WorldWideScience

Sample records for chemical evolution traced

  1. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  2. Tracing the evolution of NGC6397 through the chemical composition of its stellar populations

    CERN Document Server

    Lind, K; Decressin, T; Primas, F; Grundahl, F; Asplund, M

    2010-01-01

    With the aim to constrain multiple populations in the metal-poor globular cluster NGC6397, we analyse and discuss the chemical compositions of a large number of elements in 21 red giant branch stars. High-resolution spectra were obtained with the FLAMES/UVES spectrograph on VLT. We have determined non-LTE abundances of Na and LTE abundances for the remaining 21 elements, including O, Mg, Al, alpha, iron-peak, and neutron-capture elements, many of which have not previously been analysed for this cluster. We have also considered the influence of possible He enrichment in the analysis of stellar spectra. We find that the Na abundances of evolved, as well as unevolved, stars show a distinct bimodality, which suggests the presence of two stellar populations; one primordial stellar generation with composition similar to field stars, and a second generation that is enriched in material processed through hydrogen-burning (enriched in Na and Al and depleted in O and Mg). The cluster is dominated (75%) by the second ge...

  3. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 1; DC-8

    Science.gov (United States)

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground-based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley s Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  4. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 2; P-3B

    Science.gov (United States)

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  5. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Hayden, Michael; Holtzman, Jon; Feuillet, Diane [New Mexico State University, Las Cruces, NM 88003 (United States); Majewski, Steven R.; García Pérez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Smith, Verne [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Robin, Annie C.; Sobeck, Jennifer [Institut Utinam, CNRS UMR 6213, OSU THETA, Université de Franche-Comté, 41bis avenue de l' Observatoire, F-25000 Besançon (France); Cunha, Katia [Observatorio Nacional, Rio de Janeiro (Brazil); Allende Prieto, Carlos [Instituto de Astrofsica de Canarias, E-38205 La Laguna, Tenerife (Spain); Zasowski, Gail [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, IC2, Liverpool Science Park, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shetrone, Matthew, E-mail: dnidever@umich.edu [University of Texas at Austin, McDonald Observatory, 32 Fowlkes Road, McDonald Observatory, TX 79734-3005 (United States); and others

    2014-11-20

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10{sup –10} yr{sup –1}, which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE{sup –1}) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  6. Evolution of trace gas concentrations and the chemical properties of particles at the top of the Mexico City boundary layer.

    Science.gov (United States)

    Ochoa, C.; Baumgardner, D.; Grutter, M.

    2007-05-01

    The Altzomoni ridge is located in the Cortez Pass, in a national park, between the volcanoes of Iztaccíhuatl and Popocatépetl, at an altitude of 4010 m, and 60 km to the SE of the center of Mexico City. This region is isolated from local emissions from combustion yet there is a daily incursion of pollution from either the Mexico City basin, when winds are from the west or from the Puebla valley when winds are from the east. This was the motivation for setting up instruments at this site to measure the concentrations of trace gases and the physical, chemical and optical properties of aerosol particles. Measurements were begun during the last week of November, 2005 and continued until early June, 2006. The concentrations of CN, CO2 and CO clearly indicate that the site is in the free troposphere at night and early morning, but the regional boundary layer grows to altitudes above the site every day. Hence, this site is ideal for making observations of atmospheric chemistry at the interface between rural and urban regions. The preliminary analyses have shown that the "free tropospheric" values of CN, particle bound polycyclic aromatic hydrocarbons (PPAH) and black carbon (BC) rarely decrease below 1000 cm-3, 4 ng m-3, 100 ng m-3, respectively, suggesting the presence of a residual layer of contaminants. Nighttime CO and O3 are usually above 0.1 and 0.05 ppm. The CO concentration at the measurement site is a tenth of the Mexico City value and reached its maximum approximately six hours after the maximum in the city center. The maximum O3 in Mexico City and Altzomoni are frequently the same concentration but with no repeatable pattern in the phase differences. The highly linear relationship between BC and CO reflects the removal and dilution processes, i.e. the average ratio between BC and CO in Mexico City is 1000:1 whereas it is 3000:1 in Altzomoni. This relationship also depends on the origin of the boundary layer air, i.e. whether it comes from the east or west

  7. Reading the metal diaries of the universe : tracing cosmic chemical evolution from the reionization epoch till the present

    NARCIS (Netherlands)

    Vink, J.

    2009-01-01

    Metals are essential for star formation and their subsequent evolution, and ultimately the formation of planets and the development of life, as we know it. Reconstructing the cosmic history of metals, reaching from the first population of stars to the processes involved in the formation of galaxies

  8. Chemical evolution and life

    Directory of Open Access Journals (Sweden)

    Malaterre Christophe

    2015-01-01

    Full Text Available In research on the origins of life, the concept of “chemical evolution” aims at explaining the transition from non-living matter to living matter. There is however strong disagreement when it comes to defining this concept more precisely, and in particular with reference to a chemical form of Darwinian evolution: for some, chemical evolution is nothing but Darwinian evolution applied to chemical systems before life appeared; yet, for others, it is the type of evolution that happened before natural selection took place, the latter being the birthmark of living systems. In this contribution, I review the arguments defended by each side and show how both views presuppose a dichotomous definition of “life”.

  9. Galactic Chemical Evolution

    CERN Document Server

    Mollá, M; da Costa, R; Gibson, B K; Díaz, A I

    2016-01-01

    We analyze the evolution of oxygen abundance radial gradients resulting from our chemical evolution models calculated with different prescriptions for the star formation rate (SFR) and for the gas infall rate, in order to assess their respective roles in shaping gradients. We also compare with cosmological simulations and confront all with recent observational datasets, in particular with abundances inferred from planetary nebulae. We demonstrate the critical importance in isolating the specific radial range over which a gradient is measured, in order for their temporal evolution to be useful indicators of disk growth with redshift.

  10. Impact of melt migration on the evolution of major and trace element composition in a crystalline mush: Implications for chemical differentiation in the continental crust

    Science.gov (United States)

    Jackson, M.; Solano, J.; Sparks, R. S.; Blundy, J.

    2013-12-01

    Migration of melt through a crystalline mush is common within the continental crust, occurring in magma chambers and lava flows. Mush formation and associated migration of the buoyant melt along grain boundaries is inevitable during melting of initially solid rock, or cooling and crystallisation of magma. Because there is efficient exchange of heat and mass between melt and solid phases, they remain in local thermal and chemical equilibrium. The composition of the melt therefore evolves as it migrates through the mush and, to properly capture this, models are required that include chemical reaction. However, although reactive transport models have been developed for the mantle, none have yet been presented that are applicable to the continental crust. Models developed for the mantle are not directly applicable to the crust, because the initial and boundary conditions are different. We present the first quantitative model of heat, mass and both major and trace element transport in a mush undergoing compaction which accounts for component transport and chemical reaction during melt migration and which is applicable to crustal systems. The model describes the phase behaviour of binary systems (both eutectic and solid solution), with melt and solid composition determined from phase diagrams using the local temperature and bulk composition. Trace element concentration is also determined. The results demonstrate that component transport and chemical reaction generates compositional variation in both major and trace elements that is not captured by existing geochemical models. Even for the simplest case of a homogenous, insulated column that is instantaneously melted then allowed to compact, we find that component transport and reaction leads to spatial variations in major element composition, and produces melt that is more enriched in incompatible elements than predicted by batch melting. In deep crustal hot zones (DCHZ), created by the repeated intrusion of hot, mantle

  11. Chemical evolution and origin of the Luumäki gem beryl pegmatite: Constraints from mineral trace element chemistry and fractionation modeling

    Science.gov (United States)

    Michallik, Radoslaw M.; Wagner, Thomas; Fusswinkel, Tobias; Heinonen, Jussi S.; Heikkilä, Pasi

    2017-03-01

    The 1928 Ma old Luumäki gem beryl pegmatite is hosted by rapakivi granites of the Wiborg batholith in southeast Finland. The moderately evolved niobium-yttrium-fluorine (NYF) pegmatite system belongs to the topaz-beryl type of the rare-element pegmatite class. It has a simple major mineral assemblage of K-feldspar + plagioclase + quartz + biotite ± fluorite throughout the main pegmatite zones (border, wall, intermediate, and core zone). It consists of at least two chemically related bodies (Luumäki N and Luumäki S), of which only Luumäki N contains gem beryl (heliodor) bearing miarolitic pockets. We characterize the geology, mineral assemblages, and the major and trace element chemistry of K-feldspar, plagioclase, biotite and quartz from the pegmatite. The mineral chemistry data show a progressive enrichment of Rb, Cs and Tl in K-feldspars, and depletion in Sr and Ba. The K-feldspar from the beryl-bearing pockets records the highest enrichment in incompatible elements, distinct from the data trend shown by K-feldspar from the main pegmatite zones. The REE data for plagioclase show a decrease of the positive Eu-anomaly and then a change to negative Eu-anomaly in the more evolved inner zones. This demonstrates an increase of the oxidation state of the pegmatite melt over time, consistent with the abundance of hematite in late-stage mineral assemblages including those of the miarolitic pockets. Fractional crystallization modeling is able to replicate the progressive enrichment of incompatible elements in K-feldspar, and to predict degrees of crystallization, which are in good agreement with volume estimates for the different pegmatite zones. The modeling results demonstrate that formation of the zoned pegmatite up to the quartz core can be well explained by an igneous crystallization process, leading up to considerable enrichment in incompatible elements. The melt reached saturation with an aqueous hydrothermal fluid only after more than 90% of the pegmatite melt

  12. Micro-area Chemical Composition and Preserved P-T Evolution Trace of Phengite in Albite Gneiss from the Donghai Ultrahigh-Pressure Metamorphic Area, East China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Study of micro-area chemical compositions indicates that phengite in albite gneiss from hole ZK2304 of the Donghai region has evident compositional zoning. SiO2 and tetrahedrally coordinated Si contents decrease, and Al2O3, AlIV and AlVI contents increase gradually from core to rim. However, K2O, MgO and FeO contents basically remain unchanged from core to rim. According to P-T estimates obtained from geothermometers and barometers, combined with previous experimental data, the core belt (micro-area I) of phengite was formed at T=637- 672° C and P=1.55- 1.73 GPa, and the transitional belt (micro-area II) of the phengite were formed at T=594- 654° C and P=1.35- 1.45 GPa. Towards the rim belt (micro-area III), the temperature decreased slightly, but the pressure decreased rapidly with T=542- 630° C and P=1.12- 1.19 GPa. The P-T evolution path recorded by the compositional zoning of phengite is characterized by significant near-isothermal decompression, revealing that the gneiss has undergone high-pressure-ultrahigh-pressure metamorphism. The compositional zoning of the phengite in the albite gneiss may have formed in the geodynamic process of rapid exhumation in the Sulu ultrahigh-pressure metamorphic belt.

  13. Introduction to Galactic Chemical Evolution

    CERN Document Server

    Matteucci, Francesca

    2016-01-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galax...

  14. Galactic Chemical Evolution

    CERN Document Server

    Gibson, B K; Renda, A; Kawata, D; Lee, H; Gibson, Brad K.; Fenner, Yeshe; Renda, Agostino; Kawata, Daisuke; Lee, Hyun-chul

    2003-01-01

    The primary present-day observables upon which theories of galaxy evolution are based are a system's morphology, dynamics, colour, and chemistry. Individually, each provides an important constraint to any given model; in concert, the four represent a fundamental (intractable) boundary condition for chemodynamical simulations. We review the current state-of-the-art semi-analytical and chemodynamical models for the Milky Way, emphasising the strengths and weaknesses of both approaches.

  15. Concrete Chemical Evolution

    Energy Technology Data Exchange (ETDEWEB)

    D.H. Tang

    1998-07-31

    The objectives of this analysis are to discuss and evaluate testing results that were performed for the M&O by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO{sub 2}) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented.

  16. Introduction to Galactic Chemical Evolution

    Science.gov (United States)

    Matteucci, Francesca

    2016-04-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galaxies. I will show how, from these comparisons, one can derive important constraints on stellar nucleosynthesis and galaxy formation mechanisms. Most of the concepts described in this lecture can be found in the monograph by Matteucci (2012).

  17. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO₃ radical chemistry, and N₂O₅ heterogeneous hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.; Gilles, Marry K.; Hubbe, John M.; Jayne, J. T.; Kleinman, Lawrence I.; Laskin, Alexander; Madronich, Sasha; Onasch, Timothy B.; Pekour, Mikhail S.; Springston, Stephen R.; Thornton, Joel A.; Tivanski, Alexei V.; Worsnop, Douglas R.

    2010-06-22

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.

  18. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.; Brechtel, F. J.; Gilles, M. K.; Hubbe, J. M.; Jayne, J. T.; Laskin, A.; Madronich, S.; Onasch, T. B.; Pekour, M. S.; Springston, S. R.; Thornton, J. A.; Tivanski, A. V.; Worsnop, D. R.

    2010-06-01

    Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{sub 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.

  19. Chemical Evolution of M31

    CERN Document Server

    Matteucci, F

    2014-01-01

    We review chemical evolution models developed for M31 as well as the abundance determinations available for this galaxy. Then we present a recent chemical evolution model for M31 including radial gas flows and galactic fountains along the disk, as well as a model for the bulge. Our models are predicting the evolution of the abundances of several chemical species such as H, He, C, N, O, Ne, Mg, Si, S, Ca and Fe. From comparison between model predictions and observations we can derive some constraints on the evolution of the disk and the bulge of M31. We reach the conclusions that Andromeda must have evolved faster than the Milky Way and inside-out, and that its bulge formed much faster than the disk on a timescale $\\leq$ 0.5 Gyr. Finally, we present a study where we apply the model developed for the disk of M31 in order to study the probability of finding galactic habitable zones in this galaxy.

  20. Chemical evolution of star clusters

    OpenAIRE

    van Loon, Jacco Th.

    2009-01-01

    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxi...

  1. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. V. Evidence for a wide age distribution and a complex MDF

    Science.gov (United States)

    Bensby, T.; Yee, J. C.; Feltzing, S.; Johnson, J. A.; Gould, A.; Cohen, J. G.; Asplund, M.; Meléndez, J.; Lucatello, S.; Han, C.; Thompson, I.; Gal-Yam, A.; Udalski, A.; Bennett, D. P.; Bond, I. A.; Kohei, W.; Sumi, T.; Suzuki, D.; Suzuki, K.; Takino, S.; Tristram, P.; Yamai, N.; Yonehara, A.

    2013-01-01

    Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. Combined with the sample of 26 stars from the previous papers in this series, we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) the metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H] = -1.9 to +0.6; (ii) the dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. A tentative interpretation is that there could be different stellar populations at interplay, each with a different scale height: the thin disk, the thick disk, and a bar population; (iii) the stars with [Fe/H] ≲ -0.1 are old with ages between 10 and 12 Gyr; (iv) the metal-rich stars with [Fe/H] ≳ -0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4-5 Gyr and a tail towards higher ages; (v) there are indications in the [α/Fe]-[Fe/H] abundance trends that the "knee" occurs around [Fe/H] = -0.3to -0.2, which is a slightly higher metallicity as compared to the "knee" for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central

  2. The Chemical Evolution of Phosphorus

    CERN Document Server

    Jacobson, Heather R; Frebel, Anna; Roederer, Ian U; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 A) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-STIS spectra, we have measured P abundances in 13 stars spanning -3.3 <= [Fe/H] <= -0.2, and obtained an upper limit for a star with [Fe/H] ~ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of -1 <= [Fe/H] <= +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the ke...

  3. Tracing cosmic evolution with clusters of galaxies

    CERN Document Server

    Voit, G M

    2004-01-01

    The most successful cosmological models to date envision structure formation as a hierarchical process in which gravity is constantly drawing lumps of matter together to form increasingly larger structures. Clusters of galaxies currently sit atop this hierarchy as the largest objects that have had time to collapse under the influence of their own gravity. Thus, their appearance on the cosmic scene is also relatively recent. Two features of clusters make them uniquely useful tracers of cosmic evolution. First, clusters are the biggest things whose masses we can reliably measure because they are the largest objects to have undergone gravitational relaxation and entered into virial equilibrium. Mass measurements of nearby clusters can therefore be used to determine the amount of structure in the universe on scales of 10^14 to 10^15 solar masses, and comparisons of the present-day cluster mass distribution with the mass distribution at earlier times can be used to measure the rate of structure formation, placing ...

  4. Chemical evolution of star clusters

    CERN Document Server

    van Loon, Jacco Th

    2009-01-01

    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.

  5. Chemical evolution of star clusters.

    Science.gov (United States)

    van Loon, Jacco Th

    2010-02-28

    I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.

  6. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  7. Prebiotic Chemical Evolution in the Astrophysical Context

    Science.gov (United States)

    Ziurys, L. M.; Adande, G. R.; Edwards, J. L.; Schmidt, D. R.; Halfen, D. T.; Woolf, N. J.

    2015-06-01

    An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO+, and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.

  8. Prebiotic chemical evolution in the astrophysical context.

    Science.gov (United States)

    Ziurys, L M; Adande, G R; Edwards, J L; Schmidt, D R; Halfen, D T; Woolf, N J

    2015-06-01

    An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO(+), and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.

  9. Chemical evolution and the origin of life

    Science.gov (United States)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  10. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  11. Chemical Evolution Library for Galaxy Formation Simulation

    Science.gov (United States)

    Saitoh, Takayuki R.

    2017-02-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  12. Chemical Evolution models of Local Group galaxies

    CERN Document Server

    Tosi, M P

    2003-01-01

    Status quo and perspectives of standard chemical evolution models of Local Group galaxies are summarized, discussing what we have learnt from them, what we know we have not learnt yet, and what I think we will learn in the near future. It is described how Galactic chemical evolution models have helped showing that: i) stringent constraints on primordial nucleosynthesis can be derived from the observed Galactic abundances of the light elements, ii) the Milky Way has been accreting external gas from early epochs to the present time, iii) the vast majority of Galactic halo stars have formed quite rapidly at early epochs. Chemical evolution models for the closest dwarf galaxies, although still uncertain so far, are expected to become extremely reliable in the nearest future, thanks to the quality of new generation photometric and spectroscopic data which are currently being acquired.

  13. Tracing the evolution of competence in Haemophilus influenzae.

    Directory of Open Access Journals (Sweden)

    Heather Maughan

    Full Text Available Natural competence is the genetically encoded ability of some bacteria to take up DNA from the environment. Although most of the incoming DNA is degraded, occasionally intact homologous fragments can recombine with the chromosome, displacing one resident strand. This potential to use DNA as a source of both nutrients and genetic novelty has important implications for the ecology and evolution of competent bacteria. However, it is not known how frequently competence changes during evolution, or whether non-competent strains can persist for long periods of time. We have previously studied competence in H. influenzae and found that both the amount of DNA taken up and the amount recombined varies extensively between different strains. In addition, several strains are unable to become competent, suggesting that competence has been lost at least once. To investigate how many times competence has increased or decreased during the divergence of these strains, we inferred the evolutionary relationships of strains using the largest datasets currently available. However, despite the use of three datasets and multiple inference methods, few nodes were resolved with high support, perhaps due to extensive mixing by recombination. Tracing the evolution of competence in those clades that were well supported identified changes in DNA uptake and/or transformation in most strains. The recency of these events suggests that competence has changed frequently during evolution but the poor support of basal relationships precludes the determination of whether non-competent strains can persist for long periods of time. In some strains, changes in transformation have occurred that cannot be due to changes in DNA uptake, suggesting that selection can act on transformation independent of DNA uptake.

  14. The Chemical Evolution of the Milky Way

    CERN Document Server

    Tosi, M P

    1999-01-01

    The field of chemical evolution modeling of the Galaxy is experiencing in the last years a phase of high activity and important achievements. There are, however, several open questions which still need to be answered. In this review I summarize what have been the most important achievements and what are some of the most urgent questions to be answered.

  15. Chemical Evolution Model of M33

    Science.gov (United States)

    Robles-Valdez, F.; Carigi, L.

    2011-10-01

    We present a chemical evolution model (CEM) of M33 and we find that M33, which is smaller than both M31 and MW, shows a lower gas infall rate, SFR efficiency, and IMF M_{up}. Therefore the CEMs for large spiral galaxies (Carigi et al. 2005; Meneses-Goytia et al. 2011) can be scaled to a smaller galaxy.

