were studied. The dimension deviation of the sintered samples could be controlled in the range of ±0.2% with the optimized processing parameters and the mechanical properties were better than or equivalent to those of the same alloy made by conventional press-sintering process.

  15. Report of the OCVCI-PAPRICAN forest-based chemicals biorefinery Northern Ontario Commercialization Initiative workshop

    Energy Technology Data Exchange (ETDEWEB)

    Magdzinski, L. (ed.)

    2007-07-01

    This workshop was held to establish commercial processes for the generation of sustainable chemical feedstock from pulp mills. The workshop was attended by over 60 participants from the pulp and paper industry as well as members of the chemical, forestry, and industrial biotechnology industries. Representatives from governments and academic institutions also attended. Links were established between the Ontario forest sector and the Ontario chemical and and polymer sectors. The workshop presented a range of topics for discussion among participants, including issues related to the development of industrial chemicals from pulp mills and methods of sustainably extracting chemicals from hemicellulose. Issues related to the development of bioplastics from pulp production were discussed as well as new developments in wood-derived pharmaceuticals and nutraceuticals. Ontario forestry resources were reviewed, and a Paprican biorefinery agenda was presented. Current pulp mill bio-based chemicals were discussed, and sustainable feedstocks for the production of chemicals were identified. Industrial bioconversion processes were also outlined.

  16. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    OpenAIRE

    Li-Hua Zhu; Frans Krens; Smith, Mark A.; Xueyuan Li; Weicong Qi; van Loo, Eibertus N; Tim Iven; Ivo Feussner; Nazarenus, Tara J.; Dongxin Huai; Taylor, David C; Xue-Rong Zhou; Green, Allan G.; Jay Shockey; K. Thomas Klasson

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil produc...

  17. Triboelectrification of spray-dried lactose prepared from different feedstock concentrations.

    Science.gov (United States)

    Cassidy, O E; Carter, P A; Rowley, G; Merrifield, D R

    2000-01-01

    Powder systems may acquire electrostatic charge during various pharmaceutical processing operations and may give rise to difficulties in handling and powder flow, mainly due to adhesion/cohesion effects. We have investigated the electrostatic charging of spray-dried lactose prepared from different feedstock concentrations using a laboratory spray-dryer. Triboelectrification of the spray-dried lactose samples was effected through contact with the stainless steel surface of either a mixing vessel or a cyclone separator. Results from both techniques showed differences in charge accumulation and particle-steel adhesion between the spray-dried lactose samples. As the feedstock concentration used to produce the spray-dried lactose was increased in the range 10-50% w/v, the mean charge on the lactose decreased from -20.8 to -1.3 nC g(-1) and -54.9 to -4.1 nC g(-1) for the mixing vessel and cyclone separator, respectively, with a corresponding decrease in adhesion. In addition, as the feedstock concentration was increased from 10 to 50% w/v, decreases were obtained in surface area values (1.06 to 0.56 m2 g(-1)), pore diameter (198.7 to 83.5 microm) and pore volume (1.09 to 0.75 cm3 g(-1)), and together with differences in crystal form correlated with the charge and adhesion results. The results suggested that the feedstock concentration could have a considerable influence on the charging and adhesional properties of spray-dried lactose. This may have relevance during pharmaceutical processing and manufacturing operations. PMID:10716598

  18. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?†

    OpenAIRE

    Sattler, Scott E.; Funnell-Harris, Deanna L.

    2013-01-01

    Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bioenergy uses. Therefore, reducing lignin content and modifying its linkages have become major targets for bioenergy feedstock development through either biotechnology or traditional plant breeding. ...

  19. Anaerobic Decomposition of Switchgrass by Tropical Soil-Derived Feedstock-Adapted Consortia

    OpenAIRE

    DeAngelis, Kristen M.; Fortney, Julian L.; Borglin, Sharon; Silver, Whendee L.; Simmons, Blake A.; Hazen, Terry C.

    2012-01-01

    ABSTRACT Tropical forest soils decompose litter rapidly with frequent episodes of anoxic conditions, making it likely that bacteria using alternate terminal electron acceptors (TEAs) play a large role in decomposition. This makes these soils useful templates for improving biofuel production. To investigate how TEAs affect decomposition, we cultivated feedstock-adapted consortia (FACs) derived from two tropical forest soils collected from the ends of a rainfall gradient: organic matter-rich tr...

  20. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    OpenAIRE

    Alexandre Royer; Thierry Barrière; Jean-Claude Gelin

    2016-01-01

    The binder plays the most important role in the metal injection molding (MIM) process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of...

  1. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    OpenAIRE

    Vidyadharani Gopalakrishnan; Dhandapani Ramamurthy

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AA...

  2. Vertical Integration or Contract Farming on Biofuel Feedstock Production: A Technology Innovation Perspective

    OpenAIRE

    Du, Xiaoxue; Lu, Liang; Zilberman, David

    2013-01-01

    Both the goal of energy independence and the desire to lower greenhouse gas emission have triggered the search for alternate energy sources. For second generation biofuel production, a key question is which form of industrial organization should be adopted in order to stimulate stable feedstock production. Using a two-stage optimal control framework, we analyze the optimal form of industrial organization should be adopted where technology innovation is endogenous and biorefinery faces credit ...

  3. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments

    OpenAIRE

    Saini, Jitendra Kumar; Saini, Reetu; Tewari, Lakshmi

    2014-01-01

    Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulos...

  4. Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock

    OpenAIRE

    Beaudoin Frédéric; Sayanova Olga; Haslam Richard P.; Bancroft Ian; Napier Johnathan A.

    2014-01-01

    The world faces considerable challenges including how to produce more biomass for food, feed, fuel and industrial feedstock without significantly impacting on our environment or increasing our consumption of limited resources such as water or petroleum-derived carbon. This has been described as sustainable intensification. Oleaginous crops have the potential to provide renewable resources for all these commodities, provided they can be engineered to meet end-use requirements, and that they ca...

  5. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    Science.gov (United States)

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient. PMID:25873672

  6. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N2O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  7. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography–high-resolution mass spectrometry

    OpenAIRE

    MacDougall, Karen M.; McNichol, Jesse; Patrick J McGinn; O’Leary, Stephen J. B.; Melanson, Jeremy E.

    2011-01-01

    Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an a...

  8. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock

    OpenAIRE

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of...

  9. Anaerobic digestion of crop and waste biomass: Impact of feedstock characteristics on process performance

    OpenAIRE

    Ivo Achu, Nges

    2012-01-01

    Anaerobic digestion provides an array of positive environmental benefits such as reducing greenhouse gas emissions, replacing mineral fertilizers, producing renewable energy and treating waste. However, pitfalls in anaerobic digestion such as poor methane yields, process instability, process failure and regional shortages of feedstock have limited the full exploitation of the anaerobic digestion process. The research presented in this thesis deals with the assessment of the possible n...

  10. The impact of feedstock cost on technology selection and optimum size

    International Nuclear Information System (INIS)

    Development of biomass projects at optimum size and technology enhances the role that biomass can make in mitigating greenhouse gas. Optimum sized plants can be built when biomass resources are sufficient to meet feedstock demand; examples include wood and forest harvest residues from extensive forests, and grain straw and corn stover from large agricultural regions. The impact of feedstock cost on technology selection is evaluated by comparing the cost of power from the gasification and direct combustion of boreal forest wood chips. Optimum size is a function of plant cost and the distance variable cost (DVC, $ dry tonne-1 km-1) of the biomass fuel; distance fixed costs (DFC, $ dry tonne-1) such as acquisition, harvesting, loading and unloading do not impact optimum size. At low values of DVC and DFC, as occur with wood chips sourced from the boreal forest, direct combustion has a lower power cost than gasification. At higher values of DVC and DFC, gasification has a lower power cost than direct combustion. This crossover in most economic technology will always arise when a more efficient technology with a higher capital cost per unit of output is compared to a less efficient technology with a lower capital cost per unit of output. In such cases technology selection cannot be separated from an analysis of feedstock cost

  11. A life-cycle comparison of ethanol feedstock options and technologies for Canada

    International Nuclear Information System (INIS)

    Life-cycle assessment is a technique that allows consideration of key environmental impacts for the entire life cycle of alternative products and processes in order to select the most appropriate alternative. Ethanol, used as a fuel additive or as a neat fuel, is an alternative to conventional gasoline. To properly compare gasoline with ethanol fuel, a life cycle analysis for both energy systems must be completed. It is also necessary to consider the various available sources of feedstock for producing ethanol as well as the technologies used to convert feedstocks to ethanol. This paper compares the environmental effects of producing ethanol in Canada from corn, wheat, and poplar trees. Results show that in the life-cycle of producing 1000 litres of ethanol and 3592 kWh of electricity, biomass feedstock production contribute less than 10 per cent of air emissions for systems considered. It was also shown that ethanol production systems utilizing cogeneration to offset average grid electricity tend to have significantly lower overall emissions than non-cogeneration systems. Offset savings could be further reduced if it was assumed that gas-fired, or hydro was being offset instead of grid-average (i. coal-fired) power. 19 refs., 10 tabs., 11 figs

  12. [Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology].

    Science.gov (United States)

    Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang

    2012-10-01

    Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock PMID:23285891

  13. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  14. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  15. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    Directory of Open Access Journals (Sweden)

    Vidyadharani Gopalakrishnan

    2014-01-01

    Full Text Available Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM (specific algal medium produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC with oleic acid pure (98% control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae.

  16. Design of a GIS-Based Web Application for Simulating Biofuel Feedstock Yields

    Directory of Open Access Journals (Sweden)

    Olga Prilepova

    2014-07-01

    Full Text Available Short rotation woody crops (SRWC, such as hybrid poplar, have the potential to serve as a valuable feedstock for cellulosic biofuels. Spatial estimates of biomass yields under different management regimes are required for assisting stakeholders in making better management decisions and to establish viable woody cropping systems for biofuel production. To support stakeholders in their management decisions, we have developed a GIS-based web interface using a modified 3PG model for spatially predicting poplar biomass yields under different management and climate conditions in the U.S. Pacific Northwest region. The application is implemented with standard HTML5 components, allowing its use in a modern browser and dynamically adjusting to the client screen size and device. In addition, cloud storage of the results makes them accessible on any Internet-enabled device. The web interface appears simple, but is powerful in parameter manipulation and in visualizing and sharing the results. Overall, this application comprises dynamic features that enable users to run SRWC crop growth simulations based on GIS information and contributes significantly to choosing appropriate feedstock growing locations, anticipating the desired physiological properties of the feedstock and incorporating the management and policy analysis needed for growing hybrid poplar plantations.

  17. Release of soluble elements from biochars derived from various biomass feedstocks.

    Science.gov (United States)

    Wu, Hailu; Che, Xiaodong; Ding, Zhuhong; Hu, Xin; Creamer, Anne Elise; Chen, Hao; Gao, Bin

    2016-01-01

    Biochar as soil amendment can increase soil carbon (C) sequestration and mineral nutrients; however, some of its soluble elements may also be unintentionally released during the application. In this work, eight types of biochars were derived from herbaceous, woody, and waste (tailing, manure, sludge) biomass feedstocks through slow pyrolysis at 600 °C in N2. The elemental composition, specific surface area, morphology, crystalline phases, thermal stability, surface functional groups, and pH of the point of zero charge of the biochars were determined using various methods. These properties varied significantly among the tested biochars, suggesting that feedstock type played an important role in controlling their properties. Laboratory release and toxicity characteristic leaching procedure extraction experiments were conducted to evaluate the potential release of nutritious and toxic element from biochars. Results showed that all the biochars released nutritious elements and thus, may be beneficial to plants when amended in soils. In general, biochars produced from herbaceous and woody biomass feedstocks showed low risks of releasing toxic elements. Biochar derived from sludge, however, might present ecotoxicological challenges for its environmental applications due to the release of toxic elements, such as heavy metals. PMID:26408115

  18. Landscape management for sustainable supplies of bio energy feedstock and enhanced soil quality

    International Nuclear Information System (INIS)

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. Our objective is to present a landscape management concept as an approach for integrating multiple bio energy feedstock sources into current crop production systems. This is done to show how multiple, increasing global challenges can be met in a sustainable manner. We discuss how collaborative research among Usda-Agricultural Research Service (ARS), US Department of Energy (DOE) Idaho National Laboratory (INL), several university extension and research partners, and industry representatives [known as the Renewable Energy Assessment Project (Reap) team] has led to the development of computer-based decision aids for guiding sustainable bio energy feedstock production. The decision aids, known initially as the Corn Stover Tool and more recently as the Landscape Environmental Assessment Framework (Leaf) are tools designed to recognize the importance of nature s diversity and can therefore be used to guide sustainable feedstock production without having negative impacts on critical ecosystem services. Using a 57 ha farm site in central Iowa, USA, we show how producer decisions regarding corn (Zea mays L.) stover harvest within the US Corn Belt can be made in a more sustainable manner. This example also supports Reap team conclusions that stover should not be harvested if average grain yields are less than 11 Mg ha-1 unless more balanced landscape management practices are implemented. The tools also illustrate the importance of sub-field management and site-specific stover harvest strategies

  19. Development of a feedstock formulation based on PP for MIM of carbides reinforced M2

    Directory of Open Access Journals (Sweden)

    A. Várez

    2008-04-01

    Full Text Available Purpose: Influence of binder composition on some selected properties of feedstock contained powder of M2 with 10% of carbides powders are demonstrated in the paper.Design/methodology/approach: Torque-load test, rheological tests.Findings: Examination of the effect of the binder type and portion on structure and properties of the experimental tool materials with the cermets structure revealed that using the stearic acid reduces viscosity, thus improving technological properties of the feedstock. Employment of polyethylene instead of the high density polypropylene reduces viscosity and torque-load of the investigated feedstocks. Therefore, there is a possibility to increase the portion of the metallic or ceramic powder.Practical implications: It is expected that further investigations of these materials will make possible their injection moulding, as well as their heat treatment increasing hardness and strength of matrix and thereby of the whole tool material. The extrusion process or PIM (Powder Injection Moulding gives the possibility to manufacturing tools materials on the basis of high speed-steel which characterised very good properties with their final or near net shape.Originality/value: In the paper the using extruding of the polymer-powder mix gives the possibility to fabricate cermets which, with their structure and mechanical properties, fill the gap in tool materials between the high-speed steels and cemented carbides.

  20. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    Energy Technology Data Exchange (ETDEWEB)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  1. Heterogeneous Catalyst and Process for the Production on Biodiesel from High Free-Fatty Acid-Containing Feedstocks

    Czech Academy of Sciences Publication Activity Database

    Banavali, R.; Hanlon, R.T.; Jeřábek, Karel; Schultz, A.K.

    New York: CRC Press, 2008 - (Prunier, M.), s. 279-289 ISBN 978-1-4200-7076-7 Institutional research plan: CEZ:AV0Z40720504 Keywords : heterogeneous catalyst * production of biodiesel * feedstocks Subject RIV: CF - Physical ; Theoretical Chemistry

  2. R3DO: A Plastic Recycling System For Creating 3D Printer Feedstock On-Orbit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An automated in-space recycling system for 3D printer feedstock will provide game-changing resupply benefits including but not limited to launch mass reduction,...

  3. 水煤浆加压气化原料用煤更换总结%Sum-Up of Change of Feedstock Coal for Pressure Gasification of Coal-Water Slurry

    Institute of Scientific and Technical Information of China (English)

    范立明

    2000-01-01

    Weihe Chemical Fertilizer Plant originally used Huan-gling coal, but due to its high ash content and ash fusion point, it becamean obstacle in the long-term stable operation of the Texaco Gasifier. Afterextensive survey and study and analysis, the feedstock coal has beenchanged to Huating coal, which basically satisfies the requirements forlong-term stable operation of the gasifier. An analysis is given of the rea-sons for changing the feedstock coal, trial operating by using Huating coalas feedstock and results obtained, and demonstrations are presented. Amethod is put forward for further improvement on the slurrying property ofthe coal in future.%渭河化肥厂原采用的黄陵煤由于煤质灰份含量及灰熔点偏高,影响德士古气化炉长周期稳定运行。经广泛调研分析之后,原料煤更换为华亭煤,基本满足了气化炉长周期稳定运行的要求。对原料煤更换的原因、试烧及结果进行了分析论证,指出了今后应进一步提高煤的成浆性能的方法。

  4. Mitigating Land Use Changes From Biofuel Expansion: An Assessment of Biofuel Feedstock Yield Potential in APEC Economies

    OpenAIRE

    Elobeid, Amani E.; Tokgoz, Simla; Yu, Tun-Hsiang

    2009-01-01

    The emerging biofuel sector has drawn great interest as an alternative source of fuel for transportation. The expansion of biofuels greatly impacts world agricultural markets, since currently, the primary feedstocks for ethanol and biodiesel production are field crops and their derived products. There is great interest in the potential of countries to expand their biofuel sectors through increased production of feedstocks. The long-term potential for developing first-generation biofuels in ma...

  5. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties.

    Science.gov (United States)

    Kloss, Stefanie; Zehetner, Franz; Dellantonio, Alex; Hamid, Raad; Ottner, Franz; Liedtke, Volker; Schwanninger, Manfred; Gerzabek, Martin H; Soja, Gerhard

    2012-01-01

    Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance

  6. Leaching Pretreatments for Improving Biomass Quality: Feedstocks, Solvents, and Extraction Modeling

    Science.gov (United States)

    Yu, Chao Wei

    In this research, a systematic study was conducted to quantify the inorganic and organic compounds leached from rice straw, wheat straw, corn stover, switchgrass, Jose Tall Wheatgrass, Douglas fir, and Miscanthus with water, and to evaluate the feedstock quality and characteristics of leached solids for thermal process applications. Leaching feedstocks with water at ambient temperature with a 20 L/kg (dry matter) ratio for 2 hours greatly increased the ash fusion temperature of rice straw (from 1050°C to above 1550°C) and wheat straw (from 900°C to 1250°C), but the treatment only increased the ash fusion temperature of corn stover from 900°C to 950°C. Miscanthus had relatively good initial feedstock quality and leaching may not prove necessary for this feedstock in thermal systems. Leaching also changed the combustion kinetics of biomass by increasing the initial degradation temperature of most feedstocks from originally between 165°C and 186°C to between 180°C and 250°C depending on feedstock. Moreover, leaching increased the maximum rate of weight loss of feedstock by 11% to 54% and increased the corresponding temperatures for peak loss up to 34°C. Leaching removed a sizeable fraction of organic compounds (between 2% and 12% of dry matter). These organic extracts were identified as mostly sugars and acids which might be valuable co-products. Moisture contents of feedstocks after leaching were typically high, ranging between 68 and 81% wet basis. A dewatering step is generally required prior to using the leached biomass for thermochemical conversion. Solvents with ability to dissolve ion-exchangeable, organically associated, and acid soluble metals can further remove non-water soluble metals from biomass and may also improve feedstock quality. In a solvent evaluation, corn stover and wheat straw were leached with water, 1M ammonium acetate, 1M HCl, 100% methanol, 50% methanol, 100% ethanol, and 50% ethanol, and leached solids and leachate were

  7. Canadian boreal pulp and paper feedstocks contain neuroactive substances that interact in vitro with GABA and dopaminergic systems in the brain.

