WorldWideScience

Sample records for chemical feedstocks progress

  1. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  2. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  3. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    Science.gov (United States)

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  4. Chemical or feedstock recycling of WEEE products

    NARCIS (Netherlands)

    Tukker, A.

    2012-01-01

    This chapter reviews initiatives with regard to chemical or feedstock recycling of plastics waste from electrical and electronic products. eurostat estimates the amount of waste from electrical and electronic products that is collected is 2.2 million tonnes. Roughly 20% of this waste consists of pla

  5. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1, 1977--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-06-01

    The degradation of cellulosic biomass continues to focus on the anaerobic thermophile Clostridium thermocellum. When grown on crystalline cellulose (MN300) in batch culture, there is an initial rapid accumulation of reducing sugars but the sugars are rapidly metabolized in later times during the fermentation. When grown on Solka floc with periodic addition of the substrate, there is a continual accumulation of reducing sugars (xylose, glucose, and cellobiose) as well as ethanol and acetic acid during the entire course of the fermentation. In the presence of surfactant in the growth medium, there is an increased appearance of extracellular cellulases. A chemically defined medium is being developed for growth Cl. thermocellum in order to study the enzyme regulations. Lastly, a trinitrophenyl-carboxylmethyl cellulose substrate for determining cellulose activity appears to be a promising and rapid assay. Progress in the genetic manipulations has been cautious but promising. Preliminary evidence leads to optimistic projection on the presence of plasmids and bacteriophage in Cl. thermocellum. The production of chemical feedstocks continues to focus on acrylic acid, acetone/butanol and acetic acid. Studies with cell free extracts of Clostridium propionicum have shown the production and accumulation of acrylic acid from lactic acid. The use of electron acceptor in cell-free systems has shown effective prevention on the reduction of acrylic acid to propionic acid. Medium development and strain selection using available acetone/butanol producing Cl. acetobutylicum have been initiated. There is every indication that these strains are capable to produce mixed solvents close to the theoretical maximum yield. An accurate and rapid method for quantifying acetic acid was developed. This technique is being used to examine the pertinent parameters on the production of acetic acid by Clostridium thermoaceticum.

  6. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  7. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  8. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1-August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-08-01

    Studies concerning the cellobiose properties of Clostridium thermocellum were started to determine if the cellulose degradation end products can be enhanced for glucose (with a subsequent decrease in cellobiose). Implications of preliminary studies indicate that the cells or the enzyme(s) responsible for converting cellobiose to glucose can be manipulated environmentally and genetically to increase the final yield of glucose. The second area of effort is to the production of chemical feedstocks. Three fermentations have been identified for exploration. Preliminary reports on acrylic acid acetone/butanol, and acetic acid production by C. propionicum, C. acetobutylicum, and C. thermoaceticum, respectively, are included. (DMC)

  9. Development of Oilfield Chemicals Based on Advantages in Petrochemical Feedstocks

    Institute of Scientific and Technical Information of China (English)

    Wang Xieqing; Peng Pu

    2002-01-01

    This article focuses on the routes for development of oilfield chemicals by making use of the feedstock advantages of the petrochemical industry. The diversification of oilfield chemicals has re sulted in thousand product grades. Because there are hundred domestic producers of oilfield chemicals,mostly medium and small producers, the fluctuations of feedstock prices and product quality cannot be conducive to the application and development of oilfield chemicals. This article illustrates the feasibility of oilfield chemical production by state-run medium and large petrochemical enterprises by allowing full play to their own advantages in petrochemical feedstocks.

  10. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, September 1-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-11-01

    Studies on the accumulation of glucose during the fermentation of cellulose by Clostridium thermocellum are discussed. Production of ethanol and its relationship to growth rate in C. thermocellum is reported. Different biomasses were tested for ethanol yields. These included exploded poplar, sugar cane, bagasse, corn cobs, sweet gum, rice straw, and wheat straw. Thermophilic bacteria were tested to determine relationship of temperature to yield of ethanol. A preliminary report on isolating plaque forming emits derived from C. thermocellum is presented as well as the utilization of carbohydrates in nutrition. A cellulose enzyme is being purified from C. thermocellum. The production of chemical feedstocks by fermentation is reported. Acrylic acid, acetone/butanol, and acetic acid, produced by C. propionicum, C. acetobutylicum, and C. thermoaceticum, are discussed. (DC)

  11. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Serdar E-mail: yamans@itu.edu.tr

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented.

  12. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Serdar Yaman [Istanbul Technical University (Turkey). Chemical Engineering Dept.

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented. (author)

  13. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  14. Arid lands plants as feedstocks for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.J.

    1983-01-01

    The purpose of this paper is to review the recent research on arid-adapted plants that have potential as producers of fuels or chemicals. The major focus will be on plant species that appear to have commercial value. Research on guayule (Parthenium argentatum) and jojoba (Simmondsia chinensis) will be mentioned only briefly, since these plants have been discussed extensively in the literature, and excellent reviews are already in existence. In this review the literature on arid-adapted plants that have potential uses for solid fuels, liquid fuels, and chemical feedstocks is summarized, followed by an overview of the research directions and types of development that are needed in order for bio-energy production systems to reach the commercial stage. 127 references.

  15. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-07-20

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  16. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  17. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  18. Chemical Preconversion: Application of Low-Severity Pretreatment Chemistries for Commoditization of Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Timothy Campbell; Bryan Bals; Troy Runge; Farzaneh Teymouri

    2013-05-01

    Securing biofuels project financing is challenging, in part because of risks in feedstock supply. Commoditization of the feedstock and decoupling its supply from the biorefinery will promote greater economies of scale, reduce feedstock supply risk and reduce the need for overdesign of biorefinery pretreatment technologies. We present benefits and detractions of applying low-severity chemical treatments or ‘chemical preconversion treatments’ to enable this approach through feedstock modification and densification early in the supply chain. General structural modifications to biomass that support cost-effective densification and transportation are presented, followed by available chemistries to achieve these modifications with minimal yield loss and the potential for harvesting value in local economies. A brief review of existing biomass pretreatment technologies for cellulolytic hydrolysis at biorefineries is presented, followed by a discussion toward economically applying the underlying chemistries at reduced severity in light of capital and operational limitations of small-scale feedstock depots.

  19. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  20. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  1. Biofuels feedstock development program. Annual progress report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

  2. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  3. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Science.gov (United States)

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass product...

  4. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  5. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  6. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  7. Renewable raw materials new feedstocks for the chemical industry

    CERN Document Server

    Ulber, Roland; Hirth, Thomas

    2011-01-01

    One of the main challenges facing the chemical industry is the transition to sustainable operations. Industries are taking initiatives to reduce resource intensities or footprints, and by adopting safer materials and processes. Such efforts need to be supported by techniques that can quantify the broad economic and environmental implications of industrial operations, retrofi t options and provide new design alternatives. This contemporary overview focuses on cradle-to-grave life cycle assessments of existing or conceptual processes for producing valueadded fuels, chemicals, and/or material

  8. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  9. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  10. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  11. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    Science.gov (United States)

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Influence of chemical group composition of feedstock on results from catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Zhorov, Y.M.; Panchenkov, G.M.; Pivovarova, N.A.

    1983-01-01

    The work reported here is aimed at determining whether it is the distillation range of the chemical composition of the feed that influences the results obtained in catalytic cracking. For a quantitative evaluation of the influence of feedstock chemical composition on the cracking results, a linear equation relating the naptha yield to the contents of the group components is derived. The equation indicates that the ''light'' aromatics form considerable amounts of naptha, whereas the ''heavy'' aromatics retard the cracking. These relationships can be used in developing a mathematical model of the process and in selecting the severity of preliminary treating of catalytic cracking feedstocks.

  13. Biocatalysis for the application of CO2 as a chemical feedstock

    OpenAIRE

    Apostolos Alissandratos; Easton, Christopher J.

    2015-01-01

    Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, thro...

  14. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  15. Biocatalysis for the application of CO2 as a chemical feedstock

    Directory of Open Access Journals (Sweden)

    Apostolos Alissandratos

    2015-12-01

    Full Text Available Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  16. Biocatalysis for the application of CO2 as a chemical feedstock.

    Science.gov (United States)

    Alissandratos, Apostolos; Easton, Christopher J

    2015-01-01

    Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  17. Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)--quantification of glucose.

    Science.gov (United States)

    Kamm, B; Kamm, M; Schmidt, M; Starke, I; Kleinpeter, E

    2006-01-01

    Different chemical and enzymatic methods were applied for the hydrolysis of main stems from Lupinus nootkatensis (harvest November 2002). The whole process (all steps) is based on the lignocellulose-feedstock biorefinery regime. The acid hydrolysis of L. was performed with concentrated hydrochloric acid; advantages in this process are exothermic hydrolysis and the possibility of acid recovery. Enzymatic hydrolysis achieved high yields of fermentable carbohydrates (regarding to input cellulose) with high selectivity. However, this way requires the generation of cellulose from L. by chemical pulping. Monosaccharide derivatives thus obtained were identified by their GC retention times and the corresponding MS fragmentation. Hexamethyldisilazane was used as derivatization reagent to prepare the trimethylsilyl derivatives of the carbohydrates and of the degradations products of cellulose from the different fractions. The glucose content was quantified by GC peak integration with respect to an internal standard.

  18. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.

    Science.gov (United States)

    Cetinkol, Özgül Persil; Smith-Moritz, Andreia M; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A; Heazlewood, Joshua L; Holmes, Bradley M

    2012-01-01

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  19. The effect of different chemical treatments, pyrolysis conditions and feedstocks on the redox properties of biochar.

    Science.gov (United States)

    Chacón, Francisco Javier; Cayuela, María Luz; Roig, Asunción; Ángel Sánchez-Monedero, Miguel

    2017-04-01

    Pyrogenic carbonaceous materials can have a role in several biogeochemical redox reactions as electron transfer catalysts. Low N2O emissions in biochar amended soils can be related to its ability to act as an "electron shuttle", facilitating the transport of electrons to soil denitrifying microorganisms. Modifying biochar redox properties could be an interesting approach to regulate this effect. In this work we propose several methods for the development of biochars from slow pyrolysis with altered electrochemical properties. To improve its electron exchange capacity we aimed to: 1) Increase the number of redox active functional groups in biochar. Several pyrolysis conditions and chemical treatments (KOH, H3PO4 and H2O2) were tested. 2) Raise the fraction of redox active mineral in biochar. The presence of Fe and Mn-based minerals in biochar could also catalyze redox reactions in soil associated with the nitrogen cycle. Different additives (FeCl3, KMnO4 and clay) were combined with the feedstock before the pyrolysis process. Results of their ability to modify biochar redox properties, measured by mediated electrochemical analysis, are presented. Additionally, we characterized biochars produced from different feedstocks to assess how their lignin, holocellulose and ash composition affects these properties. Analytical issues arising from the difficulty of measuring the electron exchange capacity of biochar will also be discussed.

  20. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.; Zabotina, Olga A.

    2012-12-28

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  1. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.

    Directory of Open Access Journals (Sweden)

    Özgül Persil Cetinkol

    Full Text Available Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR, X-ray diffraction (XRD and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  2. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Alexis T. [Univ. of California, Berkeley, CA (United States); Alger, Monty M. [Pennsylvania State Univ., University Park, PA (United States); Flytzani-Stephanopoulos, Maria [Tufts Univ., Medford, MA (United States); Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, James [Dow Chemical Company, Torrance, CA (United States); Alper, Joe; Tran, Camly [National Academies of Sciences, Engineering, and Medicine, Washington, DC (United States)

    2016-11-14

    A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity to discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.

  3. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Science.gov (United States)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  4. Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks.

    Science.gov (United States)

    Thomas, John Meurig

    2014-07-01

    This article reviews, first, the prospects, practices and principles of generating solar fuels. It does so with an analysis of recent progress in the light-driven emission of H2 (and other fuels) as well as O2 from water. To place this challenge in perspective, some current practices entailing the use of well-proven solid catalysts developed for fossil-based feedstocks, are described. The massive differences between proven methods of generating fuel and chemicals from non-renewable and from solar radiation are emphasized with the aid of numerous quantitative examples. Whilst it is acknowledged that a key action in reducing the liberation of greenhouse gases (GHG) is to tackle the challenge of decreasing their evolution in power generation and in the production of steel, aluminium and other bulk commodities (metals, alloys, concrete and ceramics), nevertheless much can be done to diminish the emission of CO2 (and to use it as feedstock) through the agency of new, designed solid catalysts and microalgae. Solar-thermal converters are also attractive alternatives, even though they are more likely to be used centrally rather than in small modular units like 'artificial leaves,' some of which are promising for the purposes of generating energy (and perhaps fuel) in a delocalized, modular manner.

  5. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  6. Fe/C interactions during SWNT growth with C2 feedstock molecules: A quantum chemical molecular dynamics study.

    Science.gov (United States)

    Zheng, Guishan; Irle, Stephan; Morokuma, Keiji

    2006-05-01

    We are presenting the first quantum chemical molecular dynamics (QM/MD) model simulations for iron catalyzed single-walled carbon nanotube (SWNT) growth based on the density functional tight binding (DFTB) quantum chemical potential. As model systems, open-ended (10,10) armchair tube fragments were selected with 0, 10, and 20 Fe atoms attached in 1,4-positions on the open rims, and ensembles of randomly oriented C2 molecules were included to simulate carbon plasma feedstock molecules. Isokinetic trajectories at 1500 K to 3000 K show that divalent Fe increases the number of coordination partners with carbon and/or Fe, depending on the Fe concentration. Fe/C interactions weaken the tube sidewall due to electron transfer from Fe into antibonding carbon orbitals, and C2 addition occurs mainly in an Fe-C2-Fe bridge addition mechanism, while growth of polyyne chains characteristic for high-temperature carbon systems is suppressed in the presence of Fe on the rims of the growing SWNT. Our findings are the first quantum chemical evidence for the importance of intermetallic interactions during SWNT growth.

  7. Biomass from intensively cultured plantations as an energy, chemical, and nutritional feedstock

    Science.gov (United States)

    John E. Phelps

    1983-01-01

    Several technologies are described that have been developed to convert wood to fuel, chemicals or food products. Biomass from intensively cultured plantations has potential as a source of material for these energy related technologies. The technologies discussed here include: pyrolysis, gasification, liquefaction, hydrolysis, chemicals from lignin and hemicelluloses,...

  8. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  9. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  10. Phenols from cashew nut shell oil as a feedstock for making resins and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Talbiersky, J. [UCP Chemicals, Vienna (Austria); Polaczek, J. [Ola International Ltd, Warszawa (Poland); Ramamoorty, Rajaraman [UCP Chemicals India Ltd, Chennai (India); Shishlov, O. [Uralchimplast, Nizhniy Tagil (Russian Federation)

    2009-03-15

    Phenols are generally important for the manufacturing of polymers, resins, drugs, cosmetics, herbicides and more. For industrial applications in Western Europe synthetic phenols and phenols from coal are normally used. But also phenols from renewable raw materials like cashew nuts are available in high tonnages (CNSL 400.000 t/a) and in a stable quality: The phenolic Cashew Nut Shell Liquid (CNSL) has a high potential in chemical reactions resulting in products with interesting properties. Main application of CNSL is the production of polymers and resins but there are also other possibilities for use like pharmaceuticals, biocides, antioxidants and surfactants. The article gives an updated short overview regarding production, classification, chemistry, toxicology and the use of CNSL. (orig.)

  11. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-11-01

    Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

  12. Progress in reforming chemical engineering education.

    Science.gov (United States)

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  13. Evaluation of the potential for using old-field vegetation as an energy feedstock: Biomass yield, chemical composition, environmental concerns, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, J.W. Jr.

    1990-07-01

    The major focus of current research on production of biomass for use as energy feedstock involves selection of species and genotypes best suited for specific regions of the United States and development of crop management techniques that maximize biomass productivity while minimizing environmental impacts and economic costs. The two experimental sites, and abandoned soybean field (AS) and an abandoned pasture (AP) were studied. At the AS site, the effects of two harvest frequencies (1 or 2 harvests annually), two nitrogen fertilizer treatments (1 or 2 harvests annually), two nitrogen fertilizer treatments (0 or 87 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}), and two phosphorous fertilizer treatments (0 or 111 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}) were determined. At the AP site, the effects of two harvest treatments (1 or 2 harvests annually), two fertilizer treatments (56:56:135 kg of N:P:K{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}), and two lime treatments (0 or 4600 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}) were determined. At both sites, treatments were arranged in a randomized complete block 2 {times} 2 {times} 2 factorial experiment. The results of this research indicated that old-field vegetation is: (1) sufficiently productive to provide significant quantities of energy feedstock; (2) chemically suitable as an energy feedstock; (3) environmentally benign with respect to impacts related to soil erosion and nutrient depletion; (4) relatively unresponsive to fertilizer and lime inputs; and (5) economically competitive with other biomass energy feedstock candidates. 38 refs., 8 figs., 68 tabs.

  14. Chemical, procedural and economical evaluation of carbon dioxide as feedstock in the chemical industry; Chemische, verfahrenstechnische und oekonomische Bewertung von Kohlendioxid als Rohstoff in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Alexander

    2015-07-01

    The utilisation of CO{sub 2} as feedstock in the chemical industry represents an alternative to the geological storage, which is legally limited and socially debated. Generally, scientific publications about the utilisation of CO{sub 2} in chemical reactions typically address the feasibility of the syntheses without paying attention to the CO{sub 2} reduction potential or the economy in contrast to the conventional process of production. The aim of this doctoral thesis is to identify chemical reactions with CO{sub 2} as feedstock, which have the potential to reduce CO{sub 2} emissions. These reactions are evaluated concerning the industrial realization, CO{sub 2} balance and economy compared to the conventional processes. To achieve this, 123 reactions from the literature were collected and evaluated with the help of selection criteria developed specifically for this application. The criteria consider both, the quantitative potential to reduce CO{sub 2} and possible economical interests in these reactions. Additional to the process of the evaluation of the reactions, a CO{sub 2} reduction potential of 1.33 % of the greenhouse gas emissions within the European Union could be calculated. For the chemicals formic acid, oxalic acid, formaldehyde, methanol, urea and dimethyl ether, which most fully satisfy the selection criteria, a direct comparison of the CO{sub 2} based process with the conventional process is performed. By literature data, process designs, and simulations, it has been shown that the highest reductions of CO{sub 2} emissions can be achieved for methanol with 1.43 kg{sub CO2}/kg{sub MeOH} and dimethyl ether with 2.17 kg{sub CO2}/kg{sub DME}, but only with the assumption that the necessary hydrogen for the CO{sub 2} based reaction is produced by electrolysis operated with renewable energy. Overall, the CO{sub 2} based production processes of methanol and dimethyl ether could reduce 0.059 % of the greenhouse gas emissions of the European Union (EU) if

  15. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced

  16. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Final report, February 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This is a coordinated program to effect the microbiological degradation of cellulosic biomasses and will focus on the use of anaerobic microorganisms which possess cellulolytic enzyme. The studies will attempt to increase the enzyme levels through genetics, mutation and strain selection. In addition, the direct conversion from cellulosic biomasses to liquid fuel (ethanol) and/or soluble sugars by the cellulolytic, anaerobic organism is also within the scope of this program. Process and engineering scale-up, along with economic analyses, will be performed throughout the course of the program. The second area of our major effort is devoted to the production of chemical feedstocks. In particular, three fermentations have been identified for exploration. These are: acrylic acid, acetone/butanol and acetic acid. The main efforts in these fermentations will address means for the reduction of the cost of manufacturing for these large volume chemicals.

  17. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  18. Chemical Reactions at Surfaces. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  19. Gas Fermentation – A Flexible Platform for Commercial Scale Production of Low Carbon Fuels and Chemicals from Waste and Renewable Feedstocks

    Directory of Open Access Journals (Sweden)

    FungMin eLiew

    2016-05-01

    Full Text Available There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2 and carbon monoxide (CO can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues or industrial off gasses (e.g., from steel mills or processing plants. Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  20. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    Science.gov (United States)

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  1. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals

    NARCIS (Netherlands)

    Lammens, T.M.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    This review describes different potential sources for amino acids that could be used for the production of bulk chemicals in a biorefinery, such as agricultural byproduct streams. Volumes at which these sources and the amino acids therein are available were determined, and the most interesting amino

  2. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  3. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Yang, Guang-Xi

    2013-01-01

    The co-pyrolysis of waste electrical and electronic equipments (WEEEs) and waste biomass to obtain pyrolysis-oil, a liquid fuel or chemical feedstock, was carried out in the present work. The pyrolysis-oil yield of co-pyrolysis reached 62.3% which was significantly higher than those of pyrolysis of WEEEs and biomass alone (i.e., 53.1% for WEEEs and 46.3% for biomass), suggesting that synergistic effects of the WEEEs and biomass happened during the co-pyrolysis process. The pyrolysis-oil mainly contained aromatic compounds, including many aromatic hydrocarbons. More than 90 wt.% of bromides were enriched in pyrolysis-oil and char, which is easily to be recovered by further treatments, and no polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) were detected in all products which may be attributed to the blocking of PBDD/Fs generation under special reductive environment of pyrolysis. This work provided a green and environmentally friendly approach for the disposal of the WEEEs as well as resource recovery.

  4. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. PMID:27877800

  5. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  6. Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates

    Science.gov (United States)

    Muthana, Saddam; Cao, Hongzhi; Chen, Xi

    2011-01-01

    Summary The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products. PMID:19833544

  7. 非粮生物质原料体系研发进展及方向%Progress and direction of non-food biomass feedstock supply research and development in China

    Institute of Scientific and Technical Information of China (English)

    谢光辉

    2012-01-01

    非粮生物质原料供应是生物质能产业发展的最主要限制因素。本文系统分析了适合中国国情的非粮生物质和宜能非粮地概念,阐述粮食安全和生物质能源发展的关系,认为发展可持续非粮生物质能源是实现粮食、能源、生态、农村经济多赢的战略举措。进而,重点综述了当前中国非粮生物质原料及其供应体系研究进展,分析了当前迫切需要研发的重点任务,内容包括废弃物生物质资源及其可获得性,非粮能源植物种类筛选、育种和生产技术,原料生产、收获、收集和物流及其机械化,宜能非粮地的面积、分布和生产潜力,原料生产与供应的可持续性和标准化,供应产业模式及能源农业发展,发展规划和政策。%Non-food biomass feedstock supply is one of the most important limiting factors in fluencing biofuel development.In this article,the definitions of non-food biomass feedstock and non-food land for bioenergy crops are clarified according to the situation present in China.After identifying the relationship between food security and biomass energy development,it is shown that sustainable non-food biofuel will be a multi-win-win industry to improve food and energy production,eco-environment,and the rural economy and would not have negative effects on food security of the country.This article also reviews the progress of non-food biomass feedstock research,its supply system and further studies currently need in China.It includes the following areas:1)availability of residue biomass,2)nonfood bioenergy plant screening,breeding,and production technology,3)feedstock production,collection,and logistics and mechanization,4)distribution and potential of the non-food land for biomass production,5)sustainability and standardization of nonfood biomass feedstock production and supply,6)development of demonstration and bioenergy agriculture,and 7)planning and policy on the non-food biomass feedstock

  8. Progressively Fostering Students' Chemical Information Skills in a Three-Year Chemical Engineering Program in France

    Science.gov (United States)

    Gozzi, Christel; Arnoux, Marie-Jose´; Breuzard, Jere´my; Marchal, Claire; Nikitine, Clémence; Renaudat, Alice; Toulgoat, Fabien

    2016-01-01

    Literature searches are essential for scientists. Thus, courses on how to do a good literature search have been integrated in studies at CPE Lyon for many years. Recently, we modified our pedagogical approach in order to initiate students progressively in the search for chemical information. In addition, this new teaching organization is now based…

  9. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  10. Biodiesel from conventional feedstocks.

    Science.gov (United States)

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  11. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    % yield, demonstrated the need to consider up-front the limitations of trying to adopt existing equipment to a task for which subsequent basic research studies indicated it was not suitable. New information was developed in the most complex of the chemical conversions studied, advanced catalysis to make acrylic acid, a chemical used widely to make paints, and this was published in a scientific journal. In regard to the technical effectiveness, the crop science aspects were for the most part remarkably effective in addressing the underlying objectives indicating the soundness of the technical approach. With time, it should be possible to fully develop the advanced biomass biorefinery feedstock. Challenges within the thermolysis step to recover crotonic acid meant that by the end of the project we were not able to demonstrate an economic case based on data from scaled up equipment. Solving this will take further research and development work. As a general statement, the broadest public good is in demonstrating the value of funding a very unique approach to the complex problem of enabling large-scale biomass biorefineries which resulted in significant progress towards the ultimate goal and a clearer understanding of the technical hurdles remaining. Perhaps not surprisingly, some of the broader benefits to the public come from the use of the REFABB project innovations in areas unrelated to the initial objective. It is worth highlighting the breakthrough developments in identifying three single global regulator genes which can be engineered into plants to dramatically increase photosynthesis and carbon capturing ability. These genes have tremendous potential for use in major food crops, in particular corn to enhance grain yield and based on recent findings, increase the root density, a critical key to increasing carbon sequestration in agriculture and improving the sustainability of global food and biofuel production.

  12. Green chemical feedstocks. Potential in the EU and sustainability aspects. Support for the Biofeedstocks Sub-commission of the Corbey Commission; Groene chemische grondstoffen, potentieel in de EU en duurzaamheidsaspecten. Ondersteuning van de Subcommissie Biochemie van de Commissie Corbey

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Bergsma, G.