  16. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    Science.gov (United States)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  17. Chemical and mass evolution of galaxies

    CERN Document Server

    Ziegler, B L

    2004-01-01

    An introduction is given to projects investigating galaxy evolution quantitatively by spectroscopic observations of very distant galaxies that have weak apparent brightnesses and small sizes as it is feasible with 10m-class telescopes like SALT. Such methods encompass scaling relations like the Tully-Fisher and Fundamental Plane relations that can be utilized to determine the luminosity evolution and mass assembly of galaxies. The stellar populations can be analyzed with respect to age, metallicity, and chemical enrichment by measureing absorption line strengths. Possible effects on galaxy evolution of the environment in rich clusters of galaxies compared to the field are also addressed. For each method, recent applications are presented like the evolution of the TFR determined with 77 field spirals up to z=1, a study of the internal kinematics of distant cluster spirals and a comparison of the stellar populations of ellipticals in the field and in rich clusters at z=0.4.

  18. The Chemical Evolution of Dynamically Hot Galaxies

    Directory of Open Access Journals (Sweden)

    Michael G. Richer

    2001-01-01

    Full Text Available We investigate the chemical properties of M32, the bulges of M31 and the Milky Way, and the dwarf spheroidal galaxies NGC 205, NGC 185, Sagittarius, and Fornax using oxygen abundances for their planetary nebulae. Our principal result is that the mean stellar oxygen abundances correlate very well with thei r mean velocity dispersions, implying that the balance between energy input from type II supernovae and the gravitational potential controls chemical evolution in bulges, ellipticals, and dwarf spheroidals. It appears that chemical evolution ceases once supernovae have injected sufficient energy that a galacti c wind develops. All of the galaxies follow a single relation between oxygen abundance and luminosity, but the dwarf spheroidals have systematically higher [O/Fe] ratios than the other galaxies. Consequently, dynamically hot galaxies do not share a common star formation history nor need to a common chemical evolution, despite attaining similar mean stellar oxygen abundances when formin g similar masses. The oxygen abundances support previous indications that stars in higher luminosity ellipticals and bulges were formed on a shorter time scale than their counterparts in less luminous systems.

  19. Tracing back the evolution of the candidate LBV HD168625

    CERN Document Server

    Mahy, L; Royer, P; Waelkens, C

    2016-01-01

    Aims. We obtained Herschel/PACS imaging and spectroscopic observations of the nebula surrounding the candidate LBV HD168625. By combining these data with optical spectra of the star, we want to constrain the abundances in the nebula and in the star and compare them to trace back its evolution. Methods. We use CMFGEN to determine the fundamental parameters and the CNO abundances of the central star whilst the abundances of the nebula are derived from the emission lines present in the Herschel/PACS spectrum. Result. The FIR images show a nebula composed of an elliptical ring/torus of ejecta with a ESE-WNW axis and of a second perpendicular bipolar structure composed of empty caps/rings. We detect equatorial shells composed of dust and ionized material with different sizes when observed at different wavelengths, and bipolar caps more of less separated from the central star in H$\\alpha$ and mid-IR images. This complex global structure seems to show 2 different inclinations: 40{\\deg} for the equatorial torus and 6...

  20. Retrocausality in Quantum Phenomena and Chemical Evolution

    Directory of Open Access Journals (Sweden)

    Koichiro Matsuno

    2016-10-01

    Full Text Available The interplay between retrocausality and the time-reversal symmetry of the dynamical law of quantum mechanics underscores the significance of the measurement dynamics with the use of indivisible and discrete quantum particles to be mediated. One example of empirical evidence demonstrating the significance of retrocausality going along with time-reversal symmetry is seen in the operation of a reaction cycle to be expected in chemical evolution. A reaction cycle can hold itself when the causative operation of the cycle remains robust, even when facing frequent retrocausal interventions of a quantum-mechanical origin. Quantum mechanics in and of itself has potential in raising a reaction cycle in the prebiotic phase of chemical evolution, even without any help of artefactual scaffoldings of an external origin.

  1. Chemical Evolution of the Juvenile Universe

    CERN Document Server

    Wasserburg, G J

    2009-01-01

    Only massive stars contribute to the chemical evolution of the juvenile universe corresponding to [Fe/H]-0.32. Recent observations show that there are stars with [Sr/Fe]<-2 and [Fe/H]<-3. This proves that the two-component model is not correct and that a third component is necessary to explain the observations. This leads to a simple three-component model including low-mass and normal SNe II and hypernovae (HNe), which gives a good description of essentially all the data for stars with [Fe/H]<-1.5. We conclude that HNe are more important than normal SNe II in the chemical evolution of the low-A elements, in sharp distinction to earlier models. (Abridged)

  2. Chemical evolution and meteorites: an update.

    Science.gov (United States)

    Pizzarello, Sandra

    2004-02-01

    Carbonaceous chondrites are a primitive group of meteorites, which contain abundant organic material and provide a unique natural record of prebiotic chemical evolution. This material comprises a varied suite of soluble organic compounds that are similar, sometimes identical, to those found in the biosphere, such as amino acids, carboxylic acids, and sugar derivatives. Some amino acids of this suite also show L-enantiomeric excesses, and suggest the possibility they may have contributed to terrestrial homochirality by direct input of meteoritic material to the early Earth. This optical activity appears to be limited to the subgroup of alpha-methyl amino acids which, although not common in the extant biosphere, would have been well suited to provide the early earth with both enantiomeric excesses and means for their amplification by subsequent chemical evolution. We can also envision this exogenous delivery of carbonaceous material by meteorites and comets as having coincided with the endogenous formation of prebiotic precursors and influenced their evolution by complementary reactions or catalysis.

  3. Chemical Evolution and Meteorites: An Update

    Science.gov (United States)

    Pizzarello, Sandra

    2004-02-01

    Carbonaceous chondrites are a primitive group of meteorites, which contain abundant organic material and provide a unique natural record of prebiotic chemical evolution. This material comprises a varied suite of soluble organic compounds that are similar, sometimes identical, to those found in the biosphere, such as amino acids, carboxylic acids, and sugar derivatives. Some amino acids of this suite also show L-enantiomeric excesses, and suggest the possibility they may have contributed to terrestrial homochirality by direct input of meteoritic material to the early Earth. This optical activity appears to be limited to the subgroup of α-methyl amino acids which, although not common in the extant biosphere, would have been well suited to provide the early earth with both enantiomeric excesses and means for their amplification by subsequent chemical evolution. We can also envision this exogenous delivery of carbonaceous material by meteorites and comets as having coincided with the endogenous formation of prebiotic precursors and influenced their evolution by complementary reactions or catalysis.

  4. Equilibrium and Sudden Events in Chemical Evolution

    CERN Document Server

    Weinberg, David H; Freudenburg, Jenna

    2016-01-01

    We present new analytic solutions for one-zone (fully mixed) chemical evolution models and explore their implications. In contrast to existing analytic models, we incorporate a realistic delay time distribution for Type Ia supernovae (SNIa) and can therefore track the separate evolution of $\\alpha$-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNIa. In generic cases, $\\alpha$ and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter $\\eta$, while the equilibrium abundance ratio [$\\alpha$/Fe] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Sy...

  5. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  6. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  7. The Chemical Evolution of the Universe

    Science.gov (United States)

    Baker, A. C.; Mathlin, G. P.; Churches, D. K.; Edmunds, M. G.

    2000-12-01

    We have constructed a simple, robust model of the chemical evolution of galaxies from high to low redshift, and applied it to published observations of damped Lyman-alpha quasar absorption line systems (DLAs). The elementary 'monolithic collapse' model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). These calculations appear in Mathlin, Baker, Churches and Edmunds (2000) (astro-ph/0009226, MNRAS in press), where we also consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays. Many DLA absorber galaxies are rather faint and close to the quasar line-of-sight, requiring at least eight-metre class telescopes, and adaptive optics to be detected even in the near-IR. Despite its simplicity, our elementary model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z ~ 3. However, from the comparison of our model with observations, star formation rates at higher redshifts (z > 3) are clearly enhanced in the real Universe. Galaxy interactions and mergers, and gas flows very probably play a major role. We are now engaged in a 'two pronged' attack on the questions raised in Mathlin et al. (2000). As part of the QuickStart Gemini North observations programme, we are acquiring deep, high spatial resolution Hopuka'a/QUIRC K band observations of DLA quasars studied by Mathlin et al. (2000). We are also incorporating merger-induced starburst activity into our chemical evolution models. I will present our latest results from Gemini North, and their interpretation in our revised theoretical framework. Research funded by the UK

  8. Chemical evolution of primitive solar system bodies

    Science.gov (United States)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  9. Chemical Evolution of Blue Compact Galaxies

    Institute of Scientific and Technical Information of China (English)

    Fei Shi; Xu Kong; Fu-Zhen Cheng

    2006-01-01

    Based on a sample of 72 Blue Compact Galaxies (BCGs) observed with the 2.16 m telescope of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and about 4000 strong emission line galaxies from the Sloan Digital Sky Survey,we analyzed their chemical evolution history using the revised chemical evolution model of Larsen et al. Our sample covers a much larger metallicity range (7.2<12+log(O/H) <9.0). We found that, in order to reproduce the observed abundance pattern and gas fraction over the whole metallicity range, a relatively continuous star formation history is needed for high metallicity galaxies, while assuming a series of instantaneous bursts with long quiescent periods (some Gyrs) for low metallicity galaxies. Model calculations also show that only the closed-box model is capable of reproducing the observational data over the whole metallicity range. Models that consider the ordinary winds and/or inflow can only fit the observations in the low metallicity range, and a model with enriched wind cannot fit the data in the whole metallicity range. This implies that the current adopted simple wind and inflow models are not applicable to massive galaxies, where the underlying physics of galactic winds or inflow could be more complicated.

  10. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  11. Equilibrium and Sudden Events in Chemical Evolution

    Science.gov (United States)

    Weinberg, David H.; Andrews, Brett H.; Freudenburg, Jenna

    2017-03-01

    We present new analytic solutions for one-zone (fully mixed) chemical evolution models that incorporate a realistic delay time distribution for Type Ia supernovae (SNe Ia) and can therefore track the separate evolution of α-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNe Ia. Our solutions allow constant, exponential, or linear–exponential ({{te}}-t/{τ {sfh}}) star formation histories, or combinations thereof. In generic cases, α and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter η, while the equilibrium abundance ratio [α /{Fe}] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Systems with ongoing gas accretion develop metallicity distribution functions (MDFs) that are sharply peaked, while “gas starved” systems with rapidly declining star formation, such as the conventional “closed box” model, have broadly peaked MDFs. A burst of star formation that consumes a significant fraction of a system’s available gas and retains its metals can temporarily boost [α /{Fe}] by 0.1–0.3 dex, a possible origin for rare, α-enhanced stars with intermediate age and/or high metallicity. Other sudden transitions in system properties can produce surprising behavior, including backward evolution of a stellar population from high to low metallicity.

  12. Chemically homogeneous evolution in massive binaries

    CERN Document Server

    de Mink, S E; Langer, N; Pols, O R

    2010-01-01

    Rotation can have severe consequences for the evolution of massive stars. It is now considered as one of the main parameters, alongside mass and metallicity that determine the final fate of single stars. In massive, fast rotating stars mixing processes induced by rotation may be so efficient that helium produced in the center is mixed throughout the envelope. Such stars evolve almost chemically homogeneously. At low metallicity they remain blue and compact, while they gradually evolve into Wolf-Rayet stars and possibly into progenitors of long gamma-ray bursts. In binaries this type of evolution may occur because of (I) tides in very close binaries, as a result of (II) spin up by mass transfer, as result of (III) a merger of the two stars and (IV) when one of the components in the binary was born with a very high initial rotation rate. As these stars stay compact, the evolutionary channels are very different from what classical binary evolutionary models predict. In this contribution we discuss examples of ne...

  13. JINA-NuGrid Galactic Chemical Evolution Pipeline

    CERN Document Server

    Côté, Benoit; Herwig, Falk; O'Shea, Brian W; Pignatari, Marco; Silvia, Devin; Jones, Samuel; Fryer, Chris L

    2016-01-01

    Galactic chemical evolution is a topic that involves nuclear physics, stellar evolution, galaxy evolution, observation, and cosmology. Continuous communication and feedback between these fields is a key component in improving our understanding of how galaxies form and how elements are created and recycled in galaxies and intergalactic space. In this proceedings, we present the current state of the JINA-NuGrid chemical evolution pipeline. It is designed to probe the impact of nuclear astrophysics uncertainties on galactic chemical evolution, to improve our knowledges regarding the origin of the elements in a cosmological context, and to create the required interdisciplinary connections.

  14. ATLASGAL: Chemical evolution of star forming clumps

    Science.gov (United States)

    Figura, Charles C.; Urquhart, James S.; Wyrowski, Friedrich

    2017-01-01

    Although massive stars are few in number, they impact their host molecular clouds, clusters, and galaxies in profound ways, playing a vital role in regulating star formation in their host galaxy. Understanding the formation of these massive stars is critical to understanding this evolution, but their rapid early development causes them to reach the main sequence while still shrouded in their natal molecular cloud. Many studies have investigated these regions in a targeted manner, but a full understanding necessitates a broader view at all stages of formation across many star forming regions.We have used mid-infrared continuum surveys to guide selection of a statistically large sample of massive dust clumps from the 10,000 such clumps identified in the ATLASGAL Compact Source Catalogue (CSC), ensuring that all stages of the evolutionary process are included. A final sample of 600 fourth-quadrant sources within 1 degree of the Galactic plane were observed with the Mopra telescope with an 8 GHz bandwidth between 85.2 and 93.4 GHz.We present an overview of our results. We have identified over 30 molecular lines, seven of which with detected hyperfine structure, as well as several mm-radio recombination line transitions. Source velocities indicate that these regions trace the Crux-Scutum, Norma, and Carina Sagitarius arms. We have performed an analysis of linewidth and line intensity ratios, correlating these with star formation stages as identified by IR brightness at the 70 and 24 μm bands, and present several molecular pairs whose linewidth and intensity might serve as significant tracers of the evolutionary stage of star formation. We comment on the results of PCA analysis of the measured parameters for the overall population and the star formation stage subgroups with an eye toward characterising early stellar development through molecular line observations.

  15. Tennessee to Texas: Tracing the Evolution Controversy in Public Education

    Science.gov (United States)

    Armenta, Tony; Lane, Kenneth E.

    2010-01-01

    Darwin's Theory of Evolution has stirred controversy since its inception. Public schools in the United States, pressed by special interest groups on both sides of the controversy, have struggled with how best to teach the theory, if at all. Court cases have dealt with whether states can ban the teaching of evolutionary theory, whether Creationism…

  16. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  17. Galaxy Formation and Chemical Evolution in Hierarchical Hydrodynamical Simulations

    CERN Document Server

    Cora, S A; Tissera, P B; Lambas, D G

    2000-01-01

    We report first results of an implementation of a chemical model in a cosmological code, based on the Smoothed Particle Hydrodynamics (SPH) technique. We show that chemical SPH simulations are a promising tool to provide clues for the understanding of the chemical properties of galaxies in relation to their formation and evolution in a cosmological framework.

  18. CELib: Software library for simulations of chemical evolution

    Science.gov (United States)

    Saitoh, Takayuki R.

    2016-12-01

    CELib (Chemical Evolution Library) simulates chemical evolution of galaxy formation under the simple stellar population (SSP) approximation and can be used by any simulation code that uses the SSP approximation, such as particle-base and mesh codes as well as semi-analytical models. Initial mass functions, stellar lifetimes, yields from type II and Ia supernovae, asymptotic giant branch stars, and neutron star mergers components are included and a variety of models are available for use. The library allows comparisons of the impact of individual models on the chemical evolution of galaxies by changing control flags and parameters of the library.

  19. Tracing the geochemical evolution of alkaline Lake Van, Turkey

    Science.gov (United States)

    Kwiecien, Ola; Viehberg, Finn; Plessen, Birgit; Litt, Thomas; Tillman Meyer, Felix

    2015-04-01

    Terminal Lake Van, the world's largest soda basin, is characterised by Na-CO3-Cl water chemistry (Reimer et al., 2008), salinity of ~22 ‰ and high pH of ~9.7. The sedimentary record of the lake goes ca. 600 ka back and documents major climatic events over that period (Stockhecke et al., 2014). Alas, the longevity of the basin does not mean that it persisted unchanged over such a long time. Information collected within the ICDP PALEOVAN project clearly suggests that upon its birth the chemistry of early Lake Van was very different from its modern alkaline equivalent. Here we document, by means of proxy data, the changes in water chemistry in a transforming basin. Results of lithological (Stockhecke et al., 2014) and micropaleontological (ostracod, gastropod and diatom assemblages) analysis, combined with geochemical data (δ18O, δ13C, Mg/Ca, Sr/Ca) obtained from the biogenic and authigenic carbonate fraction imply, that early Lake Van was a relatively shallow, fresh-to-brackish and, most probably, open basin. Sedimentological information points to tectonic factors rather than climatic changes responsible for closing the lake ca. 430 ka ago. Reimer, A., Landmann, G., Kempe, S., 2008. Lake Van, Eastern Anatolia, Hydrochemistry and History. Aquat. Geochemistry 15, 195-222. Stockhecke, M., Sturm, M., Brunner, I., Schmincke, H.-U., Sumita, M., Kipfer, R., Cukur, D., Kwiecien, O., Anselmetti, F.S., 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology.

  20. Trace Gas Evolution in the Present and Past Atmosphere

    DEFF Research Database (Denmark)

    Winther, Malte Nordmann

    , allowed for determinationof isotopic fractionation values during both production and reduction of N2O, comparableto previous studies.In Part III, I present measurements of ice core samples analyzed for isotopes of N2O. Icesamples from three time periods of the Holocene and one from the glacial were...... originates from microbial production in terrestrial andaquatic ecosystems. In this thesis I present measurements of the intramolecular distributionof 15N in N2O given as site preference (difference in abundance of the isotopomers), σ15Nbulk(average abundance of the isotopomers), and measurements of σ18O-N2O.......Continuous incubation experiments are presented with nitrifying bacteria Nitrosomonasmobilis revealing strong indications of N2O production from different chemical reactions.The measurements revealed a three step site preference pattern in the range of nitricationand denitrication and we therefore suggest...

  1. Chemical mixtures: considering the evolution of toxicology and chemical assessment.

    Science.gov (United States)

    Monosson, Emily

    2005-04-01

    The assessment of chemical mixtures is a complex topic for toxicologists, regulators, and the public. In this article the linkage between the science of toxicology and the needs of governmental regulatory agencies in the United States is explored through an overview of environmental regulations enacted over the past century and a brief history of modern toxicology. One of the goals of this overview is to encourage both regulators and scientists to consider the benefits and limitations of this science-regulatory relationship as they tackle existing issues such as chemical mixtures. It is clear that a) over the past 100 years chemical regulation and toxicologic research, have in large part, shared a common emphasis on characterization and regulation of individual chemicals. But chemical mixtures have been, and continue to be, evaluated at hazardous waste sites around the United States. For this reason the current U.S. Environmental Protection Agency guidelines for chemical mixtures assessment are also reviewed. These guidelines highlight the current practice of mixtures assessment, which relies primarily on the existing single-chemical database. It is also clear that b) the science and assessment of chemical mixtures are moving forward through the combined efforts of regulatory agencies and scientists from a broad range of disciplines, including toxicology. Because toxicology is at this exciting crossroads, particular attention should be paid to the forces (e.g., public demands, regulatory needs, funding, academic interests) that both promote and limit the growth of this expanding discipline.

  2. Tracing Earth's O2 Evolution Using Zn/Fe Systematics in Carbonates

    Science.gov (United States)

    Liu, X. M.; Hazen, R. M.; Kah, L. C.; Sverjensky, D. A.; Cui, H.; Kaufmann, A. J.