    Science.gov (United States)

    Waye, Andrew; Annal, Malar; Tang, Andrew; Picard, Gabriel; Harnois, Frédéric; Guerrero-Analco, José A; Saleem, Ammar; Hewitt, L Mark; Milestone, Craig B; MacLatchy, Deborah L; Trudeau, Vance L; Arnason, John T

    2014-01-15

    Pulp and paper wood feedstocks have been previously implicated as a source of chemicals with the ability to interact with or disrupt key neuroendocrine endpoints important in the control of reproduction. We tested nine Canadian conifers commonly used in pulp and paper production as well as 16 phytochemicals that have been observed in various pulp and paper mill effluent streams for their ability to interact in vitro with the enzymes monoamine oxidase (MAO), glutamic acid decarboxylase (GAD), and GABA-transaminase (GABA-T), and bind to the benzodiazepine-binding site of the GABA(A) receptor (GABA(A)-BZD). These neuroendocrine endpoints are also important targets for treatment of neurological disorders such as anxiety, epilepsy, or depression. MAO and GAD were inhibited by various conifer extracts of different polarities, including major feedstocks such as balsam fir, black spruce, and white spruce. MAO was selectively stimulated or inhibited by many of the tested phytochemicals, with inhibition observed by a group of phenylpropenes (e.g. isoeugenol and vanillin). Selective GAD inhibition was also observed, with all of the resin acids tested being inhibitory. GABA(A)-BZD ligand displacement was also observed. We compiled a table identifying which of these phytochemicals have been described in each of the species tested here. Given the diversity of conifer species and plant chemicals with these specific neuroactivities, it is reasonable to propose that MAO and GAD inhibition reported in effluents is phytochemical in origin. We propose disruption of these neuroendocrine endpoints as a possible mechanism of reproductive inhibition, and also identify an avenue for potential research and sourcing of conifer-derived neuroactive natural products. PMID:24041600

  8. A NEW CLASS MESOPOROUS ALUMINOPHOSPHATES AS POTENTIAL CATALYSTS IN THE UPGRADING PETROLEUM FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2005-08-31

    A comprehensive investigation was conducted towards the synthesis and catalytic evaluation of high surface areas, uniform pore size, mesoporous aluminophosphates (AlPO{sub 4}) as potential catalysts for the upgrading of heavy petroleum feedstock, such as heavy crudes and petroleum residuum. The influence of several synthesis variables (including, the nature of the reactants, chemical composition of reaction mixtures, time and temperature) on the synthesis and physicochemical characteristics of the resulting products was explored. Phosphoric acid and three different aluminum sources, namely, aluminum hydroxide, aluminum isopropoxide and psuedobohemite alumina, were used as the inorganic precursors. Cetyltrimethylammonium chloride (C{sub 16}TACl) surfactant was used as charge compensating cation and structure directing agent in the surfactant-micellar-mediated synthesis pathway employed. Synthesis were conducted from reaction mixtures within the following typical molar composition range: xAl{sub 2}O{sub 3}:P{sub 2}O{sub 5}:yC{sub 16}TMACl: zTHMAOH: wH{sub 2}O, where x = 0.29-2.34, y = 0.24-0.98, z = 0.34-1.95, w = 86-700. Selected materials were evaluated for the conversion of isopropylbenzene (cumene) in order to understand the nature of any acid sites created. The synthesis products obtained depended strongly on the molar composition of the synthesis mixture. A lamellar (layered) phase was favored by synthesis mixtures comprised of low Al/P ratios (<0.33), low TMAOH content, high C{sub 16}TACl concentrations and high synthesis temperature (110 C). Formation of the desired hexagonal (tubular) phase was favored by higher Al/P ratios and TMAOH content, pH range between 8-10, low C{sub 16}TACl concentration and ambient temperature. The aluminum source had significant influence on the products obtained. With aluminum hydroxide (A1(OH){sub 3}) as the hydroxide source, the resulting hexagonal phase in the ''as-synthesized'' form demonstrated well

  9. Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts.

    Science.gov (United States)

    Upare, Pravin P; Hwang, Young Kyu; Lee, Jong-Min; Hwang, Dong Won; Chang, Jong-San

    2015-07-20

    Biomass and biomass-derived carbohydrates have a high extent of functionality, unlike petroleum, which has limited functionality. In biorefinery applications, the development of methods to control the extent of functionality in final products intended for use as fuels and chemicals is a challenge. In the chemical industry, heterogeneous catalysis is an important tool for the defunctionalization of functionalized feedstocks and biomass-derived platform chemicals to produce value-added chemicals. Herein, we review the recent progress in this field, mainly of vapor phase chemical conversion of biomass-derived C4 -C6 carboxylic acids and esters using copper-silica nanocomposite catalysts. We also demonstrate that these nanocomposite catalysts very efficiently convert biomass-derived platform chemicals into cyclic compounds, such as lactones and hydrofurans, with high selectivities and yields. PMID:26192888

  10. Platform Chemicals from an Oilseed Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Tupy, Mike; Schrodi Yann

    2006-11-06

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the

  11. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    International Nuclear Information System (INIS)

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  12. Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks

    Directory of Open Access Journals (Sweden)

    Sharmina Begum

    2013-12-01

    Full Text Available Energy recovery from biomass by gasification technology has attracted significant interest because it satisfies a key requirement of environmental sustainability by producing near zero emissions. Though it is not a new technology, studies on its integrated process simulation and analysis are limited, in particular for municipal solid waste (MSW gasification. This paper develops an integrated fixed bed gasifier model of biomass gasification using the Advanced System for Process ENngineering (Aspen Plus software for its performance analysis. A computational model was developed on the basis of Gibbs free energy minimization. The model is validated with experimental data of MSW and food waste gasification available in the literature. A reasonable agreement between measured and predicted syngas composition was found. Using the validated model, the effects of operating conditions, namely air-fuel ratio and gasifier temperature, on syngas production are studied. Performance analyses have been done for four different feedstocks, namely wood, coffee bean husks, green wastes and MSWs. The ultimate and proximate analysis data for each feedstock was used for model development. It was found that operating parameters have a significant influence on syngas composition. An air-fuel ratio of 0.3 and gasifier temperature of 700 °C provides optimum performance for a fixed bed gasifier for MSWs, wood wastes, green wastes and coffee bean husks. The developed model can be useful for gasification of other biomasses (e.g., food wastes, rice husks, poultry wastes and sugarcane bagasse to predict the syngas composition. Therefore, the study provides an integrated gasification model which can be used for different biomass feedstocks.

  13. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  14. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  15. Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing

    International Nuclear Information System (INIS)

    The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions

  16. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-07-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock.

  17. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  18. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  19. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. PMID:25707745

  20. Growth, Fatty Acid, and Lipid Composition of Marine Microalgae Skeletonema costatum Available in Bangladesh Coast: Consideration as Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Tania Sharmin

    2016-01-01

    Full Text Available Among the various potential sources of renewable energy, biofuels are of most interest. Marine microalgae are the most promising oil sources for making biofuels, which can grow very rapidly and convert solar energy to chemical energy via CO2 fixation. The fatty acid profile of almost all the microalgal oil is suitable for the synthesis of biofuel. In this research, fatty acid and lipid contents of Bangladeshi strains of marine microalgae Skeletonema costatum were performed. For this, the crude oil was extracted by Soxhlet extraction method, using three most common solvent systems, pure hexane and mixture of CHCl3 : MeOH (2 : 1 and hexane : EtOH (3 : 1 one by one. Highest oil recovery (15.37% came from CHCl3 : MeOH (2 : 1 solvent system from dry biomass whereas the lowest (2.49% came from n-hexane from wet biomass. The qualitative analysis of the extracted oil by GC/MS analysis revealed that it contained significant amount of myristic acid (C14:0, palmitic acid (C16:0, stearic acid (C18:0, and palmitoleic acid (C16:1. It also indicated presence of hexadecatrienoic acid, benzenedicarboxylic acid, oleic acid, arachidonic acid, eicosapentaenoic acid (EPA, 9-Octadecenoic acid methyl ester (C19H36O2, and so forth. The obtained fatty acid profile indicates high potentiality of S. costatum species to be used as promising biofuel feedstock a little improvisation and substantially it can replace diesel in near future.

  1. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production

    Science.gov (United States)

    Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães

    2011-01-01

    Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707

  2. Multiwalled Carbon Nanotube Synthesis Using Arc Discharge with Hydrocarbon as Feedstock

    OpenAIRE

    Chaudhary, K. T.; Z. H. Rizvi; Bhatti, K. A.; Ali, J; P. P. Yupapin

    2013-01-01

    Synthesis of multiwalled carbon nanotube (MWCNT) by arc discharge process is investigated with methane (CH4) as background and feedstock gas. The arc discharge is carried out between two graphite electrodes for ambient pressures 100, 300, and 500 torr and arc currents 50, 70, and 90 A. Plasma kinetics such as the density and temperature for arc discharge carbon plasma is determined to find out the contribution of physical parameters as arc current and ambient pressure on the plasma dynamics a...

  3. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  4. The Impact of an EU-US TTIP Agreement on Biofuel and Feedstock Markets

    OpenAIRE

    BEGHIN, JOHN C; Bureau, Jean-Christophe; Gohin, Alex

    2014-01-01

    We assess the impact of a potential TTIP bilateral free trade agreement on the EU and US bio-economies (feedstock, biofuels, by-products, and related competing crops) and major trade partners in these markets. The analysis develops a multi-market model that incorporates bilateral trade flows (US to EU, EU to US, and similarly with third countries) and is calibrated to OECD-FAO baseline for 2013–2022 to account for recent policy decisions. The major policy reforms from a TTIP involve tariff an...

  5. ENGINE PERFORMANCE OF BIODIESEL FROM FEEDSTOCK FOR CLEANER ENVIRONMENT: A REVI EW

    Directory of Open Access Journals (Sweden)

    Mohamed Waheed

    2012-10-01

    Full Text Available The search for renewable energy sources is being intensified globally and this includes alternative fuels for compression engine. Biodiesel from inedible oil bearing seeds has been discovered as a good replacement for diesel fuel. This paper is a review of literature of formulae for engine parameters, performance of compression ignition engines when run with biodiesel from the most common feedstocks. Research findings show that biodiesel can replace or substitute dieselfuel and its biorefinery can be set in developing countries like Nigeria. The paper also highlight its advantages of biodiesel for reduce greenhouse emission as a renewable fuel.

  6. Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks

    OpenAIRE

    Krystel K. Castillo-Villar; Hertwin Minor-Popocatl; Erin Webb

    2016-01-01

    Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities). Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the bi...

  7. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. PMID:25479689

  8. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  9. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    OpenAIRE

    Stemmler, Kevin; Massimi, Rebecca; Kirkwood, Andrea E.

    2016-01-01

    Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To ...

  10. Economic Impacts of Using Switchgrass as a Feedstock for Ethanol Production: A Case Study Located in East Tennessee

    Directory of Open Access Journals (Sweden)

    Burton C. English

    2013-01-01

    Full Text Available One of the major motivations to establish a biobased energy sector in the United States is to promote economic development in the rural areas of the nation. This study estimated the economic impact of investing and operating a switchgrass-based ethanol plant in East Tennessee. Applying a spatially oriented mixed-integer mathematical programming model, we first determined the location of biorefinery, feedstock draw area, and the resources used in various feedstock supply systems by minimizing the total plant gate cost of feedstock. Based on the model output, an input-output model was utilized to determine the total economic impact, including direct, indirect, and induced effects of feedstock investment and annual production in the study region. Moreover, the economic impact of ethanol plant investment and annual conversion operation was analyzed. Results suggest that the total annual expenditures in an unprotected large round bale system generated a total $92.5 million in economic output within the 13 counties of East Tennessee. In addition, an estimated $234 million in overall economic output was generated through the operation of the biorefinery. This research showed that the least-cost configuration of the feedstock supply chain influenced the levels and types of economic impact of biorefinery.

  11. Scaling up of renewable chemicals.

    Science.gov (United States)

    Sanford, Karl; Chotani, Gopal; Danielson, Nathan; Zahn, James A

    2016-04-01

    The transition of promising technologies for production of renewable chemicals from a laboratory scale to commercial scale is often difficult and expensive. As a result the timeframe estimated for commercialization is typically underestimated resulting in much slower penetration of these promising new methods and products into the chemical industries. The theme of 'sugar is the next oil' connects biological, chemical, and thermochemical conversions of renewable feedstocks to products that are drop-in replacements for petroleum derived chemicals or are new to market chemicals/materials. The latter typically offer a functionality advantage and can command higher prices that result in less severe scale-up challenges. However, for drop-in replacements, price is of paramount importance and competitive capital and operating expenditures are a prerequisite for success. Hence, scale-up of relevant technologies must be interfaced with effective and efficient management of both cell and steel factories. Details involved in all aspects of manufacturing, such as utilities, sterility, product recovery and purification, regulatory requirements, and emissions must be managed successfully. PMID:26874264

  12. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.

    Science.gov (United States)

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C; Amama, Placidus B

    2016-07-21

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability. PMID:27353432

  13. Prediction of syngas quality for two-stage gasification of selected waste feedstocks

    International Nuclear Information System (INIS)

    This paper compares the syngas produced from methane with the syngas obtained from the gasification, in a two-stage reactor, of various waste feedstocks. The syngas composition and the gasification conditions were simulated using a simple thermodynamic model. The waste feedstocks considered are: landfill gas, waste oil, municipal solid waste (MSW) typical of a low-income country, the same MSW blended with landfill gas, refuse derived fuel (RDF) made from the same MSW, the same RDF blended with waste oil and a MSW typical of a high-income country. Energy content, the sum of H2 and CO gas percentages, and the ratio of H2 to CO are considered as measures of syngas quality. The simulation shows that landfill gas gives the best results in terms of both H2 + CO and H2/CO, and that the MSW of low-income countries can be expected to provide inferior syngas on all three quality measures. Co-gasification of the MSW from low-income countries with landfill gas, and the mixture of waste oil with RDF from low-income MSW are considered as options to improve gas quality

  14. Effect of crystallisation conditions and feedstock morphology on the aerosolization performance of micronised salbutamol sulphate.

    Science.gov (United States)

    Shariare, M H; de Matas, M; York, P

    2011-08-30

    Salbutamol sulphate (SS) used in dry powder inhalers requires drug particles in the respirable size range of 1-5 μm to achieve a suitable therapeutic effect. The aim of this study was therefore to determine strategies for controlling drug substance characteristics pre and post-crystallisation to facilitate the production of micronised SS with desirable particle attributes for optimal delivery as an inhaled aerosol. SS batches were crystallised using an antisolvent method to produce a range of crystal morphologies. Air jet milling was then used to reduce the size of crystallised SS particles. Starting materials and micronised batches of SS were characterised in the solid state using a range of techniques with subsequent assessment of aerosol properties. Assessment of the aerodynamic characteristics of micronised SS delivered by DPI (without any carrier) indicated that fine particle fraction and emitted dose as a percentage of the total recovered dose were dependent on the quality attributes of the micronised SS, which were directly linked to the degree of imperfections and the morphology of the crystalline feedstock used in micronisation. Aerosolization performance of micronised SS can be optimised by manipulation of feedstock characteristics through crystal engineering and through definition of optimal processing conditions for micronisation. PMID:21683128

  15. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock

    Science.gov (United States)

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank. PMID:27195694

  16. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    Science.gov (United States)

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank. PMID:27195694

  17. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    Energy Technology Data Exchange (ETDEWEB)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  18. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  19. Investigating “Egusi” (Citrullus Colocynthis L. Seed Oil as Potential Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Solomon Giwa

    2010-03-01

    Full Text Available Biodiesel’s acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 °C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm2/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study.

  20. Potential land for plantation of Jatropha curcas as feedstocks for biodiesel in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a renewable energy,biofuel has attracted great attention in China and the rest of world.Concerned with the national food security,China recently has shifted its biofuel development priority from grain-based to non-grain-based biofuels,including forest-based biodiesel,since 2007.Jatropha curcas is one of major biodiesel feedstocks.However,there is rising debate on availability of land for expanding Jatropha curcas areas.The overall goal of this paper is to evaluate potential land for Jatropha curcas used as feedstock for biodiesel in China.Based on remote sensing data on land use,data on meteorological,soil and land slope,and suitable environment for Jatropha curcas plantation,this study uses Agro Ecological Zone method and considers social-economic constraints to evaluate potential suitable land for Jatropha curcas plantation in China’s major Jatropha curcas production region,Southwest China.The results show that while there are some potential lands to expand Jatropha curcas areas,amount of these lands will hardly meet the government’s target for Jatropha curcas-based biodiesels development in the future.China may need to reconsider its long-term targets on the development of Jatropha curcas-based biodiesels.

  1. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  2. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Nanostructured and conventional titania (TiO2) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  3. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    Science.gov (United States)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  4. Particle Morphology Effects on Flow Characteristics of PS304 Plasma Spray Coating Feedstock Powder Blend

    Science.gov (United States)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF 2 particle morphology on PS304 feedstock powder flow ability have been investigated. BaF2-CaF2 eutectic powders were fabricated by comminution (angular) and by gas atomization (spherical). The fluoride powders were added incrementally to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. A linear relationship between flow time and concentration of BaF2-CaF2 powder was found. Flow of the powder blend with spherical BaF2-CaF2 was better than the angular BaF2-CaF2. Flow ability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. Flow of the powder blend with spherical fluorides was independent of fluoride concentration. Results suggest that for this material blend, particle morphology plays a significant role in powder blend flow behavior, offering potential methods to improve powder flow ability and enhance the commercial potential. These findings may have applicability to other difficult-to-flow powders such as cohesive ceramics.

  5. Increasing secondary and renewable material use: a chance constrained modeling approach to manage feedstock quality variation.