    2012-09-15

    Besides applications for power generation and as a transport fuel, biomass can also be used as a chemical feedstock. If the chemical industry in Europe were to switch to 25% biofeedstocks, the sector's demand for biomass would approximate or even slightly exceed that of the transport sector. There are a number of options for biomass use in the chemical industry, with varying requirements for specific types of biomass. To a large extent, the raw biomass used by the chemical industry would be roughly equivalent to that currently used for transport biofuels, although certain routes would involve different bio resources. Compared with applications for transport fuels, use of biomass as a chemical feedstock often has greater environmental benefits, at lower cost. It would be very useful to establish sustainability criteria for the use of biomass by the chemical industry, too. Based partly on this study by CE Delft, the Commission for Sustainability Aspects of Biomass (the Corbey Commission) has drawn up an advisory document recommending introduction of sustainability criteria for use of biomass by the chemical industry [Dutch] Biomassa kan gebruikt wordt als bron voor elektriciteit en transportbrandstof maar ook als grondstof voor de chemie. Als de chemie in Europa voor 25% over zou schakelen op biomassa als grondstof dan zou de vraag vanuit deze sector naar vergelijkbaar of nog iets groter worden dan de vraag naar biomassa van de transportsector. Er zijn verschillende manieren om biomassa in te zetten in de chemie. Deze keuzes leiden tot een verschillende vraag naar soorten biomassa. Een groot deel van de grondstoffen voor biochemie komt overeen met grondstoffen voor de biotransportsector. Sommige routes vragen om andere grondstoffen. Vergeleken met biomassa in transport geeft inzet van biomassa in chemie vaak een hoger milieuvoordeel tegen lagere kosten. Het zou heel nuttig zijn om ook voor biomassa die gebruikt wordt door de chemie duurzaamheidscriteria op te

  13. Biohydrogen production from lignocellulosic feedstock.

    Science.gov (United States)

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  14. Progressive chemical modification of clastic sediments with burial

    Science.gov (United States)

    Curtis, C. D.

    1987-03-01

    The porosity of clastic sediments at deposition varies very approximately between about 45% (sands) and 85% (muds). With burial, consolidation takes place as pore water is progressively eliminated. It would be misleading, however, to attribute alterations in sediment bulk properties to physical processes alone. Very significant mineralogical changes occur and these start soon after burial, especially in mudrocks. Striking heterogeneities such as thin, laterally continuous cemented horizons or discrete concretions are commonly introduced. These shallow burial processes are predominently the result of microbial activity. Thermodynamically unstable mixtures of organic matter and various oxidants [dissolved oxygen, sulphate, nitrate, particulate Fe(III) and Mn(IV)] provide both substrate and energy source for a variety of different microbial ecosystems. Mineralogical consequences include both leaching and the precipitation of carbonate, sulphide, phosphate and silica cements. The type and extent of mineral modification depends strongly on depositional environment variables such as rate of sedimentation and water composition. At greater depths, large scale modification of detrital clay minerals (particularly the smectite-I/S-illite transformation) takes place. Recent work of various kinds, however, has demonstrated that these changes may not be solid state transformations: clay mineral dissolution, transport and precipitation occur much more widely than was formerly supposed. In sandstones, authigenic precipitation of clay minerals from pore solution is much more obviouis. Systematic patterns of precipitation, alteration and replacement have been documented in many sedimentary basins. Porosity and permeability are reduced by cementation and, sometimes, enhanced by mineral dissolution. Whereas the general nature of these chemical reactions is fairly well understood, it is not yet possible to predict with certainty the scale or distribution of mineralogical consequences

  15. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2012-11-01

    The enhanced thermo-chemical process (i.e., pyrolysis/gasification) of various macroalgae using carbon dioxide (CO(2)) as a reaction medium was mainly investigated. The enhanced thermo-chemical process was achieved by expediting the thermal cracking of volatile chemical species derived from the thermal degradation of the macroalgae. This process enables the modification of the end products from the thermo-chemical process and significant reduction of the amount of condensable hydrocarbons (i.e., tar, ∼50%), thereby directly increasing the efficiency of the gasification process.

  16. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  17. 生物柴油原料树种文冠果的化学成分与综合利用研究进展%Review on Chemical Constituents and Comprehensive Utilization of Xanthoceras sorbifolia, a Biodiesel Feedstock Tree

    Institute of Scientific and Technical Information of China (English)

    戚建华; 姚增玉

    2012-01-01

    生物柴油原料树种文冠果的叶片、枝干、果皮、种皮、种仁中化学成分丰富多样,除了含有细胞壁组分木质素、纤维素、半纤维素、果胶质以及储藏物质蛋白质、糖类、脂肪外,还含有甾体、萜类、香豆素、黄酮类、有机酸以及蒽醌等多类次生代谢产物,具有在食用、药用、饲用、化工、能源等多个领域的开发利用潜力.在对该树种化学成分和综合利用方面的研究进展进行总结分析的基础上,提出了目前存在的问题和需要进一步研发的建议.%Xanthoceras sorbifoLIa is a biodiesel feedstock tree, whose leaves, stems, hulls, testa and kernals are diverse in chemical composition. In addition, the components identified in cell wall were those storage materials, such as lignin, cellulose, hemi-cellulose, pectin, carbohydrate and fat. Besides, secondary products including steroids, terpenoids, coumarins, flavonoids, organic acids, anthraquinones and others were also found. These species have potential utilization in the industries of dietary, medicine, feeding, chemical engineering and energy. Based on the review of the chemical composition and comprehensive analysis, the existing main problems were mentioned and prospect of this research field was pointed out.

  18. Progress of energy system with chemical-looping combustion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; HAN Tao

    2009-01-01

    Chemical-looping combustion with zero energy penalty of CO2 separation is a significant breakthrough in resolving energy and environment problems for power generation systems. This paper summarizes the research on energy systems with chemical-looping combustion conducted in recent years, discloses the underlying mechanism of energy release of chemical-looping combustion, describes the trends of the key technology development, and presents the proposed chemicaMooping combustion thermal cycles. This paper may provide a new direction to the synthesis of the next-generation energy system compatible with environment.

  19. [Starting with camphor--the progress of Nippon Fine Chemical].

    Science.gov (United States)

    Kimura, Osamu

    2010-01-01

    In 1918, Nippon Fine Chemical Co., Ltd. (NFC) was founded under the name, Nippon Camphor Co., Ltd. for the purpose of unifying the camphor business throughout Japan. The company manufactured purified camphor as a government-monopolized good. Camphor was used as a plasticizer for nitrocellulose, as a moth repellent, as an antimicrobial substance, as a rust inhibitor, and as an active ingredient in medicine. It was also a very important good exported in order to obtain foreign currency. Later on, after World War II and the abolition of the camphor monopoly, the company started manufacturing products related to oils and fats, including higher fatty acids, and expanded its business by developing a new field of chemical industry. In 1971 the company changed its name to Nippon Fine Chemical Co., Ltd., and made a new start as a diversified fine chemicals company. Recently, the fine chemicals division of NFC has concentrated on rather complex molecules, such as active pharmaceutical ingredients, and other chemicals. Since 2000, NFC have started to supply "Presome", precursors of liposome DDS drugs. NFC is strengthening marketing strategies in foreign countries with unique technologies and products.

  20. Progress in chemical luminescence-based biosensors: A critical review.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation.

  1. QCD at nonzero chemical potential: recent progress on the lattice

    CERN Document Server

    Aarts, Gert; Jäger, Benjamin; Seiler, Erhard; Sexty, Denes; Stamatescu, Ion-Olimpiu

    2014-01-01

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  2. QCD at nonzero chemical potential: Recent progress on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, Gert; Jäger, Benjamin [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Attanasio, Felipe [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020 (Brazil); Seiler, Erhard [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), 80805 München (Germany); Sexty, Dénes [Department of Physics, University of Wuppertal, 42119 Wuppertal (Germany); Stamatescu, Ion-Olimpiu [Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg (Germany)

    2016-01-22

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  3. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    NARCIS (Netherlands)

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  4. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    NARCIS (Netherlands)

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  5. Fatty acid profile of 25 alternative lipid feedstocks

    Science.gov (United States)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  6. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  7. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  8. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  9. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  10. Ensiling corn stover: effect of feedstock preservation on particleboard performance.

    Science.gov (United States)

    Ren, Haiyu; Richard, Tom L; Chen, Zhilin; Kuo, Monlin; Bian, Yilin; Moore, Kenneth J; Patrick, Patricia

    2006-01-01

    Ensilage is a truncated solid-state fermentation in which anaerobically produced organic acids accumulate to reduce pH and limit microbial activity. Ensilage can be used to both preserve and pretreat biomass feedstock for further downstream conversion into chemicals, fuels, and/or fiber products. This study examined the ensilage of enzyme-treated corn stover as a feedstock for particleboard manufacturing. Corn stover at three different particle size ranges (ensilage process, as indicated by sustained lower pH (P ensilage process. Compared with fresh stover, the ensilage process did increase IB of stover particleboard by 33% (P ensilage can be used as a long-term feedstock preservation method for particleboard production from corn stover. Enzyme-amended ensilage not only improved stover preservation but also enhanced the properties of particleboard products.

  11. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    Science.gov (United States)

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. Degradation of cellulosic biomass and its subsequent utilization for the reproduction of chemical feedstocks. Progress report, December 1, 1977--February 28, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-02-01

    Studies were performed to examine the utilization and hydrolysis of xylan, a major component of natural biomass materials. Experiments designed to examine the differential adsorption onto cellulose and xylan were inconclusive in proving that the xylan hydrolysis activity is distinct from cellulose hydrolysis activity. It is clear, however, that enzymes from C. thermocellum are able to effect xylan hydrolysis. A new biomass, thermally exploded lignocellulose Poplar, has undergone degradation studies by C. thermocellum. A concentrated effort has begun to examine the production of a liquid fuel (ethanol) directly from cellulosic biomass by Clostridium thermocellum. It was found that the pH has a significant influence on the extent of cellulose degradation as well as on the amount of products formed. To further our understandings on the production of ethanol by Clostridium thermocellum, a program was initiated to find anaerobes which could utilize the hemicelluloses from biomasses, as well as its ability to produce ethanol. The conditions of protoplasting C. thermocellum were examined and the optimum conditions established. A cellulase-hyperproducing mutant, AS-39, has been isolated. As-39 produces twice the cellulase activity of the parent as determined from measurements of both TNP-CMCase and Avicel-hydrolyzing activities. However, degradation studies using cellulosic substrates do not show enhanced rates. Studies on acrylic acid production have continued to proceed along several lines. Kinetic analysis has hypothesized that non-growing cells of Clostridium acetobutylicum should have the highest specific formation rates for acetone and n-butanol. Experimental studies indicated nongrowing cells can convert glucose to acetone and n-butanol with no other nutrient. The production of acetic acid by Clostridium thermoaceticum has focused on a mutant (S-2) which was isolated and found to tolerate higher concentrations of acetate.

  13. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1, 1977--August 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-09-01

    Studies on the microbial degradation of cellulose biomass continues to be centered around Clostridium thermocellum. The effect of surfactants on growth and cellulase production by C. thermocellum was investigated. The effect of pH on growth and reducing sugar accumulation rate of Clostridium thermocellum on solka floc was evaluated. Activity of extracellular cellulase of Clostridium thermocellum ATCC 27405 was examined using TNP--CMC and Avicel as substrates. The pH optima are 5 and 4.5, respectively. Hydrolysis of either substrate is not inhibited by cellobiose, xylose, or glucose. The enzyme appears to be quite stable under reaction conditions at 60/sup 0/C. Thus far, regulation studies indicate that CMCase formation is not repressed by cellobiose. The search for plasmids in C. thermocellum was continued. The presence of plasmids was confirmed by cesium chloride ethidium bromide gradient centrifugation and electron microscopy. Two plasmids were detected, one with an approximate molecular weight of 1 x 10/sup 6/ daltons. Studies on the fermentation of lactic acid to propionic acid showed the pathway in C. propionicum to be simpler than in M. elsdenii and hence more amenable to manipulation for acrylate production. Using Lactobacillius delbrueckii, it was possible to convert glucose, cellobiose, and cellulose hydrolysates to lactic acid rapidly and quantitatively. Fermentations of C. acetobutylicum growing in soluble media were performed. Detailed studies of Clostridium thermoaceticum have shown that pH is the primary limiting factor in the production of acetic acid. pH-controlled fermentations indicated accumulations of over 30 gm/l of acetic acid.

  14. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1976--February 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-05-01

    The microbial degradation of cellulosic biomass has focused on the use of a thermophilic (55 to 60/sup 0/C), anaerobic microorganism, Clostridium thermocellum. When this organism is grown with a crystalline cellulose, the cellulases produced are mainly extracellular. This same organism when grown on solka floc, high specific growth rates are exhibited as well as the ability to produce high concentrations of soluble reducing sugars. The rate of soluble sugar production appears to be growth associated. Studies on acrylic acid production are focused on two organisms: Peptostreptococcus elsdenii and Clostridium propionicum. An economic analysis on the acetone/butanol fermentation has been completed. The results show that continuous operation can reduce significantly the production cost compared to batch operation with the cost of raw material being major fractions for both processes. An increase in solvent concentration will effect substantial cost reduction. The production of acetic acid by Clostridium thermoaceticum has been shown to occur rapidly by this organism. Acetic acid concentration between 15 to 20 gm/liter have been achieved, corresponding to 86 percent of the theoretical maximum yield.

  15. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  16. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  17. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. [Diffusion/dispersion transport of chemically reacting species]. Progress report, FY 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Helgeson, H.C.

    1993-07-01

    Progress is reported on the following: calculation of activity coefficients for aqueous silica in alkali metal chloride solutions; calculation of degrees of formation of polyatomic clusters of Al in alkali chloride solutions; bulk composition-pH diagrams for arkosic sediments; and chemical interaction of petroleum, oil field brines, and authigenic mineral assemblages. Plans for future research are given.

  19. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    Energy Technology Data Exchange (ETDEWEB)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  20. Feedstock storage, handling and processing

    Energy Technology Data Exchange (ETDEWEB)

    Egg, R.P.; Coble, C.G.; Engler, C.R. (Texas A and M Univ., College Station, TX (United States). Dept. of Agricultural Engineering); Lewis, D.H. (Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Microbiology and Parasitology)

    1993-01-01

    This paper is a review of the technology and research covering components of a methane from biomass system between the field and the digester. It deals primarily with sorghum as a feedstock and focuses on research conducted by the Texas Agricultural Experiment Station. Subjects included in this paper are harvesting, hay storage, ansiling, materials handling, pumping and hydraulic characteristics, hydraulic conductivity, pressure/density relationship, and biological pretreatment. This paper is not a comprehensive design manual; however, design equations and coefficients for sorghum are presented, where available, along with references describing the development and application of design models. (author)

  1. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  2. What is this Substance? What Makes it Different? Mapping Progression in Students' Assumptions about Chemical Identity

    Science.gov (United States)

    Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente

    2014-09-01

    Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical analysis relies. We conceive chemical identity as a core crosscutting disciplinary concept which can bring coherence and relevance to chemistry curricula at all educational levels, primary through tertiary. Although chemical identity is not a concept explicitly addressed by traditional chemistry curricula, its understanding can be expected to evolve as students are asked to recognize different types of substances and explore their properties. The goal of this contribution is to characterize students' assumptions about factors that determine chemical identity and to map how core assumptions change with training in the discipline. Our work is based on the review and critical analysis of existing research findings on students' alternative conceptions in chemistry education, and historical and philosophical analyses of chemistry. From this perspective, our analysis contributes to the growing body of research in the area of learning progressions. In particular, it reveals areas in which our understanding of students' ideas about chemical identity is quite robust, but also highlights the existence of major knowledge gaps that should be filled in to better foster student understanding. We provide suggestions in this area and discuss implications for the teaching of chemistry.

  3. Chemical Technology Division progress report, January 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This progress report presents a summary of the missions and activities of the various sections and administrative groups in this Division for this period. Specific projects in areas such as energy research, waste and environmental programs, and radiochemical processing are highlighted, and special programmatic activities conducted by the Division are identified and described. The administrative summary portion features information about publications and presentations of Chemical Technology Division staff, as well as a listing of patents awarded to Division personnel during this period.

  4. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.

    2013-01-01

    to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for gasification...... of carbonaceous feedstocks. This work is categorized in this paper into patents and research/journal papers. © 2013 Elsevier Ltd....

  5. New Feedstock for c-Si Photovoltaics

    Science.gov (United States)

    Kravtsov, Alexey; Shagun, Alexander; Kravtsov, Anatoly

    2015-03-01

    Results from functional tests of highly doped silicon purified with electron beam melting, a new feedstock for photovoltaics are presented. Possibility of obtaining dislocation free single crystals from such feedstock in typical industrial processes (CZ and FZ) is shown, crystals' parameters are tested for coherence with requirements for PV silicon.

  6. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  7. Hydrogen production via catalytic processing of renewable feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi [Florida Solar Energy Center, University of Central Florida, Cocoa, Florida, (United States)

    2006-07-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH{sub 4}-CO{sub 2} gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH{sub 4}-CO{sub 2} feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH{sub 4}-CO{sub 2} and CH{sub 4}-CO{sub 2}-O{sub 2} gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  8. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  9. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  10. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  11. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  12. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  13. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  14. The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks

    Directory of Open Access Journals (Sweden)

    Zoran D. Ristovski

    2013-07-01

    Full Text Available Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.

  15. Progress in the Visualization and Mining of Chemical and Target Spaces.

    Science.gov (United States)

    Medina-Franco, José L; Aguayo-Ortiz, Rodrigo

    2013-12-01

    Chemogenomics is a growing field that aims to integrate the chemical and target spaces. As part of a multi-disciplinary effort to achieve this goal, computational methods initially developed to visualize the chemical space of compound collections and mine single-target structure-activity relationships, are being adapted to visualize and mine complex relationships in chemogenomics data sets. Similarly, the growing evidence that clinical effects are many times due to the interaction of single or multiple drugs with multiple targets, is encouraging the development of novel methodologies that are integrated in multi-target drug discovery endeavors. Herein we review advances in the development and application of approaches to generate visual representations of chemical space with particular emphasis on methods that aim to explore and uncover relationships between chemical and target spaces. Also, progress in the data mining of the structure-activity relationships of sets of compounds screened across multiple targets are discussed in light of the concept of activity landscape modeling.

  16. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda

    Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process consisting of an acidogenic stage, a PHA producing culture...... selection stage, and a PHA production phase. This work investigated the performance robustness and microbial population dynamics of a PHA producing MMC when subjected to a feedstock shift, mimicking a seasonal feedstock scenario, from cheese whey to sugar cane molasses. Research was focused...... on the possibility of tailoring PHA through the selection of feedstock: either using feedstocks with different compositions or mixing two or more fermented substrates with different organic acid profiles. This knowledge is expected to contribute to the extended application of this promising process for resource...

  17. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  18. Physiochemical Characterization of Briquettes Made from Different Feedstocks

    Directory of Open Access Journals (Sweden)

    C. Karunanithy

    2012-01-01

    Full Text Available Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD, densities (bulk and true, porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6% and lowest (61% durability.

  19. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  20. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  1. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  2. Effects of surfactant on properties of MIM feedstock

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; LIU Xiang-quan; LUO Feng-hua; YUE Jian-ling

    2007-01-01

    Effects of the surfactant for improving the properties of MIM feedstock were investigated. Feedstocks were prepared by 17-4PH stainless steel(SS) powder and paraffin wax-based binder containing different contents of stearic acid(SA) as the surfactant. The viscosity of the feedstock decreases significantly when the SA is added. Besides, the wetting angle of the binder against the 17-4PH SS powder decreases greatly and the critical solid loading increases with the adding of the SA. Fourier transformation infrared spectroscopy(FTIR) analysis was used to prove the interaction between the SA and the 17-4PH SS powder. Chemical bonding is found on the surface of 17-4PH SS powder after mixing and it helps a lot to enhance the interacting force between the binder and the powder. Then an adsorbing model was adopted to estimate the least content of the surfactant that formed a monolayer adsorption on the mono-sized spherical powder (with smooth surface). The least content of the surfactant is calculated to be 0.19%. Whereas, the experiments indicate that about 5% is the optimal value to improve the properties of the feedstock. The reason may come from two aspects: firstly, the powders used in current experiment are not all mono-sized spheres and the coarse surface of the powder has a great effect on the adsorptive capacity of the powder; secondly, multilayer adsorption is likely to occur on the powder surface, which will also increase the adsorptive capacity.

  3. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  4. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  5. Renewable fuels as feedstocks in industrial organic chemistry; Nachwachsende Rohstoffe als Feedstock in der industriellen organischen Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, J.

    1995-10-01

    Fossil fuels are used in the chemical industry for providing process energy but primarily as chemical feedstocks. In view of the necessity ofsaving fossil resources and reducing anthropogenic greenhouse gas emissions, the author investigates inhowfar renewable fuels may serve as substitutes for the fossil carbon carriers now used in the chemical industry. He starts with a bibliographic research which also takes account of studies on the uses of biomass for power generation. On this basis, an outline of current production processes (including specific data for cultivation and processing), production volumes and consumption structures is given for the main types of renewable raw materials (sugar, starch, cellulose and vegetable fats and oils). (orig./SR) [Deutsch] Fossile Energietraeger werden in der chemischen Industrie ausser zur Bereitstellung von Prozessenergie vor allem nichtenergetisch, d.h. als chemische Rohstoffe (sog. Feedstock), eingesetzt. Angesichts der Notwendigkeit, die fossilen Rohstoffvorraete zu schonen und die anthropogenen Klimagasemissionen zu vermindern, stellt sich die Frage, inwieweit nachwachsende Rohstoffe die im Chemiesektor fuer nichtenergetische Zwecke eingesetzten fossilen Kohlenstofftraeger ersetzen koennen. Im Rahmen der Studienarbeit soll zunaechst eine Literaturrecherche zu diesem Themenkomplex durchgefuehrt werden, wobei auch Untersuchungen zur energetischen Nutzung von Biomasse zu beruecksichtigen sind. Auf dieser Basis soll fuer die Haupttypen nachwachsender Rohstoffe (Zucker, Staerke, Cellulose und pflanzliche Fette/Oele) ein Ueberblick zu den heutigen Produktionsverfahren (inkl. Anbau- und verarbeitungsspezifischer Daten), Produktionsmengen und Verbrauchsstrukturen gegeben werden. (orig./SR)

  6. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  7. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  8. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  9. Wastepaper as a feedstock for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  10. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  11. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-01-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  14. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  15. Exometabolomics Approaches in Studying the Application of Lignocellulosic Biomass as Fermentation Feedstock

    NARCIS (Netherlands)

    Zha, Y.; Punt, P.J.

    2013-01-01

    Lignocellulosic biomass is the future feedstock for the production of biofuel and bio-based chemicals. The pretreatment-hydrolysis product of biomass, so-called hydrolysate, contains not only fermentable sugars, but also compounds that inhibit its fermentability by microbes. To reduce the toxicity o

  16. Biomass Feedstock Availability in the United States: 1999 State Level Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Marie E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perlack, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de la Torre Ugarte, Daniel [Univ. of Tennessee, Knoxville, TN (United States); Becker, Denny A. [Science Applications International Corporation, Oak Ridge, TN (United States); Graham, Robin L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Slinsky, Stephen E. [Univ. of Tennessee, Knoxville, TN (United States); Ray, Daryll E. [Univ. of Tennessee, Knoxville, TN (United States)

    2000-01-01

    Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental United States.

  17. Halophytes Energy Feedstocks: Back to Our Roots

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2008-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  18. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  19. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  20. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks

    Institute of Scientific and Technical Information of China (English)

    Peter Shuttleworth; Vitaliy Budarin; Mark Gronnow; James H. Clark; Rafael Luque

    2012-01-01

    A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues.Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃ vs 250-400 ℃).The gas obtained from microwave-assistet pyrolysis was found to contain CO2,CH4 and CO as major components as well as other related chemicals (e.g.acids,aldehydes,alkanes) which were obtained in different proportions depending on the selected feedstock.

  1. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Science.gov (United States)

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  2. The Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Peterson, Keith L.; Muzatko, Danielle S.; Alderson, Eric V.; Hart, Todd R.; Neuenschwander, Gary G.

    2004-03-25

    Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus or sulfur, aluminum or silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydrolysis) or ammonium ions (from more severe breakdown) both of which might interfere with catalysis. The effects of these components on catalytic hydrogenation processing has been studied in batch reactor processing tests

  3. Recent progress in understanding physical and chemical properties of mineral dust

    Directory of Open Access Journals (Sweden)

    P. Formenti

    2010-12-01

    Full Text Available This paper presents a review of recently acquired knowledge of the physico-chemical properties of mineral dust from Africa and Asia based on data and discussion during the Third International Dust Workshop, held in Leipzig (Germany in September 2008. Various regional experiments have been conducted in the last few years, mostly close to source regions or after short-range transport. Significant progress has been made in characterising the mineralogy of iron and the description of particle shape close to source regions. We consider that future research should focus on the evolution of dust properties during transport. In particular, the prediction of the characteristics of the size distribution of mineral dust at emission and their dynamics evolution during transport should be considered as a high-priority. The presence of large airborne particles above 20 μm in diameter, suggested by various studies, has limited implication for radiation, but should be important for deposition-based studies such as those on ocean productivity. Modelling the uplifting and transport of such large particles will represent a new serious challenge for transport models. A critical assessment and standardisation of the experimental and analytical methods is recommended.

  4. Using chemical biology to assess and modulate mitochondria: progress and challenges

    Science.gov (United States)

    Murphy, Michael P.

    2017-01-01

    Our understanding of the role of mitochondria in biomedical sciences has expanded considerably over the past decade. In addition to their well-known metabolic roles, mitochondrial are also central to signalling for various processes through the generation of signals such as ROS and metabolites that affect cellular homeostasis, as well as other processes such as cell death and inflammation. Thus, mitochondrial function and dysfunction are central to the health and fate of the cell. Consequently, there is considerable interest in better understanding and assessing the many roles of mitochondria. Furthermore, there is also a growing realization that mitochondrial are a promising drug target in a wide range of pathologies. The application of interdisciplinary approaches at the interface between chemistry and biology are opening up new opportunities to understand mitochondrial function and in assessing the role of the organelle in biology. This work and the experience thus gained are leading to the development of new classes of therapies. Here, we overview the progress that has been made to date on exploring the chemical biology of the organelle and then focus on future challenges and opportunities that face this rapidly developing field. PMID:28382206

  5. Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry

    Science.gov (United States)

    2017-01-01

    The chemical differences between individual cells within large cellular populations provide unique information on organisms’ homeostasis and the development of diseased states. Even genetically identical cell lineages diverge due to local microenvironments and stochastic processes. The minute sample volumes and low abundance of some constituents in cells hinder our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell genomics and transcriptomics, the characterization of metabolites and proteins remains challenging both because of the lack of effective amplification approaches and the wide diversity in cellular constituents. Mass spectrometry has become an enabling technology for the investigation of individual cellular metabolite profiles with its exquisite sensitivity, large dynamic range, and ability to characterize hundreds to thousands of compounds. While advances in instrumentation have improved figures of merit, acquiring measurements at high throughput and sampling from large populations of cells are still not routine. In this Perspective, we highlight the current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on the technologies that will enable the next generation of single-cell measurements. PMID:28135079

  6. Progress in resolution, sensitivity, and critical dimensional uniformity of EUV chemically amplified resists

    Science.gov (United States)

    Thackeray, James; Cameron, James; Jain, Vipul; LaBeaume, Paul; Coley, Suzanne; Ongayi, Owendi; Wagner, Mike; Rachford, Aaron; Biafore, John

    2013-03-01

    This paper will discuss further progress obtained at Dow for the improvement of the Resolution, Contact critical dimension uniformity(CDU), and Sensitivity of EUV chemically amplified resists. For resolution, we have employed the use of polymer-bound photoacid generator (PBP) concept to reduce the intrinsic acid diffusion that limits the ultimate resolving capability of CA resists. For CDU, we have focused on intrinsic dissolution contrast and have found that the photo-decomposable base (PDB) concept can be successfully employed. With the use of a PDB, we can reduce CDU variation at a lower exposure energy. For sensitivity, we have focused on more efficient EUV photon capture through increased EUV absorption, as well as more highly efficient PAGs for greater acid generating efficiency. The formulation concepts will be confirmed using Prolith stochastic resist modeling. For the 26nm hp contact holes, we get excellent overall process window with over 280nm depth of focus for a 10% exposure latitude Process window. The 1sigma Critical dimension uniformity [CDU] is 1.1 nm. We also obtain 20nm hp contact resolution in one of our new EUV resists.