    2014-12-01

    Redox-sensitive major and trace elements in iron formations and black shales have been developed as proxies to reconstruct paleoenvironmental history in deep time [1, 2]. Many Proterozoic successions, however, contain abundant limestone and dolomite, and so carbonate-based redox proxies could help greatly to expand the paleoredox record in time and space. Most paleoenvironmental research on sedimentary rocks focuses on individual stratigraphic successions; here, however, we adopt a complementary strategy, analyzing a large suite of Mesozoic, Paleozoic, and Precambrian samples that enables us to make global statistical statements about elemental abundances through time. Here we explore the use of Zn/Fe ratios as proxies to trace the evolution of redox profiles in marine basins, based on analysis of major and trace element concentrations in micro-drilled carbonate rocks that are well characterized in terms of stratigraphy, environmental setting, and petrology. Consistent with previous studies, we observed a two step increase of mean Zn/Fe ratios in carbonates through Earth history: at the Paleoproterozoic Great Oxidation Event and during the later Neoproterozoic Oxidation Event. Diagenetic alteration is always an issue for carbonate rocks, and so we carefully screened these carbonates for possible late diagenetic effects and hydrothermal alteration. Individual samples may still bear a trace element signature of early diagenesis, but our statistical approach indicates that despite diagenetic issues, meaningful trends can be discerned in the data. It is unlikely that changes in depositional environment, secular evolution of the mantle, and/or directional change in continental inputs greatly influenced the observed trace element behavior. Therefore, Zn/Fe ratios in shallow marine carbonates have the potential to provide a useful tracer for the redox evolution of the oceans and the rise of atmospheric O2. References:[1] Sahoo et al. (2012) Ocean oxygenation in the wake

  3. Chemical evolution of the Milky Way and its Satellites

    CERN Document Server

    Matteucci, Francesca

    2008-01-01

    This paper contains the lectures I delivered during the 37th Saas-Fee Advanced Course in March 2007. It reviews all the main ingredients necessary to build galactic chemical evolution models with particular attention to the Milky Way and the dwarf spheroidals of the Local Group. Both analytical and numerical models are discussed. Model results are compared to observations in order to infer constraints on stellar nucleosynthesis and on the formation and evolution of galaxies.Particular attention is devoted to interpret abundance ratios in galaxies with different star formation histories. Finally, the cosmic chemical evolution is discussed

  4. Chemical evolution and the preservation of organic compounds on Mars

    Science.gov (United States)

    Kanavarioti, Anastassia; Mancinelli, Rocco L.

    1989-01-01

    Several lines of evidence suggest that the environment on early Mars and early Earth were very similar. Since life is abundant on Earth, it seems likely that conditions on early Earth were conducive to chemical evolution and the origin of life. The similarity between early Mars and early Earth encourages the hypothesis that chemical evolution might have also occurred on Mars, but that decreasing temperatures and the loss of its atmosphere brought the evolution to a halt. The possibility of finding on Mars remnants of organic material dating back to this early clement period is addressed.

  5. Chemically traced blobs in the vicinity of a submarine canyon

    Science.gov (United States)

    Brogueira, M. J.; Cabeçadas, G.; Gonçalves, C.; Cabeçadas, P.

    2003-04-01

    A hydrographic cruise was carried out in May 2001 off southern Portugal, in the vicinity of Portimão canyon. This major topographic irregularity across the path of the Mediterranean undercurrent is known to induce water masses instability and to be a site of dipole formation. Two blobs of distinct water masses were revealed mainly through chemical tracers, namely dissolved oxygen and nutrients. One low-salinity blob, centred at ˜800 m depth, displayed high values of AOU (above 100 μmol/kg) and nutrients (NO_3 up to 14 μmol/kg, PO_4 up to 0.9 and Si(OH)_4 up to 11 μmol/kg), which are features of the Antarctic Intermediate Water (AAIW) present in the area. The deeper salty warm blob, extending from the MW outflow, corresponded to the relatively more oxygenated (AOU 77 μmol/kg) and nutrient-impoverished (NO_3 9 μmol/kg, PO_4 0.6 μmol/kg and Si(OH)_4 6 μmol/kg) saline Mediterranean Water. Further, the influence of this deeper blob expanding down (till 1800--2000 m) into the well-ventilated and nutrient-enriched North Atlantic Deep Water (NADW) was visible through nutrient patterns. The chemical data enabled the identification of the described blobs structure associated with this particular canyon located on the westward flow of MW into the North Atlantic.

  6. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  7. Interaction of chemical species with biological regulation of the metabolism of essential trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, W. [Center of Life and Food Sciences, Technische Univ. Muenchen, Freising (Germany)

    2002-02-01

    Variations in the chemical speciation of dietary trace elements can result in the provision of different amounts of these micronutrients to the organism and might thus induce interactions with trace-element metabolism. The chemical species of Zn, Fe, Cu, and Mn can interact with other components of the diet even before reaching the site of absorption, e.g. by formation of poorly soluble complexes with phytic acid. This might considerably modify the amount of metabolically available trace elements; differences between absorptive capacity per se toward dietary species seems to be less important. Homeostasis usually limits the quantities of Zn, Fe, Cu, and Mn transported from the gut into the organism, and differences between dietary species are largely eliminated at this step. There is no homeostatic control of absorption of Se and I, and organisms seem to be passively exposed to influx of these micronutrients irrespective of dietary speciation. Inside the organism the trace elements are usually converted into a metabolically recognizable form, channeled into their biological functions, or submitted to homeostatically controlled excretion. Some dietary species can, however, be absorbed as intact compounds. As long as the respective quantities of trace elements are not released from their carriers, they are not recognized properly by trace element metabolism and might induce tissue accumulation, irrespective of homeostatic control. (orig.)

  8. Modelling the Fate of Ionizable Trace Organic Chemicals from Consumption to Food Crops

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    In this study, we developed and applied a simulation tool to comprehensively predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in wheat, following application of sewage sludge or irrigation...

  9. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    CERN Document Server

    Côté, Benoit; Ritter, Christian; Herwig, Falk; Venn, Kim A

    2016-01-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of Type Ia supernovae and the strength of gal...

  10. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP...

  11. Modelling the Fate of Xenobiotic Trace Chemicals via Wastewater Treatment and Agricultural Resource Reuse

    DEFF Research Database (Denmark)

    Polesel, Fabio

    As a result of widespread human activities, pharmaceuticals and biocides are ubiquitously present at trace levels in the environment. Large amounts of these substances, also identified as xenobiotic trace chemicals (XTCs), are released daily from: (i) households and healthcare facilities, following...... design limitations. These chemicals are thus eventually released to the environment, e.g. in freshwater bodies receiving WWTP effluents, representing a threat to living organisms. WWTPs have been generally identified as a major point source of XTC emissions to the environment. Nevertheless, due...... to the high number of marketed and consumed chemicals, and to the uncertainties associated to sampling and analytical methodologies, quantifying the elimination of XTCs during wastewater treatment still remains a challenge. Developing robust modelling tools to predict the fate of XTCs in WWTPs can help...

  12. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

    Institute of Scientific and Technical Information of China (English)

    Gang Zhao; Yu-Qin Chen; Jian-RongShi; Yan-Chun Liang; Jin-Liang Hou; Li Chen; Hua-Wei Zhang; Ai-Gen Li

    2006-01-01

    A project of a spectroscopic survey of Galactic structure and evolution with a Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) is presented. The spectroscopic survey consists of two observational modes for various targets in our Galaxy. One is a major survey of the Milky Way aimed at a systematic study of the stellar abundance and Galactic chemical evolution through low resolution (R=1000 - 2000) spectroscopy.Another is a follow-up observation with medium resolution (R=10000) spectrographs aimed at detailed studies of the selected stars with different chemical composition, kinematicsand dynamics.

  13. The influence of binaries on galactic chemical evolution

    CERN Document Server

    De Donder, E; Donder, Erwin De; Vanbeveren, Dany

    2004-01-01

    Understanding the galaxy in which we live is one of the great intellectual challenges facing modern science. With the advent of high quality observational data, the chemical evolution modeling of our galaxy has been the subject of numerous studies in the last years. However, all these studies have one missing element which is the evolution of close binaries. Reason: their evolution is very complex and single stars only perhaps can do the job. (Un)Fortunately at present we know that the majority of the observed stars are members of a binary or multiple system and that certain objects can only be formed through binary evolution. Therefore galactic studies that do not account for close binary evolution may be far from realistic. Because of the large expertise developed through the years in stellar evolution in general and binary evolution in particular at the Brussels Astrophysical Institute, we found ourselves in a privileged position to be the first to do chemical evolutionary simulations with the inclusion of...

  14. Evolution of trace gases and particles emitted by a chaparral fire in California

    Directory of Open Access Journals (Sweden)

    S. K. Akagi

    2011-08-01

    Full Text Available Biomass burning (BB is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 ha prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured post-emission chemical changes in the isolated downwind plume for ~4 h of smoke aging. The measurements were carried out on board a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR, aerosol mass spectrometer (AMS, single particle soot photometer (SP2, nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA; inorganic aerosol (nitrate, ammonium, sulfate, and chloride; aerosol light scattering; refractory black carbon (rBC; and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO increased from −0.005 to 0.102 in 4.5 h. Excess acetic and formic acid (normalized to excess CO increased by factors of 1.7 ± 0.4 and 7.3 ± 3.0 (respectively over the same aging period. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.3 (±1.0 × 106 molecules cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased with plume aging. The observed ammonium increase was a factor of 3.9 ± 2.6 in about 4 h, but accounted for just ~36 % of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation

  15. Evolution of trace gases and particles emitted by a chaparral fire in California

    Directory of Open Access Journals (Sweden)

    C. E. Wold

    2012-02-01

    Full Text Available Biomass burning (BB is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR, aerosol mass spectrometer (AMS, single particle soot photometer (SP2, nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA; inorganic aerosol (nitrate, ammonium, sulfate, and chloride; aerosol light scattering; refractory black carbon (rBC; and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO increased from −5.13 (±1.13 × 10−3 to 10.2 (±2.16 × 10−2 in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively over the same time since emission. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.27 (±0.97 × 106 molec cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36

  16. Hydrogeochemical modeling of groundwater chemical environmental evolution in Hebei Plain

    Institute of Scientific and Technical Information of China (English)

    郭永海; 沈照理; 钟佐燊

    1997-01-01

    Using the hydrogeochemical modeling method, the groundwater chemical environmental problems of the Hebei Plain which involve increasing of hardness and total dissolved solids in piedmont area and mixing of saline water with fresh water in middle-eastern area are studied. The water-rock interactions and mass transfer along a ground-water flow path and in mixing processes are calculated. Thus the evolution mechanisms of the groundwater chemical environment are brought to light.

  17. Ultrasonic photoacoustic spectroscopy of trace hazardous chemicals using quantum cascade laser

    Science.gov (United States)

    Kumar, Deepak; Ghai, Devinder Pal; Soni, R. K.

    2016-12-01

    We report an ultrasonic sensor based on open-cell photoacoustic spectroscopy method for the detection of explosive agents in traces. Experimentally, we recorded photoacoustic spectra of traces of hazardous explosives and molecules. Tunable mid-infrared quantum cascade lasers in the wavelength range 7.0-8.8 μm lying in the molecular fingerprint region are used as optical source. Samples of Pentaerylthirol Tetranitrate (PETN), Tetranitro-triazacyclohexane (RDX), Dinitrotoluene, p-Nitrobenzoic acid and other chemicals like Ibuprofen having quantity 1.0 mg were detected using a custom made photoacoustic cells in both open and closed configurations. The explosive traces were swiped using paper from contaminated surface and detected. Finite element mesh based simulation of photoacoustic cell is carried out for optimization of geometry at ultrasonic frequency (40 kHz). A point sensor based on above approach will be very effective for forensic applications and suspicious material screening.

  18. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    Science.gov (United States)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2017-02-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  19. Chemical and genomic evolution of enzyme-catalyzed reaction networks.

    Science.gov (United States)

    Kanehisa, Minoru

    2013-09-02

    There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.

  20. The chemical, mechanical, and hydrological evolution of weathering granitoid

    Science.gov (United States)

    Goodfellow, Bradley W.; Hilley, George E.; Webb, Samuel M.; Sklar, Leonard S.; Moon, Seulgi; Olson, Christopher A.

    2016-08-01

    Surprisingly few studies connect the chemical, mechanical, and hydrological evolution of rock as it weathers to saprolite and soil. We assess this coevolution in granodiorite from Monterey Peninsula, California, by measuring changes in bulk chemistry, mineralogy, volumetric strain, the oxidation state of Fe in biotite crystals, tensile strength, abrasion rate, connected porosity, and hydraulic conductivity in samples covering a range of weathering grades. We identify the oxidative dissolution of biotite as the key chemical reaction because of the volumetric expansion that accompanies formation of altered biotite and precipitation of ferrihydrite. We show how the associated accumulation of elastic strain produces an energy density that is sufficient to support rock fracturing over length scales equivalent to constituent crystals. The resulting intragranular and intergranular cracking profoundly reduces tensile strength and increases the abrasion rate, connected porosity, and hydraulic conductivity of the rock matrix. These changes increase the rate of plagioclase weathering, and ultimately the rock disintegrates into grus and clay. Major changes in rock properties can occur with only minor element leaching, and the threshold behavior of weathering that arises from the coevolution of chemical, hydrological, and mechanical properties may be difficult to capture using simplified weathering models that fail to incorporate these properties. Our results, which combine the mechanical and hydrological evolution of weathering rock with more common measurements of chemical changes, should help to more accurately model the effects of, and mechanical and hydrological feedbacks upon, chemical weathering of rock.

  1. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    Science.gov (United States)

    Côté, Benoit; O’Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA

  2. THE EVOLUTION OF SOME CHEMICAL PARAMETERS DURING CUCUMBERS PICKLING

    OpenAIRE

    2013-01-01

    The evolution of some chemical indices (salt content, pH and ascorbic acid content) during cucumbers pickling was the purpose of this paper. The experience materials used in this work were: cucumbers cornichon, iodized and non-iodized salt and tap water. The samples containing cucumbers in iodized and in non-iodized brine were left to ferment, and at 3-4 days were made determinations of above mentioned indices. During pickling process, non-iodized salt has accumulated in cucumber ...

  3. Chemical Evolution of the Galactic Disk and Bulge

    OpenAIRE

    Wyse, Rosemary F. G.

    1994-01-01

    Invited Review at IAU Symp 164 on Stellar Populations. The Milky Way Galaxy offers a unique opportunity for testing theories of galaxy formation and evolution. The study of the spatial distribution, kinematics and chemical abundances of stars in the Milky Way Galaxy allows one to address specific questions pertinent to this meeting such as When was the Galaxy assembled? Is this an ongoing process? What was the merging history of the Milky Way?

  4. The impact of chemical evolution on the observable properties of stellar populations

    CERN Document Server

    Tosi, M P

    2000-01-01

    The major effects of the chemical evolution of galaxies on the characteristics of their stellar populations are reviewed. A few examples of how the observed stellar properties derived from colour--magnitude diagrams can constrain chemical evolution models are given.

  5. Quantifying the uncertainties of chemical evolution studies. II. Stellar yields

    CERN Document Server

    Romano, D; Tosi, M; Matteucci, F

    2010-01-01

    This is the second paper of a series which aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. We adopt a widely used model for the chemical evolution of the Galaxy and test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect the model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are: (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength ...

  6. Studies of Trace Gas Chemical Cycles Using Observations, Inverse Methods and Global Chemical Transport Models

    Science.gov (United States)

    Prinn, Ronald G.

    2001-01-01

    For interpreting observational data, and in particular for use in inverse methods, accurate and realistic chemical transport models are essential. Toward this end we have, in recent years, helped develop and utilize a number of three-dimensional models including the Model for Atmospheric Transport and Chemistry (MATCH).

  7. Evaluation of Predicted and Observed Data on Biotransformation of Twenty-Nine Trace Organic Chemicals

    KAUST Repository

    Bertolini, Maria

    2011-07-01

    Trace organic chemicals present in household products, pesticides, pharmaceuticals and personal care products may have adverse ecotoxicological effects once they are released to the environment. These chemicals are usually transported with the sewage to wastewater treatment facilities, where they might be attenuated depending on the degree of treatment applied prior to discharge to receiving streams. This study evaluates the removal performance of 29 trace organic compounds during two different activated sludge treatment systems. Predominant attenuation processes such as biotransformation and sorption for the target compounds were identified. Biotransformation rate constants determined in this study were used to assess removal of compounds from other treatment plants with similar operational conditions, using data gathered from the literature. The commercial software Catalogic was applied to predict environmental fate of chemicals. The software program consisted of four models able to simulate molecular transformations and to generate degradation trees. In order to assess the accuracy of this program in predicting biotransformation, one biodegradation model is used to contrast predicted degradation pathway with metabolic pathways reported in the literature. The predicted outcome was correct for more than 40 percent of the 29 targeted substances, while 38 percent of the chemicals exhibited some degree of lower agreement between predicted and observed pathways. Percent removal data determined for the two treatment facilities was compared with transformation probability output from Catalogic. About 80 percent of the 29 compounds exhibited a good correlation between probability of transformation of the parent compound and percent removal data from the two treatment plants (R2 = 0.82 and 0.9). Based upon findings for 29 trace organic chemicals regarding removal during activated sludge treatment, attacked fragments present in their structures, predicted data from

  8. Tracing the Cosmological Evolution of Stars and Cold Gas with CMB Spectral Surveys

    Science.gov (United States)

    Switzer, Eric R.

    2017-04-01

    A full account of galaxy evolution in the context of ΛCDM cosmology requires measurements of the average star-formation rate (SFR) and cold gas abundance across cosmic time. Emission from the CO ladder traces cold gas, and [C ii] fine structure emission at 158 μ {{m}} traces the SFR. Intensity mapping surveys the cumulative surface brightness of emitting lines as a function of redshift, rather than individual galaxies. CMB spectral distortion instruments are sensitive to both the mean and anisotropy of the intensity of redshifted CO and [C ii] emission. Large-scale anisotropy is proportional to the product of the mean surface brightness and the line luminosity-weighted bias. The bias provides a connection between galaxy evolution and its cosmological context, and is a unique asset of intensity mapping. Cross-correlation with galaxy redshift surveys allows unambiguous measurements of redshifted line brightness despite residual continuum contamination and interlopers. Measurement of line brightness through cross-correlation also evades cosmic variance and suggests new observation strategies. Galactic foreground emission is ≈ {10}3 times larger than the expected signals, and this places stringent requirements on instrument calibration and stability. Under a range of assumptions, a linear combination of bands cleans continuum contamination sufficiently that residuals produce a modest penalty over the instrumental noise. For PIXIE, the 2σ sensitivity to CO and [C ii] emission scales from ≈ 5× {10}-2 {kJy} {{sr}}-1 at low redshift to ≈ 2 {kJy} {{sr}}-1 by reionization.

  9. Rhyolite magma evolution recorded in isotope and trace element composition of zircon from Halle Volcanic Complex

    Science.gov (United States)

    Słodczyk, E.; Pietranik, A.; Breitkreuz, C.; Fanning, C. M.; Anczkiewicz, R.; Ehling, B.-C.

    2016-04-01

    Voluminous felsic volcanic magmas were formed in Central Europe at the Carboniferous/Permian boundary in numerous pull-apart basins; one of which is the Saale Basin, which holds the Halle Volcanic Complex (HVC), the focus of this study. The rhyolites in the HVC formed laccoliths and scarce lavas, and occur in two different textural types: fine and coarse porphyritic. Zircon isotope and trace element composition was analysed in four units, two per each textural type. Zircon from the different units shows similar ranges in εHf (- 4.1 to - 8.1) and δ18O values (6.51-8.26), indicating similar sources and evolution processes for texturally diverse rhyolites from the HVC. Scarce inherited zircon ranges from ~ 315 Ma to ~ 2100 Ma with the major groupings around 315-550 Ma. These ages are typical for Devonian arc magmatic activity (350-400 Ma) and Cadomian igneous rocks (500-600 Ma), which occur in the basement presently underlying the HVC. Therefore, the source of the rhyolites was multicomponent and probably represented by a basement composed of various crystalline rocks. Trace elements in zircon show similar distributions in all analysed samples, which is broadly consistent with zircon cores crystallizing in a less evolved magma undergoing limited fractional crystallization, whilst the zircon rims crystallized from a magma undergoing extensive fractional crystallization of major and accessory minerals. Interestingly, comparison of the zircon composition in HVC rhyolites and other rhyolites worldwide shows that the observed trends are similar in such rhyolites despite the values being different. This may suggest that most of the zircon in rhyolites crystallizes at a similar stage in the rhyolite magma evolution, from magmas undergoing extensive crystallization of major phases and apatite. The implication is that most of the zircon represents late stage crystallization, but also that antecrystic component may be present and preserve information on the development of

  10. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules.

    Science.gov (United States)

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-10-13

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing.