    Science.gov (United States)

    Olivetti, Elsa A; Gaustad, Gabrielle G; Field, Frank R; Kirchain, Randolph E

    2011-05-01

    The increased use of secondary (i.e., recycled) and renewable resources will likely be key toward achieving sustainable materials use. Unfortunately, these strategies share a common barrier to economical implementation - increased quality variation compared to their primary and synthetic counterparts. Current deterministic process-planning models overestimate the economic impact of this increased variation. This paper shows that for a range of industries from biomaterials to inorganics, managing variation through a chance-constrained (CC) model enables increased use of such variable raw materials, or heterogeneous feedstocks (hF), over conventional, deterministic models. An abstract, analytical model and a quantitative model applied to an industrial case of aluminum recycling were used to explore the limits and benefits of the CC formulation. The results indicate that the CC solution can reduce cost and increase potential hF use across a broad range of production conditions through raw materials diversification. These benefits increase where the hFs exhibit mean quality performance close to that of the more homogeneous feedstocks (often the primary and synthetic materials) or have large quality variability. In terms of operational context, the relative performance grows as intolerance for batch error increases and as the opportunity to diversify the raw material portfolio increases. PMID:21466183

  6. Pricing model for biodiesel feedstock. A case study of Chhattisgarh in India

    International Nuclear Information System (INIS)

    Following the global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. To promote biofuel, Indian government has announced biodiesel purchase price as well as compulsory blending ratio. But, these measures have not worked to create large scale biodiesel production in India. With this backdrop, this paper highlights about the importance of a sound pricing policy focusing on the entire value chain of biodiesel production. The analysis is based on field level data from Chhattisgarh, the leading state in the production of jatropha. Such a sound pricing policy has to deal with the prices of feedstock, by-products and final product like biodiesel. It would also have to reflect on the business model of production of biodiesel. The simulation exercises in our model shows that the business returns from the production of biodiesel and the minimum support price (MSP) of the feedstock for biodiesel (i.e. jatropha seeds in this case) are sensitive to various parameters like seed yields, technological efficiency, by product and petro-diesel prices. An effective price policy framework has to consider all these factors to create a platform for sustainable biodiesel production in India. (author)

  7. Pricing model for biodiesel feedstock: A case study of Chhattisgarh in India

    International Nuclear Information System (INIS)

    Following the global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. To promote biofuel, Indian government has announced biodiesel purchase price as well as compulsory blending ratio. But, these measures have not worked to create large scale biodiesel production in India. With this backdrop, this paper highlights about the importance of a sound pricing policy focusing on the entire value chain of biodiesel production. The analysis is based on field level data from Chhattisgarh, the leading state in the production of jatropha. Such a sound pricing policy has to deal with the prices of feedstock, by-products and final product like biodiesel. It would also have to reflect on the business model of production of biodiesel. The simulation exercises in our model shows that the business returns from the production of biodiesel and the minimum support price (MSP) of the feedstock for biodiesel (i.e. jatropha seeds in this case) are sensitive to various parameters like seed yields, technological efficiency, by product and petro-diesel prices. An effective price policy framework has to consider all these factors to create a platform for sustainable biodiesel production in India. - Research highlights: → India's biodiesel program began way back in 2003. → Success is limited. → Effective policy frame is missing. → Paper proposed to address the same with field level observation.

  8. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  9. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    Energy Technology Data Exchange (ETDEWEB)

    McGill, Ralph [Sentech, Inc., Fuels, Engines, and Emissions Consulting, Knoxville, TN (United States)

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  10. Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Diran Apelian; Qingyue Pan; Makhlouf Makhlouf

    2005-11-07

    The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, and will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.

  11. Lignin Valorisation for Chemicals and (Transportation) Fuels via (Catalytic) Pyrolysis and Hydrodeoxygenation

    NARCIS (Netherlands)

    de Wild, Paul; Van der Laan, Ron; Kloekhorst, Arjan; Heeres, Hero

    2009-01-01

    New technology is needed to exploit the potential of lignin as a renewable feedstock for fuels, chemicals and performance products. Fast fluidized bed pyrolysis of different lignins at 400 degrees C yields up to 2.1 wt% (d.b.) of a phenolic fraction containing 10 wt%, (d.b.) of several phenols. Subs

  12. The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Susanne Kleff

    2007-03-24

    This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

  13. Effect of Charcoal Volatile Matter Content and Feedstock on Soil Microbe-Carbon-Nitrogen Dynamics

    Science.gov (United States)

    McClellan, T.; Deenik, J. L.; Hockaday, W. C.; Campbell, S.; Antal, M. J., Jr.

    2010-12-01

    Charcoal has important biogeochemical implications in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of charcoal which describes its degree of thermal alteration, or carbonization. Results from greenhouse experiments have shown that plant growth can be negatively affected by charcoals with high VM content (20-35%), with and without fertilizer supplements, whereas low VM charcoal (6-9%) increased plant growth when combined with fertilizer. We conducted two laboratory studies to characterize the VM content of charcoals derived from two feedstocks (corncob and kiawe) and relate observed differences to key aspects of soil fertility. Using Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (NMR), total phenol content (using a Prussian blue colorimetric assay), and gas chromatography-mass spectrometry (GC-MS), we found that the VM content of charcoal primarily consisted of alkanes, oxygen-substituted alkanes, and phenolic compounds. However, the GC-MS data indicated that charcoals can differ vastly in their extractable fraction, depending upon both VM content and feedstock. In a second set of experiments, we examined the effect of VM content and feedstock on soil microbial activity, available nitrogen (N), and soluble carbon (C). High VM corncob charcoals significantly enhanced microbial activity, coupled with net reduction in available N and soluble C. For a given feedstock, the extent of this effect was dependent upon VM content. However, the overall effect of VM content on microbial dynamics was apparently related to the composition of the acetone-extractable fraction, which was particularly important when comparing two charcoals derived from different feedstocks but with the equivalent VM contents. Removing the acetone-extractable fraction from the 23% VM corncob charcoal significantly reduced the enhancement of

  14. Does the feedstock origin of pyrolyzed materials influence the leaching quality and quantity of dissolved organic carbon from soils?

    Science.gov (United States)

    Suddick, E.; Spencer, R. G.; Pereira, E. I.; Six, J. W.

    2011-12-01

    Soils play a major role in the global C cycle and can be both a source of C emissions to the atmosphere and also a C sink. In order to sequester vast quantities of C and increase soil C stocks, which may be used to partly offset greenhouse gas (GHG) emissions in the future, new technologies are needed. Recently, there has been an abundance of interest in the use of pyrolyzed biomass C, termed biochar, as an amendment to terrestrial ecosystems to provide a large and long term sink of C. However, the stability and permanence of this black C source in soil is still relatively unknown and the uncertainty surrounding its turnover time may have implications for both C sequestration and the fate and transport of dissolved organic C leached to nearby water resources. Biochar can be derived from a multitude of feed stocks (e.g. walnut shells, wood chippings, poultry litter) and under a variety of pyrolysis conditions (e.g. high temperature or low temperatures); each process and feed stock can yield very different materials that has many different physical (e.g. surface area) and chemical (e.g. CEC, C and N content) properties. Each feed stock and pyrolysis condition may consequently contribute to a distinct recalcitrance in soil. Therefore, we undertook a pot trial to evaluate the chemical characteristics of leachate from soils incubated with biochars derived from 15 different feed stocks. Using optical property parameters such as SUVA, chromophoric dissolved organic matter (CDOM) slope parameter and fluorescence characteristics, we were able to determine the C leaching potential of each feedstock. Preliminary data suggests that there are distinct variations in optical properties with feed stock origin, for example an algae digestate showed a lower absorbance at 350 nm (a350) (25.7 m-1) and a steeper spectral slope at 290-350 nm (S290-350 x10-3) (17.7 nm-1) indicative of the presence of lower molecular weight compounds compared to control treatment with a signature typical

  15. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-06-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO{sub x}, CO{sub 2}, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  16. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    International Nuclear Information System (INIS)

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at characterizing biomass diversity (availability and potentials by area, cost and mineral composition) by carrying out a state of the art, as a preliminary step in order to define a series of biomass to be tested in the demonstration plant and therefore define specifications for the process. Fifty different biomass were considered for their bio-energy application potential and were finally classified into four categories: agricultural by-products, dedicated energy crops, (Very) Short Rotation Coppice ((V)SRC) and forestry biomass. Biomass availability and potentials were investigated by the mean of a literature review of past and current projects (e.g. RENEW project, Biomass Energy Europe Project, etc.) and scientific articles. Most collected data are technical potentials, meaning that they take into account biophysical limits of crops and forests, technological possibilities, competition with other land uses and ecological constraints (e.g. natural reserves). Results show various emerging markets: North and South America have considerable amounts of agricultural by-products, forest residues, and large land areas which could be dedicated to energy crops; Africa shows relevant possibilities to grow Short Rotation Forestry (SRF) and energy crops; Russia has large available quantities of agricultural by-products and forest residues, as well as little valuable land where energy crops and SRC could be grown, and Asia shows relevant amounts of forest residues and possibilities of growing SRC, as well

  17. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.

    Science.gov (United States)

    Jassal, Rachhpal S; Johnson, Mark S; Molodovskaya, Marina; Black, T Andrew; Jollymore, Ashlee; Sveinson, Kelly

    2015-04-01

    Nitrogen (N) enrichment of biochar from both inorganic and organic waste N sources has the potential to add economic and environmental value through its use as a slow release N fertilizer. We investigated the sorption of N by, and its release from, biochar made at pyrolysis temperatures of 400, 500 and 600 °C from three feedstocks: poultry litter (PL with a carbon (C) to N ratio (C:N) of 14), softwood chips of spruce-pine-fir (SPF with a C:N of 470), and a 50:50 mixture of PL and SPF (PL/SPF). The prepared biochars were enriched with ammonium nitrate (AN) and urea ammonium nitrate (UAN). PL biochars had the lowest C content (50-56% C), but the highest pH (9.3-9.9), electrical conductivity (EC, 780-960 dS m(-1)), cation exchange capacity (CEC, 40-46 cmol kg(-1)), and N content (3.3-4.5%). While N content and hydrogen (H) to C atomic ratio (H:C) decreased with increasing pyrolysis temperature irrespective of the feedstock used, both pH and EC slightly increased with pyrolysis temperature for all feedstocks. The PL and SPF biochars showed similar H:C and also similar N sorption and N release at all pyrolysis temperatures. These biochars sorbed up to 5% N by mass, irrespective of the source of N. However, PL/SPF biochar performed poorly in sorbing N from either AN or UAN. Biochar H:C was found to be unrelated to N sorption rates, suggesting that physical adsorption on active surfaces was the main mechanism of N sorption in these biochars. There were minor differences between N sorbed from NO3-N and NH4-N among different biochars. Very small amounts of sorbed N (0.2-0.4 mg N g(-1) biochar) was released when extracted with 1 M KCl solution, indicating that the retained N was strongly held in complex bonds, more so for NH4-N because the release of NO3-N was 3-4 times greater than that of NH4-N. NH4-N sorption far exceeded the effective CEC of the biochars, thereby suggesting that most of the sorption may be due to physical entrapment of NH4(+) in biochar pores

  18. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  19. Process designs and cost estimates for a medium Btu gasification plant using a wood feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, R. E.

    1979-02-01

    A gasification plant to effect the conversion of wood to medium-Btu gas has been designed. The Purox gasifier and associated equipment were selected as a prototype, since this system is nearer to commercialization than others considered. The object was to determine the cost of those processing steps common to all gasification schemes and to identify specific research areas. A detailed flowsheet and mass-balance are presented. Capital investment statements for three plant sizes (400, 800, 1,600 oven-dry tons per day) are included along with manufacturing costs for each of these plants at three feedstock prices: $10, $20, $30 per green ton (or $20, $40, $60 per dry ton). The design incorporates a front-end handling system, package cryogenic oxygen plant, the Purox gasifier, a gas-cleaning train consisting of a spray scrubber, ionizing wet scrubber, and condenser, and a wastewater treatment facility including a cooling tower and a package activated sludge unit. Cost figures for package units were obtained from suppliers and used for the oxygen and wastewater treatment plants. The gasifier is fed with wood chips at 20% moisture (wet basis). For each pound of wood, 0.32 lb of oxygen are required, and 1.11 lb of gas are produced. The heating value of the gas product is 300 Btu/scf. For each Btu of energy input (feed + process energy) to the plant, 0.91 Btu exists with the product gas. Total capital investments required for the plants considered are $9, $15, and $24 million (1978) respectively. In each case, the oxygen plant represents about 50% of the total investment. For feedstock prices from $10 to $30 per green ton ($1.11 to $3.33 per MM Btu), break-even costs of fuel gas range from $3 to $7 per MM Btu. At $30/ton, the feedstock cost represents approximately 72% of the total product cost for the largest plant size; at $10/ton, it represents only 47% of product cost.

  20. Final Technical Report: A Paradigm Shift in Chemical Processing: New Sustainable Chemistries for Low-VOC Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kenneth F.

    2006-07-26

    The project employed new processes to make emulsion polymers from reduced levels of petroleum-derived chemical feedstocks. Most waterborne paints contain spherical, emulsion polymer particles that serve as the film-forming binder phase. Our goal was to make emulsion polymer particles containing 30 percent feedstock that would function as effectively as commercial emulsions made from higher level feedstock. The processes developed yielded particles maintained their film formation capability and binding capacity while preserving the structural integrity of the particles after film formation. Rohm and Haas Company (ROH) and Archer Daniels Midland Company (ADM) worked together to employ novel polymer binders (ROH) and new, non-volatile, biomass-derived coalescing agents (ADM). The University of Minnesota Department of Chemical Engineering and Material Science utilized its unique microscopy capabilities to characterize films made from the New Emulsion Polymers (NEP).

  1. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  2. Recycling of Al-Si die casting scraps for solar Si feedstock

    Science.gov (United States)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  3. Influence of atmospheric plasma spray parameters on YSZ coatings obtained from micro and nano structured feedstocks

    International Nuclear Information System (INIS)

    In the present work, the influence of atmospheric plasma spray (APS) parameters on the deposition of two commercial YSZ feedstocks, one conventional and one non-conductor's, has been studied. First the study focused on how the variability of the different parameters affects the particle behaviour during spraying. For this purpose, a sensor which enables to measure the particle temperature and velocity inside the plasma was used. Once the spraying parameters influence was known, both powders were deposited by APS onto stainless steel substrates modifying the higher influencing parameters. These coatings have been characterised and the influence of the particle behaviour on the coating microstructure and properties has been analysed. This work concludes the spraying parameters variation affects on the particle velocity and temperature inside the plasma plume and this behaviour influences, in turn but in a different way, on the final coating characteristics when using different powders (micro- and nano structured). (Author)

  4. Cultivation of Microalgae Chlorella sp. and Scenedesmus sp. as a Potentional Biofuel Feedstock

    Directory of Open Access Journals (Sweden)

    Prof. dr. Violeta Makareviciene

    2011-10-01

    Full Text Available The growth of two robust algae strains Chlorella sp. and Scenedesmus sp. growing in Lithuanian lakes was investigated with the aim to obtain optimum conditions for biomass cultivation for biofuel production in the Lithuanian environment. Samples were taken from different nitrogen sources and of different concentrations, with addition of various concentrations of CO2 and in the presence of salt. The best biomass productivity was achieved using urea as a nitrogen source or modified growing medium BG11 with decreased concentration of NaNO3. The positive impact on the growth of biomass was achieved by aeration with CO2 (especially with concentration of 24%. Additional research into the removal of pollutants, such inorganic salts of nitrogen and phosphorus and organic materials from wastewater using microalgae has revealed good possibilities of using both algae strains in wastewater treatment plants. A content of oil in Chlorella sp. and Scenedesmus sp. has suggested their potential use as biodiesel feedstock.

  5. Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion

    DEFF Research Database (Denmark)

    Zhang, Heng; Fangel, Jonatan Ulrik; Willats, William George Tycho;

    2014-01-01

    preparing samples of various leaf-to-stem (L/S) ratios, we found shifting conversion behavior as processing parameters were modified. Increasing the enzyme dosage, pretreatment temperature and pretreatment time all significantly improved conversion rates in samples with more than 50% leaf content, whereas...... less impact was observed on samples with less than 50% leaf content. Enzyme affinity, desorption and readsorption with leaf and stem fractions may affect the sugar yield in wheat straw saccharification. The data suggest that the L/S ratio is an important parameter when adjusting or optimizing...... conversion processes and additionally in feedstock breeding. Furthermore, this highlights the need for rapid techniques for determining L/S ratio in wheat straw harvests. The CoMPP data on specific carbohydrates and leaf pectin highlight carbohydrate epitopes that may be useful as markers in the development...

  6. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nakpong, Piyanuch; Wootthikanokkhan, Sasiwimol [Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchee Road, Sathorn, Bangkok 10120 (Thailand)

    2010-08-15

    Coconut oil having 12.8% free fatty acid (FFA) was used as a feedstock to produce biodiesel by a two-step process. In the first step, FFA level of the coconut oil was reduced to 0.6% by acid-catalyzed esterification. In the second step, triglycerides in product from the first step were transesterified with methanol by using an alkaline catalyst to produce methyl esters and glycerol. Effect of parameters related to these processes was studied and optimized, including methanol-to-oil ratio, catalyst concentration, reaction temperature, and reaction time. Methyl ester content of the coconut biodiesel was determined by GC to be 98.4% under the optimum condition. The viscosity of coconut biodiesel product was very close to that of Thai petroleum diesel and other measured properties met the Thai biodiesel (B100) specification. (author)

  7. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus [UC Berkeley; Hake, Sarah [USDA Albany

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  8. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    utilization of this feedstock could potentially lower the costs for succinic acid production. The biochemical methane potential of L. digitata, post hydrolysis solid residue (PHSR) and fermentation broth after succinic acid fermentation was also determined. In a biorefinery, biogas production is important for...... amounted up to 10.0 g L-1. However, the production of succinic acid from this type of hydrolysate resulted in much higher product titer and substrate utilization compared to ethanol fermentation, partially because A. succinogenes is able to ferment both glucose and xylose into succinic acid. Jerusalem...... energy recovery as well as for minimizing waste and generating an additional product in the form of fertilizer. Energy recovery of PHSR and fermentation broth through anaerobic digestion corresponded to 298 and 285 NmL CH4 g-1 VSadded, respectively. To further increase the integration of the different...

  9. The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom.

    Science.gov (United States)

    Phillips, D; Mitchell, E J S; Lea-Langton, A R; Parmar, K R; Jones, J M; Williams, A

    2016-07-01

    A number of countries have introduced energy policies to reduce the emission of carbon dioxide which, in the case of bio-heat, has resulted in increased use of small wood burning stoves and boilers, particularly in Europe. There are issues surrounding the supply of sustainable wood feedstock, prompting a desire to utilise local biomass resources. This includes biomass generated through the management of natural woodlands in nature reserves and conservation areas. These management practices can also extend to other areas, such as raised bog wildernesses and estuary Reed beds. We term the biomass from this resource as conservation biomass. This study is concerned with the viability of this resource as a fuel within the United Kingdom, and combustion tests were carried out using a small domestic stove. It was concluded that there is as much as 500kty(-1) that could be used in this way. PMID:27107483

  10. Natural gas and biofuel as feedstock for hydrogen production on Ni catalysts

    Institute of Scientific and Technical Information of China (English)

    Pasquale Corbo; Fortunato Migliardini

    2009-01-01

    In this article,the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels),with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing.The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature,space velocity and water/fuel ratio.Furthermore,a preliminary evaluation of catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests.High yields to hydrogen were obtained with ail fuels investigated,whereas the deactivation phenomena,which are correlated to carbon deposition on the catalyst,were observed with all tested fuels,except for methane and biofuel.

  11. Air Emissions and Health Benefits from Using Sugarcane Waste as a Cellulosic Ethanol Feedstock

    Science.gov (United States)

    Tsao, C.; Campbell, E.; Chen, Y.; Carmichael, G.; Mena-Carrasco, M.; Spak, S.