  7. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  8. Supply Deficit of Feedstock Oils for Carbon Black

    Institute of Scientific and Technical Information of China (English)

    Li Bingyan

    2007-01-01

    @@ Feedstock oils used for carbon blackproduction mainly include ethylene tar,anthracene oil and coal tar. With thegrowing output of carbon black in re-cent years, demand for feedstock oilshas increased constantly.

  9. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-06-01

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  10. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-06-01

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  11. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.

    Science.gov (United States)

    Zhang, Jian; Shao, Shuai; Bao, Jie

    2016-02-01

    This study reported a new solution of lignocellulose feedstock storage based on the distributed pretreatment concept. The dry dilute sulfuric acid pretreatment (DDAP) was conducted on corn stover feedstock, instead of ammonia fiber explosion pretreatment. Then the dry dilute acid pretreated corn stover was stored for three months during summer season with high temperature and humidity. No negative aspects were found on the physical property, composition, hydrolysis yield and ethanol fermentability of the long term stored pretreated corn stover, plus the additional merits including no chemicals recovery operation, anti-microbial contaminant environment from stronger acid and inhibitor contents, as well as the mild and slow hydrolysis in the storage. The new pretreatment method expanded the distributed pretreatment concept of feedstock storage with potential for practical application.

  12. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.

    Science.gov (United States)

    Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger

    2017-04-01

    Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  14. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  15. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  16. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  17. Recent Progress in Chemical Modifications of Chlorophylls and Bacteriochlorophylls for the Applications in Photodynamic Therapy.

    Science.gov (United States)

    Staron, Jakub; Boron, Bożena; Karcz, Dariusz; Szczygieł, Małgorzata; Fiedor, Leszek

    2015-01-01

    Since photodynamic therapy emerged as a promising cancer treatment, the development of photosensitizers has gained great interest. In this context, the photosynthetic pigments, chlorophylls and bacteriochlorophylls, as excellent natural photosensitizers, attracted much attention. In effect, several (bacterio) chlorophyll-based phototherapeutic agents have been developed and (or are about to) enter the clinics. The aim of this review article is to give a survey of the advances in the synthetic chemistry of these pigments which have been made over the last decade, and which are pertinent to the application of their derivatives as photosensitizers for photodynamic therapy (PDT). The review focuses on the synthetic strategies undertaken to obtain novel derivatives of (bacterio)chlorophylls with both enhanced photosensitizing and tumorlocalizing properties, and also improved photo- and chemical stability. These include modifications of the C- 17-ester moiety, the isocyclic ring, the central binding pocket, and the derivatization of peripheral functionalities at the C-3 and C-7 positions with carbohydrate-, peptide-, and nanoparticle moieties or other residues. The effects of these modifications on essential features of the pigments are discussed, such as the efficiency of reactive oxygen species generation, photostability, phototoxicity and interactions with living organisms. The review is divided into several sections. In the first part, the principles of PDT and photosensitizer action are briefly described. Then the relevant photophysical features of (bacterio)chlorophylls and earlier approaches to their modification are summarized. Next, a more detailed overview of the progress in synthetic methods is given, followed by a discussion of the effects of these modifications on the photophysics of the pigments and on their biological activity.

  18. Sweet sorghum as biofuel feedstock: recent advances and available resources.

    Science.gov (United States)

    Mathur, Supriya; Umakanth, A V; Tonapi, V A; Sharma, Rita; Sharma, Manoj K

    2017-01-01

    Sweet sorghum is a promising target for biofuel production. It is a C4 crop with low input requirements and accumulates high levels of sugars in its stalks. However, large-scale planting on marginal lands would require improved varieties with optimized biofuel-related traits and tolerance to biotic and abiotic stresses. Considering this, many studies have been carried out to generate genetic and genomic resources for sweet sorghum. In this review, we discuss various attributes of sweet sorghum that make it an ideal candidate for biofuel feedstock, and provide an overview of genetic diversity, tools, and resources available for engineering and/or marker-assisting breeding of sweet sorghum. Finally, the progress made so far, in identification of genes/quantitative trait loci (QTLs) important for agronomic traits and ongoing molecular breeding efforts to generate improved varieties, has been discussed.

  19. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  20. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  1. Thoughts on Optimization of Aromatic Feedstock

    Institute of Scientific and Technical Information of China (English)

    Cao Jian

    2002-01-01

    This article refers to four cases of process unit combinations with different throughputs of aromatics unit for production of 450 kt/a paraxylene at a certain petrochemical complex in order to against a representative case (provided with an 800-kt/a CCR unit and a 600-kt/a disproportionation unit) and the feasibility and advantage of using prolysis gasoline as aromatic feedstock is studied.

  2. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  3. Markets for Canadian bitumen-based feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lauerman, V. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2001-07-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs.

  4. State‐of‐the‐art and progress in the optimization‐based simultaneous design and control for chemical processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Sin, Gürkan

    2012-01-01

    Significant progress in the area of simultaneous design and control for chemical processes has been achieved and various methodologies have been put forward to address this issue over the last several decades. These methods can be classified in two categories (1) controllability indicator...... the simultaneous design methods to challenging problem areas. In particular, the application of optimization‐based simultaneous design and control methods to large‐scale systems with highly inherent nonlinear dynamics often the case in industrial chemical processes remains a challenging task and yet to be solved......‐based frameworks that are capable of screening alternative designs, and (2) optimization‐based frameworks that integrate the process design and control system design. The major objective is to give an up‐to‐date review of the state‐of‐the‐art and progress in the challenging area of optimization‐based simultaneous...

  5. New Zealand Coals - A Potential Feedstock for Deep Microbial Life

    DEFF Research Database (Denmark)

    Glombitza, Clemens

    2010-01-01

    a broad and almost continuous maturity range representing diagenetic to catagenetic coalification levels were investigated to estimate their feedstock potential for deep microbial life using a novel developed analytical procedure to analyse kerogen-bound LMWOAs liberated by selective chemical degradation...... maturation leading to more sterically protected kerogen-bound LMWOAs and, therefore, to a slower substrate release with ongoing maturation. Additional information about the structure of the macromolecular network were obtained by selective ether-cleavage procedure revealing that aliphatic alcohols with more...... than one hydroxy groups represent important cross-linkage structures. In contrast to the terminal ether-bound monoalcohols which show a rapid decrease during diagenetic alteration, these compounds show relatively high concentrations even in the more mature coals suggesting that these cross-link bridges...

  6. Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations.

    Science.gov (United States)

    Luo, Lin; van der Voet, Ester; Huppes, Gjalt

    2010-07-01

    Biorefinery, an example of a multiple products system, integrates biomass conversion processes and equipment to produce fuels, power and chemicals from biomass. This study focuses on technical design, economic and environmental analysis of a lignocellulosic feedstock (LCF) biorefinery producing ethanol, succinic acid, acetic acid and electricity. As the potential worldwide demand of succinic acid and its derivatives can reach 30 million tons per year, succinic acid is a promising high-value product if production cost and market price are substantially lowered. The results of the economic analysis show that the designed refinery has great potentials compared to the single-output ethanol plant; even when the price of succinic acid is lowered or the capital investment doubled. In terms of eco-efficiency, the LCF biorefinery shows better environmental performances mainly in global warming potential due to CO(2) fixation during acid fermentation. The overall evaluation of the eco-efficiency depends on the importance attached to each impact category.

  7. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1997-06-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October-December 1996. The report describes ten tasks conducted in four major areas of research and development within the section. The first major research area -- Chemical Processes for Waste Management -- includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Development and Testing of Inorganic Sorbents, and Sludge Treatment Studies. Within the second research area -- Reactor Fuel Chemistry -- the distribution of iodine in containment during an AP600 design-basis accident was evaluated using models in the TRENDS code. Within the third research area -- Thermodynamics -- efforts continued in the Thermodynamics and Kinetics of energy-Related Materials task. The fourth major research area -- Processes for Waste Management -- includes work on these tasks: Ion-Exchange Process for Heavy Metals Removal, Search for Technetium in Natural Metallurgical Residues, and Waste Form Development and Testing of a Glass- and Cement-Based Dedicated Hot-Cell Facility.

  8. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  9. Microsensors for in-situ chemical, physical, and radiological characterization of mixed waste. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thundat, T.G.; Warmack, R.J.; Dabestani, R.; Britt, P.; Bonnesen, P.V.; Brown, G.M.

    1998-06-01

    'A widespread need exists for portable, real-time, in-situ chemical, physical, and radiological sensors for characterization of mixed wastes, groundwater, contaminated solids, and process streams. None of the currently available technologies offer a clear path to the development of sensors that are miniature, cost-effective, selective, highly sensitive with a wide dynamic range, and have the ability to work in air or liquid while providing chemical, physical, and radiological information. The objective of this research program is to conduct the fundamental research necessary to develop microcantilever-based micromechanical sensors for in-situ characterization of groundwater, sediments, and mixed wastes. Chemical selectivity will be achieved by coupling surface modification chemistry with molecular recognition agents. Physical measurements of adsorption (absorption) induced deflection (bending) and resonance frequency variation of microcantilevers can be achieved with extreme precision resulting in ppb-ppt sensitivity. Good progress has been made in the first nine months of this project. Progress has been made in three focus areas: radiation detection, detection of heavy metals in water, modification of microcantilever surfaces for chemical selectivity, and pH measurement.'

  10. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for

  11. Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks

    Science.gov (United States)

    Choi, Youn-Sang

    This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy

  12. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.

  13. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  14. Chemical Technology Division annual progress report for period ending March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    Separate abstracts were prepared for several of the sections reporting work on the fuel cycle, radioactive waste management, coal conversion, isotope separation, fusion energy, separation processes, reactor safety, biomedical studies, and chemical engineering.

  15. Research in Chemical Kinetics: Progress Report, January 1, 1978 to September 30, 1978

    Science.gov (United States)

    Rowland, F. S.

    1978-01-01

    Research was conducted on the following topics: stratospheric chemistry of chlorinated molecules, atmospheric chemistry of methane, atmospheric chemistry of cosmogenic tritium, reactions of energetic and thermal radioactive atoms, methylene chemistry, and laboratory simulation of chemical reactions in Jupiter atmosphere. (DLC)

  16. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Alexandre Royer

    2016-04-01

    Full Text Available The binder plays the most important role in the metal injection molding (MIM process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of this study is to develop a feedstock of superalloy Inconel 718 that is environmentally friendly. For these different binders, formulations based on polyethylene glycol (PEG, because of his water solubility property, and bio sourced polymers were studied. Polyhydroxyalkanoates (PHA were investigated as a bio sourced polymer due to its miscibility with the PEG. The result is compared to a standard formulation using polypropylene (PP. The chemical and rheological behavior of the binder formulation during mixing, injection and debinding process were investigated. The feedstock was characterized in the same way as the binders and the interactions between the powder and the binders were also studied. The results show the well adapted formulation of polymer binder to produce a superalloy Inconel 718 feedstock.

  17. Influence of feedstock particle size on lignocellulose conversion--a review.

    Science.gov (United States)

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  18. Methods for determination of biomethane potential of feedstocks: a review

    Directory of Open Access Journals (Sweden)

    Raphael Muzondiwa Jingura

    2017-06-01

    Full Text Available Biogas produced during anaerobic digestion (AD of biodegradable organic materials. AD is a series of biochemical reactions in which microorganisms degrade organic matter under anaerobic conditions. There are many biomass resources that can be degraded by AD to produce biogas. Biogas consists of methane, carbon dioxide, and trace amounts of other gases. The gamut of feedstocks used in AD includes animal manure, municipal solid waste, sewage sludge, and various crops. Several factors affect the potential of feedstocks for biomethane production. The factors include nutrient content, total and volatile solids (VS content, chemical and biological oxygen demand, carbon/nitrogen ratio, and presence of inhibitory substances. The biochemical methane potential (BMP, often defined as the maximum volume of methane produced per g of VS substrate provides an indication of the biodegradability of a substrate and its potential to produce methane via AD. The BMP test is a method of establishing a baseline for performance of AD. BMP data are useful for designing AD parameters in order to optimise methane production. Several methods which include experimental and theoretical methods can be used to determine BMP. The objective of this paper is to review several methods with a special focus on their advantages and disadvantages. The review shows that experimental methods, mainly the BMP test are widely used. The BMP test is credited for its reliability and validity. There are variants of BMP assays as well. Theoretical models are alternative methods to estimate BMP. They are credited for being fast and easy to use. Spectroscopy has emerged as a new experimental tool to determine BMP. Each method has its own advantages and disadvantages with reference to efficacy, time, and ease of use. Choosing a method to use depends on various exigencies. More work needs to be continuously done in order to improve the various methods used to determine BMP.

  19. Sorghum as Dry Land Feedstock for Fuel Ethanol Production

    Institute of Scientific and Technical Information of China (English)

    WANG Donghai; WU Xiaorong

    2010-01-01

    Dry land crops such as sorghums(grain sorghum,sweet sorghum and forage sorghum)have been identified aspromising feedstocks for fuel ethanol production.The major issue for using the sweet sorghum as feedstock is its stability at room temperature.At room temperature,the sweet sorghum juice could lose from 40%to50%of its fermentable sugars from 7to14 days.No significant sugar content and profile changes were observed in juice stored at refrigerator temperature in two weeks.Ethanolfermentation efficiencies of fresh and frozen juice were high(-93%).Concentrated juice(≥25%sugar)had significantly lower efficiencies and large amounts of fructose left in finished beer; however,winery yeast strains and novel fermentation techniques maysolve these problems.The ethanol yield from sorghum grain increased as starch content increased.No linear relationship betweenstarch content and fermentation efficiency was found.Key factors affecting the ethanol fermentation efficiency of sorghum includestarches and protein digestibility,amylose-lipid complexes,tannin content,and mash viscosity.Life cycle analysis showed a positivenet energy value(NEV)=25 500 Btu/gal ethanol.Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)were used to determine changes in the structure and chemical composition of sorghum biomasses.Dilute sulfuric acid pretreatment waseffective in removing the hemicellulose from biomasses and exposing the cellulose for enzymatic hydrolysis.Forage sorghum ligninhad a lower syringyl/guaiacyl ratio and its pretreated biomass was easier to hydrolyze.Up to 72% hexose yield and 94% pentoseyield were obtained by using a modified steam explosion with 2% sulfuric acid at 140"C for 30 min and enzymatic hydrolysis withcellulase.

  20. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  1. Influence of feedstock sulfur content on cat cracking results

    Energy Technology Data Exchange (ETDEWEB)

    Manovyan, A.K.; Pivovarova, N.A.; Tarakanov, G.V. [and others

    1995-11-01

    In the interest of expanding the resources for cat cracking feedstocks, blends of vacuum distillate and resids are being used. The feedstock components are usually subjected to hydrotreating or deasphalting in order to lower the contents of resins and sulfur. However, there has been very little study of the question of how the cracking results are influenced by resins and sulfur remaining in the feedstock after hydrotreating or deasphalting. Here, the authors are reporting on a study of the influence of feedstock sulfur content on the content of olefins in the products from cracking.

  2. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    Keywords: Biofuel feedstock plantations; Jatropha curcas; land grabbing; local livelihoods; ... Consequently, many European and American governments, international ...... Biofuel biomass crop farm/plantation initiatives in the Northern Region.

  3. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  4. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  5. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Ann-Christine; Iisa, Kristiina; Sandström, Linda; Ben, Haoxi; Pilath, Heidi; Deutch, Steve; Wiinikka, Henrik; Öhrman, Olov G. W.

    2017-01-01

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. The objective was to characterize the oil fractions produced from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC - TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. However, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. This promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle fractions, and

  6. New technologies and alternative feedstocks in petrochemistry and refining. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M. (eds.)

    2013-11-01

    This international conference paper provides a forum for chemists and engineers from refinery, petrochemistry and the chemical industry as well as from academia to discuss new technologies and alternative feedstocks in petrochemistry and refining with the special topic ''Shale Gas, Heavy Oils and Coal''. 23 Lectures and 18 Posters are presented. All papers are analyzed for the ENERGY database.

  7. Comparative study of radiation, chemical, and aging effects on viral transformation. Annual progress report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Coggin, J.H. Jr.

    1976-03-31

    Progress is reported on the following research projects: evaluation of isotopic antiglobulin test (IAT) to detect tumor associated antigens using antisera induced by x-irradiated tumor cells; development of cytotoxic antibody for embryonic antigens (EA); acrylamide gel cell culture assay for transformation; and evaluation of 3-MCA induced sarcomas for TSTA and cross-reacting antigens. (HLW)

  8. 固态化学反应研究进展%The Progress on Solid State Chemical Reaction

    Institute of Scientific and Technical Information of China (English)

    康新平

    2012-01-01

    综述了固态化学反应的定义、研究范围、分类,以及低热固态反应的实验方法、优点、反应机理,分析了固态化学反应的应用进展,展望了此类研究的发展前景。%The article reviewed the definition, scope, classification of solid state chemical reaction, and the experimental method, advantage, reaction mechanism of solid state reaction at low- heating temperatures, and analyzed the application progress of solid state chemical reaction. Some suggestions on the development prospect of such research in the future are presented.

  9. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    Science.gov (United States)

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  10. Chemical Technology Division progress report, April 1, 1983-March 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs.

  11. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  12. Water--1970. Chemical Engineering Progress Symposium Series No. 107, Volume 67, 1971.

    Science.gov (United States)

    Cecil, Lawrence K., Ed.

    Due to the tremendous interest in all phases of environmental control, particularly with reference to water pollution control, the American Institute of Chemical Engineers (AIChE) is attempting to provide the lay public with accurate information about water resources so they may react with proper knowledge and constructive activity. This anthology…

  13. Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.

    Science.gov (United States)

    Carlsson, Anders S

    2009-06-01

    Our society is highly depending on petroleum for its activities. About 90% is used as an energy source for transportation and for generation of heat and electricity and the remaining as feedstocks in the chemical industry. However, petroleum is a finite source as well as causing several environmental problems such as rising carbon dioxide levels in the atmosphere. Petroleum therefore needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources, which can deliver a substantial part of what is needed to replace the petroleum used as feedstocks. Plant derived feedstock oils can be provided by two types of oil qualities, multi-purpose and technical oils. Multi-purpose oils represent oil qualities that contain common fatty acids and that can be used for both food and feedstock applications. Technical oil qualities contain unusual fatty acids with special properties gained from their unique molecular structure and these types of oils should only be used for feedstock applications. As a risk mitigation strategy in the selection of crops, technical oil qualities should therefore preferably be produced by oil crop platforms dedicated for industrial usage. This review presents a short survey of oil crop platforms to be considered for either multi-purpose or technical oils production. Included among the former platforms are some of the major oil crops in cultivation such as oil palm, soybean and rapeseed. Among the later are those that could be developed into dedicated industrial platforms such as crambe, flax, cotton and Brassica carinata. The survey finishes off by highlighting the potential of substantial increase in plant oil production by developing metabolic flux platforms, which are starch crops converted into oil crops.

  14. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  15. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Science.gov (United States)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  16. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  17. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  18. Development of an apparatus to study chemical reactions at high temperature - a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sturzenegger, M.; Schelling, Th.; Steiner, E.; Wuillemin, D. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    TREMPER is an apparatus that was devised to study kinetic and thermodynamic aspects of high-temperature reactions under concentrated solar irradiation. The design allows investigations on solid or liquid samples under inert or reactive atmospheres. The working temperature is adjustable; the upper limit that has yet been reached is about 1900 K. TREMPER will facilitate chemical reactivity studies on a temperature level that is difficult to access by other means. First experiments were conducted to study the decomposition of manganese oxide MnO{sub 2}. Chemical analysis of exposed samples confirmed that the parent MnO{sub 2} was decomposed to mixtures of Mn O and Mn{sub 3}O{sub 4}. The amount of Mn O ranged from 60 mol-% in air to 86 mol-% under inert atmosphere. (author) 1 fig., 1 tab., 2 refs.

  19. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin

    Directory of Open Access Journals (Sweden)

    Viviane Cristina Toreti

    2013-01-01

    Full Text Available Propolis is the generic name given to the product obtained from resinous substances, which is gummy and balsamic and which is collected by bees from flowers, buds, and exudates of plants. It is a popular folk medicine possessing a broad spectrum of biological activities. These biological properties are related to its chemical composition and more specifically to the phenolic compounds that vary in their structure and concentration depending on the region of production, availability of sources to collect plant resins, genetic variability of the queen bee, the technique used for production, and the season in which propolis is produced. Many scientific articles are published every year in different international journal, and several groups of researchers have focused their attention on the chemical compounds and biological activity of propolis. This paper presents a review on the publications on propolis and patents of applications and biological constituents of propolis.

  20. [Research progress of phytoestrogens-like chemical constituents in natural medicines].

    Science.gov (United States)

    Yuan, Ting-Ting; Zhang, Nai-Dan; He, Yong-Jing; Li, Mei; Xu, Hong-Tao; Zhang, Qiao-Yan

    2014-12-01

    Phytoestrogens, which can bind with estrogen receptor and produce estrogen-like effects, are a kind of nonsteroidal compound in plant. Phytoestrogens chemically include isoflavones, coumarins, lignans and other compounds. Phytoestrogens are selective estrogen receptor modulator, and have therapeutical effects on breast cancer, prostate cancer, cardiovascular disease, menopausal symptoms, osteoporosis and other disease, however, do not produce stimulatory hyperplasia effects on uterus, mammary glands and other tissues and organs with positive estrogen receptor. Long-term exposure or excessive use of phytoestrogens maybe affects male reproductive system and hematopoietic function of fetus. Some questions need to be further studied, such as evaluation criteria on biological activity, adverse effects, and action mechanism of phytoestrogen. This review covers plant sources, chemical structure, pharmacological activity and safety of phytoestrogens. It will provide a useful reference for intensive research and rational utilization the phytoestrogens.

  1. Chemical Technology Division annual progress report for period ending March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The status is reported for various research programs including waste management, transuranium-element processing, isotopic separations, preparation of /sup 233/UO/sub 2/, separations chemistry, biomedical technology, environmental studies, coal technology program, actinide oxides and nitrides and carbides, chemical engineering, controlled thermonuclear program, iodine studies, reactor safety, NRC programs, and diffusion of adsorbed species in porous media. Details of these programs are given in topical reports and journal articles. (JSR)

  2. Recent progress of laser metrology in chemically reacting flows at onera

    Science.gov (United States)

    Mohamed, A.; Dorval, N.; Vilmart, G.; Orain, M.; George, R.; Scherman, M.; Nafa, M.; Bresson, A.; Attal-Tretout, B.; Lefebvre, M.

    2017-06-01

    This paper presents some of the development actions performed these last years at ONERA using laser spectroscopic techniques to probe chemically reacting flows. Techniques like laser absorption, laser induced fluorescence (LIF), and Raman scattering will be described with focus on present drawbacks as well as expectations from new laser technologies (Interband Cascade Lasers (ICL) diodes, Optical Parametrical Oscillators (OPO), frequency comb, and femto/picosecond lasers) before showing some results of recent applications in ground facilities.

  3. Progress of Chemical Composition and Pharmacological Effects of Meretrix meretrix Linnaeus

    Institute of Scientific and Technical Information of China (English)

    Du; Zhengcai; Hou; Xiaotao; Huang; Qing; Deng; Jiagang; Fanshi; Fangcao

    2014-01-01

    Meretrix meretrix Linnaeus is a traditional marine drug. There are more than two thousand years of history using clamshell as a component of medicine.After a review of relevant literature at home and abroad for nearly 20 years,the author summarized chemical composition and pharmacological effects of M. meretrix,in order to provide a scientific basis for further development and utilization of M. meretrix.

  4. Feedstock Quality Factor Calibration and Data Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  5. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-05-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  6. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Hernández-Pérez

    2016-06-01

    Full Text Available Abstract Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH42SO4, and full supplementation with (NH42SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30 °C, 200 rpm, for 48 h in 125 mL Erlenmeyer flasks containing either 25 or 50 mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67 g g-1 was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34 g L-1 h-1 was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate.

  7. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.

    Science.gov (United States)

    Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit

    2016-10-01

    Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

    Science.gov (United States)

    Guieysse, Benoit; Norvill, Zane N

    2014-02-28

    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.

  9. Caustic-Side Solvent Extraction Chemical and Physical Properties Progress in FY 2000 and FY 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, BA

    2002-04-17

    The purpose of this work was to provide chemical- and physical-property data addressing the technical risks of the Caustic-Side Solvent Extraction (CSSX) process as applied specifically to the removal of cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site. As part of the overall Salt Processing Project, this effort supported decision-making in regards to selecting a preferred technology among three alternatives: (1) CSSX, (2) nonelutable ion-exchange with an inorganic silicotitanate material and (3) precipitation with tetraphenylborate. High risks, innate to CSSX, that needed specific attention included: (1) chemical stability of the solvent matrix, (2) radiolytic stability of the solvent matrix, (3) proof-of-concept performance of the proposed process flowsheet with simulated waste, and (4) performance of the CSSX flowsheet with actual SRS high-level waste. This body of work directly addressed the chemical-stability risk and additionally provided supporting information that served to plan, carry out, and evaluate experiments conducted by other CSSX investigators addressing the other high risks. Information on cesium distribution in extraction, scrubbing, and stripping served as input for flowsheet design, provided a baseline for evaluating solvent performance under numerous stresses, and contributed to a broad understanding of the effects of expected process variables. In parallel, other measurements were directed toward learning how other system components distribute in the flowsheet. Such components include the solvent components themselves, constituents of the waste, and solvent-degradation products. Upon understanding which components influence flowsheet performance, it was then possible to address in a rational fashion how to clean up the solvent and maintain its stable function.