  11. The role of OH in the chemical evolution of protoplanetary disks II. Gas-rich environments

    CERN Document Server

    Molano, Germán Chaparro

    2012-01-01

    Context. We present a method for including gas extinction of cosmic-ray-generated UV photons in chemical models of the midplane of protoplanetary disks, focusing on its implications on ice formation and chemical evolution. Aims. Our goal is to improve on chemical models by treating cosmic rays, the main source of ionization in the midplane of the disk, in a way that is consistent with current knowledge of the gas and grain environment present in those regions. We trace the effects of cosmic rays by identifying the main chemical reaction channels and also the main contributors to the gas opacity to cosmic-ray-induced UV photons. This information is crucial in implementing gas opacities for cosmic-ray-induced reactions in full 2D protoplanetary disk models. Methods. We considered time-dependent chemical models within the range 1-10 AU in the midplane of a T Tauri disk. The extinction of cosmic-ray-induced UV photons by gaseous species was included in the calculation of photorates at each timestep. We integrated...

  12. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Beers, Timothy C. [Department of Physics and JINA—Center for the Evolution of the Elements, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tumlinson, Jason, E-mail: crosby.bd@gmail.com [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  13. Oparin's coacervates as an important milestone in chemical evolution

    Science.gov (United States)

    Kolb, Vera M.

    2015-09-01

    Although Oparin's coacervate model for the origin of life by chemical evolution is almost 100 years old, it is still valid. However, the structure of his originally proposed coacervate is not considered prebiotic, based on some recent developments in prebiotic chemistry. We have remedied this deficiency of the Oparin's model, by substituting his coacervate with a prebiotically feasible one. Oparin's coacervates are aqueous structures, but have a boundary with the rest of the aqueous medium. They exhibit properties of self-replication, and provide a path to a primitive metabolism, via chemical competition and thus a primitive selection. Thus, coacervates are good models for proto-cells. We review here some salient points of Oparin's model and address also some philosophical views on the beginning of natural selection in primitive chemical systems.

  14. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg

    2014-02-01

    By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions. © IWA Publishing 2014.

  15. Inhomogeneous Chemical Evolution of the Galaxy in the Solar Neighbourhood

    Indian Academy of Sciences (India)

    S. Sahijpal

    2013-12-01

    -body numerical simulations of an inhomogeneous Galactic Chemical Evolution (GCE) of the solar neighbourhood with a high temporal resolution are presented. The solar annular ring is divided into distinct spatial grids of area ∼ 1–2 kpc2. Each grid evolves distinctly in terms of star formation and nucleosynthetic yields from numerous generations of stars. The evolution of the galaxy is simulated by considering discrete episodes of star formation. Subsequent to the evolution of the simulated stars within each grid the stellar nucleosynthetic yields are homogenized within the grid rather than the traditionally adopted criteria of homogenizing over the entire solar annular ring. This provides a natural mechanism of generating heterogeneities in the elemental abundance distribution of stars. A complex chemical evolutionary history is inferred that registers episodes of time-dependent contributions from SN II+Ib/c with respect to SN Ia. It was observed that heterogeneities can remerge even after episodes of large scale homogenizations on scales larger than the grid size. However, a comparison of the deduced heterogeneities with the observed scatter in the elemental abundances of the dwarf stars suggest only a partial match, specifically, for [Fe/H] > -0.5. The deduced heterogeneities in the case of carbon, oxygen, magnesium, silicon, sulphur, calcium and titanium can explain the observed heterogeneities for [Fe/H] < -0.5. It may not be possible to explain the entire observed spread exclusively on the basis of the inhomogeneous GCE.

  16. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-04-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10{sup 4} to 10{sup 6} and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  17. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10[sup 4] to 10[sup 6] and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  18. Chemical differentiation in a prestellar core traces non-uniform illumination

    CERN Document Server

    Spezzano, Silvia; Caselli, Paola; Harju, Jorma; Brünken, Sandra

    2016-01-01

    Dense cloud cores present chemical differentiation due to the different distribution of C-bearing and N-bearing molecules, the latter being less affected by freeze-out onto dust grains. In this letter we show that two C-bearing molecules, CH$_3$OH and $c$-C$_3$H$_2$, present a strikingly different (complementary) morphology while showing the same kinematics toward the prestellar core L1544. After comparing their distribution with large scale H$_2$ column density N(H$_2$) map from the Herschel satellite, we find that these two molecules trace different environmental conditions in the surrounding of L1544: the $c$-C$_3$H$_2$ distribution peaks close to the southern part of the core, where the surrounding molecular cloud has a N(H$_2$) sharp edge, while CH$_3$OH mainly traces the northern part of the core, where N(H$_2$) presents a shallower tail. We conclude that this is evidence of chemical differentiation driven by different amount of illumination from the interstellar radiation field: in the South, photochem...

  19. A paradigm-based evolution of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Alexandru Woinaroschy

    2016-01-01

    A short presentation of chemical engineering evolution, as guided by its paradigms, is exposed. The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applica-tions at the end of 19th century. The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep, scientific knowledge of the phenomena that explain what happens inside of unit operations. In the second part of 20th century, the importance of chemical product properties and qualities has become essential y in the market fights. Accordingly, it was required with additional and even new fundamen-tal approaches, and product engineering was recognized as the third paradigm. Nowadays chemical industry, as a huge materials and energy consumer, and with a strong ecological impact, couldn't remain outside of sustainability requirements. The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.

  20. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, W.M.; Guendouz, A.H.; Mamou, A.; Moulla, A.; Shand, P.; Zouari, K

    2003-06-01

    The geochemical processes taking place along an 800 km flow line in the non-carbonate Continental Intercalaire aquifer (CI) aquifer in North Africa are described using chemical (major and trace element) and isotopic indicators. The aquifer is hydraulically continuous from the Atlas Mountains in Algeria to the Chotts of Tunisia and the geochemical evidence corroborates this. The highest discharge temperature is 73 deg. C but silica geothermometry indicates a maximum temperature of 94 deg. C at depth. Chloride concentrations increase from 200 to 800 mg l{sup -1} and the Br/Cl ratios confirm the dissolution of non-marine evaporites or interstitial waters as the main source of salinity. Fluoride concentrations are low and are likely to be derived from rainfall, recording oscillations in source. Radiocarbon ages, except near outcrop, are at or near detection limits and the {delta}{sup 18}O and {delta}{sup 2}H values indicate a cooler recharge regime with rainfall having lower primary evaporation than today. This is shown by the fact that mean isotope ratios of CI waters are around 3 per mille lighter than the present-day weighted mean value for rain. Major ion ratios and most trace elements indicate that despite the complex structure and stratigraphy, uniform evolution with continuous water-rock interaction takes place along the flow lines, which are only disturbed near the Tunisian Chotts by groundwater converging from additional flow lines. The ageing of the water can also be followed by the smooth increase in several indicator elements such as Li, K and Mn which are least affected by solubility controls. Similarly the influence of marine facies in the Tunisian sector may be recognised by the changing Mg/Ca and higher Br/Cl as well as trace element indicators. The groundwaters are oxidising up to 300 km from outcrop (dissolved O{sub 2} has persisted for at least 20 ka) and within this zone the concentrations of several elements forming oxy-anions, such as U and Cr

  1. Mobilization of major and trace constituents of highway runoff in groundwater potentially caused by deicing chemical migration

    Science.gov (United States)

    Granato, Gregory E.; Church, Peter E.; Stone, Victoria J.

    1995-01-01

    The quality of water in unsaturated zones and groundwater is affected by the major ions in deicing chemicals applied to roads and highways. The assessment of the environmental effects of highway runoff requires investigations to determine whether other major and trace constituents are mobilized during deicing chemical migration through the unsaturated zone and groundwater. In this regard, groundwater samples were analyzed in February and August 1991, and March, August, and November 1993 at a test site along Route 25 in southeastern Massachusetts. Analyses indicated that concentrations of major and trace chemical constituents of highway runoff in groundwater are substantially higher downgradient than upgradient from the highway.

  2. Planetary nebulae and the chemical evolution of the galactic bulge

    CERN Document Server

    Costa, R D D; Maciel, W J; Costa, Roberto D.D.; Escudero, Andre V.; Maciel, Walter J.

    2005-01-01

    Electron temperatures, densities, ionic and elemental abundances of helium, nitrogen, oxygen, argon, sulfur and neon were derived for a sample of bulge planetary nebulae, representative of its intermediate mass population. Using these results as constraints, a model for the chemical evolution of the galactic bulge was developed. The results indicate that the best fit is achieved using a double-infall model, where the first one is a fast collapse of primordial gas and the second is slower and enriched by material ejected by the bulge itself during the first episode.

  3. The Hydrodynamics and Chemical Evolution of Starburst-driven Outflows

    CERN Document Server

    Tenorio-Tagle, G

    2002-01-01

    The hydrodynamics and intrinsic properties of galactic-scale gaseous outflows generated by violent starbursts are thoroughly discussed, taking into account the hot gas chemical evolution and radiative cooling. It is shown that the metallicity of superbubbles vary with time and can easily exceed the solar value. Galactic superwinds driven by compact and powerful starbursts undergo catastrophic cooling and establish a temperature distribution radically different to that predicted by adiabatic solution. The observational properties of supergalactic winds in X-rays and visible line regimes derived from our calculations are compared with the standard adiabatic model predictions.

  4. Tracing the thermal evolution of the Corsican lower crust during Tethyan rifting

    Science.gov (United States)

    Seymour, Nikki M.; Stockli, Daniel F.; Beltrando, Marco; Smye, Andrew J.

    2016-10-01

    Continental rifting requires thinning the continental lithosphere from 120 km to processes which each impart a characteristic thermal signature to the extending lithosphere. Here high-resolution thermochronology is used to trace the synrift thermal evolution within a lower crustal section of an upper plate hyperextended margin sampled in Corsica. Novel zircon, rutile, and apatite 206Pb/238U depth profiling coupled with garnet trace element diffusion modeling provide compelling evidence for rift-related crustal reheating. A Jurassic thermal pulse is recorded in the footwall of the Belli Piani Shear Zone (BPSZ), where 200-180 Ma zircon 206Pb/238U overgrowth ages on Permian core populations and the preservation of stranded diffusion profiles in resorbed garnets implies the dominant footwall fabric formed as a result of high-temperature (T 800°C) ductile thinning of the lower crust. Conductive reheating of middle crustal rocks in the immediate BPSZ hanging wall, demonstrated by Jurassic apatite 206Pb/238U ages, was likely achieved by synkinematic juxtaposition against the hot footwall and wholesale conductive steepening of geothermal gradients. Subsequent rapid cooling from 180 to 160 Ma, coeval with extensional unroofing of the footwall, underscores the importance of extreme ductile thinning during crustal hyperextension. The results of this study suggest that early lithospheric-scale depth-dependent thinning follows an early phase of diffuse rifting and tectonic subsidence and triggers crustal reheating during early hyperextension. Continued extension results in rapid exhumation and cooling of the lower crust, extreme crustal attenuation, and mantle exhumation followed by relaxation to a steady state thermal field coeval with the start of seafloor spreading.

  5. The nature of chemical innovation: new enzymes by evolution.

    Science.gov (United States)

    Arnold, Frances H

    2015-11-01

    I describe how we direct the evolution of non-natural enzyme activities, using chemical intuition and information on structure and mechanism to guide us to the most promising reaction/enzyme systems. With synthetic reagents to generate new reactive intermediates and just a few amino acid substitutions to tune the active site, a cytochrome P450 can catalyze a variety of carbene and nitrene transfer reactions. The cyclopropanation, N-H insertion, C-H amination, sulfimidation, and aziridination reactions now demonstrated are all well known in chemical catalysis but have no counterparts in nature. The new enzymes are fully genetically encoded, assemble and function inside of cells, and can be optimized for different substrates, activities, and selectivities. We are learning how to use nature's innovation mechanisms to marry some of the synthetic chemists' favorite transformations with the exquisite selectivity and tunability of enzymes.

  6. Tabletop imaging of structural evolutions in chemical reactions

    CERN Document Server

    Ibrahim, Heide; Beaulieu, Samuel; Schmidt, Bruno E; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T; Wanie, Vincent; Giguére, Mathieu; Kieffer, Jean-Claude; Sanderson, Joseph; Schuurman, Michael S; Légaré, François

    2014-01-01

    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using VUV light from a Free Electron Laser [Phys. Rev. Lett. 105, 263002 (2010)]. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond-breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and definitively quantitative ab initio trajectory simulations.

  7. Cycles and the qualitative evolution of chemical systems.

    Directory of Open Access Journals (Sweden)

    Peter Kreyssig

    Full Text Available Cycles are abundant in most kinds of networks, especially in biological ones. Here, we investigate their role in the evolution of a chemical reaction system from one self-sustaining composition of molecular species to another and their influence on the stability of these compositions. While it is accepted that, from a topological standpoint, they enhance network robustness, the consequence of cycles to the dynamics are not well understood. In a former study, we developed a necessary criterion for the existence of a fixed point, which is purely based on topological properties of the network. The structures of interest we identified were a generalization of closed autocatalytic sets, called chemical organizations. Here, we show that the existence of these chemical organizations and therefore steady states is linked to the existence of cycles. Importantly, we provide a criterion for a qualitative transition, namely a transition from one self-sustaining set of molecular species to another via the introduction of a cycle. Because results purely based on topology do not yield sufficient conditions for dynamic properties, e.g. stability, other tools must be employed, such as analysis via ordinary differential equations. Hence, we study a special case, namely a particular type of reflexive autocatalytic network. Applications for this can be found in nature, and we give a detailed account of the mitotic spindle assembly and spindle position checkpoints. From our analysis, we conclude that the positive feedback provided by these networks' cycles ensures the existence of a stable positive fixed point. Additionally, we use a genome-scale network model of the Escherichia coli sugar metabolism to illustrate our findings. In summary, our results suggest that the qualitative evolution of chemical systems requires the addition and elimination of cycles.

  8. Chemical evolution and nature of Damped Lyman-Alpha systems

    CERN Document Server

    Calura, F; Vladilo, G

    2003-01-01

    We study the nature of Damped Lyman -Alpha systems (DLAs) by means of a comparison between observed abundances and models of chemical evolution of galaxies of different morphological type. In particular, we compare for the first time the abundance ratios as functions of metallicity and redshift with dust-corrected data. We have developed detailed models following the evolution of several chemical elements (H, D, He, C, N, O, Ne, Mg, Si, S, Fe, Ni and Zn) for elliptical, spiral and irregular galaxies. Each of the models is calibrated to reproduce the main features of a massive elliptical, the Milky Way and the LMC, respectively. In addition, we run some models also for dwarf irregular starburst galaxies. All the models share the same uptodate nucleosynthesis prescriptions but differ in their star formation histories. The role of SNe of different type (II, Ia) is studied in each galaxy model together with detailed and up to date nucleosynthesis prescriptions. Our main conclusions are: 1) when dust depletion is ...

  9. Dark Matter and the Chemical Evolution of Irregular Galaxies

    Directory of Open Access Journals (Sweden)

    L. Carigi

    2001-01-01

    Full Text Available We present three types of chemical evolution models for irregular galaxies: closed-box with continuous star formation rates (SFRs, closed-box with burstin g SFRs, and O-rich outflow with continuous SFRs. We discuss the chemical evolution of the irregular galaxies NGC 1560 and II Zw 33, and a "typical" irregular galaxy. The fraction of low-mass stars needed by our models is larger than that derived for the solar vicinity, but similar to that found in globular clusters. For our typical irregular galaxy we need a mass fraction of about 40% in the form of substellar objects plus non baryonic dark matter inside the Holmberg radius, in good agreement with the results derived for NGC 1560 and II Zw 33 where we do have an independent estimate of the mass fraction in non baryonic dark matter. Closed-box models are better than O-rich outflow models in explaining the C/O and Z/O observed values for our typical irregular galaxy.

  10. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Yuan, Zhen; Jing, Y P

    2015-01-01

    Fornax is the brightest Milky Way (MW) dwarf spheroidal galaxy and its star formation history (SFH) has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH using a simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe) as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass M_x of the gas to mix with the ejecta from each SN. The choice of M_x depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = t_sat . Our results indicate that due to the global gas outflow at t > t_sat , part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  11. The chemical evolution of self-gravitating primordial disks

    CERN Document Server

    Schleicher, Dominik R G; Latif, Muhammad A; Ferrara, Andrea; Grassi, Tommaso

    2016-01-01

    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular during the formation of Pop. III and supermassive stars. Their subsequent evolution is expected to be crucial to determine the mass scale of the first cosmological objects, which depends on the temperature of the gas and the dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of such disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M_solar (10^4 M_solar) at an accretion rate of 0.1 M_solar/yr, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution, and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects,...

  12. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  13. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  14. The chemical evolution of galaxies in the local volume

    Science.gov (United States)

    Croxall, Kevin V.

    2010-12-01

    The composition of the universe has greatly changed since the first matter condensed from the primordial soup of the Big Bang. As galaxies have grown and evolved over the past Hubble time, massive luminous galaxies have built up more heavy elements than their low mass counterparts. While sundry physical mechanisms have been proposed to account for this observed trend, the physical connection between galaxy mass and metallicity has evaded the understanding of astronomers for several decades. In order to gain a greater understanding of this metallicity-luminosity relation and the physical drivers behind the chemical evolution of galaxies, we have performed a detailed study of galaxies in both isolated and non-isolated environments: namely, galaxies in the local volume (D ≤ 5 Mpc) and galaxy members belonging to the M81 group. Our results from studying the M81 group imply that recent interactions among the central galaxies in this group, rather than mechanisms intrinsic to the galaxies, are likely responsible for the anomalously high abundances in three cluster members. While tidal interactions can alter the chemical make up the galaxies involved, the well established metallicity-luminosity relation indicates a more universal chemical evolution. To further explore this idea, we analyze galaxy abundances, stellar & gas distributions, and kinematics from both new and archival observations of forty-five low mass galaxies within 5 Mpc of the Milky Way. Our results indicate that these galaxies occupy a different mass-to-light ratio parameter space than their larger counter parts. Our study of the local volume explores the effects of various galaxy attributes such as mass, star formation rate, gas mass fraction, and the mass distribution that offer more concrete connections with the evolution of the system. We show that none of the attributes measured in this study exhibit more correlation with metallicity (measured via nebular oxygen abundances) than does the luminosity

  15. Chemical differentiation in a prestellar core traces non-uniform illumination

    Science.gov (United States)

    Spezzano, S.; Bizzocchi, L.; Caselli, P.; Harju, J.; Brünken, S.

    2016-08-01

    Dense cloud cores present chemical differentiation because C- and N-bearing molecules are distributed differently, the latter being less affected by freeze-out onto dust grains. In this letter we show that two C-bearing molecules, CH3OH and c-C3H2, present a strikingly different (complementary) morphology while showing the same kinematics towards the prestellar core L1544. After comparing their distribution with the large-scale H2 column density N(H2) map from the Herschel satellite, we find that these two molecules trace different environmental conditions in the surrounding of L1544: the c-C3H2 distribution peaks close to the southern part of the core, where the surrounding molecular cloud has an N(H2) sharp edge, while CH3OH mainly traces the northern part of the core, where N(H2) presents a shallower tail. We conclude that this is evidence of chemical differentiation driven by different amounts of illumination from the interstellar radiation field: in the south, photochemistry maintains more C atoms in the gas phase, allowing carbon-chain (such as c-C3H2) production; in the north, C is mainly locked in CO, and methanol traces the zone where CO starts to freeze out significantly. During the process of cloud contraction, different gas and ice compositions are thus expected to mix towards the central regions of the core, where a potential solar-type system will form. An alternative view on carbon-chain chemistry in star-forming regions is also provided. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).The reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/L11

  16. New chemical evolution analytical solutions including environment effects

    CERN Document Server

    Spitoni, E

    2015-01-01

    In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if co...

  17. Dynamical and chemical evolution of the thin disc

    CERN Document Server

    Just, Andreas

    2015-01-01

    Our detailed analytic local disc model (JJ-model) quantifies the interrelation between kinematic properties (e.g. velocity dispersions and asymmetric drift), spatial parameters (scale-lengths and vertical density profiles), and properties of stellar sub-populations (age and abundance distributions). Any consistent radial extension of the disc evolution model should predict specific features in the different distribution functions and in their correlations. Large spectroscopic surveys (SEGUE, RAVE, APOGEE, Gaia-ESO) allow significant constraints on the long-term evolution of the thin disc. We discuss the qualitative difference of correlations (like the alpha-enhancement as function of metallicity) and distribution functions (e.g. in [Mg/H] or [Fe/H]) for the construction of a disc model. In the framework of the JJ-model we build a local chemical enrichment model and show that significant vertical gradients for main sequence and red clump stars are expected in the thin disc. A Jeans analysis of the asymmetric d...

  18. Dynamical and chemical evolution of the thin disc

    Science.gov (United States)

    Just, A.; Rybizki, J.