    2010-12-01

    Brazil, as the largest ethanol exporter in the world, faces rapid expansion of ethanol production due to the increase of global biofuels demand. Current production of Brazilian sugarcane ethanol causes significant air emissions mainly from the open burning phase of agriculture wastes (i.e. sugarcane straws and leaves) resulting in potential health impacts. One possible measure to avoid undesired burning practices is to increase the utilization of unburned sugarcane residues as a feedstock for cellulosic ethanol. To explore the benefits of this substitution, here we first apply a bottom-up approach combining agronomic data and life-cycle models to investigate spatially and temporally explicit emissions from sugarcane waste burning. We further quantify the health benefits from preventing burning practices using the CMAQ regional air quality model and the BenMAP health benefit analysis tool adapted for Brazilian applications. Furthermore, the health impacts will be converted into monetary values which provide policymakers useful information for the development of cellulosic ethanol.

  12. Decanter cake as a feedstock for biodiesel production: A first report

    International Nuclear Information System (INIS)

    Highlights: • Decanter cake as a potential waste feedstock for biodiesel production. • Ultrasound-aided transesterification achieving nearly 86% conversion in 1 h. • Boiler ash, a waste product, was successfully used as a catalyst. - Abstract: Decanter cake (DC), with an oil content of 11.5 ± 0.18 wt.%, was subjected to ultrasound-aided transesterification using boiler ash as a base catalyst, petroleum ether and hexane as co-solvents. Optimization work revealed that at MeOH:oil mass ratio of 6:1 and 2.3 wt.% catalyst (based on DC weight) with 1:2 co-solvents:DC mass ratio as the optimal reaction conditions. Both decanter cake and boiler ash, waste materials from oil palm mill, were successfully utilized to produce methyl ester (biodiesel) with highest conversion of 85.9 wt.% in a 1 h reaction period at 55 °C

  13. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa;

    2016-01-01

    (SPP) can be extrapolated to larger scale pellet mills. The single pellet press was used to find the optimum moisture content and die operating temperature for pellet production. Then, these results were compared with those obtained from a bench-scale pellet mill. A moisture content of around 10 wt......The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press.......% was found to be optimal for the six biomass feedstocks. A friction increase was seen when the die temperature increased from room temperature to 60-90 degrees C for most biomass types, and then a friction decrease when the die temperature increased further. The results obtained in the bench...

  14. Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation

    Science.gov (United States)

    Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.

    1994-01-01

    The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.

  15. Manufacturing Process Development to Produce Depleted Uranium Wire for EBAM Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, David John [Los Alamos National Laboratory; Clarke, Kester Diederik [Los Alamos National Laboratory; Coughlin, Daniel Robert [Los Alamos National Laboratory; Scott, Jeffrey E. [Los Alamos National Laboratory

    2015-06-30

    Wire produced from depleted uranium (DU) is needed as feedstock for the Electron-Beam Additive Manufacturing (EBAM) process. The goal is to produce long lengths of DU wire with round or rectangular cross section, nominally 1.5 mm (0.060 inches). It was found that rolling methods, rather than swaging or drawing, are preferable for production of intermediate quantities of DU wire. Trials with grooveless rolling have shown that it is suitable for initial reductions of large stock. Initial trials with grooved rolling have been successful, for certain materials. Modified square grooves (square round-bottom vee grooves) with 12.5 % reduction of area per pass have been selected for the reduction process.

  16. Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstock.

    Science.gov (United States)

    Victor, Amudhavalli; Pulidindi, Indra Neel; Gedanken, Aharon

    2015-10-01

    Renewable and green energy sources are much sought. Bioethanol is an environmentally friendly transportation fuel. Pine cones from Pinus radiata were shown to be a potential feedstock for the production of bioethanol. Alkaline (NaOH) pretreatment was carried out to delignify the lignocellulosic material and generate holocellulose (72 wt. % yield). The pretreated biomass was hydrolysed using HCl as catalyst under microwave irradiation and hydrothermal conditions. Microwave irradiation was found to be better than the hydrothermal process. Microwave irradiation accelerated the hydrolysis of biomass (42 wt. % conversion) with the reaction conditions being 3 M HCl and 5 min of irradiation time. Interestingly, even the xylose, which is the major component of the hydrolyzate was found to be metabolized to ethanol using Baker's yeast (Saccharomyces cerevisiae) under the experimental conditions. 5.7 g of ethanol could be produced from 100 g of raw pine cones. PMID:26247310

  17. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production.

    Science.gov (United States)

    Song, Kuo; Tan, Xiaoming; Liang, Yajing; Lu, Xuefeng

    2016-09-01

    It is important to obtain abundant sugar feedstocks economically and sustainably for bio-fermentation industry, especially for producing cheap biofuels and biochemicals. Besides plant biomass, photosynthetic cyanobacteria have also been considered to be potential microbe candidates for sustainable production of carbohydrate feedstocks. As the fastest growing cyanobacterium reported so far, Synechococcus elongatus UTEX 2973 (Syn2973) might have huge potential for bioproduction. In this study, we explored the potentials of this strain as photo-bioreactors for sucrose and glycogen production. Under nitrogen-replete condition, Syn2973 could accumulate glycogen with a rate of 0.75 g L(-1) day(-1) at the exponential phase and reach a glycogen content as high as 51 % of the dry cell weight (DCW) at the stationary phase. By introducing a sucrose transporter CscB, Syn2973 was endowed with an ability to secrete over 94 % sucrose out of cells under salt stress condition. The highest extracellular sucrose productivity reached 35.5 mg L(-1) h(-1) for the Syn2973 strain expressing cscB, which contained the similar amounts of intracellular glycogen with the wild type. Potassium chloride was firstly proved to induce sucrose accumulation as well as sodium chloride in Syn2973. By semi-continuous culturing, 8.7 g L(-1) sucrose was produced by the cscB-expressing strain of Syn2973 in 21 days. These results support that Syn2973 is a promising candidate with great potential for production of sugars. PMID:27079574

  18. How to enhance humification during composting of separately collected biowaste: impact of feedstock and processing.

    Science.gov (United States)

    Binner, Erwin; Smidt, Ena; Tintner, Johannes; Böhm, Katharina; Lechner, Peter

    2011-11-01

    Conventional parameters (loss on ignition, total organic carbon, total nitrogen, C/N-ratio, respiration activity (RA₄), compost status (= 'Rottegrad'), NH₄-N and NO₃-N) are not correlated to humification. At best, they provide information on the biological stability (status of degradation) of composts. Humic substances which are a source of stable organic matter and nutrients are discussed as a parameter describing compost quality. Thus, in the present research project a photometric method evaluating humic acids was used to characterize the quality of 211 Austrian and foreign composts made from source-separated collected biowaste or sewage sludge. Furthermore, parameters influencing the formation of humic acids during the rotting process were investigated by implementing rotting experiments in the laboratory as well as in composting plants. The analysed composts showed humic acid contents between 2.5 and 47 %, calculated on a organic dry matter (oDM) basis. In addition to the duration of treatment the main influence on humification was the feedstock used. Stabilized sewage sludge, biowaste after intensive anaerobic pre-treatment or biowaste with low reactivity (RA₄) or uniform composition (e.g. mainly grass) showed a low formation of humic acids. For optimum humification the feedstock needed to contain components that are well balanced from scarcely to easily degradable compounds. Processing also influenced humification. Open windrow systems and reactor systems allow the same quality to be produced when operated well, but optimizing mineralization (e.g. very intensive aeration) showed negative effects. The positive condition required for humification is an unhurried (not too intense) degradation with long-lasting biological activity in which microbes have enough time to use the metabolic products of degradation for humification. PMID:21930517

  19. Production of biodiesel from melia azedarach seed oil: a non- edible feedstock for biodiesel

    International Nuclear Information System (INIS)

    Biodiesel (BD) is a first-generation biofuel that has emerged as a renewable alternative diesel fuel, obtained by the transesterification of vegetable oils and animals fats, using a short-chain alcohol and a catalyst that may be an acid, a base or an enzyme. BD can be used in the existing compression-ignition engines without any further modification. Presently, most of the BD production is being carried out using edible vegetable oil which has put a strain on the food supply and, hence, has led it into a competition with the food industry. It has also resulted in a rise in the prices of such feed stocks. Hence, search for the newer and non-edible feed stocks is becoming increasingly important. The objective of the present work is to explore the utility of Melia azedarach seed oil, a non-edible feedstock, for the preparation of BD. The oil was extracted by using n-hexane as a solvent and a oil content of 32% was obtained. As a result of transesterification using sodium hydroxide and methanol, 80% conversion of the oil into BD was obtained. Fatty acid profile of the oil and the BD were found to be almost the same. Different fuel properties of the BD prepared were studied including viscosity, iodine number, acid number, cold point and cetane number, and the values obtained are 4.7, 112, 0.45 mg KOH/g, < -10 deg. C and 45, respectively. Although the oxidation stability is less than the required standard value by EN 14214, but it can be enhanced by introducing some additives into the final product. Other properties were found to be in agreement with the required specifications for BD by EN 14214, hence Melia azedarach seed oil is a suitable non-edible feedstock for the production of BD. (author)

  20. Biomass supply chain management in North Carolina (part 2: biomass feedstock logistical optimization

    Directory of Open Access Journals (Sweden)

    Kevin Caffrey

    2016-03-01

    Full Text Available Biomass logistics operations account for a major portion of the feedstock cost of running a biorefinery, and make up a significant portion of total system operational costs. Biomass is a bulky perishable commodity that is required in large quantities year round for optimal biorefinery operations. As a proof of concept for a decision making tool for biomass production and delivery, a heuristic was developed to determine biorefinery location, considering city size, agricultural density, and regional demographics. Switchgrass and sorghum (with winter canola were selected to examine as viable biomass feedstocks based on positive economic results determined using a predictive model for cropland conversion potential. Biomass harvest systems were evaluated to examine interrelationships of biomass logistical networks and the least cost production system, with results demonstrating a need to shift to maximize supply-driven production harvest operations and limit storage requirements. For this supply-driven production harvest operations approach a harvest window from September until March was selected for producing big square bales of switchgrass for storage until use, forage chopped sorghum from September to December, and forage chopped switchgrass from December to March. A case study of the three major regions of North Carolina (Mountains, Piedmont, and Coastal Plain was used to assess logistical optimization of the proposed supply-driven production harvest system. Potential biomass production fields were determined within a hundred mile radius of the proposed biorefinery location, with individual fields designated for crop and harvest system by lowest transportation cost. From these selected fields, crops and harvest system regional storage locations were determined using an alternate location-allocation heuristic with set storage capacity per site. Model results showed that the supply-driven production harvest system greatly reduced system complexity

  1. Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity

    International Nuclear Information System (INIS)

    Switchgrass (Panicum virgatum) serves as a model dedicated energy crop in the U.S.A. Miscanthus (Miscanthus x giganteus) has served a similar role in Europe. This study was conducted to determine the most economical species, harvest frequency, and carbon tax required for either of the two candidate feedstocks to be an economically viable alternative for cofiring with coal for electricity generation. Biomass yield and energy content data were obtained from a field experiment conducted near Stillwater, Oklahoma, U.S.A., in which both grasses were established in 2002. Plots were split to enable two harvest treatments (once and twice yr-1). The switchgrass variety 'Alamo', with a single annual post-senescence harvest, produced more biomass (15.87 Mg ha-1 yr-1) than miscanthus (12.39 Mg ha-1 yr-1) and more energy (249.6 million kJ ha-1 yr-1 versus 199.7 million kJ ha-1 yr-1 for miscanthus). For the average yields obtained, the estimated cost to produce and deliver biomass an average distance of 50 km was $43.9 Mg-1 for switchgrass and $51.7 Mg-1 for miscanthus. Given a delivered coal price of $39.76 Mg-1 and average energy content, a carbon tax of $7 Mg-1 CO2 would be required for switchgrass to be economically competitive. For the location and the environmental conditions that prevailed during the experiment, switchgrass with one harvest per year produced greater yields at a lower cost than miscanthus. In the absence of government intervention such as requiring biomass use or instituting a carbon tax, biomass is not an economically competitive feedstock for electricity generation in the region studied. (author)

  2. A Novel Plasma-Sprayed Nanostructured Coating with Agglomerated-Unsintered Feedstock

    Science.gov (United States)

    Gao, Yang; Zhao, Yan; Yang, Deming; Gao, Jianyi

    2016-01-01

    In this article, an unusual agglomerated powder of Y2O3-stabilized ZrO2 (YSZ) that did not undergo calcination was introduced as a feedstock for thermal spray deposition using internal injection atmospheric plasma spray (APS) and the very-low-pressure plasma spray (VLPPS) methods at an ambient pressure of 100-150 Pa. The results show that the microstructure of the coating is influenced not only by the spray parameters (such as arc gas composition, ambient pressure, and arc current) but also by the manufacture process of the agglomerates particularly the sintering process. The microstructure of the coating exhibited a bimodal structure if the APS method was used; in this case, the microstructure resembles that of other nanostructured coatings using regular agglomerated-sintered feedstock. A coating having a novel fully nano-equiaxed structure with a microporosity of 10-15% was first successfully deposited using VLPPS with 20Ar-30He SLPM plasma gas flows at a current of 500 A. The experimental results suggest that the nano-scale equiaxed structure in the coating is directly formed from original nanoparticles that had undergone melting, while inside the nozzle they were subsequently solidified on the substrate. The VLPPS method, which offers some unique advantages over the conventional plasma spray process, is generic in nature and can potentially be used to deposit a wide variety of ceramic coatings for diverse applications. The thermal conductivity values of the fully nanostructured and bimodal structured coatings were measured, and the microstructures of the coating both in the as-sprayed state and after heat treatment for 10 h at 1300 °C were investigated.

  3. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites.

    Science.gov (United States)

    Denyes, Mackenzie J; Parisien, Michèle A; Rutter, Allison; Zeeb, Barbara A

    2014-01-01

    The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality

  4. Tailoring the microstructure of porous MgO supports for asymmetric oxygen separation membranes: Optimization of thermoplastic feedstock systems

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Clemens, F.; Glasscock, Julie;

    2014-01-01

    Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock co...

  5. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar; Xiao, R; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  6. Impacts of bioenergy feedstock production on environmental factors in the Central U.S. using an agroecosystem model (Invited)

    Science.gov (United States)

    Twine, T. E.; Vanloocke, A. D.; Williams, M.; Bernacchi, C.

    2010-12-01

    The Renewable Fuel Standard in the Energy Independence and Security Act of 2007 requires annual U.S. production of 36 billion gallons of renewable fuels by 2022, nearly half of this from cellulosic biofuels. We have little guidance as to where to grow bioenergy feedstocks to maximize yield without competing for food resources, and little understanding of the environmental and economic impacts of their production. Furthermore, it is unclear how bioenergy feedstocks might be incorporated into the current landscape to minimize environmental consequences. Numerical models allow us to predict environmental impacts across large spatial domains and long time periods by simulating the response of potential feedstocks to drivers such as soil type and climate. We used the Agro-IBIS (Integrated Biosphere Simulator, agricultural version) model to quantify the impacts on Midwest U.S. water and energy budgets from land use for bioenergy production. We analyzed effects of changes in land cover (e.g., from current crops to perennial grasses) as well as changes in management (e.g., removal of crop residues for fuel). Our analyses indicate that perennial grasses can substantially increase evapotranspiration (water transport to the atmosphere) in locations where fraction cover is greater than 25%. This change in evapotranspiration is lowest in regions where current crops and grasses are highly productive and evapotranspiration is large, and is highest in semi-arid regions where productivity is lower. These results imply that growing bioenergy feedstocks on marginal lands could have substantial effects on water resources.

  7. Novel storage technologies for raw and clarified syrup biomass feedstocks from sweet sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Attention is currently focused on developing sustainable supply chains of sugar feedstocks for new, flexible biorefineries. Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench) include stabiliz...

  8. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine

  9. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.

    Science.gov (United States)

    Roberts, David A; de Nys, Rocky

    2016-03-15

    Green seaweeds from the genus Ulva are a promising feedstock for the production of biochar for carbon (C) sequestration and soil amelioration. Ulva can be cultivated in waste water from land-based aquaculture and Ulva blooms ("green tides") strand millions of tons of biomass on coastal areas of Europe and China each year. The conversion of Ulva into biochar could recycle C and nutrients from eutrophic water into agricultural production. We produce biochar from Ulva ohnoi, cultivated in waste water from an aquaculture facility, and characterize its suitability for C sequestration and soil amelioration through bio-chemical analyses and plant growth experiments. Two biomass pre-treatments (fresh water rinsing to reduce salt, and pelletisation to increase density) were crossed with four pyrolysis temperatures (300-750 °C). Biomass rinsing decreased the ash and increased the C content of the resulting biochar. However, biochar produced from un-rinsed biomass had a higher proportion of fixed C and a higher yield. C sequestration decreased with increasing pyrolysis temperatures due to the combination of lower yield and lower total C content of biochar produced at high temperatures. Biochar produced from un-rinsed biomass at 300 °C had the greatest gravimetric C sequestration (110-120 g stable C kg(-1) seaweed). Biochar produced from un-pelletised Ulva enhanced plant growth three-fold in low fertility soils when the temperature of pyrolysis was less than 450 °C. The reduced effectiveness of the high-temperature biochars (>450 °C) was due to a lower N and higher salt content. Soil ameliorated with biochar produced from pelletised biomass had suppressed plant germination and growth. The most effective biochar for C sequestration and soil amelioration was produced from un-rinsed and un-pelletised Ulva at 300 °C. The green tide that occurs annually along the Shandong coastline in China generates sufficient biomass (200,000 tons dry weight) to ameliorate 12,500

  10. Projecting future grassland productivity to assess the sustainability of potential biofuel feedstock areas in the Greater Platte River Basin

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phyual, Khem

    2014-01-01

    This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.

  11. Replication of microchannel structures in WC-Co feedstock using elastomeric replica moulds by hot embossing process.

    Science.gov (United States)

    Sahli, M; Gelin, J-C; Barrière, T

    2015-10-01

    Hot embossing is a net shaping process that is able to produce the micro-components of polymers with intrinsic and complex shapes at lower cost compared with machining and injection moulding. However, the emboss of hard metals, such as WC-Co, is more challenging due to their high thermal conductivity and ease of agglomeration. Thus, a WC-Co alloy mixed with a wax-based binder feedstock was selected. The formed feedstock exhibited pseudo-plastic flow and was successfully embossed (green part). Here, we developed a novel process that is used to replicate polymer microfluidic chips while simultaneously reducing the channel surface roughness of the mould insert, yielding optical-grade (less than 100 nm surface roughness) channels and reservoirs. This paper concerns the replication of metallic microfluidic mould inserts in WC-Co and the parameters associated with feedstock formation via a hot embossing process. A suitable formulation for micro-powder hot embossing has been established and characterised by thermogravimetric analyses and measurements of mixing torques to verify and quantify the homogeneity of the proposed feedstocks. The relative density of the samples increased with processing temperature, and almost fully dense materials were obtained. In this work, the effects of the sintering temperature on the physical properties were systematically analysed. The evolution of the metal surface morphology during the hot embossing process was also investigated. The results indicate that the feedstock can be used to manufacture micro-fluidic die mould cavities with a low roughness, proper dimensions and good shape retention. The shrinkage of the sintered part was approximately 19-24% compared with that of the brown part. PMID:26117760

  12. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain

  13. Selective fractionation of Sugar Beet Pulp for release of fermentation and chemical feedstocks; optimisation of thermo-chemical pre-treatment.