  10. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2008-08-01

    Full Text Available Sunflower (Helianthus annuus L. oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported.

  11. Syngas. The flexible solution in a volatile feed-stock market

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Air Liquide Global E und C Solutions c/o Lurgi GmbH, Frankfurt a.M. (Germany)

    2013-11-01

    The paper presents the versatility of syngas allowing the extended application of new feedstock sources such as shale gas or coal to deliver fuels and chemicals traditionally derived from crude oil. In order to provide a holistic view on this topic of current interest, the syngas market, the pre-dominant production technologies and main economic consideration for selected applications are presented and analyzed. It can be concluded that a broad portfolio of well-mastered and referenced syngas production technologies which are continuously improved to meet actual market requirements (e.g. ability to valorize biomass) will remain key to enable economic solutions in a world characterized by growing dynamics with regards to the supply of (carbonaceous) feedstock. (orig.)

  12. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  13. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  14. Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression.

    Science.gov (United States)

    Horvathova, Lubica; Tillinger, Andrej; Sivakova, Ivana; Mikova, Lucia; Mravec, Boris; Bucova, Maria

    2015-01-15

    The sympathetic nervous system regulates many immune functions and modulates the anti-tumor immune defense response, too. Therefore, we studied the effect of 6-hydroxydopamine induced sympathectomy on selected hematological parameters and inflammatory markers in rats with Yoshida AH130 ascites hepatoma. We found that chemically sympathectomized tumor-bearing rats had significantly increased neutrophil-to-lymphocyte ratio, leukocyte-to-lymphocyte ratio, and plasma levels of tumor necrosis factor alpha. Although our findings showed that sympathetic denervation in tumor-bearing rats led to increased neutrophil-to-lymphocyte ratio, that is an indicator of the disease progression, we found no significant changes in tumor growth and survival of sympathectomized tumor-bearing rats.

  15. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    Science.gov (United States)

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  16. Bioplastic production using wood mill effluents as feedstock.

    Science.gov (United States)

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  17. Plant triacylglycerols as feedstocks for the production of biofuels.

    Science.gov (United States)

    Durrett, Timothy P; Benning, Christoph; Ohlrogge, John

    2008-05-01

    Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.

  18. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  19. Method for determining processability of a hydrocarbon containing feedstock

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  20. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  1. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  2. Butter as a feedstock for biodiesel production.

    Science.gov (United States)

    Haas, Michael J; Adawi, Nadia; Berry, William W; Feldman, Elaine; Kasprzyk, Stephen; Ratigan, Brian; Scott, Karen; Landsburg, Emily Bockian

    2010-07-14

    Fatty acid methyl esters (FAME) were produced from cow's milk (Bostaurus) butter by esterification/transesterification in the presence of methanol. The product was assayed according to the Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (ASTM D 6751). The preparation failed to meet the specifications for flash point, free and total glycerin contents, total sulfur, and oxidation stability. Failures to meet the flash point and free/total glycerin specifications were determined to be due to interference with standard assays for these parameters by short-chain-length fatty acid esters. The oxidation stability of the butterfat FAME was improved by supplementation with a commercial antioxidant formulation. Approximately 725 ppm of antioxidant was required to meet the ASTM-specified stability value for biodiesel. This work indicates that, without further purification to reduce a slightly excessive sulfur content, fatty acid ester preparations produced from butter are unacceptable as sole components of a biodiesel fuel. However, it is possible that even without further purification a butter-based ester preparation could be mixed with biodiesel from other feedstocks to produce a blend that meets the current quality standards for biodiesel. The results presented here also illustrate some potential weaknesses in the accepted methods for biodiesel characterization when employed in the analysis of FAME preparations containing mid- and short-chain fatty acid esters.

  3. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  4. Potential involvement of chemicals in liver cancer progression: an alternative toxicological approach combining biomarkers and innovative technologies.

    Science.gov (United States)

    Peyre, Ludovic; Zucchini-Pascal, Nathalie; de Sousa, Georges; Luzy, Anne-Pascale; Rahmani, Roger

    2014-12-01

    Pesticides as well as many other environmental pollutants are considered as risk factors for the initiation and the progression of cancer. In order to evaluate the in vitro effects of chemicals present in the diet, we began by combining viability, real-time cellular impedance and high throughput screening data to identify a concentration "zone of interest" for the six xenobiotics selected: endosulfan, dioxin, carbaryl, carbendazim, p'p'DDE and hydroquinone. We identified a single concentration of each pollutant allowing a modulation of the impedance in the absence of vital changes (nuclear integrity, mitochondrial membrane potential, cell death). Based on the number of observed modulations known to be involved in hepatic homeostasis dysfunction that may lead to cancer progression such as cell cycle and apoptosis regulators, EMT biomarkers and signal transduction pathways, we then ranked the pollutants in terms of their toxicity. Endosulfan, was able to strongly modulate all the studied cellular processes in HepG2 cells, followed by dioxin, then carbendazim. While p,p'DDE, carbaryl and hydroquinone seemed to affect fewer functions, their effects nevertheless warrant close scrutiny. Our in vitro data indicate that these xenobiotics may contribute to the evolution and worsening of hepatocarcinoma, whether via the induction of the EMT process and/or via the deregulation of liver key processes such as cell cycle and resistance to apoptosis.

  5. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  6. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  7. Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

  8. Chemical Engineering Division fuel cycle programs. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1979-04-01

    Fuel cycle studies reported for this period include studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. Miniature single-stage and eight-stage centrifugal contactors are being employed in studies of contactor performance and the kinetics of extraction. A 9-cm-ID centrifugal contactor has been completed, and fabrication drawings are being prepared for a plant-scale contactor. In other work, tricaprylmethyl-ammonium nitrate and di-n-amyl n-amylphosphonate are being evaluated as extractants in the Thorex process. Literature on the dispersion of liquids by explosions is being reviewed. A process was developed for extracting TBP degradation products from TBP-Na/sub 2/CO/sub 3/ scrub solutions while the actinides remain with the raffinate. In the program on pyrochemical and dry processing of nuclear fuel, the literature is being reviewed for acceptable materials for containment vessels, decladding methods are being evaluated, salt transport processes are being studied, a candidate flow sheet (based upon the Dow Aluminum Pyrometallurgical process) for reprocessing spent uranium metal fuel was prepared, work was begun on the use of molten salts for reprocessing actinide oxides, and the reprocessing of (Th,U)O/sub 2/ solid solution in a KCl-LiCl salt containing ThCl/sub 4/ and thorium chips was studied. Work on the encapsulation of solidified radioactive waste in a metal matrix includes study of (1) chemical interactions between simulated waste forms and matrix metals, (2) the leach rates of simulated encapsulated waste forms, and (3) the corrosion of candidate matrix metals and canister materials in brine solutions.Work to establish criteria for the handling of waste cladding hulls is continuing. The transport properties of nuclear waste in geologic media are being studied to estimate leaching of radionuclides from deep repositories by groundwater.

  9. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  10. Feedstock Supply and Logistics: Biomass as a Commodity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  11. Biodiesel production from low cost and renewable feedstock

    Science.gov (United States)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  12. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  13. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Science.gov (United States)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  14. Microbial renewable feedstock utilization: A substrate-oriented approach

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Gray, V.M.; Groenestijn, J.W. van; Overkamp, K.M.; Slomp, R.S.; Werf, M.J. van der; Punt, P.J.

    2010-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates consist of complex mixtures of different fermentable sugars, but also contain inhibitors and salts that affect the performance of the productgenerating microbes. The p

  15. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  16. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  17. Evaluation of Physicochemical Properties of South African Cashew Apple Juice as a Biofuel Feedstock

    Directory of Open Access Journals (Sweden)

    Evanie Devi Deenanath

    2015-01-01

    Full Text Available Cashew apple juice (CAJ is one of the feedstocks used for biofuel production and ethanol yield depends on the physical and chemical properties of the extracted juice. As far as can be ascertained, information on physical and chemical properties of South African cashew apple juice is limited in open literature. Therefore, this study provides information on the physical and chemical properties of the South African cashew apple juice. Physicochemical characteristics of the juice, such as specific gravity, pH, sugars, condensed tannins, Vitamin C, minerals, and total protein, were measured from a mixed variety of cashew apples. Analytical results showed the CAJ possesses specific gravity and pH of 1.050 and 4.52, respectively. The highest sugars were glucose (40.56 gL−1 and fructose (57.06 gL−1. Other chemical compositions of the juice were condensed tannin (55.34 mgL−1, Vitamin C (112 mg/100 mL, and total protein (1.78 gL−1. The minerals content was as follows: zinc (1.39 ppm, copper (2.18 ppm, magnesium (4.32 ppm, iron (1.32 ppm, sodium (5.44 ppm, and manganese (1.24 ppm. With these findings, South African CAJ is a suitable biomass feedstock for ethanol production.

  18. Evaluation of Physicochemical Properties of South African Cashew Apple Juice as a Biofuel Feedstock

    Science.gov (United States)

    Deenanath, Evanie Devi; Daramola, Michael; Falcon, Rosemary; Iyuke, Sunny

    2015-01-01

    Cashew apple juice (CAJ) is one of the feedstocks used for biofuel production and ethanol yield depends on the physical and chemical properties of the extracted juice. As far as can be ascertained, information on physical and chemical properties of South African cashew apple juice is limited in open literature. Therefore, this study provides information on the physical and chemical properties of the South African cashew apple juice. Physicochemical characteristics of the juice, such as specific gravity, pH, sugars, condensed tannins, Vitamin C, minerals, and total protein, were measured from a mixed variety of cashew apples. Analytical results showed the CAJ possesses specific gravity and pH of 1.050 and 4.52, respectively. The highest sugars were glucose (40.56 gL−1) and fructose (57.06 gL−1). Other chemical compositions of the juice were condensed tannin (55.34 mgL−1), Vitamin C (112 mg/100 mL), and total protein (1.78 gL−1). The minerals content was as follows: zinc (1.39 ppm), copper (2.18 ppm), magnesium (4.32 ppm), iron (1.32 ppm), sodium (5.44 ppm), and manganese (1.24 ppm). With these findings, South African CAJ is a suitable biomass feedstock for ethanol production. PMID:26345160

  19. Chemical and ceramic methods toward safe storage of actinides using monazite. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, P.E.D. [Rockwell International Corp., Thousand, Oaks, CA (US); Boatner, L.A. [Oak Ridge National Lab., TN (US)

    1998-06-01

    in oxidatively stable ceramic composites: for example, use is contemplated as an enabling weak interface in oxide-oxide fiber composites (including as a high temperature starch on space shuttle blankets), and possibly as machinable ceramics, friction materials and other. The ceramic behavior of pure and doped monazite has not yet been studied in any detail. The sine-qua-non of ceramic studies and production is the reliable synthesis of reproducible starting powders and precursor chemicals that consistently reproduce the desired ceramic outcome. This has always been a more neglected (underfunded) side of ceramic studies; witness how many years passed before pure reproducible powders of alumina or silicon nitride became available for ceramic studies long after it was apparent that these were useful ceramics which, however, suffered from forming variation and degradation caused by small amounts of impurities.'

  20. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  1. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  2. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  3. A progress report for the large block test of the coupled thermal-mechanical-hydrological-chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Wilder, D.G.; Blink, J. [and others

    1994-10-01

    This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigate individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10{sup -15} m{sup 2} is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report.

  4. Research Progress on Chemical Constituents of Ficus Microcarpa%榕树的化学成分研究进展

    Institute of Scientific and Technical Information of China (English)

    易艳波; 盛家荣; 李锦金; 邹修文

    2013-01-01

    Ficus microcarpa belongs to Moraceae Ficus ,of which the leaves and aerial roots were used as a common traditional Chinese medicine for cardiovascular ,cerebrovascular diseases ,antibacte‐rial and anti-inflammation .Terpenoids ,phenols ,flavonoids ,lactone ,alkaloids ,steroids were isola‐ted from Ficus microcarpa .The research progress on chemical constituents of Ficus microcarpa was summarized in this study for reference to better utilization of medicinal resources .%  榕树为桑科榕属植物,入药主要为叶和气生根,具有治疗心脑血管疾病、抗菌、抗感染等作用。榕树的主要化学成分为:萜类、酚类、黄酮、内酯、生物碱、甾体等。该文综述了榕树化学成分的研究进展,为该植物资源的进一步开发利用提供参考。

  5. Effect of hydrotreating FCC feedstock on product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Sotelo, D.; Maya-Yescas, R.; Mariaca-Dominguez, E.; Rodriguez-Salomon, S.; Aguilera-Lopez, M. [Programa de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, San Bartolo Atepehuacan, 07730 Mexico, D.F. (Mexico)

    2004-11-24

    The demand of low-sulfur fuels has been increasing during the last 20 years due to environmental concerns about SO{sub x} emissions from processing plants and engines. Due to its high contribution to the gasoline pool, hydrotreating fluid catalytic cracking (FCC) feedstock offers several advantages, such as the increase of conversion and yields of gasoline and liquid-phase gas, meanwhile sulfur content in fuels is diminished. However, there are more important factors to be considered when hydrotreating FCC feedstock.In this work, two FCC feedstocks, typical and hydrotreated, were converted in a microactivity test (MAT) reactor, as described by ASTM D-3907-92, at different severities and using two commercial catalysts. Feedstock conversion, product yields and selectivity to valuable products were compared against industrial-scale results predicted by using commercial FCC simulation software. Expected increment in conversion and yield to profitable products was observed when hydrotreated feedstock was used; simulation results follow acceptably MAT results. Some recommendations are given for looking closely at the overall behavior (riser-regenerator), using reliable kinetic models and simulation programs.

  6. Vermicompost derived from different feedstocks as a plant growth medium.

    Science.gov (United States)

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators.

  7. Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL; Johnson, Jared A [ORNL

    2010-09-01

    Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO{sub 2} spanning greater than 50 years. The Fuel Cycle R&D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion (Modified Direct Denitration or MDD) and internal/external gelation (sol-gel). Each of these techniques has various advantages and disadvantages. The Fiscal Year 2010 feedstock development work at ORNL focused on the synthesis and characterization of one batch of UO{sub x} and one batch of U{sub 80}Ce{sub 20}O{sub x}. Oxide material synthesized at ORNL is being shipped to LANL for fuel fabrication process development studies. The feedstock preparation was performed using the MDD process which utilizes a rotary kiln to continuously thermally denitrate double

  8. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    Science.gov (United States)

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested.

  9. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic...... gained considerable interest. Renewable feedstocks usually cannot be converted into fuels and chemicals with existing process facilities due to the molecular functionality and variety of the most common renewable feedstock (biomass). Therefore new types of catalytic methods as well as new types...

  10. An Overview of Composting Based on Variable Feedstock Material

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available Composting is a biological treatment method that provides a potential sustainable way to convert food waste into organic compost. In composting, the feedstock material is an important item to ensure the success of the composting process. This paper reviewed the process of composting based on implementation different types of feedstock, namely: 1 animal waste such as cow dung, poultry litter, swine manure and chicken manure; and 2 agricultural waste such as sawdust, rice straw, bran, bagasse, banana waste and pine chip. The result for poultry litter, cow manure, swine manure, sawdust and rice straw has C/N ratio lower than 20 at final composting process which is considered as satisfactory level for compost maturity. As a conclusion, the selection of the feedstock material is based on the characteristics of the material itself and the selection of materials is important for the quality of compost.

  11. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  12. New catalysts improves heavy feedstock hydro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. (Koninklijke/Shell Laboratorium, Amsterdam (NL)); van de Meerakker, F.J. (Shell Internationale Petroleum Maatschappij BV, The Hauge (NL)); Sy, O. (Shell Canada Ltd., Oakville, Ontario (CA))

    1991-04-22

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  13. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  14. Effects of milling and active surfactants on rheological behavior of powder injection molding feedstock

    Institute of Scientific and Technical Information of China (English)

    范景莲; 黄伯云; 曲选辉

    2001-01-01

    The effects of milling and active surfactants on the rheological behavior of powder injection molding feedstock were discussed. The feedstock consists of traditional compositional 90W-7Ni-3Fe powder mixture and a wax based polymer binder. Before mixing feedstock, the powder mixture was milled for different times in a QM-1 high-energy ball mill. The viscosity of the feedstock was examined in a capillary rheometer. The rheological behavior was evaluated from viscosity data. The results show that the feedstock belongs to a pseudoplastic fluid, milling decreases viscosity of the feedstock and the sensitivity of viscosity to shear strain rate. The flowability, rheology and powder loading of this feedstock are improved by milling. Active surfactants such as stearic acid (SA) and di-n-octyl-o-phthalate (DOP) have great influences on the rheological properties of the feedstock. DOP improves the flowability and rheological stability of the feedstock further.

  15. Research progress of chemical manganese dioxide%化学二氧化锰研究进展

    Institute of Scientific and Technical Information of China (English)

    彭爱国; 贺周初; 肖伟; 丁雄磊; 庄新娟

    2011-01-01

    Research progress and present status of preparation and application of chemical manganese dioxide (CMD)were reviewed. Several common preparation methods, such as manganese carbonate thermal decomposition method, manganese nitrate thermal decomposition method, solution oxidation - reduction method, and nano - MnO2 preparing method, were introduced ,and advantages and disadvantages of these methods were analyzed. At present, the main industrial production methods of CMD are manganese carbonate thermal decomposition method ,manganese nitrate thermal decomposition method,and manganese sulfate-potassium permanganate oxidation-reduction method. Preparation and application of nano - MnO2 are important developing directions of CMD.%综述了化学二氧化锰的制备、应用等方面的研究进展和现状.介绍了几种常用的制备方法,包括:碳酸锰热分解法、硝酸锰热分解法、溶液氧化还原法,以及纳米二氧化锰的制备方法,并分析了这些制备方法的特点.目前化学二氧化锰的主要工业生产方法是碳酸锰热分解法、硝酸锰热分解法和硫酸锰-高锰酸钾氧化还原法.纳米二氧化锰的制备及其应用是未来化学二氧化锰研究的重要发展方向.

  16. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  17. Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass -- Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney; Erin M. Searcy

    2009-04-01

    This report, Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass, prepared by Idaho National Laboratory (INL), acknowledges the need and provides supportive designs for an evolutionary progression from present day conventional bale-based supply systems to a uniform-format, bulk solid supply system that transitions incrementally as the industry launches and matures. These designs couple to and build from current state of technology and address science and engineering constraints that have been identified by rigorous sensitivity analyses as having the greatest impact on feedstock supply system efficiencies and costs.

  18. Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass -- Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney; Erin M. Searcy

    2009-04-01

    This report, Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass, prepared by Idaho National Laboratory (INL), acknowledges the need and provides supportive designs for an evolutionary progression from present day conventional bale-based supply systems to a uniform-format, bulk solid supply system that transitions incrementally as the industry launches and matures. These designs couple to and build from current state of technology and address science and engineering constraints that have been identified by rigorous sensitivity analyses as having the greatest impact on feedstock supply system efficiencies and costs.

  19. 化学地球动力学研究进展%Progress in the Study of Chemical Geodynamics

    Institute of Scientific and Technical Information of China (English)

    郑永飞; 杨进辉; 宋述光; 陈伊翔

    2013-01-01

    Chemical geodynamics, the hotspot and the forefront of mantle geochemistry in the past decade, is an in-terdiscipline subject of geochemistry and geodynamics. With advances in understanding the mechanism of slab-mantle interaction and its geochemical effects, the study of chemical geodynamics has been extended from the mantle heterogeneity itself to the geochemical effects of subducted slabs on the mantle composition. Such an extension has contributed greatly to our understanding of many important issues in solid earth chemistry, especially the operation of Earth's interior, the slab-mantle interaction in subduction zones, and the spatial-temporal scale of mantle heterogeneity. In this paper, we have systematically reviewed remarkable progresses in the following issues: the origin of oceanic basalts and the recycling of crustal materials, the petrology of mantle sources for oceanic basalts, the slab-mantle interaction and its bearing on the origin of oceanic basalts and continental mafic-ultramafic rocks, and granite petrogenesis and continental dynamics. We have also raised important questions in the study of chemical geodynamics, and presented our personal perspectives on future studies.%化学地球动力学是地球化学与地球动力学之间的交叉学科,是20世纪末期地幔地球化学研究的热点和前沿.随着人们对板片—地幔相互作用机制及其地球化学效应的认识,化学地球动力学研究已经从地幔不均一性本身拓展到具体俯冲板片对地幔成分的影响.这个拓展为我们认识地球内部的运作机制、俯冲带壳幔相互作用和地幔不均一性的尺度等重要科学问题做出了重大贡献.本文系统回顾了大洋玄武岩成因与地壳物质再循环、大洋玄武岩源区的岩石学性质、板块俯冲与大洋玄武岩成因、大陆镁铁质超镁铁质岩成因和板片—地幔相互作用以及花岗岩成因与大陆动力学等方面的突出进展,对化学地球动力

  20. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  1. A limited LCA of bio-adipic acid: Manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks

    NARCIS (Netherlands)

    Duuren, van J.B.J.H.; Brehmer, B.; Mars, A.E.; Eggink, G.; Martins Dos Santos, V.A.P.; Sanders, J.P.M.

    2011-01-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, tol

  2. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    Science.gov (United States)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources

  3. Elemental concentrations in Triticale straw, a potential bioenergy feedstock

    Science.gov (United States)

    Triticale (X Triticosecale Wittmack) is produced on more than three million ha world wide including 344,000 ha in the USA. Straw resulting from triticale production could provide feedstock for bioenergy production in many regions of the world, but high concentrations of certain elements, including s...

  4. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  5. A Landscape Vision for Sustainable Bioenergy Feedstock Production

    Science.gov (United States)

    Feedstock production for biofuel and other bioproducts is poised to rejuvenate rural economies, but may lead to long-term degradation of soil resources or other adverse and unintended environmental consequences if the practices are not developed in a sustainable manner. This presentation will examin...

  6. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  7. The impact of silicon feedstock on the PV module cost

    NARCIS (Netherlands)

    del Coso, G.; del Cañizo, C.; Sinke, W.C.

    2010-01-01

    The impact of the use of new (solar grade) silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality. Calculations based on data provided by European industry

  8. Lignocellulosic feedstock supply systems with intermodal and overseas transportation

    NARCIS (Netherlands)

    Hoefnagels, Ric; Searcy, E.; Kafferty, K.; Cornelissen, T.; Junginger, Martin; Jacobson, J.; Faaij, André

    2014-01-01

    With growing demand for internationally traded biomass, the logistic operations required to economically move biomass from the field or forest to end- users have become increasingly complex. To design cost effective and sustainable feedstock supply chains, it is important to understand the economics

  9. The impact of silicon feedstock on the PV module cost

    NARCIS (Netherlands)

    del Coso, G.; del Cañizo, C.; Sinke, W.C.

    2010-01-01

    The impact of the use of new (solar grade) silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality. Calculations based on data provided by European industry

  10. Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes

    Directory of Open Access Journals (Sweden)

    Virginia Cádiz

    2010-10-01

    Full Text Available Nowadays, the utilization of raw materials derived from renewable feedstock is in the spotlight of the chemical industry, as vegetable oils are one of the most important platform chemicals due to their universal availability, inherent biodegradability and low price. Taking into account that polyurethanes are one of the most important industrial products exhibiting versatile properties suitable for use in many fields, our research is focused on exploiting fatty acids in the preparation of biobased polyols and polyurethanes. This review is organized as a function of the nature of the final polyurethane systems; hence we describe the preparation of linear thermoplastic and crosslinked polyurethanes derived from oleic and undecylenic acids-based diols and polyols, respectively.

  11. a Novel Framework for Incorporating Sustainability Into Biomass Feedstock Design

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C.

    2012-12-01

    There is a strong society need to evaluate and understand the sustainability of biofuels, especially due to the significant increases in production mandated by many countries, including the United States. Biomass feedstock production is an important contributor to environmental, social and economic impacts from biofuels. We present a systems approach where the agricultural, urban, energy and environmental sectors are considered as components of a single system and environmental liabilities are used as recoverable resources for biomass feedstock production. A geospatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration was conducted for the major corn producing states in the US. The extent and availability of these resources was assessed and geospatial techniques used to identify promising opportunities to implement this approach. Utilizing different sources of marginal land (roadway buffers, contaminated land) could result in a 7-fold increase in land availability for feedstock production and provide ecosystem services such as water quality improvement and carbon sequestration. Spatial overlap between degraded water and marginal land resources was found to be as high as 98% and could maintain sustainable feedstock production on marginal lands through the supply of water and nutrients. Multi-objective optimization was used to quantify the tradeoffs between net revenue, improvements in water quality and carbon sequestration at the farm scale using this design. Results indicated that there is an initial opportunity where land that is marginally productive for row crops and of marginal value for conservation purposes could be used to grow bioenergy crops such that that water quality and carbon sequestration benefits are obtained.

  12. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Science.gov (United States)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  13. Fatty acid profile as a basis for screening feedstocks for biodiesel production

    Science.gov (United States)

    Fatty acid (FA) profile was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Coriandr...

  14. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Science.gov (United States)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  15. Feedstock and technology options for Bioethanol production in South Africa: Technoeconomic prefeasibility study

    CSIR Research Space (South Africa)

    Amigun, B

    2013-09-01

    Full Text Available profitable operation during times with high feedstock prices would be possible. A sensitivity analysis of the economic assumptions of the base-case model demonstrated that feedstock price is the most important determinant of production costs...

  16. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel

    Science.gov (United States)

    The increased interest in and use of biodiesel renders the availability of a sufficient supply of feedstock ever more urgent. While commodity vegetable oils such as soybean, rapeseed (canola), palm and sunflower may be seen as "classical" biodiesel feedstocks, additional feedstocks are needed to me...

  17. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production of...... for the production of non-native 3-hydroxypropionic acid (3HP).3HP can be chemically dehydrated into acrylic acid and thus can serve as a biosustainable building block for acrylate-based products (diapers, acrylic paints, acrylic polymers, etc.)...