    2016-09-01

    Our detailed analytic local disc model (JJ-model) quantifies the interrelation between kinematic properties (e.g. velocity dispersions and asymmetric drift), spatial parameters (scale-lengths and vertical density profiles), and properties of stellar sub-populations (age and abundance distributions). Any consistent radial extension of the disc evolution model should predict specific features in the different distribution functions and in their correlations. Large spectroscopic surveys (SEGUE, RAVE, APOGEE, Gaia-ESO) allow significant constraints on the long-term evolution of the thin disc. We discuss the qualitative difference of correlations (like the α-enhancement as function of metallicity) and distribution functions (e.g. in [Mg/H] or [Fe/H]) for the construction of a disc model. In the framework of the JJ-model we build a local chemical enrichment model and show that significant vertical gradients for main sequence and red clump stars are expected in the thin disc. A Jeans analysis of the asymmetric drift provides a link to the radial structure of the disc. The derived metallicity-dependent radial scale-lengths can be combined in the future with the abundance distributions at different Galactocentric distances to construct full disc models. We expect to be able to constrain possible scenarios of inside-out growth of the thin disc and to characterise those populations, which require significant radial migration.

  19. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment

    Science.gov (United States)

    Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar

    2013-03-01

    Regional smoke-induced haze in Southeast Asia, caused by uncontrolled forest and peat fires in Indonesia, is of major environmental and health concern. In this study, we estimated carcinogenic and non-carcinogenic health risk due to exposure to fine particles (PM2.5) as emitted from peat fires at Kalimantan, Indonesia. For the health risk analysis, chemical speciation (exchangeable, reducible, oxidizable, and residual fractions) of 12 trace metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) in PM2.5 was studied. Results indicate that Al, Fe and Ti together accounted for a major fraction of total metal concentrations (~ 83%) in PM2.5 emissions in the immediate vicinity of peat fires. Chemical speciation reveals that a major proportion of most of the metals, with the exception of Cr, Mn, Fe, Ni and Cd, was present in the residual fraction. The exchangeable fraction of metals, which represents their bioavailability, could play a major role in inducing human health effects of PM2.5. This fraction contained carcinogenic metals such as Cd (39.2 ng m- 3) and Ni (249.3 ng m- 3) that exceeded their WHO guideline values by several factors. Health risk estimates suggest that exposure to PM2.5 emissions in the vicinity of peat fires poses serious health threats.

  20. Detection and monitoring of toxic chemical at ultra trace level by utilizing doped nanomaterial.

    Directory of Open Access Journals (Sweden)

    Sher Bahadar Khan

    Full Text Available Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼ 30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I-V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM(-1.cm(-2, lower detection limit (8.0 µM and long range of detection (77.0 µM to 0.38 M. Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety.

  1. Learning to Rapidly Re-Contact the Lost Plume in Chemical Plume Tracing

    Directory of Open Access Journals (Sweden)

    Meng-Li Cao

    2015-03-01

    Full Text Available Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT. In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF. In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF.

  2. The Long-term Evolution of the Galactic Disk Traced by Dissolving Star Clusters

    CERN Document Server

    Bland-Hawthorn, Joss; Freeman, Ken

    2010-01-01

    The Galactic disk retains a vast amount of information about how it came to be, and how it evolved over cosmic time. However, we know very little about the secular processes associated with disk evolution. One major uncertainty is the extent to which stars migrate radially through the disk, thereby washing out signatures of their past (e.g. birth sites). Recent theoretical work finds that such "blurring" of the disk can be important if spiral arms are transient phenomena. Here we describe an experiment to determine the importance of diffusion from the Solar circle with cosmic time. Consider a star cluster that has been placed into a differentially rotating, stellar fluid. We show that all clusters up to ~10^4 solar masses, and a significant fraction of those up to ~10^5 solar masses, are expected to be chemically homogeneous, and that clusters of this size can be assigned a unique "chemical tag" by measuring the abundances of <~10 independent element groups, with better age and orbit determinations allowin...

  3. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS

    Science.gov (United States)

    Dehant, Véronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; de Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Matielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; van Hoolst, Tim; Wilquet, Valérie; The PLANET Topers Team

    2015-04-01

    The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist. Life is believed to require liquid water, but important geodynamic processes affect the habitability conditions of a planet. The PLANET TOPERS group develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970). Terrestrial life requires liquid water. The common view, however, is that extraterrestrial life would probably be based on organic chemistry in a water solvent (Pace, 2001) although alternative biochemistries have been hypothesized. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution

  4. SPH code for dynamical and chemical evolution of disk galaxies

    CERN Document Server

    Berczik, P

    1998-01-01

    The problem of chemical and dynamical evolution of galaxies is one of the most attracting and complex problems of modern astrophysics. Within the framework of the given work the standard dynamic Smoothed Particle Hydrodynamics (SPH) code (Monaghan J.J. 1992, ARAA, 30, 543) is noticeably expanded. Our investigation concernes with the changes and incorporation of new ideas into the algorithmic inclusion of Star Formation (SF) and Super Novae (SN) explosions in SPH (Berczik P. & Kravchuk S.G., 1996, ApSpSci, 245, 27). The proposed energy criterion for definition of a place and efficiency of SF results in the successfully explain Star Formation History (SFH) in isolated galaxies of different types. On the base of original ideas we expand a code in a more realistic way of the description of effects of return of a hot, chemical enriched gas in Interstellar Matter (ISM). In addition to the account of SNII, we offer the self-agreed account of SNIa and PN. This allows to describe not only the ISM content of $ O^{1...

  5. Modelling the chemical evolution in galaxies with KROME

    CERN Document Server

    Bovino, Stefano; Capelo, Pedro R; Schleicher, Dominik R G; Banerjee, R

    2015-01-01

    In this paper we present and test chemical models for three-dimensional hydrodynamical simulations of galaxy evolution. The microphysics is modelled by employing the public chemistry package KROME and the chemical networks have been tested to work in a wide range of densities and temperatures. We describe a simple H/He network following the formation of H2, and a more sophisticated network which includes metals. Photochemistry, thermal processes, and different prescriptions for the H2 catalysis on dust are presented and tested within a simple one-zone framework. We explore the effect of changing some of the key parameters such as metallicity, radiation and non-equilibrium versus equilibrium metal cooling approximations on the transition between the different gas phases. We find that employing an accurate treatment of the dust-related processes induces a faster HI-H2 transition. In addition, we show when the equilibrium assumption for metal cooling holds, and how a non-equilibrium approach affects the thermal ...

  6. On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry

    Science.gov (United States)

    Sinclair, J. A.; Irwin, P. G. J.; Calcutt, S. B.; Wilson, E. L.

    2015-11-01

    The martian atmosphere is host to many trace gases including water (H2O) and its isotopologues, methane (CH4) and potentially sulphur dioxide (SO2), nitrous oxide (N2O) and further organic compounds, which would serve as indirect tracers of geological, chemical and biological processes on Mars. With exception of the recent detection of CH4 by Curiosity, previous detections of these species have been unsuccessful or considered tentative due to the low concentrations of these species in the atmosphere (∼10-9 partial pressures), limited spectral resolving power and/or signal-to-noise and the challenge of discriminating between telluric and martian features when observing from the Earth. In this study, we present radiative transfer simulations of an alternative method for detection of trace gas species - the gas correlation radiometry method. Two potential observing scenarios were explored where a gas correlation filter radiometer (GCFR) instrument: (1) performs nadir and/or limb sounding of the martian atmosphere in the thermal infrared (200-2000 cm-1 from an orbiting spacecraft or (2) performs solar occultation measurements in the near-infrared (2000-5000 cm-1) from a lander on the martian surface. In both scenarios, simulations of a narrowband filter radiometer (without gas correlation) were also generated to serve as a comparison. From a spacecraft, we find that a gas correlation filter radiometer, in comparison to a filter radiometer (FR), offers a greater discrimination between temperature and dust, a greater discrimination between H2O and HDO, and would allow detection of N2O and CH3OH at concentrations of ∼10 ppbv and ∼2 ppbv, respectively, which are lower than previously-derived upper limits. However, the lowest retrievable concentration of SO2 (approximately 2 ppbv) is comparable with previous upper limits and CH4 is only detectable at concentrations of approximately 10 ppbv, which is an order of magnitude higher than the concentration recently measured

  7. Chemical evolution of giant molecular clouds in simulations of galaxies

    Science.gov (United States)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  8. Modeling the chemical evolution of nitrogen oxides near roadways

    Science.gov (United States)

    Wang, Yan Jason; DenBleyker, Allison; McDonald-Buller, Elena; Allen, David; Zhang, K. Max

    2011-01-01

    The chemical evolution of nitrogen dioxide (NO 2) and nitrogen monoxide (NO) in the vicinity of roadways is numerically investigated using a computational fluid dynamics model, CFD-VIT-RIT and a Gaussian-based model, CALINE4. CFD-VIT-RIT couples a standard k- ɛ turbulence model for turbulent mixing and the Finite-Rate model for chemical reactions. CALINE4 employs a discrete parcel method, assuming that chemical reactions are independent of the dilution process. The modeling results are compared to the field measurement data collected near two roadways in Austin, Texas, State Highway 71 (SH-71) and Farm to Market Road 973 (FM-973), under parallel and perpendicular wind conditions during the summer of 2007. In addition to ozone (O 3), other oxidants and reactive species including hydroperoxyl radical (HO 2), organic peroxyl radical (RO 2), formaldehyde (HCHO) and acetaldehyde (CH 3CHO) are considered in the transformation from NO to NO 2. CFD-VIT-RIT is shown to be capable of predicting both NO x and NO 2 profiles downwind. CALINE4 is able to capture the NO x profiles, but underpredicts NO 2 concentrations under high wind velocity. Our study suggests that the initial NO 2/NO x ratios have to be carefully selected based on traffic conditions in order to assess NO 2 concentrations near roadways. The commonly assumed NO 2/NO x ratio by volume of 5% may not be suitable for most roadways, especially those with a high fraction of heavy-duty truck traffic. In addition, high O 3 concentrations and high traffic volumes would lead to the peak NO 2 concentration occurring near roadways with elevated concentrations persistent over a long distance downwind.

  9. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  10. Second Symposium on Chemical Evolution and the Origin of Life

    Science.gov (United States)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  11. Tracing the secular evolution of the UCC using the iron isotope composition of ancient glacial diamictites

    Science.gov (United States)

    Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.

    2015-12-01

    Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring

  12. Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones

    Science.gov (United States)

    Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.

    2006-12-01

    Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa

  13. PNe as observational constraints in chemical evolution models for NGC 6822

    CERN Document Server

    Hernandez-Martinez, Liliana; Peña, Miriam; Peimbert, Manuel

    2011-01-01

    Chemical evolution models are useful for understanding the formation and evolution of stars and galaxies. Model predictions will be more robust as more observational constraints are used. We present chemical evolution models for the dwarf irregular galaxy NGC 6822 using chemical abundances of old and young Planetary Nebulae (PNe) and \\ion{H}{ii} regions as observational constraints. Two sets of chemical abundances, one derived from collisionally excited lines (CELs) and one, from recombination lines (RLs), are used. We try to use our models as a tool to discriminate between both procedures for abundance determinations. In our chemical evolution code, the chemical contribution of low and intermediate mass stars is time delayed, while for the massive stars the chemical contribution follows the instantaneous recycling approximation. Our models have two main free parameters: the mass-loss rate of a well-mixed outflow and the upper mass limit, $M_{up}$, of the initial mass function (IMF). To reproduce the gaseous ...

  14. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali

    2015-03-01

    This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4. °C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30. °C to 4. °C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (. ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10. °C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems.

  15. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia.

    Science.gov (United States)

    Alidina, Mazahirali; Hoppe-Jones, Christiane; Yoon, Min; Hamadeh, Ahmed F; Li, Dong; Drewes, Jörg E

    2014-04-15

    Emerging trace organic chemicals (TOrCs) released into the environment via discharge of wastewater effluents have been detected in rivers and lakes worldwide, raising concerns due to their potential persistence, toxicity and bioaccumulation. This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling events. All samples were analyzed for a wide range of TOrC encompassing pharmaceuticals, personal care products and household chemicals. Treatment and capacities of the plants varied from non-nitrifying to full biological nutrient removal providing a representative cross section of different types of plants operational within the country. A comparison of TOrC occurrence in effluents in Saudi Arabia with respective effluent qualities in the United States revealed similar levels for most TOrC. Overall, the occurrence of TOrC was higher at two of the plants. The higher TOrC concentrations at WWTP 1 are likely due to the non-nitrifying biological treatment process. The unique TOrC occurrence observed in the WWTP 3 effluent was unlike any other plant and was attributed to the influence of a large number of international visitors in its sewershed. The occurrence of TOrC in this plant was not expected to be representative of the occurrence elsewhere in the country. Bimodal diurnal variation expected for a range of TOrC was not observed, though some hourly variation in TOrC loading was noted for WWTP 3. Since water reclamation and reuse have received increasing interest in Saudi Arabia within the last few years, results from this study provide a good foundation in deciding whether advanced treatment is necessary to attenuate TOrC deemed to be of concern in effluents, or if natural treatment such as managed aquifer recharge provides sufficient protection to public health.

  16. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  17. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection.

    Science.gov (United States)

    Yu, Wei W; White, Ian M

    2013-02-21

    We demonstrate a paper-based surface swab and lateral-flow dipstick that includes an inkjet-printed surface-enhanced Raman spectroscopy (SERS) substrate for analyte detection. Due to capillary-action wicking of cellulose, the paper dipstick enables extremely simple and pump-free loading of liquid samples into the detection device, and in addition provides inherent analyte concentration within the detection volume. Furthermore, the flexible nature of the paper-based SERS device also enables it to act as a swab to collect analyte molecules directly from a large-area surface; the collected analyte molecules can then be focused into a small-volume SERS-active region by lateral-flow concentration. These capabilities are unseen in today's SERS substrates and microfluidic SERS devices. Using these novel lateral-flow paper SERS devices, we achieved detection limits as low as 95 fg of Rhodamine 6G (R6G), 413 pg of the organophosphate malathion, 9 ng of heroin, and 15 ng of cocaine. Moreover, the measurements show that the technique is quantitative and is repeatable across multiple swabs and dipsticks. The results reported here may lead to ultra-low-cost portable applications in trace chemical detection.

  18. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution

    Science.gov (United States)

    Large, Ross R.; Halpin, Jacqueline A.; Danyushevsky, Leonid V.; Maslennikov, Valeriy V.; Bull, Stuart W.; Long, John A.; Gregory, Daniel D.; Lounejeva, Elena; Lyons, Timothy W.; Sack, Patrick J.; McGoldrick, Peter J.; Calver, Clive R.

    2014-03-01

    Sedimentary pyrite formed in the water column, or during diagenesis in organic muds, provides an accessible proxy for seawater chemistry in the marine rock record. Except for Mo, U, Ni and Cr, surprisingly little is known about trace element trends in the deep time oceans, even though they are critical to developing better models for the evolution of the Earth's atmosphere and evolutionary pathways of life. Here we introduce a novel approach to simultaneously quantify a suite of trace elements in sedimentary pyrite from marine black shales. These trace element concentrations, at least in a first-order sense, track the primary elemental abundances in coeval seawater. In general, the trace element patterns show significant variation of several orders of magnitude in the Archaean and Phanerozoic, but less variation on longer wavelengths in the Proterozoic. Certain trace elements (e.g., Ni, Co, As, Cr) have generally decreased in the oceans through the Precambrian, other elements (e.g., Mo, Zn, Mn) have generally increased, and a further group initially increased and then decreased (e.g., Se and U). These changes appear to be controlled by many factors, in particular: 1) oxygenation cycles of the Earth's ocean-atmosphere system, 2) the composition of exposed crustal rocks, 3) long term rates of continental erosion, and 4) cycles of ocean anoxia. We show that Ni and Co content of seawater is affected by global Large Igneous Province events, whereas redox sensitive trace elements such as Se and Mo are affected by atmosphere oxygenation. Positive jumps in Mo and Se concentrations prior to the Great Oxidation Event (GOE1, c. 2500 Ma) suggest pulses of oxygenation may have occurred as early as 2950 Ma. A flat to declining pattern of many biologically important nutrient elements through the mid to late Proterozoic may relate to declining atmosphere O2, and supports previous models of nutrient deficiency inhibiting marine evolution during this period. These trace elements (Mo

  19. Chemical evolution of giant molecular clouds in simulations of galaxies

    CERN Document Server

    Richings, Alexander J

    2016-01-01

    We present an analysis of Giant Molecular Clouds (GMCs) identified in hydrodynamic simulations of isolated, low-mass (M* ~ 10^9 M_sol) disc galaxies, with a particular focus on the evolution of molecular abundances and the implications for CO emission and the X_CO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_H,min = 10 cm^-3, or using an observationally motivated velocity-integrated CO line intensity threshold of 0.25 K km s^-1. Our simulations include a non-equilibrium treatment for the chemistry of 157 species, including 20 molecules. We use a suite of runs to carefully investigate the effects of numerical resolution and pressure floors (i.e. Jeans mass limiters). We find cloud lifetimes up to ~40 Myr, with a median of 13 Myr, in agreement with observations. At ten per cent solar metallicity, young clouds (<10-15 Myr) tend to be underabundant in H2 and CO compared to chemical equilibrium, by factors of ~3 and 1-2 orders of magnitude, respectively....

  20. CHEMICAL EVOLUTION AND THE GALACTIC HABITABLE ZONE OF M31

    Directory of Open Access Journals (Sweden)

    Leticia Carigi

    2013-01-01

    Full Text Available We have computed the Galactic Habitable Zones (GHZs of the Andromeda galaxy (M31 based on the probability of terrestrial planet formation, which depends on the metallicity (Z of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evolution model built to reproduce a metallicity gradient in the galactic disk, [O/H](r=−0.015 dex kpc−1 × r(kpc + 0.44 dex. If we assume that Earth-like planets form with a probability law that follows the Z distribution shown by stars with detected planets, the most probable GHZ per pc2 is located between 3 and 7 kpc for planets with ages between 6 and 7 Gyr. However, the highest number of stars with habitable planets is located in a ring between 12 and 14 kpc with a mean age of 7 Gyr. 11% and 6.5% of the all formed stars in M31 may have planets capable of hosting basic and complex life, respectively.

  1. The Galactic Habitable Zone I. Galactic Chemical Evolution

    CERN Document Server

    González, G; Ward, P; Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter

    2001-01-01

    We propose the concept of a "Galactic Habitable Zone" (GHZ). Analogous to the Circumstellar Habitable Zone (CHZ), the GHZ is that region in the Milky Way where an Earth-like planet can retain liquid water on its surface and provide a long-term habitat for animal-like aerobic life. In this paper we examine the dependence of the GHZ on Galactic chemical evolution. The single most important factor is likely the dependence of terrestrial planet mass on the metallicity of its birth cloud. We estimate, very approximately, that a metallicity at least half that of the Sun is required to build a habitable terrestrial planet. The mass of a terrestrial planet has important consequences for interior heat loss, volatile inventory, and loss of atmosphere. A key issue is the production of planets that sustain plate tectonics, a critical recycling process that provides feedback to stabilize atmospheric temperatures on planets with oceans and atmospheres. Due to the more recent decline from the early intense star formation ac...

  2. The evolution of floral scent and insect chemical communication.

    Science.gov (United States)

    Schiestl, Florian P

    2010-05-01

    Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.

  3. Detection of trace elements in DI water and comparison of several water solutions by using EF-FLRD chemical sensors

    Science.gov (United States)

    Kaya, M.; Wang, C.

    2017-02-01

    Detection of trace elements in DI water and comparison of several types of water respons such as DI water, tap water, and ocean water were studied by using EF-FLRD chemical sensors. Solutions of Mg, Fe, P, and Cd elements with a concentration of 1000 µg/ml (1 mg/ml) which corresponds to 1000 ppm by weight were tested. DI water, tap water, and real ocean water were utilized as medium to observe refractive index difference of solutions. The EF sensing technique which is based on the EF scattering effect was employed for the detection of trace chemicals and recording of solution responses. Due to the refractive index differences between solutions, optical loss of the sensor was different when the sensor head was immersed into solutions of approximately 10 ml each. The differences of the refractive indices are presented by recording ringdown times when the sensor head was immersed into the solutions. Fast response (˜1s), high sensitive, and reproducible EF-FLRD chemical sensors were fabricated and tested in laboratory conditions. High sensitivity of the sensors due to being capability of detecting smaller differences between measurands without any additional components or treatment makes the EF-FLRD sensors more attractive. Enhanced sensitivity of the EF-FLRD chemical sensors as a result of the multi-pass nature of the FLRD technique has potential application in detecting of trace elements in monitoring of water quality.