    Science.gov (United States)

    Hamley-Bennett, C; Lye, G J; Leak, D J

    2016-06-01

    The effect of time and pressure on the selective extraction of sugar beet pectin using steam pre-treatment on unprocessed Sugar Beet Pulp was evaluated using a design of experiments approach. This process gave the highest solubilisation of pectin oligomers at a relatively low pressure and longer time (5Bar, 24min), whilst leaving the majority of the cellulose fraction intact. This method of steam pre-treatment fits into the concept of a sugar beet biorefinery as it valorises an existing waste stream without requiring any further physical processing such as milling or dilution with water. The residual cellulose fraction was enriched in cellulose and could be effectively fermented into ethanol by yeast after enzymatic digestion, producing 0.48g ethanol per gram of glucose. PMID:26978325

  14. Establishment of an Agricultural/Biofuel Feedstock Research Field Station in Rural South-Carolina

    Directory of Open Access Journals (Sweden)

    Florence ANORUO,

    2010-12-01

    Full Text Available Today’s worldwide growing interest in biofuels production, in obtaining higher biomass yields, and in providing cleaner liquid fuels for an affordable price could lead to results that might positively solve known present concerns related to global warming and decreasing petroleum fuel resources through the use of the natural rural landscapes. Grass biomass can be converted to bioenergy using technologies such as: conversion to liquid fuels (ethanol; combustion alone or in combination with fossil fuels to produce heat, steam, or electricity; and gasification. This paper presents our efforts in establishing an agricultural/biofuel feedstock research field station in the rural area of the Orangeburg County, South Carolina, geared towards establishing, equipping, and staffing mass production of biofuel feedstock. Since there is a growing interest in using perennial grasses as renewable fuels for generating electricity and for producing bio-ethanol, four crops (Sugarcane, Miscanthus, Sorghum, Sudan grass have been selected for use in biomass production. All these crops are going to be harvested in two different fields: the organic field (environmental sustainability/organic farming and the non-organic field. Each field has approximately 15 acres (60702.85 m2 while the experimental design used for the data collection is going to be the Randomized Complete Block Design. So far, the first step in the crops establishment was to take soil samples for scientific analysis which were sent to Palmetto Agri-Services, York, SC. The plot was mapped out using a GPS program and 40 soil samples holes were collected from each field. Our project’s mission is to identify the most suitable crop for the local climate and soil while advancing knowledge for agriculture, the environment, human health and the well being of rural communities. Biofuel production from these four crops might be extended to other agricultural areas, namely rural areas in countries like

  15. Bioenergy Landscape Design to Minimize the Environmental Impacts of Feedstock Cultivation

    Science.gov (United States)

    Field, J.; Dinh, T.; Paustian, K.

    2012-12-01

    The United States has adopted aggressive mandates for the use of biofuels in an attempt to improve domestic energy security, reduce greenhouse gas (GHG) emissions in the transportation sector, and stimulate rural development. The Renewable Fuel Standard requires that the environmental impact of all conventional, advanced, and cellulosic biofuels be evaluated through standardized lifecycle assessment (LCA) techniques relative to a baseline of petroleum-derived gasoline and diesel fuels. A significant fraction of the energy use, GHG emissions, and water quality impact of the production of all types of biofuel occurs during the cultivation of feedstocks (either starch- or oil-based or lignocellulosic), which requires some combination of crop switching, land use change, or cultivation intensification. Furthermore, these impacts exhibit a high degree of spatial variability with local climate, soil type, land use history, and farm management practices. Here we present a spatially-explicit LCA methodology based on the DayCent soil biogeochemistry model capable of accurately evaluating cultivation impacts for a variety of biofuel feedstocks. This methodology considers soil GHG emissions and nitrate leaching as well as the embodied emissions of agricultural inputs and fuels used for field operations and biomass transport to a centralized collection point (biorefinery or transportation hub). Model results are incorporated into a biomass production cost analysis in order to identify the impact of different system designs on production cost. Finally, the resulting multi-criteria optimization problem is solved by monetizing all environmental externalities based on figures from the non-market valuation literature and using a heuristic optimization algorithm to identify optimal cultivation areas and collection point locations to minimize overall environmental impacts at lowest possible cost. Preliminary analysis results are presented for an illustrative case study of switchgrass

  16. Semi-mechanistic Model Applied to the Search for Economically Optimal Conditions and Blending of Gasoline Feedstock for Steam-cracking Process

    Directory of Open Access Journals (Sweden)

    Karaba Adam

    2016-01-01

    Full Text Available Steam-cracking is energetically intensive large-scaled process which transforms a wide range of hydrocarbons feedstock to petrochemical products. The dependence of products yields on feedstock composition and reaction conditions has been successfully described by mathematical models which are very useful tools for the optimization of cracker operation. Remaining problem is to formulate objective function for such an optimization. Quantitative criterion based on the process economy is proposed in this paper. Previously developed and verified industrial steam-cracking semi-mechanistic model is utilized as supporting tool for economic evaluation of selected gasoline feedstock. Economic criterion is established as the difference between value of products obtained by cracking of studied feedstock under given conditions and the value of products obtained by cracking of reference feedstock under reference conditions. As an example of method utilization, optimal reaction conditions were searched for each of selected feedstock. Potential benefit of individual cracking and cracking of grouped feedstocks in the contrast to cracking under the middle of optimums is evaluated and also compared to cracking under usual conditions.

  17. The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Pablo Pacheco

    2011-09-01

    Full Text Available Preoccupation with global energy supplies and climate change in the global North, and a desire to improve the balance of trade and capture value in the emerging carbon market by developing countries, together place biofuels firmly on the map of global land use change. Much of this recent land use change is occurring in developing countries where large agro-ecologically suitable tracts of land may be accessed at lower economic and opportunity cost. This is leading to the gradual penetration of commercial crops that provide suitable biofuel feedstocks (e.g., sugarcane, soybean, oil palm, jatropha into rural communities and forested landscapes throughout many areas of the global South. Expansion of biofuel feedstock cultivation in developing countries is widely embraced by producer country governments as a means to achieve energy security and stimulate rural economic development through employment and smallholder market integration. It is also expected that foreign and domestic investments in biofuel feedstock cultivation will lead to positive economic spillovers from knowledge transfer and investor contributions to social and physical infrastructure. While biofuel feedstocks are expanding through large industrial-scale plantations and smallholder production alike, the expansion of industrial-scale production systems has been countered by a critical response by civil society actors concerned about the implications for rural livelihoods, customary land rights, and the environmental effects of biofuel feedstock cultivation. To date, however, limited data exist to demonstrate the conditions under which widely anticipated economic and climate change mitigation benefits accrue in practice, and the implications of these developments for forests, local livelihoods, and the climate change mitigation potential of biofuels. In such a situation, debates are easily polarized into those for and against biofuels. This special issue seeks to nuance this debate by

  18. Devising efficient biotechnological processes for the production of fuels and chemicals from biomass

    Science.gov (United States)

    Villet, R. H.

    1982-05-01

    Research directed toward improving ethanol processes based on readily fermentable feedstocks is discussed. Efforts were also made to develop novel fermentation systems. Reducing the cost of producing ethanol and other chemicals requires using cellulosics as feedstocks, which when hydrolyzed form hexose sugars readily metabolized by yeast. A program was undertaken to discover thermophilic organisms that convert various biopolymers to ethanol and other chemical products. Lipids suitable as diesel oil extenders are produced by microorganisms. A screening program was undertaken to identify microbial strains with a biotechnological potential. This involved a precise, quantitative chemical analysis of lipid products. Some work on developing a 2,3-butanediol fermentation process is described. During the fermentation process ethanol is also produced. To improve the ratio of butanediol to ethanol, a program of genetic and physiological research was designed and initiated.

  19. Chemical use

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  20. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  1. Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks

    International Nuclear Information System (INIS)

    This research is aimed at monetizing the life cycle environmental and health externalities associated with production of ethanol from corn, corn stover, switchgrass, and forest residue. The results of this study reveal current average external costs for the production of 1 l of ethanol ranged from $0.07 for forest residue to $0.57 for ethanol production from corn. Among the various feedstocks, the external costs of PM10, NOX, and PM2.5 are among the greatest contributors to these costs. The combustion of fossil fuels in upstream fertilizer and energy production processes is the primary source of these emissions and their costs, especially for corn ethanol. The combined costs of emissions associated with the production and use of nitrogen fertilizer also contribute substantially to the net external costs. For cellulosic ethanol production, the combustion of waste lignin to generate heat and power helps to keep the external costs lower than corn ethanol. Credits both for the biogenic carbon combustion and displacement of grid electricity by exporting excess electricity substantially negate many of the emissions and external costs. External costs associated with greenhouse gas emissions were not significant. However, adding estimates of indirect GHG emissions from land use changes would nearly double corn ethanol cost estimates.

  2. Comparative evaluation of thermal degradation for biodiesels derived from various feedstocks through transesterification

    International Nuclear Information System (INIS)

    Highlights: • TG–FTIR is employed to evaluate thermal degradation characteristics of biodiesels. • Lower content of unsaturated fatty acid is responsible for higher thermal stability. • Evolved products are alkanes, aldehyde/ketones, ethers, alkenes and CO2. - Abstract: Biodiesel is commonly derived from various feedstocks through transesterification. Since thermal degradation is concerned with a lot of scientific applications, it is essential to evaluate the thermal degradation characteristics for biodiesel. In this study, thermal degradation of biodiesel is investigated through thermogravimetric analysis (TGA) coupled with Fourier transform infrared spectroscopy (FTIR). The fatty acid composition and the characteristic functional groups of biodiesel are detected by gas chromatography (GC) and FTIR in advance. Then, TGA experiments are conducted at linear heating rates from 20 °C min−1 to 40 °C min−1 under nitrogen atmosphere in temperature range from 25 °C to 600 °C. Subsequently, the activation energy, including enthalpy, is determined by Friedman method and Flynn–Wall–Ozawa method and the reaction order is calculated through the Avrami theory. In addition, the pre-exponential factor, the Gibbs free energy, and the entropy are also calculated. Finally, to obtain a comprehensive understanding for thermal degradation of biodiesels, all evolved products are detected by FTIR in real time

  3. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    Science.gov (United States)

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed. PMID:24456235

  4. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Yongvanich, Tikamporn [Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Chulalaksananukul, Warawut [Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-12-15

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity ({eta}) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and {eta} were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst. (author)

  5. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    Science.gov (United States)

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production. PMID:26892007

  6. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways.

    Science.gov (United States)

    Chiu, Yi-Wen; Wu, May

    2012-08-21

    While agricultural residue is considered as a near-term feedstock option for cellulosic biofuels, its sustainability must be evaluated by taking water into account. This study aims to analyze the county-level water footprint for four biofuel pathways in the United States, including bioethanol generated from corn grain, stover, wheat straw, and biodiesel from soybean. The county-level blue water footprint of ethanol from corn grain, stover, and wheat straw shows extremely wide variances with a national average of 31, 132, and 139 L of water per liter biofuel (L(w)/L(bf)), and standard deviation of 133, 323, and 297 L(w)/L(bf), respectively. Soybean biodiesel production results in a blue water footprint of 313 L(w)/L(bf) on the national average with standard deviation of 894 L(w)/L(bf). All biofuels show a greater green water footprint than the blue one. This work elucidates how diverse spatial resolutions affect biofuel water footprints, which can provide detailed insights into biofuels' implications on local water sustainability. PMID:22816524

  7. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Karen M.; McNichol, Jesse; McGinn, Patrick J.; O' Leary, Stephen J.B.; Melanson, Jeremy E. [Institute for Marine Biosciences, National Research Council of Canada, Halifax, NS (Canada)

    2011-11-15

    Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid. (orig.)

  8. Effects of hydrothermal liquefaction on the fate of bioactive contaminants in manure and algal feedstocks.

    Science.gov (United States)

    Pham, Mai; Schideman, Lance; Sharma, Brajendra K; Zhang, Yuanhui; Chen, Wan-Ting

    2013-12-01

    This study investigated the effects of hydrothermal liquefaction (HTL) on the fate of bioactive compounds (BACs) often present with wet biosolids from wastewater, manure, or algae. Tracking radiolabeled (14)C for two BACs showed that 60-79% of the carbon was transferred to the HTL raw oil product, and most of the rest was found in the aqueous product. In the presence of both swine manure and Spirulina biomass feedstocks, HTL provided essentially complete removal of three BACs when operated at 300°C for ≥ 30 min. Experiments with both natural transformation and high-efficiency transformation showed that HTL provided complete deactivation of antibiotic resistant genes for all tested HTL conditions (250-300°C, 15-60 min reaction time). Thus, incorporating HTL into wastewater treatment systems can simultaneously produce valuable bio-crude oil, provide effective removal of BACs and disrupt the natural pathways for antibiotic resistant gene transfer from manure and wastewater biosolids to the environment. PMID:24099971

  9. The Effects of Biofuel Feedstock Production on Farmers’ Livelihoods in Ghana: The Case of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Emmanuel Acheampong

    2014-07-01

    Full Text Available The widespread acquisition of land for large-scale/commercial production of biofuel crops in Ghana has raised concerns from civil society organizations, local communities and other parties, regarding the impact of these investments on local livelihoods. This paper assessed the effect of large-scale acquisition of land for production of Jatropha curcas on farmers’ livelihoods in Ghana. The study was conducted in 11 communities spanning the major agro-ecological zones and political divisions across Ghana. Methods of data collection included questionnaire survey, interviews and focus group discussions. Results show that several households have lost their land to Jatropha plantations leading, in some cases, to violent conflicts between biofuel investors, traditional authorities and the local communities. Most people reported that, contrary to the belief that Jatropha does well on marginal lands, the lands acquired by the Jatropha Companies were productive lands. Loss of rights over land has affected households’ food production and security, as many households have resorted to reducing the area they have under cultivation, leading to shortening fallow periods and declining crop yields. In addition, although the cultivation of Jatropha led to the creation of jobs in the communities where they were started, such jobs were merely transient. The paper contends that, even though the impact of Jatropha feedstock production on local livelihoods in Ghana is largely negative, the burgeoning industry could be developed in ways that could support local livelihoods.

  10. Can ethanol alone meet California's low carbon fuel standard? An evaluation of feedstock and conversion alternatives

    Science.gov (United States)

    Zhang, Yimin; Joshi, Satish; MacLean, Heather L.

    2010-01-01

    The feasibility of meeting California's low carbon fuel standard (LCFS) using ethanol from various feedstocks is assessed. Lifecycle greenhouse gas (GHG) emissions, direct agricultural land use, petroleum displacement directly due to ethanol blending, and production costs for a number of conventional and lignocellulosic ethanol pathways are estimated under various supply scenarios. The results indicate that after considering indirect land use effects, all sources of ethanol examined, except Midwest corn ethanol, are viable options to meet the LCFS. However, the required ethanol quantity depends on the GHG emissions performance and ethanol availability. The quantity of ethanol that can be produced from lignocellulosic biomass resources within California is insufficient to meet the year 2020 LCFS target. Utilizing lignocellulosic ethanol to meet the LCFS is more attractive than utilizing Brazilian sugarcane ethanol due to projected lower direct agricultural land use, dependence on imported energy, ethanol cost, required refueling infrastructure modifications and penetration of flexible fuel E85 vehicles. However, advances in cellulosic ethanol technology and commercial production capacity are required to support moderate- to large-scale introduction of low carbon intensity cellulosic ethanol. Current cellulosic ethanol production cost estimates suffer from relatively high uncertainty and need to be refined based on commercial scale production data when available.

  11. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production

    International Nuclear Information System (INIS)

    Microalgae have been investigated as a promising biodiesel feedstock; however, large-scale production is not currently cost-competitive with petroleum diesel, and its environmental impacts have received little attention. Using wastewater to supply nutrients for algal growth obviates synthetic fertilizer use, provides on-site nutrient removal, and reduces greenhouse gas emissions. In this work, anaerobically digested dairy manure was used to grow the oleaginous green alga Neochloris oleoabundans. In batch culture experiments with both synthetic media and anaerobic digester effluent, N. oleoabundans assimilated 90-95% of the initial nitrate and ammonium after 6 d and yielded 10-30% fatty acid methyl esters on a dry weight basis. Cellular lipid content and the N concentration in the growth media were inversely correlated. In addition, the proportion of polyunsaturated fatty acids (i.e. C16:3, C18:2, and C18:3) decreased with N concentration over time while the proportion of C18:1 fatty acid increased. Although N deficiency is likely the primary driver behind lipid accumulation, the influence of culture pH confounded results and requires further study. Other living microorganisms in the digester effluent were not observed to affect algal growth and lipid productivity, though the breakdown of organic nitrogen may have hindered lipid accumulation traditionally achieved through the manipulation of synthetic media. This work highlights the potential for waste-grown mono-algal cultures to produce high quality biodiesel while accomplishing simultaneous wastewater treatment.

  12. Knowledge of petroleum heavy residue potential as feedstock in refining process using thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Maria Luisa A.; Mota, Deusa Angelica P.; Cerqueira, Wildson V.; Andre, Daniel; Saraiva, Larissa Martins; Coelho, Maria Isabel Figueira; Teixeira, Ana Maria R.F. [Universidade Federal Fluminense, Chemistry Institute, Analytical Chemistry Department, Niteroi, RJ (Brazil); Teixeira, Marco Antonio G. [Centro de Pesquisas Leopoldo A Migues de Mello-CENPES/PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    In the petroleum industry, previous knowledge of the feedstock's potential to produce light material is an important aspect of refining. For the evaluation of heavy petroleum fractions, thermogravimetry (TG), a thermal analysis technique, is considered a good analytical tool to determine the thermal behavior of these fractions at high temperatures. In the present work, TG analyses were made of petroleum distillation residues from different Brazilian oils. The apparent cracking activation energy of saturates, aromatics, resins and asphaltenes was also determined by TG. Saturates and aromatics showed values of 80-120 kJ mol{sup -1} at low conversions (< 0.3) and of 120-220 kJ mol{sup -1} at high conversions (> 0.3). The thermal cracking activation energy of resins and asphaltenes occurred between 220-300 kJ mol{sup -1}, i.e., at higher values than those of aromatic and saturated fractions. This paper discusses the prediction of carbonaceous residue based on thermal analysis. (author)

  13. Multiwalled Carbon Nanotube Synthesis Using Arc Discharge with Hydrocarbon as Feedstock

    Directory of Open Access Journals (Sweden)

    K. T. Chaudhary

    2013-01-01

    Full Text Available Synthesis of multiwalled carbon nanotube (MWCNT by arc discharge process is investigated with methane (CH4 as background and feedstock gas. The arc discharge is carried out between two graphite electrodes for ambient pressures 100, 300, and 500 torr and arc currents 50, 70, and 90 A. Plasma kinetics such as the density and temperature for arc discharge carbon plasma is determined to find out the contribution of physical parameters as arc current and ambient pressure on the plasma dynamics and growth of MWCNT. With increase in applied arc current and ambient pressure, an increase in plasma temperature and density is observed. The synthesized samples of MWCNT at different experimental conditions are characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. A decrease in the diameter and improvement in structure quality and growth of MWCNT are observed with increase in CH4 ambient pressure and arc current. For CH4 ambient pressure 500 torr and arc current 90 A, the well-aligned and straight MWCNT along with graphene stakes are detected.