  18. What Is This Substance? What Makes It Different? Mapping Progression in Students' Assumptions about Chemical Identity

    Science.gov (United States)

    Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente

    2014-01-01

    Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical…

  19. What Is This Substance? What Makes It Different? Mapping Progression in Students' Assumptions about Chemical Identity

    Science.gov (United States)

    Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente

    2014-01-01

    Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical…

  20. Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    LUO Yu; JIAO Yu-jie; ZHAO Xiao-rong; LI Gui-tong; ZHAO Li-xin; MENG Hai-bo

    2014-01-01

    Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73%and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537%more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.

  1. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    Science.gov (United States)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  2. Progress and perspectives on improving butanol tolerance

    Science.gov (United States)

    Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing m...

  3. Theory of chemical kinetics. Progress report, May 1, 1977--January 15, 1978. [Massachusetts Inst. of Tech. , Cambridge

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1978-01-01

    Recent work on Franck--Condon factors in studies of the dynamics of chemical reactions is related; emphasis was on simple chemical rearrangement reactions. Other work concerned collision-free unimolecular decomposition of large molecules at a given total energy, equations of motion for simple quantum systems that are strongly driven by an external field and are modulated stochastically by a coupling to a bath, and the efficiency of rate processes in irreversible chemical reactions. This report is descriptive in nature; results of the work have been published in appropriate journals, and an extensive publication list is included. (RWR)

  4. Multicrystalline silicon wafers prepared from upgraded metallurgical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Degoulange, J.; Trassy, C. [SIMAP UMR CNRS, INP Grenoble (France); Perichaud, I.; Martinuzzi, S. [TECSEN UMR CNRS-University Paul Cezanne-Aix, Marseille III (France)

    2008-10-15

    A solution to the problem of the shortage of silicon feedstock used to grow multicrystalline ingots can be the production of a feedstock obtained by the direct purification of upgraded metallurgical silicon by means of a plasma torch. It is found that the dopant concentrations in the material manufactured following this metallurgical route are in the 10{sup 17} cm{sup -3} range. Minority carrier diffusion lengths L{sub n} are close to 35 {mu}m in the raw wafers and increases up to 120 {mu}m after the wafers go through the standard processing steps needed to make solar cells: phosphorus diffusion, aluminium-silicon alloying and hydrogenation by deposition of a hydrogen-rich silicon nitride layer followed by an annealing. L{sub n} values are limited by the presence of residual metallic impurities, mainly slow diffusers like aluminium, and also by the high doping level. (author)

  5. Effects of feedstocks on the process integration of biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Foglia, Domenico; Wukovits, Walter; Friedl, Anton [Vienna University of Technology, Vienna (Austria); Ljunggren, Mattias; Zacchi, Guido [Lund University, P. O. Box 124, Lund (Sweden); Urbaniec, Krzysztof; Markowski, Mariusz [Warsaw University of Technology, Plock (Poland)

    2011-08-15

    Future production of hydrogen must be sustainable. To obtain it, renewable resources have to be employed for its production. Fermentation of biomasses could be a viable way. The process evaluated is a two-step fermentation to produce hydrogen from biomass. Process options with barley straws, PSP, and thick juice as feedstocks have been compared on the basis of process balances. Aspen Plus has been used to calculate mass and energy balances taking into account the integration of the process. Results show that the production of hydrogen as energy carrier is technically feasible with all the considered feedstocks and thanks to heat integration, second generation biomass (PSP and barley straws) are competitive with food crops (thick juice). (orig.)

  6. Kurdistan crude oils as feedstock for production of aromatics

    Directory of Open Access Journals (Sweden)

    Abdulsalam R. Karim

    2017-05-01

    Full Text Available Crude oils from various locations in Iraqi Kurdistan were fully evaluated, so that enables refiners to improve their operation by selecting the best crude oil that yields high naphtha content to be used as a catalytic reforming feedstock after determination of total sulfur content and then de sulfurizing them, then cyclizing or reforming these sweet naphtha cuts to produce aromatic fractions which can be split into benzene, toluene, and xylenes.

  7. LIGNOCELLULOSIC BIOMASS: A POTENTIAL FEEDSTOCK TO REPLACE PETROLEUM

    OpenAIRE

    Lucian A. Lucia

    2008-01-01

    Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass i...

  8. Processes for liquefying carbonaceous feedstocks and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  9. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  10. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  11. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare

    2008-01-01

    The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple...... per kilogram of desired product to illustrate in which processes the use of renewable resources lead to the most substantial reduction of CO2 emissions. The steps towards a renewable chemicals industry will most likely involve intimate integration of biocatalytic and conventional catalytic processes...... and educational tools are introduced to allow initial estimates of which chemical processes could be viable. Specifically, fossil and renewables value chains are used to indicate where renewable feedstocks can be optimally valorized. Additionally, C factors are introduced that specify the amount of CO2 produced...

  12. [Signal transduction in plant development: Chemical and biochemical approaches to receptor identification]. Progress report, [May 15, 1993--May 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Progress is reported on studies concerning NAD(P)H-2,6-DMBQ oxidoreductase of Striga asiatica aimed at elucidating basic biochemical parameters of Striga. Reported studies include characterization of the enzyme, development of Striga molecular genetics, and development of a redox model for germination control.

  13. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  15. 点击化学反应在聚氨酯材料中的研究进展%The Research Progress of Click Chemical in Polyurethane Material

    Institute of Scientific and Technical Information of China (English)

    李汾

    2016-01-01

    Main types of click chemistry were reviewed. The research progress of click chemical in polyure⁃thane material was emphatically introduced. The current limitation and future application development were ana⁃lyzed.%综述了点击化学反应的主要类型,重点介绍了点击化学在聚氨酯材料中的研究进展,分析了其目前的局限性和今后的应用发展。

  16. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-04-15

    From the viewpoint of waste-to-energy, waste cooking oil is one of the attractive and available recycled feedstocks, apart from agricultural residues. The generation of energy from waste cooking oil is considered as an effective technique for waste management, as well as a beneficial form of energy recovery. Two alternative systems and a conventional system of waste cooking oil collection and conversion are evaluated by the cost benefit analysis in order to find a suitable method for waste-to-energy conversion. The results show that the collection of waste cooking oil with waste lubricating oil (System II) a useful alternative to the management of waste cooking oil (B/C > 1). The total heat produced by the combustion of pyrolytic oil at maximum and minimum conversion rates is also determined. The separate collection of waste cooking oil, subjected to chemical pre-treatment prior to introduction in a pyrolysis reactor (System III), is considered an undesirable option (B/C < 1) due to the cost of the chemicals involved. Although the exclusion of chemical pre-treatment makes System III a desirable option, the total amount of heat of combustion generated is less. The increased electricity cost required for the process has no effect on the benefit-cost ratio of System II. However, System III, excluding chemical pre-treatment, becomes an unprofitable alternative when the electricity cost reaches 100% of the fixed capital cost at the minimum conversion rate. (author)

  17. Research progress of plant monitoring for indoor chemical pollution gases%室内化学污染气体的植物监测研究进展

    Institute of Scientific and Technical Information of China (English)

    鲁敏; 刘顺腾; 赵洁

    2013-01-01

    随着室内装修装饰的大量涌现,室内化学污染物超标现象日趋严重,现代人类已经继第一污染时期—煤烟型污染和第二污染时期—光化学烟雾污染后,进入以室内化学污染为标志的第三污染时期.利用植物监测室内化学污染气体已成为安全有效的监测、控制室内化学污染的重要途径.文章阐述了室内化学污染物的特点、危害及植物监测的作用;从外部数量性状、生理生化指标、综合指标三方面综述了植物对室内化学污染监测的相关研究进展,并对植物监测研究和应用前景做出展望.%With the proliferation of the interior decoration, the phenomenon of exceeding standard of the indoor chemical pollutants is becoming more and more serious, modern human has come into the third pollution period- "indoor chemical pollution" from the first pollution period- "soot pollution" and the second pollution period- "photochemical smoke pollution". Using plants to monitor indoor chemical pollution gases has become a safe and effective way to monitor and control indoor chemical pollution. The paper expounds the characteristics and harm of indoor chemical pollution and the role of plant monitoring, summarizes the research progress of plant monitoring for indoor chemical pollution from external quantitative traits, physiological and biochemical index and comprehensive index, and makes prospect of plant monitoring research and application.

  18. Physico-chemical properties and energy potential of wood wastes ...

    African Journals Online (AJOL)

    Physico-chemical properties and energy potential of wood wastes from ... Journal Home > Vol 36, No 2 (2017) > ... The results are indications that the wood wastes are suitable as feedstock for renewable energy generation with little or no ...

  19. Study of Recycled and Virgin Compounded Metal Injection Moulded Feedstock for Stainless Steel 630

    Science.gov (United States)

    Manonukul, Anchalee; Likityingwara, Warakij; Rungkiatnawin, Phataraporn; Muenya, Nattapol; Amoranan, Suttha; Kittinantapol, Witoo; Surapunt, Suphachai

    Fine rounded powders preferable for metal injection moulding (MIM) are expensive. This forces MIM makers to recycle green scraps, for example, the runner system and defected green parts. This is particularly necessary for injection moulded small parts where parts are only a small portion of the injection short size. There is very little published data, although recycling feedstock has been practise throughout the industry. This work aims at investigating the effects of recycled stainless steel 630 feedstock content on the density, mechanical properties, dimensional changes and microstructure. Five batches of compounded virgin and recycled feedstock were studies from 0% to 100% recycled feedstock with the increment of 25%. Homogenously compounded feedstock was injected using the same injection condition. Subsequently, green parts were debinded and sintered at 1325°C for 2 hours in argon atmosphere. The results suggest that the green density increases linearly with increasing percentage of recycled feedstock because the polymeric binder was broken down during previous process. However, the sintered density remains nominally constant. As a result, the mechanical properties and microstructure of sintered parts are independent of recycled feedstock content. However, the volumetric and linear shrinkage decreases linearly with the increase in percentage of recycled feedstock. The difference in shrinkage is vital to dimensional control during commercial production. For example, only 4.5% of recycled feedstock can be added to virgin feedstock if a tolerance of ±0.3 mm is required for a 25 mm MIM part.

  20. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    Full Text Available Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV reactivation and the development of nasopharyngeal carcinoma (NPC. N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA and sodium butyrate (SB in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical

  1. Chemical Species of Migrating Radionuclides at Commercial Shallow Land Burial Sites: Quarterly Progress Report - October-December, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, L. J.; RIckard, W. H.; Toste, A. P.

    1984-02-01

    The primary purpose of this project is to develop an understanding of chemical processes that significantly influence the migration of radionuclides at commercial low-level waste (LLW} burial sites. Chemical measurements of waste trench leachate and identification of chanical changes in leachate during migration will provide a basis for geochemical waste transport models. This project will produce for the U.S. Nuclear Regulatory C011mission (NRC) information to support guidance for implementation of 10 CFR 61, particularly in the developnent of criteria for low level waste disposal site selection, management, permanent closure and monitoring. This project will also produce information needed by the Canmonwealth of Kentucky as they finalize plans to stabilize. close and monitor the Maxey Flats site.

  2. Physico-chemical studies of radiation effects in cells. Progress report, November 15, 1980-February 14, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1983-01-01

    The primary interest is investigating and understanding the chemical mechanisms involved in radiation-induced cellular damage. Most recently the perturbating devices have been metals which increase, in various ways and modes, the radiation sensitivity of several cell types. While the chief cell type has been the bacterial spore, chosen because of its biological inertness and its hardiness, allowing it to survive the unphysiological conditions of the physical chemist and, thus, inquiry into the free radical mechanisms involved very soon after energy absorption, recently vegetative cells have been introduced. A number of metals have been used and practically all of them sensitize - but to varying degrees. Straight biological techniques such as the measurement of cell survival under various conditions in the different cells have been used, as well as parallel experiments in pulse radiolysis to attack the specific leads in a chemical fashion suggested by the biology.

  3. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, January 1--April 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-04-20

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The research is focused on the following areas: (1) Random mutagenesis of pNB esterase: improved activity and stability; (2) Directed evolution of subtilisin E to enhance thermostability; and (3) Methods for in vitro recombination.

  4. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, January 1--April 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-04-20

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The research is focused on the following areas: (1) Random mutagenesis of pNB esterase: improved activity and stability; (2) Directed evolution of subtilisin E to enhance thermostability; and (3) Methods for in vitro recombination.

  5. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model

    Science.gov (United States)

    Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan

    2017-01-01

    We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.

  6. Forest feedstocks : systems for recovery of residual biomass

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, J. [FP Innovations, Vancouver, BC (Canada). FERIC Div.

    2007-07-01

    Interest in forest feedstock is growing due to high energy costs, the need for energy self-sufficiency and climate change issues. The Mountain Pine Beetle (MPB) epidemic in British Columbia has also contributed to the growing interest in forest feedstock. This presentation discussed the potential for wood to be used for liquid fuels conversion, pellets and biorefineries. The extraction of energy from residue biomass was reviewed with reference to traditional sources such as hog fuel and black liquor, as well as new sources that consider the changing landscape. These include harvest residues, MPB-killed stands, burned stands, non-merchantable stands, and stumps. Early thinning and FireSmart treatments were outlined along with the value of purpose-grown energy plantations. The variety of available recovery methods and equipment was demonstrated, including whole-tree chippers; disc and drum chippers; grinders and shredders; overhead conveyor systems; blower attachments; and, wheel-mounted equipment. The performance of each method and equipment was reviewed along with challenges regarding the transportation of a low-value, low bulk-density material over long distances. Although residue bundlers have been developed, it was suggested that it may be more cost effective to convert the feedstock in the field using a mobile biorefinery, and then transport the denser fuel. It was shown that although a range of equipment is available, nothing has been designed specifically for full-tree residue. It was noted that coordination with conventional harvesting is desirable, but may not be possible in all cases. Lessons from studies have indicated that the distance from the mill is a major cost factor and that the debris should be prepared in advance to shipping. tabs., figs.

  7. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  8. Biofuel production from microalgae as feedstock: current status and potential.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  9. Energy supply chain optimization of hybrid feedstock processes: a review.

    Science.gov (United States)

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  10. Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology

    Science.gov (United States)

    Kostin, D. V.; Parkhomenko, A. V.; Amosov, A. P.; Samboruk, A. R.; Chemashkin, A. V.

    2016-11-01

    The article presents the results of the research and development of technology and formulation of the feedstock from domestic metal powders and polymers to fabricate complexshaped components from heavy alloy of VNZh 7-3 brand (90 wt. % tungsten - 7% nickel - 3% iron) by Metal Injection Molding (MIM technology). The metal part of the feedstock is composed of powders of tungsten, nickel and iron, and the polymer part is composed of polyformaldehyde with the addition of low-density polyethylene and beeswax. The modes of mixing the components and the influence of the composition of the feedstock on the melt flow rate and the homogeneity of the feedstock were investigated. The optimal formulation of the feedstock was determined. Microstructure, density and hardness of control samples fabricated by MIM technology from the developed feedstock, correspond to, and in some respects are superior to the samples of VNZh 7-3 alloy fabricated by technology of traditional powder metallurgy.

  11. Basic refractory and slag management for petcoke carbon feedstock in gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

    2014-04-22

    The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

  12. Characterization of Lignocellulosic Fruit Waste as an Alternative Feedstock for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Raymundo Sánchez Orozco

    2014-02-01

    Full Text Available To use a new potential lignocellulosic bioresource that has several attractive agroenergy features for ethanol production, the chemical characterization and compositional analysis of several fruit wastes were carried out. Orange bagasse and orange, banana, and mango peels were studied to determine their general biomass characteristics and to provide detailed analysis of their chemical structures. Semiquantitative analysis showed that the components for each fruit waste differed with respect to chemical composition. Fourier transform infrared spectrometry (FTIR of the residual biomass showed the presence of various functional groups – aldehydes or ketones (C=O, alkanes (C-C, and ethers (C-O-C. Even water molecules were detected, indicating the complex nature of the feedstocks. The concentrations of total sugars ranged between 0.487 g∙g−1 and 0.591 g∙g−1 of dry weight biomass. The thermal profiles (TG-DSC of the residual fruits occurred in at least three steps, which are associated with the main components (hemicellulose, cellulose, and lignin. The decomposition by thermal analysis was completed at around 600 °C and was influenced by the nature of the component ratio.

  13. From genome-wide arrays to tailor-made biomarker readout - Progress towards routine analysis of skin sensitizing chemicals with GARD.

    Science.gov (United States)

    Forreryd, Andy; Zeller, Kathrin S; Lindberg, Tim; Johansson, Henrik; Lindstedt, Malin

    2016-12-01

    Allergic contact dermatitis (ACD) initiated by chemical sensitizers is an important public health concern. To prevent ACD, it is important to identify chemical allergens to limit the use of such compounds in various products. EU legislations, as well as increased mechanistic knowledge of skin sensitization have promoted development of non-animal based approaches for hazard classification of chemicals. GARD is an in vitro testing strategy based on measurements of a genomic biomarker signature. However, current GARD protocols are optimized for identification of predictive biomarker signatures, and not suitable for standardized screening. This study describes improvements to GARD to progress from biomarker discovery into a reliable and cost-effective assay for routine testing. Gene expression measurements were transferred to NanoString nCounter platform, normalization strategy was adjusted to fit serial arrival of testing substances, and a novel strategy to correct batch variations was presented. When challenging GARD with 29 compounds, sensitivity, specificity and accuracy could be estimated to 94%, 83% and 90%, respectively. In conclusion, we present a GARD workflow with improved sample capacity, retained predictive performance, and in a format adapted to standardized screening. We propose that GARD is ready to be considered as part of an integrated testing strategy for skin sensitization.

  14. THE EFFECT OF VARIOS CHEMICALS AND TEMPERATURE IN CESTRUCTION OF THE EGGS OF ASCARIS LUMBRICOIDES: A PROGRESS REPORT

    Directory of Open Access Journals (Sweden)

    F.Arfaa

    1978-11-01

    Full Text Available Infestation of soil and night-soil with the eggs or larvae of soil-transmitted helminthes is very important factor in the transmission of these infections. The effect of various temperatures and different chemicals on the development of larva inside the eggs of Ascaris, which is the most resistant eggs or larvae of helminthes, or destruction of developed larvae inside the eggs has been evaluated by infecting white mice or by direct observations. In eggs with developed larva, temperature of 600C for one hour kills all larvae while in lower temperature, 40% or more larvae are still alive. In a temperature of 600C for 15 and 20 minutes no larvae is found in the liver of mice. Of levamisole, thiabendazole, mebendazole, sodium-nitrite and calcium superphophate, thiabendazole and mebendazole have higher effect in destruction of eggs. In eggs with undeveloped larva, it was shown that in a temperature of 600C for 15 minutes or more, development of larva does not take place, while in lower temperature development of larva in some eggs takes place. In a temperature of 700C for 10 minutes no development of larva has been observed. Evaluation of the effect of levamisole, thiabendazole, mebendazole, urea, iodine and potassium dichromate has shown that mebendazole with a concentration of 1/100,000 or more inhibit the development of larvae. Other chemicals have some effects on the development of larvae. Results of previous investigations have shown that although many chemicals are effective in the laboratory conditions, they are not very effective when used in the field. Therefore, more studies on this subject in the field are necessary, in order to find application of this control method.

  15. Progress in Nano-Electro-Optics VII Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems

    CERN Document Server

    Ohtsu, Motoichi

    2010-01-01

    This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  16. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  17. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    Science.gov (United States)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A.; MacLean, Heather L.

    2015-12-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr-1 to 240 000 t yr-1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached.

  18. SUSTAINABLE PRODUCTION OF MICROALGAE OIL FEEDSTOCK USING MUNICIPAL WASTEWATER AND CO2 FERTILIZATION

    Directory of Open Access Journals (Sweden)

    Gina Chaput

    2012-07-01

    Full Text Available The increasing scarcity of fossil fuels has forced industry to look for new cost effective, clean,and sustainable sources of energy. With recent advances in technology, biofuels have become a more viableoption. Microalgae are cost effective and efficient feedstock for the production of biodiesel. One of the algae advantages is the ability to grow it in a wastewater media. This provides essential nutrients without the addition of chemicals. When grown in a photobioreactor, the algae can be cultivated on non-arable land, preventing competition with food supply unlike other leading biodiesel feedstocks such as canola and soybean crop. The strain of algae used in this study was Chlorella sp. The primary goals of this project were to determine the viability of algae growth in a wastewater medium, test the effectiveness of an alternate nitrogen source, andexamine the effects of CO2 fertilization on algae growth and lipid content. Sodium bicarbonate was used to simulate CO2 fertilization. Results showed that: the use of a 50/50 wastewater/reverse osmosis (RO medium yielded 83% of the lipid productivity of a 100% RO medium while the 100% wastewater medium yielded 35% of the lipid productivity; urea as a substitute for KNO3 in 100% RO, 50/50, and 100% Wastewater medium increased lipid productivity by 1.4%, 52.3%, and 88.3%, respectively. The lipid productivity of urea 100% wastewater medium was increased by 68.9% when fertilized with sodium bicarbonate. The optimum trial, a urea 100% wastewater medium with daily additions of sodium bicarbonate, had a lipid productivity of 0.062 grams/liter of growth medium and a volumetric biomass yield of 0.15 grams per liter-day.

  19. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  20. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  1. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  2. Security of feedstocks supply for future bio-ethanol production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Silalertruksa, Thapat; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Prachauthit Road, Bangkok 10140 (Thailand)

    2010-11-15

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. (author)

  3. An Overview on the Progress of Chemical Constituents and Bioactivities of Plants in Urticaceae during 2000-2010

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; YANG Hong-xing; TENG Yong-zhen; YUAN Pei; TIAN Rui; LIAO Chun-bi

    2011-01-01

    Utticaceae includes about 1300 species in 47 genera which largely spread in wet tropical regions,and 341 species in 25 genera are in China.Some species are used in Chinese folk medicine.So far,studies on chemistry and pharmacology of Urticaceous plants are mainly focused on nettle of Urtica L.In this review,the chemical researches on 35 new compounds and related pharmacological effects of the plants in Urticaceae reported during2000-2010 are described.The 35 new compounds belong to the classes of lignan,secolignan,norlignan,flavonoid,alkaloid,sesquiterpenoid,triterpenoid,sterol,and sphingolipid.The main bioactivities include cytotoxic,antitumor,antimicrobial,antifungal,anti-BPH,anti-HIV,antidiabetic,hypolipidemic,5α-reductase inhibitory,hair regrowth promotion,and anti-oxidative activities.

  4. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  5. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  6. Submicrometer fiber-optic chemical sensors: Measuring pH inside single cells. Progress report, October 1990--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kopelman, R.

    1993-12-01

    Starting from scratch, we went in two and a half years to 0.04 micron optical microscopy resolution. We have demonstrated the application of near-field scanning optical microscopy to DNA samples and opened the new fields of near-field scanning spectroscopy and submicron opto- chemical sensors. All of these developments have been important steps towards in-situ DNA imaging and characterization on the nanoscale. Our first goal was to make NSOM (near-field scanning optical microscopy) a working enterprise, capable of ``zooming-in`` towards a sample and imaging with a resolution exceeding that of traditional microscopy by a factor of ten. This has been achieved. Not only do we have a resolution of about 40 nm but we can image a 1 {times} 1 micron object in less than 10 seconds. Furthermore, the NSOM is a practical instrument. The tips survive for days or weeks of scanning and new methods of force feedback will soon protect the most fragile samples. Reproducible images of metal gratings, gold particles, dye balls (for calibration) and of several DNA samples have been made, proving the practicality of our approach. We also give highly resolved Force/NSOM images of human blood cells. Our second goal has been to form molecular optics (e.g., exciton donor) tips with a resolution of 2--10 nm for molecular excitation microscopy (MEM). We have produced such tips, and scanned with them, but only with a resolution comparable to that of our standard NSOM tips. However, we have demonstrated their potential for high resolution imaging capabilities: (1) An energy transfer (tip to sample) based feedback capability. (2) A Kasha (external heavy atom) effect based feedback. In addition, a novel and practical opto-chemical sensor that is a billion times smaller than the best ones available has been developed as well. Finally, we have also performed spatially resolved fluorescence spectroscopy.

  7. Isobutyrate biosynthesis via methanol chain elongation: converting organic wastes to platform chemicals

    NARCIS (Netherlands)

    Chen, W.S.; Huang, Shengle; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    BACKGROUND
    Isobutyrate is a platform chemical that is currently produced from a non-renewable fossil-based feedstock. This study aimed at developing a renewable isobutyrate production process by using methanol chain elongation, a novel bioprocess that uses organic waste as primary feedstocks and

  8. Isobutyrate biosynthesis via methanol chain elongation: converting organic wastes to platform chemicals

    NARCIS (Netherlands)

    Chen, W.S.; Huang, Shengle; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2017-01-01

    BACKGROUND
    Isobutyrate is a platform chemical that is currently produced from a non-renewable fossil-based feedstock. This study aimed at developing a renewable isobutyrate production process by using methanol chain elongation, a novel bioprocess that uses organic waste as primary feedstocks and

  9. Sensitization and quenching in the conversion of light energy into chemical energy. Progress report, February 1, 1980-January 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, S.J.

    1980-09-01

    Extensive data from Stern-Volmer, Lamola-Hammond, and Ilenda-Daughenbaugh-Cristol quenching kinetics have now been accumulated on photosolvolysis in t-butyl alcohol for benzyl chloride and a number of meta and para substituted benzyl chlorides. Evidence for the existence of two triplet states, one relatively short-lived (tau 0-2 nsec) which gives solvolysis product and a second, relatively long-lived (tau 5-26 nsec), which does not give product, but instead is energy wasting, has been accumulated. The system, p-acetobenzyl chloride, has been investigated in detail. A method for quenching of singlet states for measurement of singlet lifetimes in the 100 picosecond to nanosecond range is being developed. Preliminary work on benzyl acetate photosolvolysis has been conducted. Some work on the goemetrical requirements for intra-molecular excitation transfer in bichromophoric molecules has been conducted. Several dienes related to norbornadiene have been prepared and preparative photoisomerizations to quadricyclene analogues have been carried out. Considerable attention has been given to certain di-..pi..-methane rearrangements, work on most of which is still in progress. One system, the ethyl ester of dibenzobarrelene-7-carboxylic acid, has been scrutinized in detail.

  10. Climatic impacts of managed landscapes for sustainable biofuel feedstocks production.

    Science.gov (United States)

    Gelfand, I.; Kravchenko, A. N.; Hamilton, S. K.; Jackson, R. D.; Thelen, K.; Robertson, G. P.