  4. Chemical and Physical Properties of Bulk Aerosols within Four Sectors Observed during TRACE-P

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.

    2003-01-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from Northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important m this region. "w had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (a km) evenly divided between sea salts, mm-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (a km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates h m Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust Low-altitude Channel exhibits the highest condensation nuclei ((34) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (265%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo m SE Asia reflects enhanced soot

  5. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.

    2015-05-29

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  6. Chemical evolution of a pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México

    Science.gov (United States)

    Mahood, Gail A.

    1981-06-01

    oxygen fugacity of the magma all remained essentially constant. Crystal settling and incremental partial melting by themselves appear incapable of producing either the chemical gradients within the Tala Tuff magma chamber or the trends with time in the post-caldera lavas. Transport of trace metals as volatile complexes within the thermal and gravitational gradient in volatilerich but water-undersaturated magma is considered the dominant process responsible for compositional zonation in the Tala Tuff. The evolution of the post-caldera lavas with time is thought to involve the diffusive emigration of trace elements from a relatively dry magma as a decreasing proportion of network modifiers and/or a decreasing concentration of complexing ligands progressively reduced trace-metal-site availability in the silicate melt.

  7. A simple and general method for solving detailed chemical evolution with delayed production of iron and other chemical elements

    CERN Document Server

    Vincenzo, Fiorenzo; Spitoni, Emanuele

    2016-01-01

    In this Letter, we present a new theoretical method for solving the chemical evolution of galaxies, by assuming the instantaneous recycling approximation for chemical elements restored by massive stars and the Delay Time Distribution formalism for the delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represent the starting point of this method. We derive a very simple and general equation which closely relates the Laplace transforms of the galaxy gas accretion and star formation history, which can be used to simplify the problem of retrieving these quantities in most of current galaxy evolution models. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element $X$ can be suitably solved with classical methods. We apply our model to reproduce the $[\\text{O/Fe}]$ and $[\\text{Si/Fe}]$ vs. $[\\text{Fe/...

  8. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali

    2014-04-01

    Emerging trace organic chemicals (TOrCs) released into the environment via discharge of wastewater effluents have been detected in rivers and lakes worldwide, raising concerns due to their potential persistence, toxicity and bioaccumulation. This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling events. All samples were analyzed for a wide range of TOrC encompassing pharmaceuticals, personal care products and household chemicals. Treatment and capacities of the plants varied from non-nitrifying to full biological nutrient removal providing a representative cross section of different types of plants operational within the country. A comparison of TOrC occurrence in effluents in Saudi Arabia with respective effluent qualities in the United States revealed similar levels for most TOrC. Overall, the occurrence of TOrC was higher at two of the plants. The higher TOrC concentrations at WWTP 1 are likely due to the non-nitrifying biological treatment process. The unique TOrC occurrence observed in the WWTP 3 effluent was unlike any other plant and was attributed to the influence of a large number of international visitors in its sewershed. The occurrence of TOrC in this plant was not expected to be representative of the occurrence elsewhere in the country. Bimodal diurnal variation expected for a range of TOrC was not observed, though some hourly variation in TOrC loading was noted for WWTP 3. Since water reclamation and reuse have received increasing interest in Saudi Arabia within the last few years, results from this study provide a good foundation in deciding whether advanced treatment is necessary to attenuate TOrC deemed to be of concern in effluents, or if natural treatment such as managed aquifer recharge provides sufficient protection to public health. © 2014

  9. Evolution of garnet distribution, shape and composition in high-grade pelitic migmatites of Salvador da Bahia, Brazil: insights from LA-ICP-MS trace element mapping

    Science.gov (United States)

    Goncalves, Philippe; Raimondo, Tom; Santos de Souza, Jailma

    2016-04-01

    Garnet is a widely used mineral in metamorphic petrology and more particularly for thermobarometric modelling to reconstruct the P-T-t evolution of Earth's crust. This is due to its ubiquity in high grade rocks (T > 450°C), its occurrence in many assemblages of interest for thermobarometry, and mostly to its ability to preserve chemical zoning. Two types of zoning are distinguished: growth and diffusion zoning. Growth zoning reflects crystallisation coeval with changes in P-T conditions or bulk composition. This type of zoning is therefore particularly useful to unravel the P-T evolution of open systems and determine the growth mechanisms involved. However, growth zoning in major elements is commonly altered by processes such as volume diffusion, which is particularly efficient at high temperatures and for elements like Fe or Mg that have high diffusion coefficients. In such cases, information that relates to the environmental conditions of garnet growth is either totally or partially obliterated. To minimise the impact of this process on growth zoning and retain useful information, trace elements are more appropriate because of their lower diffusion coefficients compared to major elements. In this study, the distribution of trace elements in garnet has been imaged using an emerging LA-ICP-MS mapping technique. This is achieved by rastering of the focused laser beam in linear transects, which are then stitched together by post-acquisition processing to form a quantified or semi-quantified image of the trace element distribution, with excellent detection limits (ppb) over a wide isotopic range (7Li to 238U) and minimal sample preparation required. This technique has been applied to high-grade pelitic gneisses and migmatites from the Paleoproterozoic Itabuna-Salvador-Curaça belt (adjacent to the Farol da Bara, Salvador da Bahia, Brazil). Structurally, it is located in a steeply-dipping high strain zone that may have played a major role in the segregation and

  10. The role of OH in the chemical evolution of protoplanetary disks : II. Gas-rich environments

    NARCIS (Netherlands)

    Chaparro-Molano, German; Kamp, I.

    2012-01-01

    Context. We present a method for including gas extinction of cosmic-ray-generated UV photons in chemical models of the midplane of protoplanetary disks, focusing on its implications on ice formation and chemical evolution. Aims. Our goal is to improve on chemical models by treating cosmic rays, the

  11. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    MA; Yingjun

    2001-01-01

    [1]Ma, Y. J., Liu, C. Q., Geochemistry of strontium isotopes in the crust weathering system, Acta Mineralogica Sinica (in Chinese), 1998, 18(3): 350.[2]Ma, Y. J., Liu, C. Q., Using strontium isotopes to trace nutrient element circulation and hydrochemical evolution within an ecosystem, Advance in Earth Sciences (in Chinese), 1999, 14 (4): 377.[3]Brantley, S. L., Chesley, J. T., Stillings, L. L., Isotopic ratios and release rates of strontium from weathering feldspars, Geochim. Cosmochim. Acta, 1998, 62(9): 1493.[4]Blum, J. D., Erel, Y., A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation, Nature, 1995, 373: 415.[5]Blum, J. D., Erel, Y., Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering, Geochim. Cosmochim. Acta, 1997, 61(15): 3193.[6]Bullen, T., Krabbenhoft, D., Kendall, C., Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA, Geochim. Cosmochim. Acta, 1996, 60: 1807.[7]Bullen, T., White, A., Blum, A. et al., Chemical weathering of a soil chronosequence on granitoid alluvium: Ⅱminer-alogic and isotopic constraints on the behavior of strontium, Geochim. Cosmochim. Acta, 1997, 61: 291.[8]Blum, J. D., Erel, Y., Brown, K., 87Sr/86Sr ratios of Sierra Nevada stream waters: Implications for relative mineral weath-ering rates, Geochim. Cosmochim. Acta, 1993, 57: 5019.[9]Ma Yingjun, Trace element and strontium isotope geochemistry during chemical weathering, Ph. D. Dissertation, 1999, Institute of Geochemistry, Chinese Academy of Sciences.[10]Nesbitt, H. W., Markovics, G., Price, R. C., Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Acta, 1980, 44: 1659.[11]Clauer, N., Strontium and argon isotopes in naturally weathered biotites, muscovites and feldspars, Chem. Geol., 1981, 31: 325.[12

  12. Chemical Evolution of Interstellar Dust into Planetary Materials

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic

  13. Explaining the evolution of warning coloration: secreted secondary defence chemicals may facilitate the evolution of visual aposematic signals.

    Directory of Open Access Journals (Sweden)

    Jostein Gohli

    Full Text Available Several pathways have been postulated to explain the evolution of warning coloration, which is a perplexing phenomenon. Many of these attempt to circumvent the problem of naïve predators by inferring kin selection or neophobia. Through a stochastic model, we show that a secreted secondary defence chemical can provide selective pressure, on the individual level, towards developing warning coloration. Our fundamental assumption is that increased conspicuousness will result in longer assessment periods and divergence from the predators' searching image, thus reducing the probability of a predator making mistakes. We conclude that strong olfactory signaling by means of chemical secretions can lead to the evolution of warning coloration.

  14. Optimizing Managed Aquifer Recharge (MAR) Systems for Removal of Trace Organic Chemicals (TOrCs)

    KAUST Repository

    Alidina, Mazahirali

    2014-06-01

    Managed aquifer recharge (MAR) is a low-energy subsurface water treatment system with the potential of being an important component of sustainable water reuse schemes. Alongside common wastewater contaminants, MAR systems have been shown to attenuate a range of trace organic chemicals (TOrCs). Despite several factors being possibly important for TOrC attenuation, many have not been investigated in depth. This research effort investigated three factors affecting attenuation of the moderately degradable TOrCs: primary substrate, adaptation of the microbial community to presence of TOrCs, and groundwater temperature. The overall goal was to optimize TOrC attenuation using different MAR configurations considering how these factors affect TOrC attenuation. The primary substrate composition and concentration significantly impacted attenuation of the moderately degradable TOrCs. Lower primary substrate concentrations and more refractory carbon generally resulted in better TOrC transformation, a more diverse microbial community in the infiltration zone and more diverse capabilities for TOrC degradation. The enzyme group cytochrome P450 may be important for TOrC transformation since its genes were more abundant under carbon-starving primary substrate conditions. Adaptation of the microbial community by pre-exposure to TOrCs was not required in order to degrade them. However, adaptation to the primary substrate was necessary for TOrC biotransformation due to its effect on the microbial community. Attenuation of most TOrCs was unaffected by changes in temperature. Some moderately degradable TOrCs, however, were better attenuated at higher temperatures likely due to increased microbial activity. Others were better degraded at lower temperatures likely due to favorable sorption conditions. In the context of applying MAR systems to potential water reuse schemes within Saudi Arabia, a reconnaissance study of TOrC occurrence in treated wastewater effluents was undertaken. Most of

  15. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  16. Chemical Evolution of the Stellar and Gaseous Components of Galaxies in Hydrodynamical Cosmological Simulations

    CERN Document Server

    Cora, S A; Lambas, D G; Mosconi, M B

    2000-01-01

    We present preliminary results on the effects of mergers on the chemical properties of galactic objects in hierarchical clustering scenarios. We adopt a hydrodynamical chemical code that allows to describe the coupled evolution of dark matter and baryons within a cosmological context. We found that disk-like and spheroid-like objects have distinctive metallicity patterns that may be the result of different evolution.

  17. Modelling the chemical evolution of star forming filaments

    Science.gov (United States)

    Seifried, D.; Walch, S.

    2016-05-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. [4]). Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate and find chemical and physical results in accordance with observations and other recent numerical work.

  18. Modelling the chemical evolution of star forming filaments

    CERN Document Server

    Seifried, D

    2015-01-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate and find chemical and physical results in accordance with observations and other recent numerical work.

  19. Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol

    Science.gov (United States)

    Liu, Xiaoxi; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; St. Clair, J. M.; Crounse, J. D.; Day, D. A.; Diskin, G. S.; Fried, A.; Hall, S. R.; Hanisco, T. F.; King, L. E.; Meinardi, S.; Mikoviny, T.; Palm, B. B.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ryerson, T. B.; Sachse, G.; Schwarz, J. P.; Simpson, I. J.; Tanner, D. J.; Thornhill, K. L.; Ullmann, K.; Weber, R. J.; Wennberg, P. O.; Wisthaler, A.; Wolfe, G. M.; Ziemba, L. D.

    2016-06-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with ΔO3/ΔCO, ΔPAN/ΔNOy, and Δnitrate/ΔNOy reaching ~0.1, ~0.3, and ~0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of ~2) to be equivalent to ~2% SO2 from coal combustion and ~1% NOx and ~9% CO from mobile sources.

  20. Tracing the temporal evolution of clusters in a financial stock market

    CERN Document Server

    Arratia, Argimiro

    2011-01-01

    We propose a methodology for clustering financial time series of stocks' returns, and a graphical set-up to quantify and visualise the evolution of these clusters through time. The proposed graphical representation allows for the application of well known algorithms for solving classical combinatorial graph problems, which can be interpreted as problems relevant to portfolio design and investment strategies. We illustrate this graph representation of the evolution of clusters in time and its use on real data from the Madrid Stock Exchange market.

  1. Using a scalar parameter to trace dislocation evolution in atomistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinbo [ORNL; Zhang, Z F [Shenyang National Laboratory for Materials Science; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL

    2015-01-01

    A scalar gamma-parameter is proposed from the Nye tensor. Its maximum value occurs along a dislocation line, either straight or curved, when the coordinate system is purposely chosen. This parameter can be easily obtained from the Nye tensor calculated at each atom in atomistic modeling. Using the gamma-parameter, a fully automated approach is developed to determine core atoms and the Burgers vectors of dislocations simultaneously. The approach is validated by revealing the smallest dislocation loop and by tracing the whole formation process of complicated dislocation networks on the fly.

  2. Characterising the Removal of Trace Organic Chemicals in Wastewater - Are we using the Right Tools?

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Polesel, Fabio

    Hypothesis tests posed on trace organics fate and removal in wastewater are often answered using approaches that can introduce significant bias in observations made on the system. Using non-representative sampling approaches in sewer and wastewater treatment plant studies is an example (Ort et al...

  3. Structural and functional evolution of the trace amine-associated receptors TAAR3, TAAR4 and TAAR5 in primates.

    Directory of Open Access Journals (Sweden)

    Claudia Stäubert

    Full Text Available The family of trace amine-associated receptors (TAAR comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the G(s protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosensory function involving recognition of volatile amines was proposed for murine TAAR3, TAAR4 and TAAR5. Humans can smell volatile amines despite carrying open reading frame (ORF disruptions in TAAR3 and TAAR4. Therefore, we set out to study the functional and structural evolution of these genes with a special focus on primates. Functional analyses showed that ligands activating the murine TAAR3, TAAR4 and TAAR5 do not activate intact primate and mammalian orthologs, although they evolve under purifying selection and hence must be functional. We also find little evidence for positive selection that could explain the functional differences between mouse and other mammals. Our findings rather suggest that the previously identified volatile amine TAAR3-5 agonists reflect the high agonist promiscuity of TAAR, and that the ligands driving purifying selection of these TAAR in mouse and other mammals still await discovery. More generally, our study points out how analyses in an evolutionary context can help to interpret functional data generated in single species.

  4. Chemical communication: a jewel sheds light on signal evolution.

    Science.gov (United States)

    Lassance, Jean-Marc; Löfstedt, Christer

    2013-05-06

    When others show sexy tails or sing elaborate songs, many animals use the language of chemistry to attract potential mates. A study provides insights into the evolutionary conundrum of how new chemical signals can evolve in an established communication system.

  5. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine.

    Science.gov (United States)

    Plósz, Benedek Gy; Langford, Katherine H; Thomas, Kevin V

    2012-11-01

    Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between

  6. Modelling the chemical evolution of molecular clouds as a function of metallicity

    CERN Document Server

    Penteado, Em M; Rocha-Pinto, H J

    2014-01-01

    The Galaxy is in continuous elemental evolution. Since new elements produced by dying stars are delivered to the interstellar medium, the formation of new enerations of stars and planetary systems is influenced by this metal enrichment. We aim to study the role of the metallicity on the gas phase chemistry of the interstellar medium. Using a system of coupled-ordinary differential equations to model the chemical reactions, we simulate the evolution of the abundance of molecules in the gas phase for different initial interstellar elemental compositions. These varying initial elemental compositions consider the change in the "elemental abundances" predicted by a self-consistent model of the elemental evolution of the Galaxy. As far as we are aware, this is the first attempt to combine elemental evolution of the Galaxy and chemical evolution of molecular clouds. The metallicity was found to have a strong effect on the overall gas phase composition. With decreasing metallicity, the number of long carbon chains wa...

  7. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    Directory of Open Access Journals (Sweden)

    Madelaine eBartlett

    2013-10-01

    Full Text Available Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; hypomorphic and hypermorphic alleles; altered protein-protein interactions; altered domain content; altered protein stability; and altered activity as an activator or repressor. Variability was also observed in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.

  8. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity.

    Science.gov (United States)

    Bartlett, Madelaine E; Whipple, Clinton J

    2013-10-10

    Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism's phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection's source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein-protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.

  9. Evolution of the stratospheric temperature and chemical composition over one Titanian year

    Energy Technology Data Exchange (ETDEWEB)

    Coustenis, Athena; Bampasidis, G.; Vinatier, S. [Laboratoire d' Etudes Spatiales et d' Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Achterberg, R. K.; Jennings, D. E.; Nixon, C. A.; Flasar, F. M.; Carlson, R. C.; Romani, P. N.; Guandique, E. A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lavvas, P. [GSMA, Université Reims Champagne-Ardenne, F-51687 Reims Cedex 2 (France); Teanby, N. A. [School of Earth Sciences, University of Bristol, Bristol BS8 1RJ (United Kingdom); Orton, G. [MS 183-501, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Stamogiorgos, S., E-mail: athena.coustenis@obspm.fr [Faculty of Physics, National and Kapodistrian University of Athens, Panepistimioupolis, GR 15783 Zographos, Athens (Greece)

    2013-12-20

    Since the Voyager 1 (V1) flyby in 1980, Titan's exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titanian year or 29.5 Earth years had elapsed in 2010 May). In this study, we search for temporal variations affecting Titan's atmospheric thermal and chemical structure within that year. We process Cassini/CIRS data taken during the Titan flybys from 2006-2013 and find a rather uneventful equatorial evolution. Conversely, at northern latitudes, we found enhanced abundances around the period of the northern spring equinox in mid-2009, which subsequently decreased (from 2010 to 2012), returning to values similar to those found in the V1 epoch, one Titanian year before. In the southern latitudes, since 2012, we see a trend for an increase of several trace gases (C{sub 4}H{sub 2}, C{sub 3}H{sub 4}, and HCN), indicative of a seasonal atmospheric reversal setting in. When we compare the CIRS 2010 and the 1980 V1/IRIS spectra (reanalyzed here), we find limited inter-annual variations. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50°N to 50°S, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by general circulation and photochemical models. Exceptions concern the most complex hydrocarbons (C{sub 4}H{sub 2} and C{sub 3}H{sub 4}). We also consider data from ground-based and Earth-orbiting observatories (such as from the Infrared Space Observatory, revisited here) and discuss possible atmospheric composition trends during a Titanian year.

  10. Constant Trace Anomaly as a Universal Condition for the Chemical Freeze-Out

    CERN Document Server

    Tawfik, A

    2013-01-01

    Finding out universal conditions describing the freeze-out parameters was a subject of various phenomenological studies. In the present work, we introduce a new condition based on constant trace anomaly (or interaction measure) calculated in the hadron resonance gas (HRG) model. Various extensions to the {\\it ideal} HRG which are conjectured to take into consideration different types of interactions have been analysed. When comparing HRG thermodynamics to that of lattice quantum chromodynamics, we conclude that the hard-core radii are practically irrelevant, especially when HRG includes all resonances with masses less than $2~$GeV. It is found that the constant trace anomaly (or interaction measure) agrees well with most of previous conditions.

  11. Silicon isotopes and trace elements in chert record early Archean basin evolution

    NARCIS (Netherlands)

    Geilert, Sonja; Vroon, Pieter Z.; van Bergen, Manfred J.

    2014-01-01

    Silicon isotopes of chemical sediments have received growing attention, given their applicability in the search for properties of ancient seawater. An important target is the reconstruction of secular changes in surface temperature of the Precambrian Earth, but interpretations are problematic since

  12. Trace determination of cobalt ion by using malic acid-malonic acid double substrate oscillating chemical system

    Institute of Scientific and Technical Information of China (English)

    Jie Wang; Wu Yang; Jie Ren; Miao Guo; Xiao Dong Chen; Wen Bin Wang; Jin Zhang Gao

    2008-01-01

    A novel kinetic method for determination of trace amounts of cobalt ion was proposed and validated. The method is based on adding malic acid into classical Belousov-Zhabotinskii (B-Z) oscillating chemical system to form a double substrate one. The results showed that when the concentration of cobalt ion was in the range of 5.27× 10-8 to 5.37×10-12mol L-1 the change of the oscillating period was directly proportional to the negative logarithm of cobalt ion concentration. The sensitivity and precision of the developed method were quite satisfactory. The limit of detection was down to 5.20 x 10-13 mol L-1 which was a highest sensitivity found for determination of metal ions using oscillating chemical reaction so far. Some factors influencing the determination were also examined. The method has been successfully used to determine cobalt ion in vitamin B12 injection.