  14. Co-firing in coal power plants and its impact on biomass feedstock availability

    International Nuclear Information System (INIS)

    Several states have a renewable portfolio standard (RPS) and allow for biomass co-firing to meet the RPS requirements. In addition, a federal renewable fuel standard (RFS) mandates an increase in cellulosic ethanol production over the next decade. This paper quantifies the effects on local biomass supply and demand of different co-firing policies imposed on 398 existing coal-fired power plants. Our model indicates which counties are most likely to be able to sustain cellulosic ethanol plants in addition to co-firing electric utilities. The simulation incorporates the county-level biomass market of corn stover, wheat straw, switchgrass, and forest residues as well as endogenous crop prices. Our scenarios indicate that there is sufficient feedstock availability in Southern Minnesota, Iowa, and Central Illinois. Significant supply shortages are observed in Eastern Ohio, Western Pennsylvania, and the tri-state area of Illinois, Indiana, and Kentucky which are characterized by a high density of coal-fired power plants with high energy output. - Highlights: • Co-firing in coal-power plants can lead to biomass supply shortage. • The level of shortage depends also on the switchgrass production cost. • Little to no shortages occur in the Corn Belt and the Great Plains. • Biomass co-firing in power plants limits the supply for cellulosic ethanol plants

  15. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    Science.gov (United States)

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. PMID:26196418

  16. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity (η) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and η were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst

  17. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  18. The H-Oil Process : Preferred configurations for application to western Canadian feedstocks

    International Nuclear Information System (INIS)

    The technical and economic evaluation of a method used to convert and upgrade petroleum residua and heavy oils into lighter products was described. The feasibility of applying the process to typical western Canadian oil sand feedstocks was evaluated. The H-Oil process, developed by HRI Inc., is an ebullated-bed catalytic hydrocracking process that accounts for more than 50 per cent of the worldwide vacuum residue hydroprocessing market. It has a unique flexibility to handle many different types of heavy crudes while producing clean transportation fuels. The unconverted vacuum residue from the process can be used for fuel oil production, blended into asphalt, or routed to a resid catalytic cracker or coker. The residue can also be directly combusted or gasified to produce hydrogen. Four different technologies that have been used commercially in Canada to upgrade western Canadian heavy oil residue have been reviewed and evaluated from a technical and economic viewpoint. The following improvements in the H-oil process have resulted in greater economy and product quality: (1) development of a new generation of high activity catalysts, (2) development of an improved recycle cup, and (3) new outlets for unconverted residue. It was suggested that the H-Oil process produces more revenue than the delayed coker process. As coke becomes harder to dispose of, the H-Oil process will become more attractive for producing synthetic crude from heavy oil. 6 refs., 9 tabs., 9 figs

  19. A novel framework to classify marginal land for sustainable biomass feedstock production.

    Science.gov (United States)

    Gopalakrishnan, Gayathri; Cristina Negri, M; Snyder, Seth W

    2011-01-01

    To achieve food and energy security, sustainable bioenergy has become an important goal for many countries. The use of marginal lands to produce energy crops is one strategy for achieving this goal, but what is marginal land? Current definitions generally focus on a single criterion, primarily agroeconomic profitability. Herein, we present a framework that incorporates multiple criteria including profitability of current land use, soil health indicators (erosion, flooding, drainage, or high slopes), and environmental degradation resulting from contamination of surface water or groundwater resources. We tested this framework for classifying marginal land in the state of Nebraska and estimated the potential for using marginal land to produce biofuel crops. Our results indicate that approximately 1.6 million ha, or 4 million acres, of land (approximately 8% of total land area) could be classified as marginal on the basis of at least two criteria. Second-generation lignocellulosic bioenergy crops such as switchgrass ( Panicum virgatum L.), miscanthus (Miscanthus giganteus), native prairie grasses, and short-rotation woody crops could be grown on this land in redesigned landscapes that meet energy and environmental needs, without significant impacts on food or feed production. Calculating tradeoffs between the economics of redesigned landscapes and current practices at the field scale is the next step for determining functional designs for integrating biofuel feedstock production into current land management practices. PMID:21869522

  20. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  1. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel.

    Science.gov (United States)

    Knothe, Gerhard; Steidley, Kevin R

    2009-12-01

    Used cooking or frying oils are of increasing interest as inexpensive feedstock for biodiesel production. In this work, used frying oils obtained from 16 local restaurants were investigated regarding their fatty acid profile vs. the fatty acid profile of the oil or fat prior to use. The fatty acid profiles were analyzed by gas chromatography and proton nuclear magnetic resonance spectroscopy. Besides the fatty acid profile, the acid value and dynamic viscosity of the samples were determined. Dynamic viscosity was determined because of non-Newtonian behavior of some samples. The results indicate that oils and fats experience various degrees of increase in saturation during cooking/frying use, with the magnitude of these changes varying from sample to sample, i.e., a high degree of randomness of composition is found in used frying oil samples. Properties of the samples that were investigated were acid value and viscosity which consistently increased with use, also in a random fashion. Multiple independent samples obtained from the same restaurants indicate that there is little consistency of used cooking oil obtained from the same source. These results are discussed with regards to the potential fuel properties of biodiesel derived from these used frying oils. PMID:19592239

  2. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    Directory of Open Access Journals (Sweden)

    Daniel Pleissner

    2014-01-01

    Full Text Available In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1 use of crude enzyme extracts from Aspergillus awamori, (2 Aspergillus awamori solid mashes, and (3 commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate.

  3. Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • First report of Rhazia stricta seed oil as feedstock for biodiesel production. • Biodiesel is prepared by alkaline transesterification. • Biodiesel from R. stricta oil meets specifications in biodiesel standards. - Abstract: Rhazya stricta Decne (R. stricta) is a hardy, drought-resistant, and arid land plant that is widely distributed from the Middle East to South Asia. The aim of this study was to evaluate the use of R. stricta seed oil as an alternative source of triacylglycerols that may be suitable for the synthesis of biodiesel. The oil content of the seeds was approximately 14% and was mainly composed of the fatty acids linoleic (60.95%) and oleic (25.48%) acid. R. stricta methyl esters (RSME) were prepared by a base-catalyzed transesterification reaction. The conversion rate of the triacylglycerols to the corresponding methyl esters was determined by 1H-NMR to be approximately 97%. This study showed that the fuel properties of the RSMEs are comparable to other vegetable oil methyl esters that are commonly used as biodiesels. R. stricta plantations will therefore be suitable for promoting sustainable agriculture and for producing biodiesel with viable prices in arid and semi-arid regions throughout the world

  4. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry.

    Science.gov (United States)

    MacDougall, Karen M; McNichol, Jesse; McGinn, Patrick J; O'Leary, Stephen J B; Melanson, Jeremy E

    2011-11-01

    Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid. PMID:21915640

  5. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  6. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures.

    Science.gov (United States)

    Moita, R; Freches, A; Lemos, P C

    2014-07-01

    The increase in global biodiesel production makes imperative the development of sustainable processes for the use of its main by-product, crude glycerol. In this study the feasibility of polyhydroxyalkanoates (PHA) production by a mixed microbial community using crude glycerol as feedstock was investigated. The selected culture had the ability to consume both glycerol and methanol fraction present in the crude. However, glycerol seemed to be the only carbon source contributing for the two biopolymers stored: poly-3-hydroxybutyrate (PHB) and glucose biopolymer (GB). In this work the culture reached a maximum PHB content of 47% (cdw) and a productivity of 0.27 g X/L.d, with an aerobic mixed cultures and a real waste substrate with non-volatile fatty acids (VFA) organic matter. The overall PHA yield on total substrate obtained was in the middle range of those reported in literature. The fact that crude glycerol can be used to produce PHA without any pre-treatment step, makes the overall production process economically more competitive, reducing polymer final cost. PMID:24731872

  7. Catalytic conversion of γ-valerolactone to ε-caprolactam: towards nylon from renewable feedstock.

    Science.gov (United States)

    Raoufmoghaddam, Saeed; Rood, Marcus T M; Buijze, Florine K W; Drent, Eite; Bouwman, Elisabeth

    2014-07-01

    The conversion of γ-valerolactone (GVL) in three atom-efficient steps to the important polymer precursor ε-caprolactam is reported. The bio-based GVL can be converted to a mixture of isomeric methyl pentenoates (MP) via trans-esterification with methanol with 94% yield (ratio of 3-MP/4-MP=3:1); subsequent aminolysis with ammonia leads to a mixture of pentenamides (PA) almost quantitatively (99% conversion). The resulting pentenamides are ultimately converted into ε-caprolactam via a rhodium-catalyzed intramolecular hydroamidomethylation reaction, comprising an initial hydroformylation of the alkene moiety of PA and subsequent ring-closing reductive amidation of the resulting aldehyde with the amide functionality. A promising yield of caprolactam of about 90% can be obtained with a Rh/xantphos catalyst system in a two-stage hydroformylation-reductive amidation using pure 4-PA as feedstock. The use of 3-PA as a substrate not only results in a significantly lower regioselectivity for the 7-membered lactam, but also in the formation of high amounts of valeramide (VA). Consequently, a best overall yield of caprolactam of nearly 40% could be demonstrated with a Rh/POP-xantphos [POP-xantphos=4,5-bis(2,8-dimethyl-10-phenoxaphosphino)-9,9,-dimethylxanthene] catalyst system based on the 3:1 mixture of 3-PA/4-PA directly obtainable from GVL. PMID:24938779

  8. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  9. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Robert B. [University of Michigan, Department of Chemical Engineering, 2300 Hayward Drive, 3074 HH Dow, Ann Arbor, MI 48109 (United States); Costanza-Robinson, Molly S. [Middlebury College, Department of Chemistry and Biochemistry and Program for Environmental Studies, VT 05753 (United States); Spatafora, Grace A. [Middlebury College, Department of Biology, Middlebury, VT 05753 (United States)

    2011-01-15

    Microalgae have been investigated as a promising biodiesel feedstock; however, large-scale production is not currently cost-competitive with petroleum diesel, and its environmental impacts have received little attention. Using wastewater to supply nutrients for algal growth obviates synthetic fertilizer use, provides on-site nutrient removal, and reduces greenhouse gas emissions. In this work, anaerobically digested dairy manure was used to grow the oleaginous green alga Neochloris oleoabundans. In batch culture experiments with both synthetic media and anaerobic digester effluent, N. oleoabundans assimilated 90-95% of the initial nitrate and ammonium after 6 d and yielded 10-30% fatty acid methyl esters on a dry weight basis. Cellular lipid content and the N concentration in the growth media were inversely correlated. In addition, the proportion of polyunsaturated fatty acids (i.e. C16:3, C18:2, and C18:3) decreased with N concentration over time while the proportion of C18:1 fatty acid increased. Although N deficiency is likely the primary driver behind lipid accumulation, the influence of culture pH confounded results and requires further study. Other living microorganisms in the digester effluent were not observed to affect algal growth and lipid productivity, though the breakdown of organic nitrogen may have hindered lipid accumulation traditionally achieved through the manipulation of synthetic media. This work highlights the potential for waste-grown mono-algal cultures to produce high quality biodiesel while accomplishing simultaneous wastewater treatment. (author)

  10. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  11. Chemical machining

    Directory of Open Access Journals (Sweden)

    A. Yardimeden

    2007-08-01

    Full Text Available Purpose: Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries. There are different geometrically designed parts, such as deep internal cavities, miniaturized microelectronics and fine quality components may only be produced by nontraditional machining processes. This paper is aiming to give details of chemical machining process, industrial applications, applied chemical etchants and machined materials. Advantages and disadvantages of the chemical machining are mentioned.Design/methodology/approach: In this study, chemical machining process was described its importance as nontraditional machining process. The steps of process were discussed in detail. The tolerances of machined parts were examined.Findings: Paper describes the chemical machining process, industrial applications, applied chemical etchants and machined materials.Practical implications: The machining operation should be carried out carefully to produce a desired geometry. Environmental laws have important effects when chemical machining is used.Originality/value: The importance of nontraditional machining processes is very high.

  12. Chemical Leukoderma.

    Science.gov (United States)

    Bonamonte, Domenico; Vestita, Michelangelo; Romita, Paolo; Filoni, Angela; Foti, Caterina; Angelini, Gianni

    2016-01-01

    Chemical leukoderma, often clinically mimicking idiopathic vitiligo and other congenital and acquired hypopigmentation, is an acquired form of cutaneous pigment loss caused by exposure to a variety of chemicals that act through selective melanocytotoxicity. Most of these chemicals are phenols and aromatic or aliphatic catechols derivatives. These chemicals, however, are harmful for melanocytes in individuals with an individual susceptibility. Nowadays, chemical leukoderma is fairly common, caused by common domestic products. The presence of numerous acquired confetti- or pea-sized macules is clinically characteristic of chemical leukoderma, albeit not diagnostic. Other relevant diagnostic elements are a history of repeated exposure to a known or suspected depigmenting agent at the sites of onset and a macules distribution corresponding to sites of chemical exposure. Spontaneous repigmentation has been reported when the causative agent is avoided; the repigmentation process is perifollicular and gradual, taking place for a variable period of weeks to months. PMID:27172302

  13. Prebiotic xylo-oligosaccharides as high-value co-products on an integrated biorefinery approach from lignocellulosic feedstock

    OpenAIRE

    Moura, Patrícia; Carvalheiro, Florbela; Esteves, M. P.; Gírio, Francisco M.

    2008-01-01

    The present work proposes the production of prebiotic xylo-oligosaccharides (XOS) as high-value co-products of the Lignocellulose Feedstock Biorefinery concept, foreseeing potential applications on food, feed and nutraceutical industries. Autohydrolysis was used to selectively solubilise the hemicellulosic fraction of several xylan-rich, widely available, agricultural, agro-industrial and forestry by-products: corn cobs, brewery’s spent grain and Eucalyptus wood chips. The soluble hemicellulo...

  14. Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands

    OpenAIRE

    Li, Hongjia; Pattathil, Sivakumar; Marcus B. Foston; Ding, Shi-You; Kumar, Rajeev; Gao, Xiadi; Mittal, Ashutosh; Yarbrough, John M; Himmel, Michael E.; Ragauskas, Arthur J.; Hahn, Michael G.; Wyman, Charles E

    2014-01-01

    Background Agave, which is well known for tequila and other liquor production in Mexico, has recently gained attention because of its attractive potential to launch sustainable bioenergy feedstock solutions for semi-arid and arid lands. It was previously found that agave cell walls contain low lignin and relatively diverse non-cellulosic polysaccharides, suggesting unique recalcitrant features when compared to conventional C4 and C3 plants. Results Here, we report sugar release data from fung...

  15. High Protein- and High Lipid-Producing Microalgae from Northern Australia as Potential Feedstock for Animal Feed and Biodiesel

    OpenAIRE

    Duong, Thang; Ahmed, Faruq; Thomas-Hall, Skye R.; Quigley, Simon; Nowak, Ekaterina; Schenk, Peer M.

    2015-01-01

    Microalgal biomass can be used for biodiesel, feed, and food production. Collection and identification of local microalgal strains in the Northern Territory, Australia was conducted to identify strains with high protein and lipid contents as potential feedstock for animal feed and biodiesel production, respectively. A total of 36 strains were isolated from 13 samples collected from a variety of freshwater locations, such as dams, ponds, and streams and subsequently classified by 18S rDNA sequ...

  16. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    OpenAIRE

    Khot Mahesh; Kamat Srijay; Zinjarde Smita; Pant Aditi; Chopade Balu; RaviKumar Ameeta

    2012-01-01

    Abstract Background Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species ...

  17. Identification and overexpression of a Knotted1-like transcription factor in switchgrass (Panicum virgatum L.) for lignocellulosic feedstock improvement

    OpenAIRE

    Wegi eWuddineh; Mitra eMazarei; Ji-Yi eZhang; Geoffrey eTurner; Robert eSykes; Decker, Stephen R.; Mark eDavis; Michael eUdvardi; Neal eStewart

    2016-01-01

    High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin ...

  18. Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement

    OpenAIRE

    Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji-Yi; Turner, Geoffrey B; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.; Udvardi, Michael K; Stewart, C. Neal

    2016-01-01

    High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin ...

  19. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches

    OpenAIRE

    Glithero, N.J.; Ramsden, S.J.; Wilson, P

    2012-01-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal s...

  20. Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks

    OpenAIRE

    Hidalgo García, Javier; Fernández-Blázquez, J.P.; Jiménez Morales, Antonia; Barriere, T.; Gelin, J. C.; Torralba, José Manuel

    2014-01-01

    Degradation kinetics and the thermal stability of Invar 36 powder injection moulding feedstocks (PIM) based on cellulose acetate butyrate (CAB) and polyethylene glycol (PEG) binders were investigated using simultaneous thermogravimetric analysis (STA) and differential scanning calorimetry (DSC). The initial decomposition temperature (IDT) and the integral procedure decomposition temperature (IPDT) were used to analyse the thermal stability of the binder system as a function of the solid loadi...

  1. Thermal stability and degradation kinetics of feedstocks for powder injection moulding - A new way to determine optimal solid loading?

    OpenAIRE

    Hidalgo García, Javier; Jiménez Morales, Antonia; Torralba, José Manuel

    2013-01-01

    Degradation kinetics and the thermal stability of zircon powder injection moulding feedstocks (PIM) based on cellulose acetate butyrate (CAB) and polyethylene glycol (PEG) binders were investigated using simultaneous thermogravimetric analysis (STA). The initial decomposition temperature (IDT) and the integral procedure decomposition temperature (IPDT) were used to analyse the thermal stability of the binder system as a function of the solid loading content. The degradation kinetics was studi...

  2. Indirect Land Use Change From Increased Biofuels Demand - Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks

    OpenAIRE

    Edwards, Robert; MULLIGAN DECLAN; Marelli, Luisa

    2010-01-01

    This study compares the ILUC results produced by different economic models for marginal increases in biofuel production from different feedstocks. The work is the result of a survey of marginal calculations launched by the JRC-IE during 2009, involving some of the best known models worldwid. The modellers were requested by JRC-IE to run scenarios corresponding as closely as possible to the following specification (e.g. marginal runs against existing baseline of the following scenarios): A ...