    2016-12-01

    Sustainable production of biofuels cannot be achieved without multiple-use landscapes where food, feed, and fuel can be co-produced without environmental harm. Here we use field level measurements in seven biofuel feedstock production systems grown under similar climatic conditions, but on different soils in two Midwestern (USA) states to understand their relative climatic impacts. We studied annual corn stover, and 6 perennial ecosystems including three polycultures: successional vegetation, restored prairie and a 3-species grass mix; and 3 monocultures: poplar, switchgrass, and miscanthus. All studied ecosystems were grown in replicated plots on moderately fertile soils of SW Michigan and highly fertile soils of central Wisconsin. We measured components of greenhouse gas (GHG) balances over 6 years. On the fertile soil perennial monocultures had GHG emission reductions potentials of 53% relative to fossil fuels, while polycultures had 64% reduction; corn stover had an 84% emissions reduction. Net sequestration ranged from 0.6 MgCO2e ha-1yr-1 (successional vegetation) to 3.1 MgCO2e ha-1yr-1, (corn stover). Among feedstocks produced on less fertile soils, perennial monocultures had GHG emissions reduction of 80%, and polycultures had emission reduction of 54%; miscanthus and poplar exhibited the largest sequestration potentials of 5.9 and 3.9 MgCO2e ha-1yr-1 respectively, while polycultures sequestered less then 1.0 MgCO2e ha-1yr-1 on average and corn stover was intermediate with 1.4 MgCO2e ha-1yr-1. All studied systems averaged energy production of 30 GJ ha-1 yr-1, except miscanthus (71 GJ ha-1 yr-1) and successional vegetation (20 GJ ha-1 yr-1). Our results inform the design of multiple-use landscapes: more fertile soils could produce food and feed with residuals collected for bioethanol production and more marginal soils could be used for various poly- or mono-cultures of purpose grown biofuel feedstocks but with differential climate benefits.

  11. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  12. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro H.; Hernandez, Rafael; French, W. Todd; Estévez, L. Antonio; Meckes, Mark; Trillo, Marlene; Hall, Jacqueline

    2010-11-09

    The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletion was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.

  13. Research progress of chemical conversion coatings on magnesium alloys%镁合金表面化学转化膜研究进展

    Institute of Scientific and Technical Information of China (English)

    金和喜; 王日初; 彭超群; 冯艳; 石凯; 陈彬

    2011-01-01

    总结镁合金表面化学转化膜的研究现状,介绍铬酸盐转化膜、锡酸盐转化膜、磷酸盐/高锰酸盐转化膜、稀土转化膜、植酸转化膜和钼酸转化膜的处理工艺,讨论磷酸盐/高锰酸盐转化膜的成膜机理,分析各种化学转化膜的优缺点,展望今后镁合金表面化学转化膜的发展方向.%The research progress of the chemical conversion coatings on magnesium alloys was summarized and the treatment technologies of chromate films, stannate films, phosphate/permanganate films, rare-earth films and phytate films were reviewed. The formation mechanisms of the phosphate/permanganate conversion films were discussed. The merits and demerits of the various coatings were analyzed. And the developmental trends of the chemical conversion coatings on magnesium alloys were proposed.

  14. Progress of the Anti-tumor Effect on Chemical Constituents of Pinellia Ternate%半夏化学成分抗肿瘤研究进展

    Institute of Scientific and Technical Information of China (English)

    武峰; 秦志丰; 李勇进; 陈天池; 裴蓓; 魏品康

    2013-01-01

    Objective: To introduce the progress of research on chemical constituents and anti — tumor effect of Pinellia ternate. Methods: To consult the literature at home and abroad for recent twenty years, then analyze and review these informations. Results: The extract from Pinellia temat, the protein of Pinellia ternata, the alkaloids of Pinellia ternate, the sitoster of Pinellia ternate and the Pinellia ternate polysaccharide all have anti - tumor effect. Conclusion: The chemical constituents of Pinellia ternate have anti - tumor effect, it provides a method to research the anti - tumor mechanism of Pinellia ternate.%目的:介绍中药半夏的化学成分抗肿瘤作用研究概况.方法:查阅国内外20年来相关文献资料并进行分析和综述.结果:半夏提取物以及半夏化学成分中的半夏蛋白、半夏总生物碱、谷甾醇、半夏多糖等都具有抗肿瘤的作用.结论:半夏化学成分具有一定的抗肿瘤作用,为研究中药半夏抗肿瘤的作用机理提供方法和途径.

  15. Marine macroalgae: an untapped resource for producing fuels and chemicals.

    Science.gov (United States)

    Wei, Na; Quarterman, Josh; Jin, Yong-Su

    2013-02-01

    As world energy demand continues to rise and fossil fuel resources are depleted, marine macroalgae (i.e., seaweed) is receiving increasing attention as an attractive renewable source for producing fuels and chemicals. Marine plant biomass has many advantages over terrestrial plant biomass as a feedstock. Recent breakthroughs in converting diverse carbohydrates from seaweed biomass into liquid biofuels (e.g., bioethanol) through metabolic engineering have demonstrated potential for seaweed biomass as a promising, although relatively unexplored, source for biofuels. This review focuses on up-to-date progress in fermentation of sugars from seaweed biomass using either natural or engineered microbial cells, and also provides a comprehensive overview of seaweed properties, cultivation and harvesting methods, and major steps in the bioconversion of seaweed biomass to biofuels.

  16. Coffee oil as a potential feedstock for biodiesel production.

    Science.gov (United States)

    Oliveira, Leandro S; Franca, Adriana S; Camargos, Rodrigo R S; Ferraz, Vany P

    2008-05-01

    A preliminary evaluation of the feasibility of producing biodiesel using oil extracted from defective coffee beans was conducted as an alternative means of utilizing these beans instead of roasting for consumption of beverage with depreciated quality. Direct transesterifications of triglycerides from refined soybean oil (reference) and from oils extracted from healthy and defective coffee beans were performed. Type of alcohol employed and time were the reaction parameters studied. Sodium methoxide was used as alkaline catalyst. There was optimal phase separation after reactions using both soybean and healthy coffee beans oils when methanol was used. This was not observed when using the oil from defective beans which required further processing to obtain purified alkyl esters. Nevertheless, coffee oil was demonstrated to be a potential feedstock for biodiesel production, both from healthy and defective beans, since the corresponding oils were successfully converted to fatty acid methyl and ethyl esters.

  17. Study on the Adaptability of Etheriifcation Feedstock to Reactor Type

    Institute of Scientific and Technical Information of China (English)

    Mao Junyi; Yuan Qing; Wang Lei; Huang Tao

    2016-01-01

    A reactive C5 oleifns and methanol etheriifcation kinetic model based on E-R mechanism was established and three different types of reactors including the adiabatic ifxed-bed liquid reactor, the external loop reactor and the mixed-phase reactor were constructed by Aspen Plus. The adaptability of reactive C5 oleifns to these reactors was studied and simulated using various gasoline fractions with different oleifns content. After the theoretical model was validated by the experimental data of the etheriifcation of three C5 light cut fractions from different gasoline sources in different reactors, the simulated isoamylene conversion with reactive C5 olefin contents increasing from 10% to 60% was studied in the three different types of reactors for etheriifcation with methanol, respectively. Test results show that there is an obvious adaptability of the feedstock composition to the reactor type to achieve a high conversion.

  18. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse. In this PhD thesis, lign

  19. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, due...

  20. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  1. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  2. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  3. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    Science.gov (United States)

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  4. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  5. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    Science.gov (United States)

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  6. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, July 1992--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1993-09-01

    Progress in identification of chromosomal transformations associated with leukemogenesis is described. In particular progress in DNA cloning of chromosomal break points in human cancer patients is described.

  7. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  8. Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan

    2017-08-01

    Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.

  9. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  10. Research Progress in Chemical Modification Methods of Polysaccharide%多糖化学修饰方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    方金红

    2014-01-01

    多糖是一类重要的生物大分子物质,具有抗肿瘤、抗病毒、抗氧化、免疫活性调节等生物活性。多糖的生物活性与其结构有直接关系,对多糖结构通过适当的方法进行修饰能提高或赋予多糖活性、降低某些多糖的毒副作用,修饰的方法包括化学法、物理法和生物法。该文综述了多糖化学修饰的方法、结构分析与鉴定技术及其研究进展,以期为多糖类药物的进一步研究提供依据。%Polysaccharide is an important class of biological macromolecules. It has a variety of biological activity, such as antitumor, an-tivirus, anti-oxidation, immune activity regulation. The biological activity of polysaccharide has a direct relationship with its struc-ture. Thus the structural modification of polysaccharide by an appropriate method can increase its biological activity and decrease some side effects, which including the chemical, physical and biological methods. The chemical modification method, structural analysis, identifi-cation technique and their research progress of polysaccharide modification are outlined so as to provide the basis for the further study on the polysaccharide drugs.

  11. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  12. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2009-01-15

    In recent years, the acceptance of fatty acid methyl esters (biodiesel) as a substitute to petroleum diesel has rapidly grown in Greece. The raw materials for biodiesel production in this country mainly include traditional seed oils (cotton seed oil, sunflower oil, soybean oil and rapeseed oil) and used frying oils. In the search for new low-cost alternative feedstocks for biodiesel production, this study emphasizes the evaluation of pumpkin seed oil. The experimental results showed that the oil content of pumpkin seeds was remarkably high (45%). The fatty acid profile of the oil showed that is composed primarily of linoleic, oleic, palmitic and stearic acids. The oil was chemically converted via an alkaline transesterification reaction with methanol to methyl esters, with a yield nearly 97.5 wt%. All of the measured properties of the produced biodiesel met the current quality requirements according to EN 14214. Although this study showed that pumpkin oil could be a promising feedstock for biodiesel production within the EU, it is rather difficult for this production to be achieved on a large scale. (author)

  13. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production.

    Science.gov (United States)

    Qin, Lei; Wang, Zhongming; Sun, Yongming; Shu, Qing; Feng, Pingzhong; Zhu, Liandong; Xu, Jin; Yuan, Zhenhong

    2016-05-01

    The potential of microalgae consortia used in dairy wastewater treatment combined with microalgae biodiesel feedstock production was evaluated by comparing the nutrient removal of dairy wastewater, the growth of cells, and the lipid content and composition of biomass between monoalgae and microalgae consortia cultivation system. Our results showed that higher chemical oxygen demand (COD) removal (maximum, 57.01-62.86 %) and total phosphorus (TP) removal (maximum, 91.16-95.96 %) were achieved in almost microalgae consortia cultivation system than those in Chlorella sp. monoalgae cultivation system (maximum, 44.76 and 86.74 %, respectively). In addition, microalgae consortia cultivation except the mixture of Chlorella sp. and Scenedesmus spp. reached higher biomass concentration (5.11-5.41 g L(-1)), biomass productivity (730.4-773.2 mg L(-1) day(-1)), and lipid productivity (143.7-150.6 mg L(-1) day(-1)) than those of monoalgae cultivation (4.72 g L(-1), 674.3, and 142.2 mg L(-1) day(-1), respectively) on the seventh day. Furthermore, the fatty acid methyl ester (FAME) profiles indicated the lipids produced from microalgae consortia cultivation system were more suitable for biodiesel production. The microalgae consortia display superiority in dairy wastewater treatment and the getting feedstock for biodiesel production.

  14. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    L. D. Zhu

    2016-01-01

    Full Text Available In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  15. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock.

    Science.gov (United States)

    Zhu, L D; Li, Z H; Hiltunen, E

    2016-01-01

    In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  16. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    Science.gov (United States)

    Li, Z. H.; Hiltunen, E.

    2016-01-01

    In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production. PMID:27725942

  17. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.

  18. X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process

    Science.gov (United States)

    Bernardis, Sarah; Fakra, Sirine C.; Dal Martello, Elena; Larsen, Rune B.; Newman, Bonna K.; Fenning, David P.; Di Sabatino, Marisa; Buonassisi, Tonio

    2016-12-01

    Elemental silicon is extracted through carbothermic reduction from silicon-bearing raw feedstock materials such as quartz and quartzites. We investigate the micron-scale distribution and valence state of iron, a deleterious impurity in several iron-sensitive applications, in hydrothermal quartz samples of industrial relevance during a laboratory-scale simulated reduction process. We use X-ray diffraction to inspect the quartz structural change and synchrotron-based microprobe techniques to monitor spatial distribution and oxidation state of iron. In the untreated quartz, most of the iron is embedded in foreign minerals, both as ferric (Fe3+, e.g., in muscovite) and ferrous (Fe2+, e.g., as in biotite) iron. Upon heating the quartz to 1273 K (1000 °C) under industrial-like conditions in a CO(g) environment, iron is found in ferrous (Fe2+) particles. At this temperature, its chemical state is influenced by mineral decomposition and melting processes, whereas at higher temperatures it is influenced by the silicate melts. As the quartz grains partially transform to cristobalite 1873 K (1600 °C), iron diffuses towards liquid-solid interfaces forming ferrous clusters. Silica is liquid at 2173 K (1900 °C) and the iron migrates towards the interfaces between gas phases and the silicate liquid.

  19. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  20. 卡拉胶的生物活性及分子修饰研究进展%Research Progress on Biological Activity and Chemical Modification of Carrageenan

    Institute of Scientific and Technical Information of China (English)

    田秀芳; 李平

    2012-01-01

    Carrageenan,as a family of sulfated polysaccharides with unique structure,had many kinds of biological activity.However,its application in biomedicine field was limited because of large molecular weight.Research on the biological activity of carrageenan in antivirus,antitumor and anticoagulant were synopsis introduced,emphasizing to introduce the research progress on the chemical modification and derivatives of carrageenan.%卡拉胶作为一种结构独特的硫酸多糖,具有多种生物活性,但因分子量过大,使其在生物医药领域的应用受到限制。文章简要介绍了近年来有关卡拉胶抗病毒、抗肿瘤、抗凝血等生物活性的研究,进一步介绍了卡拉胶分子修饰及其衍生物生物活性的研究进展。

  1. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  2. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  3. Two Types of Novel Feedstock Injection Structures of the FCC Riser Reactor

    Institute of Scientific and Technical Information of China (English)

    范怡平; 蔡飞鹏; 时铭显; 徐春明

    2004-01-01

    Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone under the three different structures (the traditional and the novel No. 1, No. 2 structures): the local density, the particle backmixng ratio, and the jet eigen-concentration, the flow feature under three structures were obtained. The experimental results demonstrate that the flow features under both proposed structures are obviously improved comparing with those under the traditional structure. Especially, the performance of the deflector-structured No. 2 is more desirable than that of No. 1.

  4. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  5. Rheological assessment of titanium MIM feedstocks [Conference paper

    CSIR Research Space (South Africa)

    Benson, JM

    2010-10-01

    Full Text Available � ������������������������������������������������������������������������������ � Page 348� � 2. Experimental Procedure A binder system, based on EVA and a wax, was used to prepare feedstock with varying powder loadings. In all three cases the total mass of the binder components were kept constant, while only the mass... ivit ric s In nfe ic �� IC eri e cu ess ap e se e ent y r mo fr ill ed e me ati an ibe n t u t ies an iti ren hte ��� A J al xc rre th art tot re tal ial e-m uld om in bi mo nt ve d m s t he...

  6. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Practical Considerations of Moisture in Baled Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  8. Design, modeling, and analysis of a feedstock logistics system.

    Science.gov (United States)

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Crop residues as soil amendments and feedstock for bioethanol production.

    Science.gov (United States)

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  10. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Garold Linn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, Kevin Louis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  11. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [ORNL; Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be

  12. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives.

    Science.gov (United States)

    Cao, Yujin; Zhang, Rubing; Cheng, Tao; Guo, Jing; Xian, Mo; Liu, Huizhou

    2017-01-01

    As the most abundant biomass in nature, cellulose is considered to be an excellent feedstock to produce renewable fuels and fine chemicals. Due to its hydrogen-bonded supramolecular structure, cellulose is hardly soluble in water and most conventional organic solvents, limiting its further applications. The emergence of ionic liquids (ILs) provides an environmentally friendly, biodegradable solvent system to dissolve cellulose. This review summarizes recent advances concerning imidazolium-based ILs for cellulose pretreatment. The structure of cations and anions which has an influence on the solubility is emphasized. Methods to assist cellulose pretreatment with ILs are discussed. The state of art of the recovery, regeneration, and reuse aspects of ILs is also presented in this work. The current challenges and development directions of cellulose dissolution in ILs are put forward. Although further studies are still much required, commercialization of IL-based processes has made great progress in recent years.

  13. Biologically produced succinic acid: A new route to chemical intermediates

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The national laboratory consortium has undertaken a joint R&D project with the Michigan Biotechnology Institute to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources.

  14. Microbial production host selection for converting second-generation feedstocks into bioproducts

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of si

  15. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    Science.gov (United States)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  16. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  18. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  19. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  20. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  1. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  2. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  3. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  4. A chemical thermodynamics data program for SO/sub x/-NO/sub x/ removal systems: (Progress report), 1 September 1983-30 March 1986

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, D.

    1986-05-20

    This progress report summarizes the activities at the National Bureau of Standards to provide a data base of quantitative chemical thermodynamic information for use in SO/sub x/-NO/sub x/ systems. (a) A preliminary survey was made of reports on SO/sub x/-NO/sub x/ processes to identify the chemistry in them and the operating conditions. One hundred fifteen substances were identified, one third of which were not SO/sub x/, NO/sub x/ or sulfur-nitrogen compounds. (b) A data base was assembled on measurements of the thermochemistry of compounds in, or closely related to, the SO/sub x/ system. Included are sulfur species, sulfur-oxygen, sulfur-hydrogen, sulfur-oxygen-hydrogen compounds, plus a few sulfur-halogen compounds that may be of interest, either in practice or for the evaluation of other data. Some 650 measurements were identified and the data in 600 of them analyzed. (c) The thermodynamic properties of aqueous solutions of SO/sub 2/ were evaluated. (d) A data base of activity coefficients in aqueous solutions. (e) A study was started of the availability of thermodynamic data needed to describe practical SO/sub x/-NO/sub x/ systems, with a view to identifying needed measurements. (f) The evaluation of measurements pertinent to the SO/sub x/ data base was completed. (g) The analysis of the SO/sub 2/-H/sub 2/O system was completed. (h) The activity coefficent data system was completed and tested. (i) A database of thermochemical measurements on the NOx system.

  5. Production of advanced fuels and of chemicals by yeasts on the basis of second generation feedstocks

    NARCIS (Netherlands)

    Bont, de J.A.M.; Raab, A.; Schilling, M.; Tamame González, M.M.; los Ángeles Santos García, De M.; Martins Dos Santos, V.A.P.; Arjona Antolín, R.; Gutiérrez Gómez, P.

    2014-01-01

    The present invention relates to modified eukaryotic microbial cells that have been engineered for producing fermentation products such as fatty acids, 1-alcohols, [beta]- keto-acids and -alcohols, [beta]-hydroxyacids, 1,3-diols, trans-[Delta]2-fatty acids, alkenes, alkanes and derivatives thereof,

  6. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical

  7. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical resources

  8. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization.

    Science.gov (United States)

    Alonso, David Martin; Hakim, Sikander H; Zhou, Shengfei; Won, Wangyun; Hosseinaei, Omid; Tao, Jingming; Garcia-Negron, Valerie; Motagamwala, Ali Hussain; Mellmer, Max A; Huang, Kefeng; Houtman, Carl J; Labbé, Nicole; Harper, David P; Maravelias, Christos; Runge, Troy; Dumesic, James A

    2017-05-01

    The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

  9. Evaluation of shredder residue as cement manufacturing feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, Bob [California Environmental Protection Agency, Department of Toxic Substances Control, Office of Pollution Prevention and Technology Development, 1001 I Street, P.O. Box 806, Sacramento, CA 95812 (United States)

    2007-09-15

    Metal recycling from automobiles, appliances and scrap steel occurs at over 200 dedicated metal shredding operations in the US. Shredder residue (SR) consists of glass, rubber, plastics, fibers, dirt, and fines that remain after ferrous and non-ferrous metals have been removed. Over 3 million tonnes of SR generated in the US each year are landfilled. The results of a previous end-of-life impact assessment showed that use of SR as a fuel supplement for cement manufacturing was environmentally beneficial to the current practice of landfilling and appears better in comparison to the other management methods studied. However, because many reuse and recycling options may not be cost effective, there is a need for further study. Simplistic methods to separate SR into energy and mineral rich streams may facilitate the use of a sizable fraction of SR. Due to the large scale of the cement industry in the US, a significant amount of SR is recoverable. The goal of this study was to identify the feedstock quality parameters needed to satisfy kiln operators and then to assess the mechanical means necessary to process SR into material acceptable as coal and mineral substitutes. Field tests were conducted to separate and beneficiate the coarse SR waste stream. Density separation techniques commonly used by shredders in the past were tested to separate rubber and plastics from non-combustibles and contaminants (e.g., PVC and copper wire). A fraction constituting about 30 wt% of the total SR had fuel characteristics mirroring those of coal. However, remaining levels of potentially problematic constituents (e.g., total chlorine and heavy metals) may limit use to a low relative addition rate at some kilns. An economic review of a full-scale separation system showed that processing SR appears to be economically marginal considering avoided landfilling costs alone. However, significant economic benefits would result from additional non-ferrous metals recovery (namely copper). The

  10. Designing biochar properties through pre-pyrolysis feedstock metal blending

    Science.gov (United States)

    Anca-Couce, Andrés; Dieguez-Alonso, Alba; Moreno, Eduardo; Fristak, Vladimir; Soja, Gerhard; Husson, Olivier; Conte, Pellegrino; Kienzl, Norbert; Hagemann, Nikolas; Bucheli, Thomas; Hilber, Isabel; Schmidt, Hans-Peter

    2017-04-01

    Metal enhanced biochars have been produced by pyrolysis of wood chips previously blended with different metal-containing compounds: Cu(OH)2, Mg(OH)2, MgCl2, FeSO4, KCl and AlCl3; under an inert gas at 400 and 700°C. The obtained metal-enriched biochars have an organic and inorganic fraction, each accounting approximately to 50% of the mass, and they have been characterized in detail and compared to control samples produced without previous metal blending. The characterization at different European laboratories includes elemental analysis, surface area, pore size distribution, thermo-gravimetric analysis (TGA), sorption isotherms with P and As, pH, Eh, nuclear magnetic resonance (NMR), and zeta potential. It is shown that the presence of metals during pyrolysis affects to a great extent the structure and functionality of the obtained chars. The biochars have a high concentration (>15% in mass for almost all cases) of elemental metals introduced before pyrolysis. These metals strongly affect the development of char internal surface area and pore structure. The total surface area and pore volume increase while porosity decreases, and the pore size distribution and pore network are significantly modified. At high temperatures (700°C), some metals enhance char graphitization and its thermal stability. Mg(OH)2 produces the highest impact on physical structure. Furthermore, the blending with Mg, Al and Fe increased the sorption capacities for anionic forms of As and P by more than 800% compared to control biochar. Depending on the blended metal species and pyrolysis temperature, the pH of the biochar blends varied between 2.7 (Fe) and 10.8 (Cu) while Eh varied between 228 mV (Mg(OH)2 at 400°C) and 504 mV (MgCl2 at 700°C). The promising results obtained with pre-pyrolysis feedstock metal blending open the possibility towards designing biochars for special functions and purposes.

  11. Research progress on fuel and chemicals production from lignocellulose biomass%木质纤维素类生物质制取燃料及化学品的研究进展

    Institute of Scientific and Technical Information of China (English)

    余强; 庄新姝; 袁振宏; 亓伟; 王琼; 谭雪松; 许敬亮; 张宇; 徐慧娟; 马隆龙

    2012-01-01

    Lignocellulosic biomass,which is rich in cellulose and hemicellulose,can be refined into fuels and other value-added-chemicals.It will enhance and extend the world energy and chemical base without adding additional carbon to the environment.The composition of lignocellulosic biomass feedstock was reviewed,and some typical pretreatment technologies including dilute acid,liquid hot water,steam explosion,carbon dioxide explosion,ammonia fiber explosion,alkaline,organosolv process and biological methods,were compared.Moreover,the production of cellulosic ethanol,n-butanol and biodiesel by fermentation of biomass hydrolyzate was especially discussed.It is necessary to develop efficient and environmental pretreatment technologies for the industrialization of fuel and chemicals production from lignocellulose biomass.In addition,reconstructing inhibitor tolerant strains and applying continuous fermentation or fed-batch fermentation process can reduce the manufacturing cost and enhance the fermentation efficiency.%木质纤维素类生物质含有丰富的纤维素和半纤维素多糖,通过微生物发酵将它们转化为能源及高附加值的化学品,对于缓解全球能源危机带来的压力和解决环境污染问题具有重要意义。介绍了木质纤维素类生物质的结构特征;评述了预处理方法,包括稀酸、高温液态水蒸气爆破、CO2爆破、氨爆、碱法、有机溶剂法、生物处理法;重点介绍由生物质生产乙醇、丁醇及生物柴油的研究现状。指出开发高效环保的预处理方法、构建耐毒高产菌株和应用连续发酵或补料批式发酵方式等是加快木质纤维素类生物质发酵利用工业化进程的关键所在。

  12. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  13. The top 50 commodity chemicals: Impact of catalytic process limitations on energy, environment, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Tonkovich, A.L.Y.; Gerber, M.A.

    1995-08-01

    The production processes for the top 50 U.S. commodity chemicals waste energy, generate unwanted byproducts, and require more than a stoichiometric amount of feedstocks. Pacific Northwest Laboratory has quantified this impact on energy, environment, and economics for the catalytically produced commodity chemicals. An excess of 0.83 quads of energy per year in combined process and feedstock energy is required. The major component, approximately 54%, results from low per-pass yields and the subsequent separation and recycle of unreacted feedstocks. Furthermore, the production processes, either directly or through downstream waste treatment steps, release more than 20 billion pounds of carbon dioxide per year to the environment. The cost of the wasted feedstock exceeds 2 billion dollars per year. Process limitations resulting from unselective catalysis and unfavorable reaction thermodynamic constraints are the major contributors to this waste. Advanced process concepts that address these problems in an integrated manner are needed to improve process efficiency, which would reduce energy and raw material consumption, and the generation of unwanted byproducts. Many commodity chemicals are used to produce large volume polymer products. Of the energy and feedstock wasted during the production of the commodity chemicals, nearly one-third and one-half, respectively, represents chemicals used as polymer precursors. Approximately 38% of the carbon dioxide emissions are generated producing polymer feedstocks.