  13. Trace metal concentrations in acidic, headwater streams in Sweden explained by chemical, climatic, and land use variations

    Directory of Open Access Journals (Sweden)

    B. J. Huser

    2012-02-01

    Full Text Available Long term data series (1996–2009 for eleven acidic, headwater streams (<10 km2 in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr, lead (Pb, and zinc (Zn. Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance and iron related positively to Pb and Cr while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr, 52% (Zn, and 72% (Pb of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10 and Zn (8, only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude, chemical (sulfate, and land use (silvaculture influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long term increases (Pb or decreases (Zn for trace metal concentrations at these sites.

  14. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evo

  15. Tracing the origin and evolution of plant TIR-encoding genes.

    Science.gov (United States)

    Sun, Xiaoqin; Pang, Hui; Li, Mimi; Chen, Jianqun; Hang, Yueyu

    2014-08-10

    Toll-interleukin-1 receptor (TIR)-encoding proteins represent one of the most important families of disease resistance genes in plants. Studies that have explored the functional details of these genes tended to focus on only a few limited groups; the origin and evolutionary history of these genes were therefore unclear. In this study, focusing on the four principal groups of TIR-encoding genes, we conducted an extensive genome-wide survey of 32 fully sequenced plant genomes and Expressed Sequence Tags (ESTs) from the gymnosperm Pinus taeda and explored the origins and evolution of these genes. Through the identification of the TIR-encoding genes, the analysis of chromosome positions, the identification and analysis of conserved motifs, and sequence alignment and phylogenetic reconstruction, our results showed that the genes of the TIR-X family (TXs) had an earlier origin and a wider distribution than the genes from the other three groups. TIR-encoding genes experienced large-scale gene duplications during evolution. A skeleton motif pattern of the TIR domain was present in all spermatophytes, and the genes with this skeleton pattern exhibited a conserved and independent evolutionary history in all spermatophytes, including monocots, that followed their gymnosperm origin. This study used comparative genomics to explore the origin and evolutionary history of the four main groups of TIR-encoding genes. Additionally, we unraveled the mechanism behind the uneven distribution of TIR-encoding genes in dicots and monocots.

  16. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    Men-Quan Liu; Jie Zhang

    2014-09-01

    Based on an improved model, more reasonable nucleosyn-thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main observation ofMn abundance for tens stars in those dSphs, and give some constraints to the nucleosynthesis and explosion ratio of different types of supernovae and Star Formation Rates (SFR) in those dSphs.

  17. Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    CERN Document Server

    Nidever, David L; Bird, Jonathan C; Andrews, Brett H; Hayden, Michael; Holtzman, Jon; Majewski, Steven R; Smith, Verne; Robin, Annie C; Perez, Ana E Garcia; Cunha, Katia; Prieto, Carlos Allende; Zasowski, Gail; Schiavon, Ricardo P; Johnson, Jennifer A; Weinberg, David H; Feuillet, Diane; Schneider, Donald P; Shetrone, Matthew; Sobeck, Jennifer; Garcia-Hernandez, D A; Zamora, O; Rix, Hans-Walter; Beers, Timothy C; Wilson, John C; O'Connell, Robert W; Minchev, Ivan; Chiappini, Cristina; Anders, Friedrich; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Frinchaboy, Peter M; Ge, Jian; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Marchante, Moses; Meszaros, Szabolcs; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey; Skrutskie, Michael F

    2014-01-01

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5

  18. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  19. Tracing the fate of carbon and the atmospheric evolution of Mars

    CERN Document Server

    Hu, Renyu; Ehlmann, Bethany L; Yung, Yuk L

    2015-01-01

    The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon (13C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13C/12C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure <1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.

  20. Tracing the evolution of massive galaxies up to z \\sim 3

    CERN Document Server

    Longhetti, M; Fontana, A; Giallongo, E; Nonino, M; Saracco, P; Vanzella, E

    2003-01-01

    A census of massive galaxies at redshift increasingly higher than $z\\sim$1 may provide strong constraints on the history of mass assembly and of star formation. Here we report on the analysis of three galaxies selected in the Hubble Deep Field South on the basis of their unusually red near-IR color J-K$\\ge$3. These objects result to be massive (M$_{star}\\sim 10^{11}$M$_{\\odot}$) galaxies at redshift 2.5$5) at 1$$4) on the basis of which we identified 4 massive evolved galaxies at 1.5$evolution scenario in which three massive galaxies at different redshift are apparently those we expect from a massive galaxy fully assembled at z$\\sim$3 which evolves passively in time down to $z=0$.

  1. Tracing the cosmic metal evolution in the low-redshift intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Michael Shull, J. [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: michael.shull@colorado.edu, E-mail: danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-11-20

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z ≤ 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ∼10 from z ≈ 5.5 to the present. We derive ion mass densities, ρ{sub ion} ≡ Ω{sub ion}ρ{sub cr}, with Ω{sub ion} expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) =0.67{sub −0.19}{sup +0.35}, (C III/C IV) =0.70{sub −0.20}{sup +0.43}, and (Ω{sub C} {sub III}+Ω{sub C} {sub IV})/(Ω{sub Si} {sub III}+Ω{sub Si} {sub IV})=4.9{sub −1.1}{sup +2.2}, are consistent with the photoionization parameter log U = –1.5 ± 0.4, hydrogen photoionization rate Γ{sub H} = (8 ± 2) × 10{sup –14} s{sup –1} at z < 0.4, and specific intensity I {sub 0} = (3 ± 1) × 10{sup –23} erg cm{sup –2} s{sup –1} Hz{sup –1} sr{sup –1} at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ{sub 0} = 10{sup 4} cm{sup –2} s{sup –1}, baryon overdensity Δ {sub b} ≈ 200 ± 50, and ''alpha-enhancement'' (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 10{sup 5} M {sub ☉} Mpc{sup –3} in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 10{sup 5} M {sub ☉} Mpc{sup –3} in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ {sub Z} = (1.5 ± 0.8) × 10{sup 6} M {sub ☉} Mpc{sup –3} or Ω {sub Z} ≈ 10{sup –5}. This represents 10% ± 5% of the metals produced by (6 ± 2) × 10{sup 8} M {sub ☉} Mpc{sup –3} of integrated star formation with yield y{sub m} = 0

  2. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    OpenAIRE

    Pengcheng Xu; Xinxin Li; Haitao Yu; Tiegang Xu

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surfa...

  3. Galactic chemical evolution: The role of the first stars

    CERN Document Server

    Cescutti, Gabriele

    2013-01-01

    The massive First Stars (the first ones to contribute to the chemical enrichment of the Universe due to their short lifetimes) are long dead, and even though efforts to directly observe them in high redshift galaxies are underway, a step forward in this field will have to wait for JWST and ELT. The only way to currently validate the picture arising from the most modern hydro-dynamical simulations of the formation of First Stars is to search for their imprints left on the oldest stars in our Galaxy. Which imprints are we looking for? In the last years our group has found that many chemical anomalies observed in very metal-poor halo stars, as well in the oldest bulge globular cluster, suggest the first stellar generations to have been fast rotators. After giving a brief overview of the aforementioned results, we highlight the impact of fast rotating metal-poor massive stars on the chemical enrichment of heavy-elements such as Sr and Ba. Indeed, in fast rotating massive stars the s-process production is boosted....

  4. Screening of phyto-chemical constituents, trace metals and antimicrobial efficiency of Cissus vitiginea

    Directory of Open Access Journals (Sweden)

    V. Subramani

    2014-06-01

    Full Text Available The present study focused on the phytochemical constituents, antimicrobial activity and trace metal concentrations of the Cissus vitiginea plant leaves which were collected from the Tiruchirappalli district, southern India. Preliminary phytochemical screening of leaves extracts revealed the presence of the bioactive compounds, such as steroids, triterpenoids, glycosides, sugar, alkaloids, flavonoids, tannins, amino acid, and coumarin in the leaves. The bacterial and fungal strains were tested for antimicrobial sensitivity against C. vitiginea using the disc diffusion method. The methanol extracts of the plant leaves exhibited the higher zone of inhibition against bacterial strains than fungal strains. The trace metal concentrations were analyzed form the powered plant leaves by 797 VA Computrace voltametry, Metrohm. The average concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn were 0.05, BDL, 018, 0.38, BDL, BDL and 0.48 mg kg-1, respectively. The bioactive compounds responsible for these antimicrobial activities could be isolated and identified to develop a new drug of pharmaceutical interest.

  5. NuPyCEE: NuGrid Python Chemical Evolution Environment

    Science.gov (United States)

    Ritter, Christian; Côté, Benoit

    2016-10-01

    The NuGrid Python Chemical Evolution Environment (NuPyCEE) simulates the chemical enrichment and stellar feedback of stellar populations. It contains three modules. The Stellar Yields for Galactic Modeling Applications module (SYGMA) models the enrichment and feedback of simple stellar populations which can be included in hydrodynamic simulations and semi-analytic models of galaxies. It is the basic building block of the One-zone Model for the Evolution of GAlaxies (OMEGA) module which allows the modelling of the chemical evolution of galaxies such as the Milky Way and its dwarf satellites. The STELLAB (STELLar ABundances) module provides a library of observed stellar abundances useful for comparing predictions of SYGMA and OMEGA.

  6. Stellar Populations and Chemical Evolution of Late--Type Dwarf Galaxies

    CERN Document Server

    Tosi, M P

    2001-01-01

    Some aspects of the chemical evolution of late-type dwarf galaxies are reviewed, together with their implications on three issues of cosmological relevance: similarity to primeval galaxies, derivation of the primordial helium abundance, contribution to the excess of faint blue galaxies. A more detailed approach to model their evolution is suggested. The importance of deriving the star formation history in these systems by studying their resolved stellar populations is emphasized.

  7. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    Science.gov (United States)

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  8. 追踪复杂事件的形成世系%Tracing the Evolution Lineage of Complex Event

    Institute of Scientific and Technical Information of China (English)

    熊招招; 王永利

    2012-01-01

    复杂网络安全事件、物联网世系追溯等新型应用为复杂事件的世系研究提出许多挑战.由于模糊时间以及状态不确定性转移等因素的存在,追溯复杂事件的世系时往往出现时间推导不精确以及无法有效逆向推导等问题,因此无法高效地追踪及查询复杂事件的形成世系.针对此类问题,结合起源语义提出了一种基于扩展的模糊时间Petri网的逆向推理模型(BREFTN),并根据时间自动机理论利用此模型设计了逆向推理算法.在给定目标库所以及相关条件的情况下,它不仅可以得到所有演变路径信息并分析其可能性分布,还可以对复杂事件的各个状态及变迁的模糊时间函数值进行有效地推算分析.最后分析了BREFTN模型的完备性及演变路径的性质,并通过实验检测了算法的性能.%Some novel applications such as network security event and tracing lineage of IOT,etc. presented many challenges for the lineage studying of complex event Because of the presence of factors including fuzzy time and uncertain transfer of state, tracing the lineage of complex event often encounter inaccurate derived time and hard reverse derivation problem, therefore the evolution lineage of complex event can not be traced or queried effectively. A reverse derivation model with the provenance semantic,called BREFTN (backward reasoning extended fuzzy time petri net), was proposed for such problems,and based on this model,a backward reasoning algorithm according to time automation theory was designed. Given goal place(s) and other conditions, it can not only get all information evolution path and analyze the possibility distribution of path, but also efficiently compute the fuzzy time function value of the state and transition of complex events. Finally, the completeness of BREFTN model and the properties of evolution path were analyzed,and the performance of algorithm was verified by experiments.

  9. Chemical Evolution in the Interstellar Medium: From Astrochemistry to Astrobiology

    Science.gov (United States)

    Allamandola, Louis J.

    2009-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the Universe. In cold molecular clouds, the birthplace of planets and stars, interstellar molecules freeze onto dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. Astrochemical evolution, highlights of this field from a chemist's perspective, and the astronomer's infrared toolbox will be reviewed.

  10. Microstructure, mechanical properties and texture evolution of AZ31 alloy containing trace levels of strontium

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Alireza, E-mail: alireza.sadeghi@mail.mcgill.ca; Pekguleryuz, Mihriban

    2011-08-15

    The effect of low levels of Sr (0.01, 0.03, 0.05 wt.%) on the microstructure, mechanical properties and texture of AZ31 magnesium alloy has been investigated. Thermodynamic modeling has been used to study the effect of Sr on phase precipitation at different temperatures. Cooling curve analysis reveals a decrease in solidification superheat with the addition of 0.03 wt.% Sr to AZ31. The as-cast microstructures of the alloys have been studied using optical microscopy (OM) and electron probe micro analysis (EPMA). Results show the refining effect of Sr on the grain size and on the {beta}-Mg{sub 17}Al{sub 12} precipitates through growth poisoning and inoculation, respectively. To investigate the mechanical properties of the alloys, as-cast samples were compression tested at elevated temperatures. Hot compression peak stress ({sigma}{sub max}) and critical strain before recrystallization ({epsilon}{sub c}) initially drop but then increase. {sigma}{sub max} first decreases due to the depletion of Al from solid solution and then increases when the amount of the Al-Sr precipitates reach a significant amount. {epsilon}{sub c} drops due to the acceleration of dynamic recrystallization kinetics as a result of grain refinement. It increases with increasing Sr when the concentration Sr in solid solution is increased leading to dislocation pinning and retardation of recrystallization. X-ray texture measurements on the hot compressed and extruded samples show a decrease in maximum intensity of the basal pole figures with increasing Sr as a result of reduced twining and the changes in Al and Sr concentrations in solid solution. - Research Highlights: {yields} Microstructures/precipitates of AZ31+trace levels of Sr were examined by OM and EPMA. {yields} Thermodynamic calculations and cooling curve analysis were used to predict ppt formation. {yields} It has been shown that Sr refines the grains and Mg17Al12 precipitates. {yields} Mechanical properties and texture were studied using

  11. Recent advances in chemical evolution and the origins of life

    Science.gov (United States)

    Oro, John; Lazcano, Antonio

    1992-01-01

    Consideration is given to the ideas of Oparin and Haldane who independently suggested more than 60 years ago that the first forms of life were anaerobic, heterotrophic bacteria that emerged as the result of a long period of chemical abiotic synthesis of organic compounds. It is suggested that at least some requirements for life are met in the Galaxy due to the cosmic abundance of carbon, nitrogen, oxygen, and other biogenic elements; the existence of extraterrestrial organic compounds; and the processes of stellar and interstellar planetary formation.

  12. Influence of trace metals on carbon dioxide evolution from a Yolo soil

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.-H.; Broadbent, F.E.

    1982-01-01

    We measured carbon dioxide production in Yolo silt loam amended with alfalfa meal and sewage sludge after the addition of solutions of chromium, cadmium, copper, lead, manganese, and zinc at concentrations ranging from 0 to 400 parts per million. Quantities of these metals extractable with water, KNO/sub 3/, DTPA, and HNO/sub 3/ were determined at the end of the experiment. Threshold concentrations of metals, defined as the concentration required for 10 percent inhibition of CO/sub 2/ production, were in the sequence Pb>Cd>Cu>Mn = Zn. An addition of only 8.6 ppm of Cr to this soil is sufficient to inhibit CO/sub 2/ evolution by 10 percent, whereas the addition of about 27 ppm of Pb would be required to produce the same effect.

  13. The isotopic and chemical evolution of planets: Mars as a missing link

    Science.gov (United States)

    Depaolo, D. J.

    1988-01-01

    The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites.

  14. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Ying-Hua Pan

    2014-01-01

    Full Text Available At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c. However, the quark-gluon plasma (QGP system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.

  15. Geologic and chemical evolution of volcan tepetiltic, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Deremer, L.A.; Nelson, S.A.

    1985-01-01

    Volcan Tepetiltic is located in the northwestern segment of the Mexican Volcanic Belt, about 40 km SW of the city of Tepic. The structure is a calc-alkaline stratovolcano composed primarily of andesite and dacite lava flows topped by an elliptical caldera measuring approximately 5 by 2.5 km. At least two cycles of andesite volcanism followed by rapid differentiation into volumetrically subordinate dacite flows and dikes built the majority of the complex. The second pulse of andesitic lavas were more basic than the first and appear to have been the result of reinjection of mafic magma into the shallow andesitic magma chamber. This was closely followed by the emplacement of two rhyolite domes and associated ash deposits on the eastern flank of the volcano. Finally, two small hornblende andesite domes were erupted on the floor of the caldera, and a lake formed in the northeastern corner of the caldera. Cinder cones on the flanks of the volcano have erupted alkaline lavas of mugearitic affinity. These are chemically unrelated to the calc-alkaline lavas erupted from Tepetiltic itself. The latest activity of Tepetiltic was the emplacement of a crystal rich rhyolite domes on the southern flank, which has blocked stream drainages to form a coulee lake. This last event has occurred within the last several thousand years. The rocks erupted from Tepetiltic form a chemically continuous suite which could have been derived through crystal fractionation of andesitic magma. No basic parental magmas, however, have erupted throughout the area.

  16. Asian dust storm observed at a rural mountain site in southern China: chemical evolution and heterogeneous photochemistry

    Directory of Open Access Journals (Sweden)

    W. Nie

    2012-12-01

    Full Text Available Heterogeneous processes on dust particles are important for understanding the chemistry and radiative balance of the atmosphere. This paper investigates an intense Asian dust storm episode observed at Mount Heng (1269 m a.s.l. in southern China on 24–26 April 2009. A set of aerosol and trace gas data collected during the study was analyzed to investigate their chemical evolution and heterogeneous photochemistry as the dust traveled to southern China. Results show that the mineral dust arriving at Mt. Heng experienced significant modifications during transport, with large enrichments in secondary species (sulfate, nitrate, and ammonium compared with the dust composition collected at an upwind mountain top site (Mount Hua. A photochemical age "clock" (−Log10(NOx/NOy was employed to quantify the atmospheric processing time. The result indicates an obvious increase in the abundance of secondary water-soluble ions in dust particles with the air mass atmospheric processing time. Based on the observations, a 4-stage evolution process is proposed for carbonate-containing Asian dust, starting from fresh dust to particles coated with hydrophilic and acidic materials. Daytime-enhanced nitrite formation on the dust particles was also observed, which indicates the recent laboratory result of the TiO2 photocatalysis of NO2 as a potential source of nitrite and nitrous acid.

  17. Asian dust storm observed at a rural mountain site in Southern China: chemical evolution and heterogeneous photochemistry

    Directory of Open Access Journals (Sweden)

    W. Nie

    2012-08-01

    Full Text Available Heterogeneous processes on dust particles are important for understanding the chemistry and radiative balance of the atmosphere. This paper investigates an intense Asian dust storm episode observed at Mount Heng (1250 m a.s.l. in Southern China on 24–26 April 2009. A set of aerosol and trace gas data collected during the study was analyzed to investigate their chemical evolution and heterogeneous photochemistry as the dust traveled to Southern China. Results show that the mineral dust arriving at Mt. Heng experienced significant modifications during transport, with large enrichments in secondary species (sulfate, nitrate, and ammonium compared with the dust composition collected at an upwind mountain top site (Mount Hua. A photochemical age "clock" (−log10(NOx/NOy was employed to quantify the atmospheric processing time. The result indicates an obvious increase in the abundance of secondary water-soluble ions in dust particles with the air mass' photochemical age. Based on the observations, a 4-stage evolution process is proposed for carbonate-rich Asian dust, starting from fresh dust to particles coated with hydrophilic and acidic materials. Daytime-enhanced nitrite formation on the dust particles was also observed, which indicates the recent laboratory result of the TiO2 photocatalysis of NO2 as a potential source of nitrite and nitrous acid.

  18. The 1st Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Devincenzi, D. L. (Editor); Pleasant, L. G. (Editor)

    1982-01-01

    This symposium provided an opportunity for all NASA Exobiology principal investigators to present their most recent research in a scientific meeting forum. Papers were presented in the following exobiology areas: extraterrestrial chemistry primitive earth, information transfer, solar system exploration, planetary protection, geological record, and early biological evolution.