  3. An assessment of the potential of drylands in eight sub-Saharan African countries to produce bioenergy feedstocks

    OpenAIRE

    Watson, H K; Diaz-Chavez, R. A.

    2011-01-01

    This paper synthesizes lessons learnt from research that aimed to identify land in the dryland regions of eight sub-Saharan African study countries where bioenergy feedstocks production has a low risk of detrimental environmental and socio-economic effects. The methodology involved using geographical information systems (GISs) to interrogate a wide range of datasets, aerial photograph and field verification, an extensive literature review, and obtaining information from a wide range of stakeh...

  4. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  5. Effects of feedstock carbon to nitrogen ratio and organic loading on foaming potential in mesophilic food waste anaerobic digestion.

    Science.gov (United States)

    Tanimu, Musa Idris; Mohd Ghazi, Tinia Idaty; Harun, Mohd Razif; Idris, Azni

    2015-05-01

    Foaming problem which occurred occasionally during food waste (FW) anaerobic digestion (AD) was investigated with the Malaysian FW by stepwise increase in organic loading (OL) from 0.5 to 7.5 g VS/L. The FW feedstock with carbon to nitrogen (C/N) ratio of 17 was upgraded to C/N ratio of 26 and 30 by mixing with other wastes. The digestion which was carried out at 37 °C in 1-L batch reactors showed that foam formation initiated at OL of 1.5 g VS/L and was further enhanced as OL of feedstock was increased. The digestion foaming reached its maximum at OL of 5.5 g VS/L and did not increase further even when OL was increased to 7.5 g VS/Ld. Increase in the C/N ratio of feedstock significantly enhanced the microbial degradation activity, leading to better removal of foam causing intermediates and reduced foaming in the reactor by up to 60%. PMID:25761621

  6. Comparative feedstock analysis in Setaria viridis L. as a model for C4 bioenergy grasses and Panicoid crop species

    Directory of Open Access Journals (Sweden)

    Carloalberto ePetti

    2013-06-01

    Full Text Available Second generation feedstocks for bioethanol will likely include a sizable proportion of perennial C4 grasses, principally in the Panicoideae clade. The Panicoideae contain agronomically important annual grasses including Zea mays L. (maize, Sorghum bicolor (L. Moench (sorghum, and Saccharum officinarum L. (sugar cane as well as promising second generation perennial feedstocks including Miscanthus x giganteus and Panicum virgatum L. (switchgrass. The underlying complexity of these polyploid grass genomes is a major limitation for their direct manipulation and thus driving a need for rapidly cycling comparative model. Setaria viridis (green millet is a rapid cycling C4 Panicoid grass with a relatively small and sequenced diploid genome and abundant seed production. Stable, transient and protoplast transformation technologies have also been developed for S. viridis making it a potentially excellent model for other C4 bioenergy grasses. Here, the lignocellulosic feedstock composition, cellulose biosynthesis inhibitor (CBI response and saccharification dynamics of S. viridis are compared with the annual s00orghum and maize and the perennial switchgrass bioenergy crops as a baseline study into the applicability for translational research. A genome-wide systematic investigation of the cellulose synthase-A (CesA genes was performed identifying eight candidate sequences. Two-developmental stages; a metabolically active young tissue and b metabolically plateaued (mature material are examined to compare biomass performance metrics.

  7. Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Suri, Pavan; Atre, Sundar V.; German, Randall M.; Souza, Jupiter P. de

    2003-09-15

    This study investigates the effect of mixing technique and particle characteristics on the rheology and agglomerate dispersion of tungsten-based powder injection molding (PIM) feedstock. Experiments were conducted with as-received (agglomerated) and rod-milled (deagglomerated) tungsten powder mixed in a paraffin wax-polypropylene binder. Increase in the mixing shear rate decreased the agglomerate size of the agglomerated tungsten powder, decreased the viscosity, and improved the flow stability of the feedstock, interpreted as increased homogeneity of the feedstock. Higher solids volume fraction, lower mixing torques, and improved homogeneity were observed with deagglomerated tungsten powder, emphasizing the importance of particle characteristics and mixing procedures in the PIM process. Hydrodynamic stress due to mixing and the cohesive strength of the tungsten agglomerate were calculated to understand the mechanism of deagglomeration and quantify the effect of mixing. It was concluded that deagglomeration occurs due to a combination of rupture and erosion with the local hydrodynamic stresses exceeding the cohesive strength of the agglomerate.

  8. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  9. Screening of Industrial Wastewaters as Feedstock for the Microbial Production of Oils for Biodiesel Production and High-Quality Pigments

    Directory of Open Access Journals (Sweden)

    Teresa Schneider

    2012-01-01

    Full Text Available The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-value by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. The screening of feedstocks should be extended to other wastewaters.

  10. An assessment of the potential of drylands in eight sub-Saharan African countries to produce bioenergy feedstocks.

    Science.gov (United States)

    Watson, H K; Diaz-Chavez, R A

    2011-04-01

    This paper synthesizes lessons learnt from research that aimed to identify land in the dryland regions of eight sub-Saharan African study countries where bioenergy feedstocks production has a low risk of detrimental environmental and socio-economic effects. The methodology involved using geographical information systems (GISs) to interrogate a wide range of datasets, aerial photograph and field verification, an extensive literature review, and obtaining information from a wide range of stakeholders. The GIS work revealed that Africa's drylands potentially have substantial areas available and agriculturally suitable for bioenergy feedstocks production. The other work showed that land-use and biomass dynamics in Africa's drylands are greatly influenced by the inherent 'disequilibrium' behaviour of these environments. This behaviour challenges the sustainability concept and perceptions regarding the drivers, nature and consequences of deforestation, land degradation and other factors. An assessment of the implications of this behaviour formed the basis for the practical guidance suggested for bioenergy feedstock producers and bioenergy policy makers. PMID:22482033

  11. Assessing regional hydrology and water quality implications of large-scale biofuel feedstock production in the Upper Mississippi River Basin.

    Science.gov (United States)

    Demissie, Yonas; Yan, Eugene; Wu, May

    2012-08-21

    A recent U.S. Department of Energy study estimated that more than one billion tons of biofuel feedstock could be produced by 2030 in the United States from increased corn yield, and changes in agricultural and forest residue management and land uses. To understand the implications of such increased production on water resources and stream quality at regional and local scales, we have applied a watershed model for the Upper Mississippi River Basin, where most of the current and future crop/residue-based biofuel production is expected. The model simulates changes in water quality (soil erosion, nitrogen and phosphorus loadings in streams) and resources (soil-water content, evapotranspiration, and runoff) under projected biofuel production versus the 2006 baseline year and a business-as-usual scenario. The basin average results suggest that the projected feedstock production could change the rate of evapotranspiration in the UMRB by approximately +2%, soil-water content by about -2%, and discharge to streams by -5% from the baseline scenario. However, unlike the impacts on regional water availability, the projected feedstock production has a mixed effect on water quality, resulting in 12% and 45% increases in annual suspended sediment and total phosphorus loadings, respectively, but a 3% decrease in total nitrogen loading. These differences in water quantity and quality are statistically significant (p sustainable biofuel productions. PMID:22827327

  12. Investigations of coprocessing of a hydrothermally pretreated brown coal with petroleum feedstocks. Untersuchungen zur gemeinsamen Hydrierung einer hydrothermal vorbehandelten Braunkohle mit mineraloelstaemmigen Anmischoelen

    Energy Technology Data Exchange (ETDEWEB)

    Argirusis, C.

    1992-01-01

    It is the aim of the experiments to modify a Merseburg brown coal through hydroghermal pretreatment at three temperatures in the subcritical range (250, 300 and 350 degrees centigrade). The influence of pretreatment is to be analyzed. By means of vacuum distillation of the vacuum residue Arabian-Mix at three temperatures (190, 225 and 300 degrees centigrade) and constant low pressure of 6 x 10[sup 2] bar six petroleum-based feedstocks are to be produced. In total seven petroleum-based feedstocks are employed together with the initial vacuum residue. The original coal and the three pretreated coal grades are investigated for their suitability for coprocessing with the seven petroleum feedstocks. The hydrogenating and liquefaction behavior of the pretreated coals is particularly interesting. Simutaneously the influence of the petroleum feedstocks on coprocessing is examined; in particular distillation residues and the original vacuum residue. (orig./HS)

  13. A holistic high-throughput screening framework for biofuel feedstock assessment that characterises variations in soluble sugars and cell wall composition in Sorghum bicolor

    OpenAIRE

    Martin, Antony P.; PALMER, WILLIAM M.; Byrt, Caitlin S; Furbank, Robert T.; Grof, Christopher PL

    2013-01-01

    Background A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total...

  14. Environment assessment: allocation of petroleum feedstock, Algonquin SNG Inc. , Freetown SNG Plant, Bristol County, MA. [Effects of 100, 78, 49% allocations

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The proposed administrative action to deny, grant or modify the Algonquin SNG, Inc. (Algonquin) petition for an adjusted allocation of naphtha feedstock may significantly affect the ehuman environment. The volume of feedstock requested is 4,425,571 barrels per year of naphtha to be used in Algonquin's Freetown, MA synthetic natural gas (SNG) plant. Environmental impacts of 100, 78, and 49% allocations were evaluated.

  15. Aspects technologiques de la pyrolyse des charges lourdes Technological Aspects of the Pyrolysis of Heavy Feedstocks

    Directory of Open Access Journals (Sweden)

    Rhoe A.

    2006-11-01

    Full Text Available Les charges lourdes présentent des caractéristiques particulières pour la pyrolyse, tant en ce qui concerne les rendements, qu'en ce qui concerne la chauffe jusqu'à la température de réaction, et ceci a un rapport direct sur les différentes sections d'une unité d'éthylène. Les charges lourdes peuvent être soumises à la pyrolyse, soit directement, soit après un prétraitement qui modifie leurs structures afin d'obtenir de meilleurs rendements en produits à haute valeur. Ce choix n'est plus à l'heure actuelle qu'un choix économique, étant donné que les technologies existent et ont été démontrées industriellement. Plusieurs types de procédés de prétraitement ont été développés et le choix du meilleur procédé dépendra de la valorisation des produits secondaires et de l'utilisation du produit prétraité dans une unité d'éthylène à construire ou déjà existarite. Finalement, plusieurs technologies nouvelles de pyrolyse à haute sévérité sont en cours de développement, mais il n'est pas encore certain qu'elles soient mûres pour l'application à l'échelle industrielle, ou si elles peuvent prétendre à une large couverture du marché des oléfines. Heavy feedstocks have special characteristies for pyrolysis with regard to both yields and heating to attain the reaction temperature. This is in direct relationship to the different sections of an ethylene plant. Heavy feedstocks may be subjected to pyrolysis, either directly or after a pretreatment to modify their structures so as to obtain better yields of high-value products. This choice is now no longer an economic choice considering the technologies that exist and have been industrially demonstrated. Several types of pretreatment processes have been developed, and the choice of the best process depends on the valorisation of the secondary products and on the use of the pretreated products in an ethylene plant to be built or already existing. Lastly, several

  16. MCM-41-supported cobalt-molybdenum catalysts for deep hydrodesulfurization of diesel and jet fuel feedstocks

    Science.gov (United States)

    Turaga, Uday Tsrpr

    Regulatory issues require new catalysts for the deep hydrodesulfurization (HDS) of refractory polyaromatic sulfur compounds such as 4,6-dimethyldibenzothiophene (4,6-DMDBT) present in diesel and jet fuel. Molybdenum sulfide (MoS2 ) supported on mesoporous molecular sieve MCM-41 and promoted by cobalt was hypothesized to have superior activity for deep HDS because of MCM-41's (1) high surface area and uniform mesopores and (2) superior acidity as compared to conventional supports such as gamma-alumina (gamma-Al 2O3). This study examines the role of MCM-41 as a support for new cobalt (Co)-molybdenum (Mo) HDS catalysts. At CoO-MoO3 loadings typical of commercially available HDS catalysts, MCM-41-supported catalysts were only slightly better. At higher loadings---27.0% (by weight) MoO3 and 5.8% CoO---MCM-41-supported catalysts were twice more active than the commercial catalyst. This difference in activities is related to the degree of MoS2 stacking. Remarkable increase in the conversion of 4,6-DMDBT was observed over MCM-41-supported catalysts with decreasing SiO2/Al2O 3 ratio. More significantly, the SiO2/Al2O 3 ratio of MCM-41 has a profound effect on product distribution and catalyst selectivity. Irrespective of CoO-MoO3 loading, catalysts using MCM-41 with a SiO2/Al2O3 ratio of 50 convert more of 4,6-DMDBT through the highly desirable hydrogenolysis pathway. The acidity of these catalysts was measured and correlated to their selectivities for hydrogenolysis and hydrocracking. Co-Mo/MCM-41 continued to demonstrate activities twice that of the commercial catalyst for the HDS of 4,6-DMDBT in petroleum-derived feedstocks such as light cycle oil. However, for a blend of coal- and petroleum-derived feedstocks, nitrogen from the coal-derived liquid inhibited both catalysts for the HDS of 4,6-DMDBT. Basic nitrogen, e.g., quinoline, significantly retards the HDS of 4,6-DMDBT over both catalysts. Non-basic carbazole, on the other hand, inhibited the MCM-41-supported

  17. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations

    Directory of Open Access Journals (Sweden)

    Walton Jonathan D

    2010-10-01

    Full Text Available Abstract Background Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]. A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP at the same protein loadings. Results When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3 and a lower proportion of endo-β1,4-glucanase (EG1 compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase,

  18. Synthetic carbonaceous fuel and feedstock using nuclear power, air and water

    International Nuclear Information System (INIS)

    Nuclear power can provide not only the stationary thermal and electrical power backbone in the U.S. but can also be of great assistance in supplying synthetic carbonaceous fuels and feedstocks (SCFF). All forms of carbonaceous materials can serve as sources of raw material for SCFF: however here is considered the ultimate renewable resource of carbon which is CO2 from the atmosphere or the oceans. A number of methods for the recovery of CO2 have been examined. An absorption-stripping system utilizing dilute carbonate solvent appears most economical for atmospheric recovery while distillation appears of interest for sea-water recovery. An alternative isothermal process utilizing chlor-alkali cells is also described. Electrolytic hydrogen is thermocatalytically combined with the CO2 to form methanol which can then be dehydrated to gasoline. Production cost is dominated by the energy for hydrogen and the plant capital investment. Base loaded nuclear power plants supplying peaking load and generating SCFF in an off-peak mode is proposed for reducing costs. Under 1974/5 conditions, incremental power costs would have been a minimum. Under 1985 escalated conditions, incremental costs indicate 6 mills/kWh(e) for power which yields 33.9 c/gallon methanol or 77.1 c/gallon of equivalent gasoline which takes credit for oxygen would break even with $23/bbl of oil. The capital investment for producing the equivalent of one million barrels/day of gasoline in 142 nuclear reactors of 100 MW(e) capacity, operating in an off-peak mode, amounts to slightly more than the investment in new oil exploration and production facilities and considerably less than the projected outflow of capital to foreign OPEC countries. (author)

  19. Sources of uncertainty in nitrous oxide emissions from winter barley biofuel feedstock life cycles

    Science.gov (United States)

    Speers, C. M.; Gurian, P. L.; Adler, P. R.; Del Grosso, S.; Spatari, S.

    2013-12-01

    Winter barley is an attractive feedstock for first generation biofuel production in the US Mid-Atlantic region that can serve East Coast transportation fuel markets. Recently designated advanced fuel standing by US EPA, the influence of barley grown as a winter crop on N2O emissions is uncertain because of high spatial and temporal variability. Our objective is to examine the sensitivity of direct and indirect N2O emissions to different management and environmental factors within a 20 year winter barley rotation in two Mid-Atlantic counties (Lenoir, North Carolina, and Queen Anne's, Maryland) using first order uncertainty methods. Specifically, we conducted simulations using the DayCent biogeochemical model, where winter barley was introduced in a two-year rotation following corn and preceding soybean, and grown in four-year cycles that alternate with winter wheat and fallow periods. We tested different model input parameters and analyzed the level of uncertainty each contributes to both direct and indirect N2O emissions with the introduction of barley into the crop rotation. The input values for pH, precipitation, temperature, soil texture, and fertilizer quantity applied were altered from base values and outputs for rotations with and without winter barley were compared by calculating partial derivatives for each parameter to estimate the relative change in N2O emitted. Fertilizer, followed by soil texture, introduces the greatest uncertainty in N2O emissions, with the remaining parameters contributing to lesser, but still significant uncertainty. Therefore, as barley is introduced onto a farm for biofuel production, it is most important to carefully control the fertilizer additions, and to monitor the soil texture class characteristics.

  20. Regional Environmental Impacts of Biofuel Feedstock Production--Scaling Biogeochemical Cycles in Space and Time

    Science.gov (United States)

    Vanloocke, A.; Bernacchi, C.

    2008-12-01

    Recently there has been increasing socio-economic and scientific interest in the use of alternative sources of energy to offset the negative effects of current fossil fuel dependence and consequent greenhouse gas emissions. Currently, one of the most popular alternatives is to use ethanol produced from domestically grown crops for use as fuel in the transportation sector. In 2007, over 7.5 billion gallons of ethanol were produced in the U.S. from corn, a traditional food crop. Recent research indicates that it may be logistically impractical, ecologically counterproductive (i.e. a net carbon source), and economically devastating to produce ethanol from crops previously grown to produce food. The EBI (Energy Biosciences Institute, at University of California Berkley and University of Illinois Urbana-Champaign) is now conducting research to assess the ability of traditional crops as well as dedicated biofuel feedstocks (e.g. Panicum virgatum (switchgrass), Miscanthus x Giganteus (Miscanthus), and Saccharum spp (sugar cane)) to provide a productive and sustainable alternative to fossil fuel. This is an important step to take before implementing the large-scale growth necessary to meet U.S. energy needs .A process-based terrestrial ecosystem model, Agro-IBIS (Agricultural Integrated Biosphere Simulator) was adapted to simulate the growth of Miscanthus. The model was calibrated using data collected from sites at the University of Illinois south farms. Simulations indicated significant implications on the regional carbon and water budgets. Next this locally validated method will be extrapolated to simulate the regional scale growth of Miscanthus in the Midwestern U.S. and sugarcane in Brazil and a similar analysis will be conducted for switchgrass. The results should provide insight on optimal land-use decisions and legislation that regard meeting energy demands and mitigating climate change in the near future.