  14. Value-added Chemicals from Biomass by Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Voss, Bodil

    In the contemporary debate on resource utilisation, biomass has been discussed as an alternative carbon source to fossil reserves in order to reduce the emission of CO2 to the atmosphere. The replacement or supplement of oil based transportation fuels through biomass based conversions has already...... been implemented. The subject on chemical production has received less attention. This thesis describes and evaluates the quest for an alternative conversion route, based on a biomass feedstock and employing a heterogeneous catalyst capable of converting the feedstock, to a value-added chemical...... obtained for such a process and the hypothesis that process feasibility in comparison with the conventional synthesis gas based technologies may further be attainable, taking advantage of the conservation of chemical C-C bonds in biomass based feedstocks. With ethanol as one example of a biomass based...

  15. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.

    Directory of Open Access Journals (Sweden)

    Xiapu Gai

    Full Text Available Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4(+-N and nitrate N (NO3(--N. Twelve biochars were produced from wheat-straw (W-BC, corn-straw (C-BC and peanut-shell (P-BC at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4(+-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4(+-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4(+-N was the highest because it had the largest cation exchange capacity (CEC among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg(-1 adsorbed 2.3 mg NH4(+-N g(-1 in solutions with 50 mg NH4(+ L(-1. Compared with NH4(+-N, none of NO3(--N was adsorbed to biochars at different NO3(- concentrations. Instead, some NO3(--N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4(+-N (or NH3 pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3(--N pollution.

  16. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Hailan; Markillie, Lye Meng; Culley, David E.; Mackie, Roderick I.; Hess, Matthias

    2013-03-28

    Metatranscriptomics—gene express profiling via DNA sequencing—is a powerful tool to identify genes that are ac- tively expressed and might contribute to the phenotype of individual organisms or the phenome (the sum of several phenotypes) of a microbial community. Furthermore, metatranscriptome studies can result in extensive catalogues of genes that encode for enzymes of industrial relevance. In both cases, a major challenge for generating a high quality metatranscriptome is the extreme lability of RNA and its susceptibility to ubiquitous RNAses. The microbial commu- nity (the microbiome) of the cow rumen efficiently degrades lignocelullosic biomass, generates significant amounts of methane, a greenhouse gas twenty times more potent than carbon dioxide, and is of general importance for the physio- logical wellbeing of the host animal. Metatranscriptomes of the rumen microbiome from animals kept under different conditions and from various types of rumen-incubated biomass can be expected to provide new insights into these highly interesting phenotypes and subsequently provide the framework for an enhanced understanding of this socio- economically important ecosystem. The ability to isolate large amounts of intact RNA will significantly facilitate accu- rate transcript annotation and expression profiling. Here we report a method that combines mechanical disruption with chemical homogenization of the sample material and consistently yields 1 mg of intact RNA from 1 g of rumen-in- cubated biofuel feedstock. The yield of total RNA obtained with our method exceeds the RNA yield achieved with pre- viously reported isolation techniques, which renders RNA isolated with the method presented here as an ideal starting material for metatranscriptomic analyses and other molecular biology applications that require significant amounts of starting material.

  17. Technical and economic feasibility of utilizing apple pomace as a boiler feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, S.A.

    1983-01-01

    Apple pomace or presscake, was evaluated for suitability as a boiler feedstock for Michigan firms processing apple juice. Based upon the physical and chemical characteristics of pomace, handling/direct combustion systems were selected to conform with operating parameters typical of the industry. Fresh pomace flow rates of 29,030 and 88,998 kg/day (64,000 and 194,000 lb/day) were considered as representative of small and large processors, respectively, and the material was assumed to be dried to 15% moisture content (wet basis) prior to storage and combustion. Boilers utilizing pile-burning, fluidized-bed-combustion, and suspension-firing technologies were sized for each flow rate, resulting in energy production of 2930 and 8790 kW (10 and 30 million Btu/h), respectively. A life-cycle cost analysis was performed giving Average Annual Costs for the three handling/combustion system combinations (based on the Uniform Capital Recovery factor). An investment loan at 16% interest with a 5-year payback period was assumed. The break-even period for annual costs was calculated by anticipated savings incurred through reduction of fossil-fuel costs during a 5-month processing season. Large processors, producing more than 88,998 kg pomace/day, could economically convert to a suspension-fired system substituting for fuel oil, with break-even occurring after 4 months of operation of pomace per year. Small processors, producing less than 29,030 kg/day, could not currently convert to pomace combustion systems given these economic circumstances. A doubling of electrical-utility costs and changes in interest rates from 10 to 20% per year had only slight effects on the recovery of Average Annual Costs. Increases in fossil-fuel prices and the necessity to pay for pomace disposal reduced the cost-recovery period for all systems, making some systems feasible for small processors. 39 references, 13 figures, 10 tables.

  18. Feedstock optimization of in-vessel food waste composting systems for inactivation of pathogenic microorganisms.

    Science.gov (United States)

    Cekmecelioglu, Deniz; Demirci, Ali; Graves, Robert E

    2005-03-01

    An optimum composting recipe was investigated to reduce pathogenic microorganisms in a forced-aerated in-vessel system (55 liters). The feedstocks used for in-vessel composting were food waste, cow manure, and bulking materials (wood shavings and mulch hay). A statistical extreme vertices mixture design method was used to design the composting experiments and analyze the collected data. Each mixture (nine total) was replicated randomly three times. Temperature was monitored as an indicator of the efficiency of the composting experiments. The maximum temperature values of the mixtures were used as a response for both extreme vertices mixture design and statistical analyses. Chemical changes (moisture content, carbon/nitrogen ratio, volatile solids, and pH) and reductions of indicator (fecal coliforms and fecal streptococci) and pathogenic microorganisms (Salmonella and Escherichia coli O157:H7) were measured by the most-probable-number method before and after a 12-day composting period. Maximum temperatures for the tested compost mixtures were in the range of 37.0 to 54.7 degrees C. Extreme vertices mixture design analysis of the surface plot suggested an optimum mixture containing 50% food waste, 40% manure, and 10% bulking agents. This optimum mixture achieved maximum temperatures of 54.7 to 56.6 degrees C for about 3.3 days. The total reduction of Salmonella and E. coli O157:H7 were 92.3%, whereas fecal coliforms and fecal streptococci reductions were lower (59.3 and 27.1%, respectively). Future study is neededto evaluate the extreme vertices mixture design method for optimization of large-scale composting.

  19. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    Science.gov (United States)

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  20. 油脂和木质纤维素催化转化制备生物液体燃料%Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose

    Institute of Scientific and Technical Information of China (English)

    张家仁; 邓甜音; 刘海超

    2013-01-01

    世界范围能源短缺和环境恶化的双重压力促使可再生生物质资源的能源化利用成为当前研究的一个重要方向.生物质种类多样,但考虑到粮食安全等因素,其中油脂和木质纤维素适合替代化石资源用于制备液体燃料.本文概述了油脂和木质纤维素通过不同催化转化途径制备液体燃料的一些研究进展.油脂可以通过催化热裂解、加氢和酯交换方法制备生物液体燃料,而木质纤维素制备液体燃料的可行途径包括气化-费托合成、液化-精炼和经历平台化合物的选择性合成.在介绍这些催化途径的同时,特别讨论了其中所使用的催化剂和工艺等方面的研究进展,分析了存在的问题和可能的解决措施,以期能为生物质能源化利用的研究提供参考.%Dual pressures currently arising from energy shortage and environmental degradation worldwide make it critically important to utilize renewable biomass resources for energy. But due to the requirement for the safety of food and feed, triglyceride feedstocks ( currently derived mainly from vegetable oils and animal fats) and lignocellulose among the various kinds of naturally-occurring biomass are practical sources for production of liquid biofuels instead of fossil fuels. In this respect, we review the recent progress in the transformation of triglyceride feedstocks and lignocellulose into liquid biofuels by different catalytic routes. These routes include thermal cracking, hydrogenation and transesterification for oils and fats, and gasification-Fischer-Tropsch synthesis, liquefaction-upgrading and selective synthesis via platform chemicals for lignocellulose. The catalysts and processes involved in these catalytic routes are intensively discussed, and their existing problems and possible solutions are addressed, which may provide insights helpful for further studies on the more efficient utilization of biomass for energy.

  1. Sorption Characteristic of Phenanthrene on Biochar-Amended Soils: Effect of feedstock, pyrolysis temperature, and aging duration

    Science.gov (United States)

    Hyun, S.; Kim, C.; Kim, Y. S.; Kim, J.

    2015-12-01

    The high sorption capacity of biochar is widely known in environmental studies. Especially, biochar is effective for removal of hydrophobic organic compounds (HOCs) due to high surface area and porosity. In this study, the sorption characteristic of biochar-amended soil was evaluated by sorption kinetic experiment of phenanthrene (PHE). For PHE sorption test, the effect of biochar feedstock (sludge waste char (SWC), municipal waste char (MWC) and wood char (WC), Giant Miscanthus (GM)), pyrolysis temperature (400°C, 500°C and 700°C,), and duration of amending period (0, 3, 6, and 12 months) was assessed. Field Emission-Scanning Electron Microscopy (FE-SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR) techniques were used to detect pore structure and the surface functional group of biochar amended soils. For all kinetic tests, apparent sorption equilibrium was attained in 24 hr. The result showed that sorption capacity of biochar amended soils was greatly influenced by biochar feedstock and pyrolysis temperature. For all samples, the sorption capacity of PHE by biochar amended soils decreased with aging period. This observation is due to the fact that the aromatic characters of biochar are different by feedstock and pyrolysis temperature and the amount of O-containing hydrophilic functional groups increased surfaces of biochar by natural oxidation (e.g. carboxyl groups) as confirmed by the result of FT-IR and FE-SEM. In addition, biochar pore blockage by inorganic minerals, which tended to increase with aging period, might attenuate the sorption capacity of samples. In conclusion, biochar derived from various feed stocks are all effective for PHE sorption. But the sorption capacity of biochar amended soils decreased with increasing aging duration most likely due to increasing hydrophilic functional groups of biochar surfaces and pore blockage by inorganic minerals in the weathering processes. Therefore, for the design of biochar amendment to attenuate

  2. Persistent organic pollutants in source-separated compost and its feedstock materials--a review of field studies.

    Science.gov (United States)

    Brändli, Rahel C; Bucheli, Thomas D; Kupper, Thomas; Furrer, Reinhard; Stadelmann, Franz X; Tarradellas, Joseph

    2005-01-01

    Composting and the application of compost to the soil follow the principle of recycling and sustainability. Compost can also have a positive effect on physical, chemical, and biological soil parameters. However, little is known about the origin, concentration, and transformation of persistent organic pollutants (POPs) in compost. We therefore compiled literature data on some priority POPs in compost and its main feedstock materials from more than 60 reports. Our data evaluation suggests the following findings. First, median concentrations of Sigma 16 polycyclic aromatic hydrocarbons (PAHs), Sigma 6 polychlorinated biphenyls (PCBs), and Sigma 17 polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were higher in green waste (1803, 15.6 microg/kg dry wt., and 2.5 ng international toxicity equivalent [I-TEQ]/kg dry wt.) than in organic household waste (635, 14.6 microg/kg dry wt., and 2.2 ng I-TEQ/kg dry wt.) and kitchen waste (not available [NA], 14.9 microg/kg dry wt., 0.4 ng I-TEQ/kg dry wt.). The POP concentrations in foliage were up to 12 times higher than in other feedstock materials. Second, in contrast, compost from organic household waste and green waste contained similar amounts of Sigma 16 PAHs, Sigma 6 PCBs, and Sigma 17 PCDD/Fs (1915, 39.8 microg/kg dry wt., and 9.5 ng I-TEQ/kg dry wt., and 1715, 30.6 microg/kg dry wt., and 8.5 ng I-TEQ/kg dry wt., respectively). Third, concentrations of three-ring PAHs were reduced during the composting process, whereas five- to six-ring PAHs and Sigma 6 PCBs increased by roughly a factor of two due to mass reduction during composting. Sigma 17 PCDD/Fs had accumulated by up to a factor of 14. Fourth, urban feedstock and compost had higher POP concentrations than rural material. Fifth, the highest concentrations of POPs were usually observed in summer samples. Finally, median compost concentrations of POPs were greater by up to one order of magnitude than in arable soils, as the primary recipients of compost, but were

  3. Rheological study of copper and copper grapheme feedstock for powder injection molding

    Science.gov (United States)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper

  4. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; Carpenter, Daniel L.

    2016-07-21

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 degrees C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 degrees C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease in lignin during torrefaction and switchgrass having the least. It is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

  5. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, J. [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)], E-mail: jasmin.hofstetter@ies-def.upm.es; Lelievre, J.F.; Canizo, C.; Luque, A. del [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)

    2009-03-15

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10{sup -3} ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10{sup -4} ppma and the allowed concentration of 2.2x10{sup -2} ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  6. The use of co-digested solid fraction as feedstock for biogas plants

    Directory of Open Access Journals (Sweden)

    Elio Dinuccio

    2014-02-01

    Full Text Available A comparative study was set up in order to assess the technical feasibility of the long-term reuse of the mechanically separated co-digested solid fraction as a feedstock for anaerobic digestion plants (ADP. The biogas yields of two feedstock mixtures (A and B were assessed in mesophilic conditions (40°C±2°C using 6 lab-scale continuous stirredtank reactors. Feedstock mixture A (control consisted of pig slurry (70%, farmyard manure (4%, sorghum silage (12% and maize silage (14%. Feedstock mixture B was the same as the control plus the solid fraction derived from the mechanical separation of the output raw codigestate collected from the reactors. All reactors were fed simultaneously, three times a week, over a period of nine month. According to the study results, the reuse of the co-digested solid fraction as feedstock for ADP could increase the methane yield by approximately 4%. However, ADP efficiency evaluation (e.g., daily yield of methane per m3 of digester suggests limiting this practice to a maximum time period of 120 days.

  7. The use of co-digested solid fraction as feedstock for biogas plants

    Directory of Open Access Journals (Sweden)

    E. Dinuccio

    2013-09-01

    Full Text Available A comparative study was set up in order to assess the technical feasibility of the long-term reuse of the mechanically separated co-digested solid fraction as a feedstock for anaerobic digestion plants (ADP. The biogas yields of two feedstock mixtures (A and B were assessed in mesophilic conditions (40 °C ± 2 °C using 8 lab-scale continuous stirred-tank reactors (CSRT. Feedstock mixture A (control consisted of pig slurry (70%, farmyard manure (4%, sorghum silage (12% and maize silage (14%. Feedstock mixture B was the same as the control plus the solid fraction derived from the mechanical separation of the output raw co-digestate collected on daily basis from the reactors. All reactors were fed simultaneously, three times a week, over a period of nine month. According to the study results, the reuse of the co-digested solid fraction as feedstock for ADP could increase the methane yield by approximately 4%. However, ADP efficiency evaluation (e.g., daily yield of methane per m3 of digester suggest to limit this practice to a maximum time period of 120 days.

  8. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  9. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water.

    Science.gov (United States)

    Sun, Kejing; Tang, Jingchun; Gong, Yanyan; Zhang, Hairong

    2015-11-01

    Hydrochars produced from different feedstocks (sawdust, wheat straw, and corn stalk) via hydrothermal carbonization (HTC) and KOH modification were used as alternative adsorbents for aqueous heavy metals remediation. The chemical and physical properties of the hydrochars and KOH-treated hydrochars were characterized, and the ability of hydrochars for removal of heavy metals from aqueous solutions as a function of reaction time, pH, and initial contaminant concentration was tested. The results showed that KOH modification of hydrochars might have increased the aromatic and oxygen-containing functional groups, such as carboxyl groups, resulting in about 2-3 times increase of cadmium sorption capacity (30.40-40.78 mg/g) compared to that of unmodified hydrochars (13.92-14.52 mg/g). The sorption ability among different feedstocks after modification was as the following: sawdust > wheat straw > corn stack. Cadmium sorption kinetics on modified hydrochars could be interpreted with a pseudo-second order, and sorption isotherm was simulated with Langmuir adsorption model. High cadmium uptake on modified hydrochars was observed over the pH range of 4.0-8.0, while for other heavy metals (Pb(2+), Cu(2+), and Zn(2+)) the range was 4.0-6.0. In a multi-metal system, the sorption capacity of heavy metals by modified hydrochars was also higher than that by unmodified ones and followed the order of Pb(II) > Cu(II) > Cd(II) > Zn(II). The results suggest that KOH-modified hydrochars can be used as a low cost, environmental-friendly, and effective adsorbent for heavy metal removal from aqueous solutions.

  10. A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks.

    Science.gov (United States)

    van Duuren, J B J H; Brehmer, B; Mars, A E; Eggink, G; Dos Santos, V A P Martins; Sanders, J P M

    2011-06-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, toluene, or phenol from lignin to cis, cis-muconic acid, which is subsequently converted to adipic acid through hydrogenation. Apart from the impact of usage of petrochemical and biomass-based feedstocks, the environmental impact of the final concentration of cis, cis-muconic acid in the fermentation broth was studied using 1.85% and 4.26% cis, cis-muconic acid. The LCA focused on the cumulative energy demand (CED), cumulative exergy demand (CExD), and the CO(2) equivalent (CO(2) eq) emission, with CO(2) and N(2) O measured separately. The highest calculated reduction potential of CED and CExD were achieved using phenol, which reduced the CED by 29% and 57% with 1.85% and 4.26% cis, cis-muconic acid, respectively. A decrease in the CO(2) eq emission was especially achieved when the N(2) O emission in the combined biological and chemical process was restricted. At 4.26% cis, cis-muconic acid, the different carbon backbone feedstocks contributed to an optimized reduction of CO(2) eq emissions ranging from 14.0 to 17.4 ton CO(2) eq/ton adipic acid. The bulk of the bioprocessing energy intensity is attributed to the hydrogenation reactor, which has a high environmental impact and a direct relationship with the product concentration in the broth.

  11. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  12. Strategy of changing cracking furnace feedstock based on improved group search optimization

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Nian; Zhenlei Wang; Feng Qian

    2015-01-01

    The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is pro-posed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the“excel-lent”infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Final y, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.

  13. Efficient process for producing saccharides and ethanol from a biomass feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C.; Nanjundaswamy, Ananda K.

    2017-04-11

    Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

  14. Solar cells from 120 PPMA carbon-contaminated feedstock without significantly higher reverse current or shunt

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Coletti, G. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In a bid to drive down the cost of silicon wafers, several options for solar grade silicon feedstock have been investigated over the years. All methods have in common that the resulting silicon contains higher levels of impurities like dopants, oxygen, carbon or transition metals, the type and level of impurities depending on the raw materials and refining processes. In this work wafers from a p-type mc-Si ingot made with feedstock contaminated with 120 ppma of carbon have been processed into solar cells together with reference uncontaminated feedstock from semiconductor grade polysilicon with <0.4 ppma carbon. The results show that comparable reverse current, shunts, and efficiencies can be reached for both types of wafers. Gettering and defect hydrogenation effectiveness also did not deviate from the reference. Electroluminescence pictures do not show increased hotspot formation, even at -16V.

  15. Smelter gas for chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Engler, S.

    1983-11-01

    A CO-rich smelter gas (up to 600 tons/day) is available from ilmenite smelting operations at Sorel, Quebec. The economics of different purification options to make the gas suitable for certain chemical operations are examined. Currently a portion of the smelter gas is being used as fuel for kilns, coal dryers and related equipment and excess gas is flared to the atmosphere. The excess gas which averages 200 tons/day of CO could have more value as chemical feedstock than as fuel if it was purified.

  16. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  17. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  18. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  19. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  20. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Science.gov (United States)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  1. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  2. Process for improving the energy density of feedstocks using formate salts

    Science.gov (United States)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  3. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  4. Progress in chemical proteomics-based kinome study%基于化学蛋白质组学的激酶组学研究进展

    Institute of Scientific and Technical Information of China (English)

    王红霞

    2014-01-01

    Protein kinases are key components of cell signaling networks and thereby regulate fundamental biological processes such as cellular growth, proliferation, metabolism and survival. Kinome refers to all kinases in cells or tissue and “kinomics”is the global analysis of kinome with respect to abundance, activity, substrate specificity, phosphorylation pattern and mutational status. Human kinome currently contains 568 members, nearly half of which can be mapped to disease loci and deregulation of kinase activity by gene amplifica-tion or mutations has been implicated in diseases such as inflammation, diabetes and cancer. Therefore, human kinome is being recognized as a potentially rich source of drug targets. Kinase inhibitors have been successfully used to treat many kinds of advanced cancers. Chemi-cal proteomics is emerging as a novel comprehensive kinome approach that combines an immobilized inhibitor affinity pull-down approach with mass spectrometry-based proteomics for kinase identification, quantification and phosphorylation analysis under physiological condi-tion. Commonly, one or multiple broad-spectrum kinase inhibitors are covalently immobilized on a biocompatible matrix such as sepharose to enrich all kinases in cells or tissue and then the kinases are identified and quantified by mass spectrometry analysis. It can be used to study the specificity of kinase inhibitor drug, drug candidate or drug resistance mechanism, which can help to understand the mechanism and find combinational drug target. Large-scale unbiased kinome and cancer kinome study will facilitate new drug target discovery and correlate tumor tissue kinome profiles with response to therapy and therefore may be used for future therapy selection in personalized medicine. In this paper, the human kinome, kinase, kinase inhibitor and cancer, chemical proteomics based kinome study progress and its applications in drug discovery are reviewed.%蛋白激酶是细胞内信号转导通路网络

  5. New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Antonetti

    2016-12-01

    Full Text Available Levulinic acid (LA is one of the top bio-based platform molecules that can be converted into many valuable chemicals. It can be produced by acid catalysis from renewable resources, such as sugars, lignocellulosic biomass and waste materials, attractive candidates due to their abundance and environmentally benign nature. The LA transition from niche product to mass-produced chemical, however, requires its production from sustainable biomass feedstocks at low costs, adopting environment-friendly techniques. This review is an up-to-date discussion of the literature on the several catalytic systems that have been developed to produce LA from the different substrates. Special attention has been paid to the recent advancements on starting materials, moving from simple sugars to raw and waste biomasses. This aspect is of paramount importance from a sustainability point of view, transforming wastes needing to be disposed into starting materials for value-added products. This review also discusses the strategies to exploit the solid residues always obtained in the LA production processes, in order to attain a circular economy approach.

  6. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.

    Science.gov (United States)

    Che, Yuchi; Wang, Chuan; Liu, Jia; Liu, Bilu; Lin, Xue; Parker, Jason; Beasley, Cara; Wong, H-S Philip; Zhou, Chongwu

    2012-08-28

    The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.

  7. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

    Science.gov (United States)

    Dou, Chang; Marcondes, Wilian F; Djaja, Jessica E; Bura, Renata; Gustafson, Rick

    2017-01-01

    Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar. The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the

  8. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well.

  9. Environmental and energy system analysis of bio-methane production pathways : A comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, F.; van Someren, C. E. J.; Benders, R. M. J.; Bekkering, J.; van Gemert, W. J. Th; Moll, H. C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustain

  10. 78 FR 49749 - Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for Declaratory Order

    Science.gov (United States)

    2013-08-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for... Practices and Procedure, 18 CFR 385.207(a)(2)(2012), Williams Olefins Feedstock Pipelines, L.L.C., filed...

  11. Brewer's spent grain: a valuable feedstock for industrial applications.

    Science.gov (United States)

    Mussatto, Solange I

    2014-05-01

    Brewer's spent grain (BSG) is the most abundant by-product generated from the beer-brewing process, representing approximately 85% of the total by-products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by-product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by-products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas.

  12. 26 CFR 48.4082-7 - Kerosene; exemption for feedstock purposes.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Kerosene; exemption for feedstock purposes. 48.4082-7 Section 48.4082-7 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... same form as the model certificate provided in paragraph (e)(2) of this section, and contains...

  13. A Century Long Pursuit of Alternative Fuels and Feedstocks: A Content Analysis

    Science.gov (United States)

    2011-03-01

    loss of forest land in Indonesia and a 20% loss in Malaysia while up to 85% of new palm oil plantations in some provinces being created on former...Dornburg, V., & Faaij, A. (2011). Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy, 193-206...50 Palm Oil as a Feedstock

  14. Towards fermentation of galacturonic acid-containing feedstocks with Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huisjes, E.H.

    2013-01-01

    The ambition to reduce our current dependence on fossil transportation fuels has driven renewed interest in bioethanol. Pectin-rich feedstocks like sugar beet pulp and citrus peel, which are currently sold as cattle feed, are promising raw materials for the production of bioethanol. This thesis expl

  15. Nutrient and water requirements for elephantgrass production as a bio-fuel feedstock

    Science.gov (United States)

    Elephantgrass (Pennisetum purpureum Schumacher) is a tall tropical bunch grass that produces high enough yields to being considered an excellent bio-energy feedstock for the lower South. However, previous studies have shown that production is not sustainable without fertilizer application and adequ...

  16. Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Xianhua Liu; Guangyi Wang

    2011-01-01

    The overall goal of this work was to develop a saccharification method for the production of third generation biofuel(i.e.bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia.Under optimum conditions(120℃ and 2% sulfuric acid for 30 min), dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose(4.1mM or 4.3g glucose/kg fresh algal biomass). However, two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enzymatic hydrolysis) produced 13.8g of glucose from one kilogram of fresh algal feedstock. Batch fermentation analysis produced 79.1g EtOH from one kilogram of dried invasive algal feedstock using the ethanologenic strain Escherichia coli K011. Furthermore, ethanol production kinetics indicated that the invasive algal feedstock contained different types of sugar, including C5-sugar. This study represents the first report on third generation biofuel production from invasive macroalgae, suggesting that there is great potential for the production of renewable energy using marine invasive biomass.

  17. Weed Control Systems for Peanut (Arachis hypogaea L.) Grown as a Biofuel Feedstock

    Science.gov (United States)

    Peanut (Arachis hypogaea L.) has not been utilized as a true oilseed crop, especially for the production of fuel. However, peanut makes a superior feedstock for biodiesel, especially in on-farm or small cooperative business plans, where producers can dictate the cost of making their own fuel. Fiel...

  18. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2013-01-01

    Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise...