  1. Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock

    Directory of Open Access Journals (Sweden)

    Beaudoin Frédéric

    2014-11-01

    Full Text Available The world faces considerable challenges including how to produce more biomass for food, feed, fuel and industrial feedstock without significantly impacting on our environment or increasing our consumption of limited resources such as water or petroleum-derived carbon. This has been described as sustainable intensification. Oleaginous crops have the potential to provide renewable resources for all these commodities, provided they can be engineered to meet end-use requirements, and that they can be produced on sufficient scale to meet current growing world population and industrial demand. Although traditional breeding methods have been used successfully to modify the fatty acid composition of oils, metabolic engineering provides a more rapid and direct method for manipulating plant lipid composition. Recent advances in our understanding of the biochemical mechanisms of seed oil biogenesis and the cloning of genes involved in fatty acid and oil metabolic pathways, have allowed the generation of oilseed crops that produce ‘designer oils’ tailored for specific applications and the conversion of high biomass crops into novel oleaginous crops. However, improvement of complex quantitative traits in oilseed crops remains more challenging as the underlying genetic determinants are still poorly understood. Technological advances in sequencing and computing have allowed the development of an association genetics method applicable to crops with complex genomes. Associative transcriptomics approaches and high throughput lipidomic profiling can be used to identify the genetic components controlling quantitative variation for lipid related traits in polyploid crops like oilseed rape and provide molecular tools for marker assisted breeding. In this review we are citing examples of traits with potential for bio-refining that can be harvested as co-products in seeds, but also in non-harvested biomass.

  2. GlidArc-assisted production of synthesis gas from various carbonaceous feedstocks

    International Nuclear Information System (INIS)

    Pure Hydrogen or its mixture with Carbon Monoxide (called Synthesis Gas) will be massively extracted from various fossil or renewable feedstocks. Such matters contain contaminants (principally Sulphur) that make conventional catalytic reforming technologies very difficult to run without a prior deep cleaning of the feeds in order to avoid the reformer's catalyst poisoning. We propose a non-catalytic process in which almost any carbonaceous feed is converted into the Synthesis Gas in a presence of high-voltage discharges (called GlidArc) that assist the exothermic Partial Oxidation POX). The unique oxidant is air. This contribution presents some of our tests with natural gas, cyclohexane, heptane, toluene, various gasolines, and various diesel oils (including logistic ones). In two separate contributions to this Conference we present our more expanded studies on the GlidArc-assisted POX reforming of commercial propane and rapeseed oil (canola). Our reactors (1- or 2-Liter scale) work at atmospheric pressure and need less than 0.5 kW electric power (rather about 0.1 kW) to produce up to 9 m3(n)/h of Nitrogen-diluted SynGas containing up to 27% of H2 and up to 23% of CO. Such assisting power represents roughly less than 5% (rather around 2%) with respect to the Lower Heating Value of produced Synthesis Gas (up to 11 kW). Recycling such relatively small portion of the power is an acceptable compromise. All tested feeds are totally reformed. No soot is observed at a sufficient O/C ratio. (author)

  3. Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2016-03-01

    Full Text Available Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities. Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial economic losses that will only be discovered after operations at a biorefinery have begun. This paper proposes a novel bioenergy supply chain network design model that minimizes operational costs and includes the biomass quality-related costs. The proposed model is unique in the sense that it supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results demonstrate that the ash and moisture contents of logging residues affect the performance of the supply chain (in monetary terms. Higher-than-target moisture and ash contents incur in additional quality-related costs. The quality-related costs in the optimal solution (with final ash content of 1% and final moisture of 50% account for 27% of overall supply chain cost. Based on the numeral experimentation, the total supply chain cost increased 7%, on average, for each additional percent in the final ash content.

  4. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  5. Chemical networks*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    This chapter discusses the fundamental ideas of how chemical networks are build, their strengths and limitations. The chemical reactions that occur in disks combine the cold phase reactions used to model cold molecular clouds with the hot chemistry applied to planetary atmosphere models. With a general understanding of the different types of reactions that can occur, one can proceed in building a network of chemical reactions and use it to explain the abundance of species seen in disks. One o...

  6. Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition.

    Science.gov (United States)

    Duque, Anouk F; Oliveira, Catarina S S; Carmo, Inês T D; Gouveia, Ana R; Pardelha, Filipa; Ramos, Ana M; Reis, Maria A M

    2014-06-25

    Polyhydroxyalkanoates (PHA) can be produced by mixed microbial cultures (MMC) using a three-stage process. An attractive feature of MMC for PHA production is the ability to use waste/surplus feedstocks. In this study, the effect of a feedstock shift, mimicking a seasonal feedstock scenario and/or as a strategy for controlling polymer composition, on a MMC PHA production process was assessed using cheese whey (CW) and sugar cane molasses (SCM) as model feedstocks. The acidogenic stage responded immediately to the feedstock shift by changing the fermented products profile, with acetate and butyrate being the main acids produced from CW, while for SCM propionate and valerate were the dominant products. The fermentation process was then quite stable during long term operation. The PHA culture selection stage also responded quickly to the fermented feestocks shift, generating a polymer whose composition was linearly dependent on the concentration of HV and HB precursors produced in the acidogenic stage. The selected culture reached a maximum PHA content of 56% and 65% with fermented SCM and CW, respectively. Mixing fermented CW and SCM, in equal volume proportions, demonstrated the possibility of using different fermented feedstocks for tailoring polymer composition. PMID:24211366

  7. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon. PMID:21666928

  8. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be

  9. Chemical machining

    OpenAIRE

    A. Yardimeden; T. Ozben; O. Cakir

    2007-01-01

    Purpose: Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries. There are different geometrically designed parts, such as deep internal cavities, miniaturized microelectronics and fine quality components may only be produced by nontraditional machining processes. This paper is aiming to give details of chemical machining process, industrial applications, applied chemical etchants and mac...

  10. Chemical Radioprotectors

    Directory of Open Access Journals (Sweden)

    S. N. Upadhyay

    2005-10-01

    Full Text Available Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure to radiation. Several physico-chemical and biological factors collectively contribute to the damage caused by radiation and are, therefore, targets for developing radioprotectors. Work on the development of chemicals capable of protecting biological systemsfrom radiation damage was initiated nearly six decades ago with cysteine being the first molecule to be reported. Chemicals capable of scavenging free radicals, inducing oxygen depletion,antioxidants and modulators of immune response have been some of the radioprotectors extensively investigated with limited success. Mechanism of action of some chemical radioprotectors and their combinations have been elucidated, while further understanding is required in many instances. The present review elaborates on structure-activity relationship of some of the chemical radioprotectors, their evaluation, and assessment, limitation, and future prospects.

  11. Opportunity for high value-added chemicals from food supply chain wastes.

    Science.gov (United States)

    Matharu, Avtar S; de Melo, Eduardo M; Houghton, Joseph A

    2016-09-01

    With approximately 1.3 billion tonnes of food wasted per annum, food supply chain wastes (FSCWs) may be viewed as the contemporary Periodic Table of biobased feedstock chemicals (platform molecules) and functional materials. Herein, the global drivers and case for food waste valorisation within the context of global sustainability, sustainable development goals and the bioeconomy are discussed. The emerging potential of high value added chemicals from certain tropical FSCW is considered as these are grown in three major geographical areas: Brazil, India and China, and likely to increase in volume. FSCW in the context of biorefineries is discussed and two case studies are reported, namely: waste potato, and; orange peel waste. Interestingly, both waste feedstocks, like many others, produce proteins and with the global demand for vegetable proteins on the rise then proteins from FSCW may become a dominant area. PMID:26996261

  12. Raw material demand and sourcing options for the development for a bio-based chemical industry in Europe : Part 1 : Estimation of maximum demand

    NARCIS (Netherlands)

    Bos, H.L.; Sanders, J.P.M.

    2013-01-01

    This perspective presents an estimation of the future demand for biomass of the chemical industry in Europe, provided that naphtha, the present feedstock of the petrochemical industry, is fully replaced by biomass. Data are based on the Eurostat data on manufactured goods for EU27 in 2007. Two diffe

  13. The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries

    OpenAIRE

    Marcotullio, G.

    2011-01-01

    This dissertation deals with biorefinery technology development, i.e. with the development of sustainable industrial methods aimed at the production of chemicals, fuels, heat and power from lignocellulosic biomass. This work is particularly focused on the production of furfural from hemicellulose-derived pentoses. The possibility of producing materials, chemicals, and fuels from biomass has a long history. Unfortunately fossil resources, in particular oil, have dominated last century both in ...

  14. New resources for chemicals. Elaboration of transition path 5. Innovative use of green materials and/in sustainable chemistry; Nieuwe bronnen voor chemie. Uitwerking van transitiepad 5. Innovatief gebruik groene grondstoffen en/in duurzame chemie

    Energy Technology Data Exchange (ETDEWEB)

    Bruggink, A.

    2006-09-15

    In the Netherlands, the chemical industry is the largest industrial user of fossil feedstocks: approximately 20% of the total, of which 60% as feedstock for end products. The chemical industry can save on its current total consumption of fossil feedstocks of approximately 685 PJ up to 200 PJ by means of replacement, avoidance and saving. In the main sector, the organic chemical sector, the use of fossil feedstocks for end products can be reduced with 50% (140 PJ), half of which through replacement by renewable feedstocks from biomass and the other half by recycling of top 10 synthetics. The latter requires an international approach. [mk]. [Dutch] In Nederland is de chemie de grootste industriele gebruiker van fossiele grondstoffen: ruim 20% van het totaal waarvan 60% in de vorm van grondstof voor eindproducten. De chemie kan op haar huidig totaalverbruik aan fossiele grondstoffen van ca. 685 PJ tot 200 PJ besparen door vervanging, vermijding en besparing. In de belangrijkste sector, de organische chemie, kan het verbruik in de vorm van fossiele grondstof voor eindproduct met 50% (140 PJ) terug, waarvan de helft door vervanging door hernieuwbare grondstoffen uit biomassa en de helft door hergebruik van top-10 kunststoffen. Voor het laatste is een internationale aanpak nodig.

  15. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  16. Perennial grasses as lignocellulosic feedstock for second-generation bioethanol production in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2014-06-01

    Full Text Available In this paper the suitability of three perennial, herbaceous, lignocellulosic grasses (Arundo donax, Saccharum spontaneous spp. aegyptiacum and Miscanthus x giganteus for the production of second-generation bioethanol in semi-arid Mediterranean environment was studied. Crops were established in spring 2002, supplying irrigation and nitrogen fertilization up to 2004/2005 growing season. Subsequently, crops were grown without any agronomic input and harvested annually. Data reported in this paper refers to 2008/2009 and 2009/2010 growing seasons. Aboveground dry matter (DM yield was higher in Arundo (35.4±2.1 Mg ha–1 in 2009 and 32.2±1.9 Mg ha–1 in 2010 harvest than in Saccharum (27.3±2.0 and 23.9±1.9 Mg ha–1, respectively and Miscanthus (19.6±2.8 and 17.2±1.6 Mg ha–1, respectively. Structural polysaccharides of the raw material were higher in Miscanthus (63.4% w/w followed by Saccharum (61.5% w/w and Arundo (57.6% w/w. The same trend was identified for the cellulose content (41.0%, 36.8% and 34.6%, respectively. The highest values in the total hemicellulose complex were observed in Saccharum (24.7%, followed by Arundo (23.1% and Miscanthus (22.4%. The composition of structural polysaccharides leads to a higher theoretical ethanol yield (TEY from one dry ton of Miscanthus feedstock (kg DM Mg–1, followed by Saccharum and Arundo. On the other hand, the TEY per unit surface (Mg ha–1 was greater in Arundo than in Saccharum and Miscanthus. When compared to other lignocellulosic sources used in the second-generation bioethanol technology, such as agricultural residues, woody species and other herbaceous perennial crops, Arundo, Saccharum and Miscanthus showed a great potential in terms of TEY ha–1. Given the high levels of biomass yield and composition of structural polysaccharides, the three species might be introduced into the Mediterranean cropping systems to supply lignocellulosic biomass for second-generation industrial plants

  17. The thin green line: sustainable bioenergy feedstocks or invaders in waiting

    Directory of Open Access Journals (Sweden)

    Larissa L. Smith

    2015-04-01

    Full Text Available Numerous fast growing and highly competitive exotic crops are being selected for production of renewable bioenergy. Tolerance of poor growing conditions with minimal inputs are ideal characteristics for bioenergy feedstocks, but have attracted concern for their potential to become invasive. Miscanthus × giganteus is one of the most promising bioenergy crops in the US, but grower adoption is hindered by high establishment costs due to sterility. Newly developed fertile tetraploid M. × giganteus may streamline cultivation while reducing establishment costs. However, fertile seed dramatically increases the potential propagule pressure, and thus probability of off-site plant establishment. To empirically evaluate the invasive potential of fertile M. × giganteus in the Southeastern US, we compared fitness and spread potential relative to ten grass species comprising 19 accessions under both high and low levels of competition and disturbance. We chose species known to be invasive in the US (positive controls: Arundo donax, naturalized M. sinensis, M. sacchariflorus, Phalaris arundinacea, Sorghum halepense and non-invasive (negative controls; Andropogon gerardii, ornamental M. sinensis, Panicum virgatum, Sorghum bicolor, Saccharum spp.. This novel design allows us to make relative comparisons of risk among species with varying invasiveness. After three years of establishment and growth in Blacksburg, Virginia, neither aboveground disturbance nor interspecific weed competition influenced fitness for fertile M. × giganteus or our positive and negative control groups. Fertile M. × giganteus produced 346% and 283% greater aboveground biomass than our positive and negative species, respectively. However, fertile M. × giganteus produced 74% fewer inflorescences m-2 than our positive controls and 7% and 51% fewer spikelets inflorescence-1 than the positive and negative control species. After 18 months of growth, we observed the vegetative and seedling

  18. Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks

    International Nuclear Information System (INIS)

    In this study the aqueous phases resulting from the hydrothermal liquefaction (HTL) of biomass and the hydrotreatment (HT) of fast pyrolysis bio-oils were analyzed via TC, COD, GC-MS, GC-FID, HPLC, and ICP-OES to determine the organic and inorganic species present and the quantitative amounts of each. This work is necessary to address a significant knowledge gap in the literature related to the aqueous phases from thermochemical processes. Results showed that water from the hydrotreatment of eight different bio-oils contained less than 1 wt% total carbon, in many cases less than 0.2%. Negligible organic carbon was observed. HTL samples contained between 1 and 2 wt% carbon. Due to the large volume of water added to the HTL feedstock and the dilute samples generated, this accounts for 34–45% of the total carbon sent to the reactor. The majority of this carbon was present as acids, with glycolic acid and acetic acid having the highest concentrations. Alcohols, specifically methanol and ethanol, were also present. Numerous ketones were observed, consisting of mainly acetone and cyclopenta-ones. The amount of the total carbon identified and quantified in the HTL samples ranged from 64 to 82%. Inorganic species present in the HT samples were sodium, silicon, and sulfur. The highest levels of sulfur were observed in the grasses and agricultural residue (corn stover). The HTL samples exhibited much higher inorganic content, with very high levels of sodium and potassium. Alkali and alkali earth metals, as well as sulfur, were also present at levels high enough to raise concerns for the use of catalysts in downstream upgrading or reforming processes. - Highlights: • Hydrotreatment samples are less than 1 wt% total carbon with negligible organic C. • 64–82% of the total carbon in HTL samples was identified and quantified. • Organic species in HTL samples were mainly acids, alcohols, and ketones. • Inorganic species in HT samples were mainly Na, Si, and S.

  19. Regional Impacts of Miscanthus Biofuel Feedstock Production on the Hydrologic Cycle

    Science.gov (United States)

    Vanloocke, A. D.; Twine, T. E.; Bernacchi, C.

    2009-12-01

    Socio-economic and scientific interest toward the use of renewable energy to offset fossil fuel dependence and greenhouse gas emissions is increasing. Currently, the majority of the US renewable energy production is focused on replacing gasoline with corn ethanol. In 2008, 18% of the US corn yield was used to displace ~5% of US gasoline consumption. This represents progress toward meeting the goals of offsetting 30% of liquid fossil fuel consumption by 2030 as established by the US government in the Advanced Energy Initiative (AEI). However, a growing body of research indicates that it may not be beneficial or even possible for corn ethanol alone to meet the AEI goals. Highly productive bioenergy feedstocks requiring fewer inputs such as Miscanthus x Giganteus (Miscanthus) are ideal candidates, relative to maize, to provide a renewable and sustainable alternative to fossil fuel. It is anticipated that Miscanthus is likely to have minimal environmental impacts and could be potentially beneficial to the environment. In order to meet the AEI goals, Miscanthus production on the scale of 1x10 ha would be needed. Before this level of production occurs, uncertainty over the environmental impacts of large-scale implementation should be addressed particularly with regards to the hydrologic cycle. We calibrated and evaluated a process-based terrestrial ecosystem model, Agro-IBIS (Integrated Biosphere Simulator, agricultural version), to simulate the impacts of land-use-change from current land-use practices to Miscanthus production on the hydrologic cycle. Simulations for the Midwestern US (0.5°grid cell resolution) were generated using the same climate forcing for current land cover and additional scenarios where Miscanthus was planted in varying densities (10%, 25%, 50%, 75%, and 100%). Analyses indicate that for most of the Midwestern US, large increases in evapotranspiration (~100 to 250 mm/yr) and decreases in drainage (~ -100 to -250 mm/yr) occur when high densities

  20. Carbon and Water Vapor Fluxes of Dedicated Bioenergy Feedstocks: Switchgrass and High Biomass Sorghum

    Science.gov (United States)

    Wagle, P.; Kakani, V. G.; Huhnke, R.

    2015-12-01

    We compared eddy covariance measurements of carbon and water vapor fluxes from co-located two major dedicated lignocellulosic feedstocks, Switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench), in Oklahoma during the 2012 and 2013 growing seasons. Monthly ensemble averaged net ecosystem CO2 exchange (NEE) reached seasonal peak values of 36-37 μmol m-2 s-1 in both ecosystems. Similar magnitudes (weekly average of daily integrated values) of NEE (10-11 g C m-2 d-1), gross primary production (GPP, 19-20 g C m-2 d-1), ecosystem respiration (ER, 10-12 g C m-2 d-1), and evapotranspiration (ET, 6.2-6.7 mm d-1) were observed in both ecosystems. Carbon and water vapor fluxes of both ecosystems had similar response to air temperature (Ta) and vapor pressure deficit (VPD). An optimum Ta was slightly over 30 °C for NEE and approximately 35 °C for ET, and an optimum VPD was approximately 3 kPa for NEE and ET in both ecosystems. The switchgrass field was a larger carbon sink, with a cumulative seasonal carbon uptake of 406-490 g C m-2 compared to 261-330 g C m-2 by the sorghum field. Despite similar water use patterns during the active growing period, seasonal cumulative ET was higher in switchgrass than in sorghum. The ratio of seasonal sums of GPP to ET yielded ecosystem water use efficiency (EWUE) of 9.41-11.32 and 8.98-9.17 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The ratio of seasonal sums of net ecosystem production (NEP) to ET was 2.75-2.81 and 2.06-2.18 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The switchgrass stand was a net carbon sink for four to five months (April/May-August), while sorghum was a net carbon sink only for three months (June-August). Our results imply that the difference in carbon sink strength and water use between two ecosystems was driven mainly by the length of the growing season.