  19. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  20. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  1. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  2. Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

    DEFF Research Database (Denmark)

    Tristan Djajadi, Demi; Hansen, Aleksander R.; Jensen, Anders

    2017-01-01

    in response to hydrothermal pretreatment at different severities are still not sufficiently understood. Results: Potentially important lignocellulosic feedstocks for biorefining, corn stover (Zea mays subsp. mays L.), stalks of Miscanthus × giganteus, and wheat straw (Triticum aestivum L.) were systematically...... lignocellulosic biomass and may help design new approaches to overcome biomass recalcitrance....

  3. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  4. Valorization of guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment

    Science.gov (United States)

    Natural rubber latex extraction from guayule leaves behind greater than 80% (by weight) of agricultural residue as a feedstock suitable for conversion to biofuels via a thermochemical or biochemical route. Untreated guayule shrub and bagasse (after latex extraction) has shown to be very recalcitrant...

  5. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  6. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    Science.gov (United States)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  7. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    Science.gov (United States)

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  8. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  9. Evaluation of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane ...

  10. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    NARCIS (Netherlands)

    Zhu, Li Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; Loo, Van Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue Rong; Green, Allan G.; Shockey, Jay; Klasson, Thomas K.; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petroch

  11. Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation

    Directory of Open Access Journals (Sweden)

    Joamin Gonzalez-Gutierrez

    2016-05-01

    Full Text Available The viscosity of feedstock materials is directly related to its processability during injection molding; therefore, being able to predict the viscosity of feedstock materials based on the individual properties of their components can greatly facilitate the formulation of these materials to tailor properties to improve their processability. Many empirical and semi-empirical models are available in the literature that can be used to predict the viscosity of polymeric blends and concentrated suspensions as a function of their formulation; these models can partly be used also for metal injection molding binders and feedstock materials. Among all available models, we made a narrow selection and used only simple models that do not require knowledge of molecular weight or density and have parameters with physical background. In this paper, we investigated the applicability of several of these models for two types of feedstock materials each one with different binder composition and powder loading. For each material, an optimal model was found, but each model was different; therefore, there is not a universal model that fits both materials investigated, which puts under question the underlying physical meaning of these models.

  12. Sustainable bioenergy feedstock production systems: Integrating carbon dynamics, erosion, water quality, and greenhouse gas production

    Science.gov (United States)

    Reducing greenhouse gas (GHG) emission is one of several rationales for developing renewable biomass energy. Unfortunately, there are few studies reporting direct impacts of harvesting biomass feedstocks on GHG, especially effects on nitrous oxide (N2O) flux. Overzealous biomass harvest may accelera...

  13. Ericameria Nauseosa (rubber rabbitbrush): a complementary rubber feedstock to augment the guayule rubber production stream

    Science.gov (United States)

    Ericameria nauseosa (rubber rabbitbrush) is a highly prolific desert shrub that produces high quality natural rubber. Over the past several years we have investigated rabbitbrush’s potential as a commercial rubber feedstock. Like guayule, rabbitbrush produces natural rubber within its bark tissues a...

  14. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    Science.gov (United States)

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  15. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.

    Science.gov (United States)

    Kwit, Charles; Stewart, C Neal

    2012-01-01

    There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.

  16. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    NARCIS (Netherlands)

    Zhu, Li Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; Loo, Van Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue Rong; Green, Allan G.; Shockey, Jay; Klasson, Thomas K.; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petroch

  17. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Science.gov (United States)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  18. Multi-utilization of swine manure as a bioenergy feedstock: Carbonization and combustion

    Science.gov (United States)

    The use of animal manure and other organic-based waste products as bioenergy feedstocks is gaining interest for waste-to-bioenergy conversion processes. While thermochemical conversion of animal manure via combustion, pyrolysis, and gasification is becoming a new frontier of manure treatment; there ...

  19. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Science.gov (United States)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  20. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    Science.gov (United States)

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  1. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    Science.gov (United States)

    Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.

    2013-12-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.

  2. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  3. Synthesis of ketones from biomass-derived feedstock

    Science.gov (United States)

    Meng, Qinglei; Hou, Minqiang; Liu, Huizhen; Song, Jinliang; Han, Buxing

    2017-01-01

    Cyclohexanone and its derivatives are very important chemicals, which are currently produced mainly by oxidation of cyclohexane or alkylcyclohexane, hydrogenation of phenols, and alkylation of cyclohexanone. Here we report that bromide salt-modified Pd/C in H2O/CH2Cl2 can efficiently catalyse the transformation of aromatic ethers, which can be derived from biomass, to cyclohexanone and its derivatives via hydrogenation and hydrolysis processes. The yield of cyclohexanone from anisole can reach 96%, and the yields of cyclohexanone derivatives produced from the aromatic ethers, which can be extracted from plants or derived from lignin, are also satisfactory. Detailed study shows that the Pd, bromide salt and H2O/CH2Cl2 work cooperatively to promote the desired reaction and inhibit the side reaction. Thus high yields of desired products can be obtained. This work opens the way for production of ketones from aromatic ethers that can be derived from biomass.

  4. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Wang, Lijun; Jones, David D.; Hanna, Milford A. [Industrial Agricultural Products Center, University of Nebraska-Lincoln, 211 L.W. Chase Hall, Lincoln, NE 68583 (United States); Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States); Dzenis, Yuris A. [Department of Engineering Mechanics, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2008-05-15

    Interest in generating energy from biomass has grown tremendously in recent years. Corn stover is an agricultural by-product, which is abundant in quantity. Gasification and pyrolysis are efficient methods of harnessing energy efficiently from corn stover. The performances of mathematical models to predict the product gas quality rely on characterization of feed materials and the reaction kinetics of their thermal degradation. The objective of this research was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. Thermogravimetric analyses were performed at heating rates of 10, 30, and 50 C min{sup -1} in nitrogen (inert) and air (oxidizing) atmospheres. The parameters of the reaction kinetics were obtained and compared with other biomass. The weight losses of corn stover in both inert and oxidizing atmospheres were found to occur in three stages. (author)

  5. 红茶品质化学的研究进展%Research Progresses on Quality and Chemical Components of Black Tea

    Institute of Scientific and Technical Information of China (English)

    杨盛美; 李晓霞; 夏丽飞; 陈玫; 唐一春

    2013-01-01

    红茶是世界生产和消费的主要茶类,红茶的品质与化学成分紧密相关.综述了国内外红茶品质化学的研究进展,并对今后红茶品质化学研究进行了展望.%Black tea is the principal tea product in the world' s tea production and consumption, the quality of black tea is closely related to its chemical compositions. The research achievements on quality and chemical composition of black tea were reviewed. The research emphases for quality and chemical composition of black tea in the future were forecasted.

  6. A progress report on the LDRD project entitled {open_quotes}Microelectronic silicon-based chemical sensors: Ultradetection of high value molecules{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.C.

    1996-09-01

    This work addresses a new kind of silicon based chemical sensor that combines the reliability and stability of silicon microelectronic field effect devices with the highly selective and sensitive immunoassay. The sensor works on the principle that thin SiN layers on lightly doped Si can detect pH changes rapidly and reversibly. The pH changes affect the surface potential, and that can be quickly determined by pulsed photovoltage measurements. To detect other species, chemically sensitive films were deposited on the SiN where the presence of the chosen analyte results in pH changes through chemical reactions. A invention of a cell sorting device based on these principles is also described. A new method of immobilizing enzymes using Sandia`s sol-gel glasses is documented and biosensors based on the silicon wafer and an amperometric technique are detailed.

  7. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%–75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne‑1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  8. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  9. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  10. Bio-energy feedstock yields and their water quality benefits in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  11. 计算机在化工中应用的研究进展∗%Research Progress on Computer Application in Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    郭妍婷; 黄雪; 陈曼; 冯光炷

    2016-01-01

    The application of computer in chemical industry was mainly introduced, including the design of chemical industry, chemical production, scientific research and teaching. Present situation of the computer application of the aspects of aided drawing, chemical simulation design, data processing, chemical simulation and information retrieval was discussed. In the future, computer software will develop into intelligent and integrated tool. The researchers’ rich knowledge and experience will blend in. The computer will continuously improve the production efficiency of enterprises, promote the prosperity of the chemical industry and flourish.%主要介绍了计算机在化工中的应用,包含化工设计、化工生产、化工科研及教学等,讲述了在上述几个领域内国内外最常用的计算机软件,并讨论了计算机在辅助制图、化工模拟设计、数据处理、化工仿真、信息检索等方面的的应用现状,未来计算机软件将发展成智能、综合的工具,把研究人员丰富的知识、经验融入其中,将不断提高企业的生产效率,促进化工产业的繁荣和兴盛。

  12. Research progress on chemical constituents of Frankincense%乳香属植物化学成分的研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋永和; 覃文红

    2012-01-01

      依据国内外文献综述了乳香属植物的原植物种类及地理分布和化学成分方面的研究进展,为乳香属中药进一步化学成分的研究提供参考。%  According to domestic and international literature review of plant species and geographical distribution and chemical composition of frankincense genus, further chemical constituents of frankincense case of traditional Chinese medicine to provide a reference.

  13. 一步催化转化纤维素制备化学品的研究进展%Progress in One-Pot Catalytic Transformation of Cellulose into Valuable Chemicals

    Institute of Scientific and Technical Information of China (English)

    石宁; 刘琪英; 王铁军; 张琦; 廖玉河; 马隆龙; 蔡炽柳

    2014-01-01

    高效利用纤维素制备燃料及化学品对人类的可持续发展具有重要的意义。通过化学转化,可以将纤维素转化为一系列的小分子有机物,作为平台化合物制取生物质基液体燃料或材料。本文综述了利用化学方法直接转化纤维素制备小分子化学品(5-羟甲基糠醛、乳酸、乙二醇、山梨醇和异山梨醇)的研究进展,并对后续研究进行了展望。%Efficient transformation of cellulose into liquid fuels and chemicals is one key route for sustainable development of human society. With the chemical conversion, cellulose can be transformed to various small molecule organics, which are regarded as platform for production of liquid fuel or material. The progress in direct catalytic conversion of cellulose into valuable chemicals is reviewed in this paper, including preparation of 5-hydroxymethylfurfural (5-HMF), lactic acid, ethylene glycol, sorbitol and isosorbide. Finally, subsequent research topics on transformation of cellulose into valuable chemicals are prospected.

  14. The role of microalgae as biodiesel feedstock in a tropical setting: Economics, agro-energy competitiveness, and potential impacts on regional agricultural feedstock production

    Science.gov (United States)

    Boll, Matias G.

    The objective of this study is to obtain a realistic evaluation of the potential role of microalgae as a biodiesel feedstock in a tropical setting. First, microalgae economics are estimated, including the detailed design of a 400 ha microalgae open pond production farm together with the microalgae biomass and crude oil production costs calculations. Sensitivity analysis and a stochastic evaluation of the microalgae venture chances for profit are also included. Next, microalgae potential for biodiesel production is compared to traditional oil crops such as soybeans and African palm. This comparison is performed using the Northeast Region (NER) of Brazil as background. Six potential biodiesel feedstock sources produced in the NER and microalgae are compared considering selected environmental, economic and social sustainability indicators. Finally, in the third chapter, the study proposes a cropland allocation model for the NER. The model aims to offer insights to the decision maker concerning biofuel development strategies and their impact on regional agricultural feedstock production. In the model, cropland allocation among three agriculture feedstock sectors, namely staple food, commodity export and biofuel is optimized through the use of the multiple objective technique referred to as compromise programming (CP). Our results indicate a projected microalgae total production cost of R 78,359 ha-1 (US43,533), which has a breakdown as follows: R 34,133 ha-1 (US18,963) for operating costs and R 44,226 ha-1 (US24,570) for overhead (ownership) costs. Our stochastic analysis indicates that microalgae production under the conditions assumed in the baseline scenario of this study has a 0% chance to present a positive NPV for a microalgae crude oil price of R 1.86. This price corresponds to an international oil price around US 77 bbl-1. To obtain a reasonable investment return (IRR = 12%) from the microalgae farm, an international oil price as high as US 461 bbl-1 is

  15. Biotechnology for producing fuels and chemicals from biomass. Volume 2: Fermentation chemicals from biomass

    Science.gov (United States)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing chemicals by fermentation is discussed: acetone; butanol; acetic acid; citric acid; 2,3-butanediol, and propionic acid. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5 percent to 7 percent/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. The feedstock cost is 15 to 20 percent of the overall cost of production. The anticipated 5 percent growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. The commercial fermentative production of propionic acid has not yet been developed.

  16. 阿魏属植物化学成分研究进展%Progress on chemical constituents of Ferula genus

    Institute of Scientific and Technical Information of China (English)

    邢亚超; 李宁; 薛洁

    2012-01-01

    Objective To review the studies on chemical constituents of Ferula in recent ten years. Methods On the basis of international and domestic references, the chemical constituents of Ferula were comprehensively reviewed and then classified according to their structural types. Results Ferula species contained many kinds of chemical constituents, primarily coumarins, sesquiterpene coumarins, sesquiterpenes, aromatic compounds, sulfur-containing compounds etc. Conclusions Many studies have been performed on the chemical constituents, the paper summarizes international and domestic research advances in recent ten years on chemical constituents of rare Chinese medicine Ferula and its plants, expect for providing a reference for the further study,exploitation and utilization of this resource.%目的 对阿魏属植物近10年来研究所得到的化学成分进行综述.方法 通过查阅国内外相关文献,总结珍稀中药阿魏及阿魏来源植物的化学成分的研究进展,按照化合物的结构类型对其化学成分进行分类.结果 阿魏属植物含有多种化学成分,主要含有香豆素类、倍半萜香豆素类、倍半萜类、芳香族类和含硫化合物等.结论 为进一步研究、开发和利用阿魏属植物资源提供参考.

  17. Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock

    Science.gov (United States)

    Beese, Allison M.; Carroll, Beth E.

    2016-03-01

    Laser-based additive manufacturing (AM) of metals using powder feedstock can be accomplished via two broadly defined technologies: directed energy deposition (DED) and powder bed fusion (PBF). In these processes, metallic powder is delivered to a location and locally melted with a laser heat source. Upon deposition, the material undergoes a rapid cooling and solidification, and as subsequent layers are added to the component, the material within the component is subjected to rapid thermal cycles. In order to adopt AM for the building of structural components, a thorough understanding of the relationships among the complex thermal cycles seen in AM, the unique heterogeneous and anisotropic microstructure, and the mechanical properties must be developed. Researchers have fabricated components by both DED and PBF from the widely used titanium alloy Ti-6Al-4V and studied the resultant microstructure and mechanical properties. This review article discusses the progress to date on investigating the as-deposited and heat-treated microstructures and mechanical properties of Ti-6Al-4V structures made by powder-based laser AM using DED and PBF.

  18. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Science.gov (United States)

    2010-04-01

    ... ODCs contained in the mixture. For this purpose, a mixture cannot be represented by a chemical formula... chlorotrifluoroethylene (CTFE or 1113), of CFC-113 into CFC-115 and CFC-116, or of carbon tetrachloride into hydrochloric acid during petroleum refining or incineration) is treated as use as a feedstock. On the other hand...

  19. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  20. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.

    Science.gov (United States)

    Zhang, Hongsen; Liu, Gang; Zhang, Jian; Bao, Jie

    2016-11-01

    High titer gluconic acid and xylonic acid were simultaneously fermented by Gluconobacter oxydans DSM 2003 using corn stover feedstock after dry dilute sulfuric acid pretreatment, biodetoxification and high solids content hydrolysis. Maximum sodium gluconate and xylonate were produced at the titer of 132.46g/L and 38.86g/L with the overall yield of 97.12% from glucose and 90.02% from xylose, respectively. The drawbacks of filamentous fungus Aspergillus niger including weak inhibitor tolerance, large pellet formation and no xylose utilization were solved by using the bacterium strain G. oxydans. The obtained sodium gluconate/xylonate product was highly competitive as cement retarder additive to the commercial product from corn feedstock. The techno-economic analysis (TEA) based on the Aspen Plus modeling was performed and the minimum sodium gluconate/xylonate product selling price (MGSP) was calculated as $0.404/kg. This study provided a practical and economic competitive process of lignocellulose utilization for production of value-added biobased chemicals.

  1. Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates.

    Science.gov (United States)

    Du, Bowen; Sharma, Lekh N; Becker, Christopher; Chen, Shou-Feng; Mowery, Richard A; van Walsum, G Peter; Chambliss, C Kevin

    2010-10-15

    A variety of potentially inhibitory degradation products are produced during pretreatment of lignocellulosic biomass. Qualitative and quantitative interrogation of pretreatment hydrolysates is paramount to identifying potential correlations between pretreatment chemistries and microbial inhibition in downstream bioconversion processes. In the present study, corn stover, poplar, and pine feedstocks were pretreated under eight different chemical conditions, which are representative of leading pretreatment processes. Pretreatment processes included: 0.7% H(2)SO(4), 0.07% H(2)SO(4), liquid hot water, neutral buffer solution, aqueous ammonia, lime, lime with oxygen pressurization, and wet oxidation. Forty lignocellulosic degradation products resulting from pretreatment were analyzed using high performance liquid chromatography in combination with UV spectroscopy or tandem mass spectrometry detection (HPLC-PDA-MS/MS) and ion chromatography (IC). Of these compounds, several have been reported to be inhibitory, including furfural, hydroxymethyl furfural, ferulic acid, 3,4-dihydroxybenzaldehyde, syringic acid among others. Formation and accumulation of monitored compounds in hydrolysates is demonstrated to be a function of both the feedstock and pretreatment conditions utilized.

  2. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  3. 蛴螬化学成分及药理作用研究进展%Progress on Chemical Constituents and Pharmacological Activities of Holotrichia diomphalia Bates

    Institute of Scientific and Technical Information of China (English)

    陈智; 郑学燕; 朱荣刚; 田景振

    2014-01-01

    综述国内外有关蛴螬的炮制方法、化学成分和药理作用的研究,为进一步研究和利用蛴螬提供依据。%This paper reviews the processing methods, chemical constituents and pharmacological activities of Holotrichia diomphalia Bates. It provides the reference for the further development and utilization of Holotrichia diomphalia Bates.

  4. Progress of removing magnesium impurity from phosphate rock with chemical method%化学法脱除磷矿中镁杂质的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘荣; 郑之银; 陈宇; 许昕; 沈浩

    2012-01-01

    Because flotation is only applicable to individual types of phosphate rock for impurity removal, it can not meet the actual requirements of medium and low grade phosphate rock. The influence of the existence of magnesium impurities in the phosphate rock on phosphoric acid and its downstream products is analyzed. The principle, process and effect of magnesium impurity removal from phosphate rock with chemical methods are introduced. The application about various chemical drugs to the magnesium impurity removal by chemical leaching field and their effects are summarized including organic acid, inorganic acid and acidic gas. The view is proposed that chemical method has the good effect because of its strong selectivity.%浮选法只适用于个别种类的磷矿除杂,不能满足中低品住磷矿脱镁的要求。分析磷矿中镁杂质对磷酸及其下游磷化工产品生产的影响;阐述化学法脱除磷矿中镁杂质的原理、工艺方法及脱镁效果。特别对有机酸、无机酸、酸性气体等化学浸提剂在化学浸提法脱镁研究中的应用和脱镁效果进行了总结,认为化学法脱镁,由于其选择性强,脱镁效果相对较好。

  5. Progress in spin dynamics solid-state nuclear magnetic resonance with the application of Floquet-Magnus expansion to chemical shift anisotropy.

    Science.gov (United States)

    Mananga, Eugene Stephane

    2013-01-01

    The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence.

  6. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper.

  7. Crude glycerol as feedstock for the sustainable production of p-hydroxybenzoate by Pseudomonas putida S12.

    Science.gov (United States)

    Verhoef, Suzanne; Gao, Nisi; Ruijssenaars, Harald J; de Winde, Johannes H

    2014-01-25

    Crude glycerol is a promising renewable feedstock in bioconversion processes for the production of fuels and chemicals. Impurities present in crude glycerol can however, negatively impact the fermentation process. Successful crude glycerol utilization requires robust microbial production hosts that tolerate and preferably, can utilize such impurities. We investigated utilization of crude, unpurified glycerol as a substrate for the production of aromatic compounds by solvent tolerant Pseudomonas putida S12. In high-cell density fed-batch fermentations, P. putida S12 surprisingly performed better on crude glycerol than on purified glycerol. By contrast, growth of Escherichia coli was severely compromised under these high cell density cultivation conditions on crude glycerol. For P. putida S12 the biomass-to-substrate yield, maximum biomass production rate and substrate uptake rate were consistently higher on crude glycerol. Moreover, production of p-hydroxybenzoate by engineered P. putida S12palB5 on crude glycerol showed a 10% yield improvement over production on purified glycerol. P. putida S12 is a favorable host for bioconversion processes utilizing crude glycerol as a substrate. Its intrinsic stress-tolerance properties provide the robustness required for efficient growth and metabolism on this renewable substrate.

  8. The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock

    Directory of Open Access Journals (Sweden)

    Naoyuki Matsumoto

    2015-07-01

    Full Text Available One aspect of carbon nanotube (CNT synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

  9. Engineering plant oils as high-value industrial feedstocks for biorefining - the need for underpinning cell biology research

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J.M. (US Arid-Land Agricultural Research Center, United States Dept. of Agriculture, Maricopa (US)); Mullen, R.T. (University of Guelph, Dept. of Molecular and Cellular Biology, Ontario (CA))

    2008-01-15

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of industrially important fatty acids, expression of these genes in transgenic plants has routinely resulted in a low accumulation of the desired fatty acids, indicating that significantly more knowledge of seed oil production is required before any future rational engineering designs are attempted. Here, we provide an overview of the cellular features of fatty acid desaturases, the so-called diverged desaturases, and diacylglycerol acyltransferases, three sets of enzymes that play a central role in determining the types and amounts of fatty acids that are present in seed oil, and as such, the final application and value of the oil. Recent studies of the intracellular trafficking, assembly and regulation of these enzymes have provided new insights to the mechanisms of storage oil production, and suggest that the compartmentalization of enzyme activities within specific regions or subdomains of the ER may be essential for both the synthesis of novel fatty acid structures and the channeling of these important fatty acids into seed storage oils. (au)

  10. The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock

    Science.gov (United States)

    Matsumoto, Naoyuki; Oshima, Azusa; Sakurai, Shunsuke; Yamada, Takeo; Yumura, Motoo; Hata, Kenji; Futaba, Don N.

    2015-01-01

    One aspect of carbon nanotube (CNT) synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT) forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

  11. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  12. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  13. Feedstock to Tailpipe Initiative: Kansas Biofuels Production, Testing and Certification Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stagg-Williams, Susan M. [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Depcik, Chris [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Sturm, Belinda [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering

    2013-12-31

    The primary task of this grant was to establish an ASTM testing facility for biodiesel and ethanol and to use this facility to develop methods to predict fuel characteristics based on feedstock composition and feedstock cultivation. In addition to characterizing fuel properties, this grant allowed for the purchase and installation of a Fourier Transform Infrared Spectroscopy (FTIR) emissions analyzer that will provide an analysis of the emissions leaving the engine in order to meet EPA regulations. This FTIR system is combined with an Alternating Current (AC) dynamometer that allows the engine to follow Environmental Protection Agency (EPA) Federal Test Procedure (FTP) cycles. A secondary task was to investigate cultivating algae utilizing wastewater and top-down ecological control and subsequent harvesting using coagulation and dissolved air flotation. Lipid extraction utilizing environmentally-friendly and cost-effective solvents, with and without cell-disruption pretreatment was also explored. Significant work on the hydrothermal liquefaction of wastewater cultivated algae was conducted.

  14. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  15. Calophyllum inophyllum L. as a future feedstock for bio-diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Atabania, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan)], email: a_atabani2@msn.com, email: ardinsu@yahoo.co.id; Silitonga, A.S.; Mahlia, T.M.I.; Masjukia, H.H.; Badruddin, I.A. [University of Malaya (Malaysia)

    2011-07-01

    Due to the energy crisis and the concerns about climate change, the possibility of using biodiesel as an alternative energy resource has been examined. It has been found that biodiesel could be a solution for the future but the first generation of biodiesel, prepared from edible vegetable oils, has raised important concerns about food and environmental problems. The aim of this study is to assess if Calophyllum inophyllum, a non-edible oil, could be used for biodiesel production. Density, kinematic viscosity, cetane number, flashpoint and iodine value were determined on Calophyllum inophyllum trees from Cilacap, Indonesia and compared in light of ASTM D6751 biodiesel standards. It was found that Calophyllum inophyllum would be a satisfactory feedstock to produce biodiesel in the future. This study demonstrated that Calophyllum inophyllum has the potential to be a biodiesel feedstock and further research should be carried out on engine performance, combustion and emission performance of biodiesel produced from Calophyllum inophyllum.

  16. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  17. Interactions of Woody Biofuel Feedstock Production Systems with Water Resources: Considerations for Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Trettin, Carl C. [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States); Amatya, Devendra [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States); Coleman, Mark [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States)

    2008-04-15

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Finally, given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive.

  18. Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification.

    Science.gov (United States)

    Prathyusha, N; Kamesh, Reddi; Rani, K Yamuna; Sumana, C; Sridhar, S; Prakasham, R S; Yashwanth, V V N; Sheelu, G; Kumar, M Pradeep

    2016-12-01

    Experiments have been performed for pretreatment of sorghum, wheat straw and bamboo through high temperature alkali pretreatment with different alkaline loading and temperatures, and the data on extent of delignification in terms of the final compositions of cellulose, hemicellulose and lignin have been generated. Further, enzymatic saccharification has been carried out in all the cases to find the extent of conversion possible after 72h. The effect of different operating parameters on the extent of delignification and cellulose conversion are evaluated. This data is employed to develop a generalized multi-feedstock and individual feedstock based models which can be used to determine the extent of delignification and cellulose conversion for any and specific biomass respectively with alkaline pretreatment and similar enzyme conditions as considered in the present study. Also, a kinetic model is developed and validated for sorghum for cellulosic conversion.

  19. Effect of thermo-mechanical properties of PIM feedstock on compacts shape retention during debinding process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it's necessary to understand the thermal and mechanical properties of powder injection molding feedstocks and to find the major causes responsible for molding difficulties and compacts shape retention during debinding process. The effects of thermo-mechanical properties of the PIM feedstock on the compacts shape retention during debinding process were discussed and explained from practical point of view. The results indicate that the heat of fusion affects the cooling time. The binder component with high heat of fusion and high-decomposed temperature is more effective as the second binder component for the compact to retain its shape during debinding.

  20. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.