  19. Losing track of the time: the chemical clock of prestellar core evolution in hydrodynamic simulation

    Science.gov (United States)

    Szucs, L.; Glover, S.; Caselli, P.

    2016-05-01

    The ortho:para ratio of H2D+ is a proposed observational indicator of prestellar core ages, and thus a possible tool to determine the typical star formation time scale. The conversion of the measured ratio to an age estimate requires modelling of the chemical evolution. Such models usually consider static, one zone models of physical conditions. The relevant chemical time scales, however, are comparable to the dynamic time scale, therefore the history of gas might affect the ratio. To investigate the significance of gas dynamics and history on the spin-state ratio, we analyse prestellar cores formed in various environment in a hydrodynamic simulation. The fully time dependent, spatially resolved chemical evolution of the cores are computed using a state-of-art ortho:para and deuteration chemical network. The true ages are compared to the once indicated by the ortho:para ratio.

  20. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

    CERN Document Server

    Revaz, Y; Sawala, T; Hill, V; Letarte, B; Irwin, M; Battaglia, G; Helmi, A; Shetrone, M D; Tolstoy, E; Venn, K A

    2009-01-01

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the s...

  1. Kinematic and chemical evolution of early-type galaxies

    CERN Document Server

    Ziegler, B L; Böhm, A; Bender, R; Fritz, A; Maraston, C

    2004-01-01

    We investigate in detail 13 early-type field galaxies with 0.2evolution in the B-band of 0.3-0.5mag for both samples. We compare measured Lick absorption line strengths (Hdelta, Hgamma, Hbeta, Mg_b, & Fe5335) with evolutionary stellar population models to derive light-averaged ages, metallicities and the element abundance ratios Mg/Fe. We find that all these three stellar parameters of the distant galaxies obey a scaling with velocity dispersion (mass) which is very well consistent with the one of local nearby galaxies. In particular, the distribution...

  2. Chemical Evolution of Red MSX Sources in the Southern Sky

    Science.gov (United States)

    Yu, Naiping; Xu, Jinlong

    2016-12-01

    Red Midcourse Space Experiment (MSX) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H ii regions. Combined with the MALT90 data, we calculated the column densities of N2H+, C2H, HC3N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N2H+ and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N2H+, C2H, and HC3N seem to decrease as a function of their Lyman continuum fluxes (N L ), indicating that these molecules could be destroyed by UV photons when H ii regions have formed inside. We also find that the C2H abundance decreases faster than HC3N with respect to N L . The abundance of HNC has a tight correlation with that of N2H+, indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  3. Temporal evolution of pollution by trace metals and plants analysis in Apipucos reservoir, Recife, PE, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Fonseca, Cassia K.L.; Santos, Suzana O.; Paiva, Ana C. de; Silva, Waldecy A. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Recife, PE (Brazil)

    2015-07-01

    Water and sediments may reflect the current quality of an aquatic system and the historical behavior of certain hydrological and chemical parameters. Analysis of metals in sediment profiles are used to determine anomalies in their concentrations, as well as sources of pollution. This study was performed in Apipucos Reservoir in the city of Recife, Brazil. Samples of water, plants and sediments were collected in the study area and their metals content (extract by adding acids) were determined a fast sequential atomic absorption spectrometer (SpectrAA-220FS/VARIAN). The {sup 210}Pb activity concentration in each sediment layer was determined through the beta counting of {sup 210}Bi after lead precipitation as lead chromate. The results showed the metals' behavior in sediments: iron and manganese concentrations in sediments increase proportionately with the ages of the sediments. In general, cobalt, copper and zinc were also their concentrations increased over the years. These same elements in water are similar from the blank samples, however the roots of 'Eichhornia crassipes' assimilated higher concentrations of metals than the stems and leaves of this species. (author)

  4. Genomic organization and evolution of the trace amine-associated receptor (TAAR) repertoire in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Tessarolo, Jordan A; Tabesh, Mohammad J; Nesbitt, Michael; Davidson, William S

    2014-04-22

    There is strong evidence that olfaction plays a key role in the homing of salmonids to their natal spawning grounds, particularly in the freshwater phase. However, the physiological and genetic mechanisms behind this biological phenomenon are largely unknown. It has been shown that Pacific salmon respond to dissolved free amino acids from their natal streams. This indicates that amino acids comprise part of the olfcatory cues for imprinting and homing in salmonids. As trace amine-associated receptors (TAARs), a class of olfactory receptors that are close relatives of the G protein-coupled aminergic neurotransmitter receptors, recognize amino acid metabolites, we hypothesize that TAARs play an important role in salmon homing by recognizing olfactory cues. Therefore, to better understand homing in Atlantic salmon, we set out to characterize the TAAR genes in this species. We searched the first assembly of the Atlantic salmon genome for sequences resembling TAARs previously characterized in other teleosts. We identified 27 putatively functional TAAR genes and 25 putative TAAR pseudogenes, which cluster primarily on chromosome 21 (Ssa21). Phylogenetic analysis of TAAR amino acid sequences from 15 vertebrate species revealed the TAAR gene family arose after the divergence of jawed and jawless vertebrates. The TAARs group into three classes with salmon possessing class I and class III TAARs. Within each class, evolution is characterized by species-specific gene expansions, which is in contrast to what is observed in other olfactory receptor families (e.g., OlfCs and oras).

  5. ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY CMa

    CERN Document Server

    Decin, L; Millar, T J; Baudry, A; De Beck, E; Homan, W; Smith, N; Van de Sande, M; Walsh, C

    2016-01-01

    (abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0".24x0".13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50 degrees measured from north to east. However, this picture can not capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profi...

  6. Evolution of polymer photovoltaic performances from subtle chemical structure variations.

    Science.gov (United States)

    Yan, Han; Li, Denghua; Lu, Kun; Zhu, Xiangwei; Zhang, Yajie; Yang, Yanlian; Wei, Zhixiang

    2012-11-21

    Conjugated polymers are promising replacements for their inorganic counterparts in photovoltaics due to their low cost, ease of processing, and straightforward thin film formation. New materials have been able to improve the power conversion efficiency of photovoltaic cells up to 8%. However, rules for rational material design are still lacking, and subtle chemical structure variations usually result in large performance discrepancies. The present paper reports a detailed study on the crystalline structure, morphology, and in situ optoelectronic properties of blend films of polythiophene derivatives and [6,6]-phenyl C61-butyric acid methyl ester by changing the alkyl side chain length and position of polythiophene. The correlation among the molecular structure, mesoscopic morphology, mesoscopic optoelectronic property and macroscopic device performance (highest efficiency above 4%) was directly established. Both solubility and intermolecular interactions should be considered in rational molecular design. Knowledge obtained from this study can aid the selection of appropriate processing conditions that improve blend film morphology, charge transport property, and overall solar cell efficiency.

  7. Impact constraints on the environment for chemical evolution and the continuity of life

    Science.gov (United States)

    Oberbeck, Verne R.; Fogleman, Guy

    1990-03-01

    The Moon and the Earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. In this paper, we explore the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. The classical hypothesis for the origin of life through the slow accumulation of prebiotic reactants in the primordial soup in the entire ocean may not be consistent with constraints imposed by the impact history of Earth. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus, life probably could have originated near the surface between frequent surface sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on Earth where probably not the ancestors of present life.

  8. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  9. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    Science.gov (United States)

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  10. The Chemical Evolution of the Solar Neighbourhood the Effect of Binaries

    CERN Document Server

    De Donder, E

    2002-01-01

    In this paper we compute the time evolution of the elements (4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ca and 56Fe) and of the supernova rates in the solar neighbourhood by means of a galactic chemical evolutionary code that includes in detail the evolution of both single and binary stars. Special attention is payed to the formation of black holes. Our main conclusions: in order to predict the galactic time evolution of the different types of supernovae, it is essential to compute in detail the evolution of the binary population, the observed time evolution of carbon is better reproduced by a galactic model where the effect is included of a significant fraction of intermediate mass binaries, massive binary mass exchange provides a possible solution for the production of primary nitrogen during the very early phases of galactic evolution, chemical evolutionary models with binaries or without binaries but with a detailed treatment of the SN Ia progenitors predict very similar age-metallicity relations and ve...

  11. Impact of solar system exploration on theories of chemical evolution and the origin of life

    Science.gov (United States)

    Devincenzi, D. L.

    1983-01-01

    The impact of solar system exploration on theories regarding chemical evolution and the origin of life is examined in detail. Major findings from missions to Mercury, Venus, the moon, Mars, Jupiter, Saturn, and Titan are reviewed and implications for prebiotic chemistry are discussed. Among the major conclusions are: prebiotic chemistry is widespread throughout the solar system and universe; chemical evolution and the origin of life are intimately associated with the origin and evolution of the solar system; the rate, direction, and extent of prebiotic chemistry is highly dependent upon planetary characteristics; and continued exploration will increase understanding of how life originated on earth and allow better estimates of the likelihood of similar processes occurring elsewhere.

  12. Chemical differentiation in a prestellar core traces non-uniform illumination

    OpenAIRE

    Spezzano, Silvia; Bizzocchi, Luca; Caselli, Paola; Harju, Jorma; Brünken, Sandra

    2016-01-01

    Dense cloud cores present chemical differentiation due to the different distribution of C-bearing and N-bearing molecules, the latter being less affected by freeze-out onto dust grains. In this letter we show that two C-bearing molecules, CH$_3$OH and $c$-C$_3$H$_2$, present a strikingly different (complementary) morphology while showing the same kinematics toward the prestellar core L1544. After comparing their distribution with large scale H$_2$ column density N(H$_2$) map from the Herschel...

  13. Measuring the Effect of Fuel Chemical Structure on Particulate and Gaseous Emissions using Isotope Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Mueller, C J; Martin, G C; Upatnicks, A; Dibble, R W; Cheng, S

    2003-09-11

    Using accelerator mass spectrometry (AMS), a technique initially developed for radiocarbon dating and recently applied to internal combustion engines, carbon atoms within specific fuel molecules can be labeled and followed in particulate or gaseous emissions. In addition to examining the effect of fuel chemical structure on emissions, the specific source of carbon for PM can be identified if an isotope label exists in the appropriate fuel source. Existing work has focused on diesel engines, but the samples (soot collected on quartz filters or combustion gases captured in bombs or bags) are readily collected from large industrial combustors as well.

  14. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Science.gov (United States)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  15. Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed)

    Science.gov (United States)

    Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François

    2014-04-01

    Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some

  16. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt.

  17. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  18. Chemical evolution and the origin of life: cumulative keyword subject index 1970-1986

    Science.gov (United States)

    Roy, A. C.; Powers, J. V.; Rummel, J. D. (Principal Investigator)

    1990-01-01

    This cumulative subject index encompasses the subject indexes of the bibliographies on Chemical Evolution and the Origin of Life that were first published in 1970 and have continued through publication of the 1986 bibliography supplement. Early bibliographies focused on experimental and theoretical material dealing directly with the concepts of chemical evolution and the origin of life, excluding the broader areas of exobiology, biological evolution, and geochemistry. In recent years, these broader subject areas have also been incorporated as they appear in literature searches relating to chemical evolution and the origin of life, although direct attempts have not been made to compile all of the citations in these broad areas. The keyword subject indexes have also undergone an analogous change in scope. Compilers of earlier bibliographies used the most specific term available in producing the subject index. Compilers of recent bibliographies have used a number of broad terms relating to the overall subject content of each citation and specific terms where appropriate. The subject indexes of these 17 bibliographies have, in general, been cumulatively compiled exactly as they originally appeared. However, some changes have been made in an attempt to correct errors, combine terms, and provide more meaningful terms.

  19. Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign

    Directory of Open Access Journals (Sweden)

    B. Adhikary

    2009-08-01

    Full Text Available The Sulfur Transport and dEposition Model (STEM developed at the University of Iowa is applied to the analysis of observations obtained during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B, conducted over the Pacific Ocean during the 2006 North American spring season. This paper reports on the model performance of meteorological parameters, trace gases, aerosols and photolysis rate (J-values predictions with the NASA DC-8 and NSF/NCAR C-130 airborne measurements along with observations from three surface sites Mt. Bachelor, Trinidad Head and Kathmandu, Nepal. In general the model shows appreciable skill in predicting many of the important aspects of the observed distributions. The major meteorological parameters driving long range transport are accurately predicted by the WRF simulations used in this study. Furthermore, the STEM model predicts aerosols and trace gases concentrations within a standard deviation of most of the observed mean values. The results also point towards areas where model improvements are needed; e.g., the STEM model underestimates CO (15% for the DC8 and 6% for the C-130, whereas it overpredicts PAN (by a factor of two for both aircraft. The errors in the model calculations are attributed to uncertainty in emissions estimates and uncertainty in the top and lateral boundary conditions. Results from a series of sensitivity simulations examining the impact of the growth of emissions in Asia from 2000 to 2006, the importance of biomass burning, the effect of using boundary conditions from different global models, and the role of heterogeneous chemistry on the predictions are also presented. The impacts of heterogeneous reactions at specific times during dust transport episodes can be significant, and in the presence of dust both sulfate and nitrate aerosol production is increased and gas phase nitric acid levels are reduced appreciably (~50%. The aging of the air masses during the long range

  20. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Torri, Silvana, E-mail: torri@agro.uba.ar [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina); Lavado, Raul [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina)

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  1. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2013-10-01

    Full Text Available Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example. However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods.

  2. Towards an Integrated Model of Earth's Thermo-Chemical Evolution and Plate Tectonics

    Science.gov (United States)

    Tackley, P. J.; Xie, S.

    2001-05-01

    It has long been a challenge for geodynamicists, who have typically modeled homogeneous mantles, to explain the geochemical evidence for the existence of several distinct chemical reservoirs, in terms of a dynamically and chemically self-consistent model. While the mixing behavior of generalized tracers has received much attention in the modeling community, a recent trend has been towards mantle convection models that track the evolution of specific chemical species, both major and minor, and can thus be related to geochemical observations. However, obtaining realistic chemical evolution in such models is dependent on their having a reasonable representation of plate tectonic behavior since the recycling of oceanic crust and complementary depleted residuum is a key process in Earth that other terrestrial planets may lack. In general, this has required inserting plate motions by hand in models. In recent years, however, we have learned how to perform numerical simulations of mantle convection in which plate tectonic behavior is introduced self-consistently through plastic yielding of the lithosphere. In this presentation, models of mantle convection that combine a treatment of geochemical evolution with self-consistently generated plate tectonics, will be presented. Preliminary results indicate that the system can self-consistently evolve regions which have a HIMU-like signature as well as regions with a high He3/He4 ratio.

  3. The effect of intermediate mass close binaries on the chemical evolution of Globular Clusters II

    CERN Document Server

    Mennekens, N; De Greve, J P

    2013-01-01

    The chemical processes during the Asymptotic Giant Branch (AGB) evolution of intermediate mass single stars predict most of the observations of the different populations in Globular Clusters although some important issues still need to be further clarified. In particular, to reproduce the observed anticorrelations of Na-O and Al-Mg, chemically enriched gas lost during the AGB phase of intermediate mass single stars must be mixed with matter with a pristine chemical composition. The source of this matter is still a matter of debate. Furthermore, observations reveal that a significant fraction of the intermediate mass and massive stars are born as components of close binaries. We will investigate the effects of binaries on the chemical evolution of Globular Clusters and on the origin of matter with a pristine chemical composition that is needed for the single star AGB scenario to work. We use a population synthesis code that accounts for binary physics in order to estimate the amount and the composition of the ...

  4. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  5. The Chemical Evolution of Narrow Emission Line Galaxies: the Key to their Formation Processes

    CERN Document Server

    Torres-Papaqui, J P; Ortega-Minakata, R A

    2011-01-01

    Using the largest sample of narrow emission line galaxies available so far, we show that their spectral characteristics are correlated with different physical parameters, like the chemical abundances, the morphologies, the masses of the bulge and the mean stellar age of the stellar populations of the host galaxies. It suggests that the spectral variations observed in standard spectroscopic diagnostic diagrams are not due solely to variations of ionization parameters or structures but reflect also the chemical evolution of the galaxies, which in turn can be explained by different galaxy formation processes.

  6. Physical and chemical environments of abnormal vitrinite reflectance evolution in the sedimentary basins

    Institute of Scientific and Technical Information of China (English)

    QIU Nansheng; WANG Weixiao; XIE Mingju

    2007-01-01

    Based on the tested data of pressure and vitrinitere flectance of some wells in sedimentary basins, abnormal high pressure is regarded as not the only factor to retard the increase of vitrinite reflectance (Ro). Apart from the types of the organic matter, the physical environment (temperature and pressure) and chemical environment (fluid compositionand inorganic elements) will result in the abnormal vitrinite reflectance values in the sedimentary basins. This paper tested trace elements and vitrinite reflectance data from the the abnormal high pressure and normal pressure strata pro-files, respectively, and found that the acidic and lower salinity starta are favorable for the increase of Ro. By discussing the corresponding relationship between the contents of some trace elements in the mudstone and the vitrinite reflectance values, the typical trace elements were found to suppress and/or catalyze the vitrinite reflectance of organic matter, while the elements of Ca, Mn, Sr, B, Ba and P may result in the retardation of Ro. However, elements of Fe, Co, Zn, Ni and Rb may catalyze the organic matter maturation. This study is conductive to the organic maturation correction, oil and gas assessment and thermal history reconstruction by the paleothermometry.

  7. The possible roles of water in the prebiotic chemical evolution of DNA.

    Science.gov (United States)

    Cui, Shuxun

    2010-09-21

    There is no doubt that water is pivotal to life. Yet, as the emergence of life is still a big challenge in science, the detailed involvement of water in that process is not well recognized. Following the clues provided by recent single-molecule studies on DNA, we attempt to elucidate the possible roles of water in the prebiotic chemical evolution. Water has long been recognized as an important reactant in the Miller-Urey experiment and then as the only solvent of the primitive soup. Besides that, water also played a vital role in the prebiotic chemical evolution: water is the important criterion in the combinatorial library screening for self-assembling macromolecules. With this notion, the uniformity of biochemistry for all terrestrial life may be explained. A possible roadmap from the inorganic world to the origin of life is also discussed.

  8. The Chemical Evolution of Galaxies: The Stellar Mass-Metallicity Relation

    CERN Document Server

    Hartwick, F D A

    2016-01-01

    The predictions of the multiple burst accretion model of chemical evolution are compared to the observations of the stellar masses and metallicities of star-forming galaxies. With the addition of one parameter, the model can account for the observations of the star-forming galaxies if the observations of the galaxies are identified with the star bursting behaviour of the model. This consistency with the model holds only if galaxy downsizing is assumed to occur.

  9. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    OpenAIRE

    Liang, Juhua; Tang, Sanyi; Cheke, Robert

    2016-01-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel disc...

  10. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    CERN Document Server

    Gioannini, Lorenzo; Vladilo, Giovanni; Calura, Francesco

    2016-01-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by AGB stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to Damped Lyman-Alpha systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are: i) we can reproduce the observed gas to dust ratio in dwarf galaxies. ii) We find that the process of dust accretion plays a fundamental role in the evolution of du...

  11. A New Picture for the Chemical Evolution of the Galaxy: the Two Infall Model

    Directory of Open Access Journals (Sweden)

    Cristina Chiappini

    2001-01-01

    Full Text Available We present a chemical evolution model for the Galaxy which assumes that the evolution of the halo and thick disk is completely disentangled from the thin disk. The Galaxy formed by two main infall episodes which formed the halo-thick disk and thin disk, respectively. The model predicts the evolution of the gas mass, the star formation rate, the supernova rates and the abundances of 16 chemical elements as functions of time and galactocentric distance. Our results , strongly suggest that the previous picture for the Galaxy formation in which the gas shed from the halo was the main contributor to the thin disk formation, is not valid. We conclude a timescale of 8 Gyr for the thin-disk formation in the solar vicinity is required, implying that the infalling gas forming the thin-disk comes not only from the thick disk but mainly from the intergalactic medium. We constrain the IMF variation, Deuterium primordial value and earliest phases of Galaxy evolution.

  12. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    Science.gov (United States)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  13. The Role of Dissolved Organic Carbon and Preadaptation in the Biotransformation of Trace Organic Chemicals during Aquifer Recharge and Recovery

    KAUST Repository

    Ouf, Mohamed

    2012-05-01

    Aquifer recharge and recovery (ARR) is a low-cost and environmentally-friendly treatment technology which uses conventionally treated wastewater effluent for groundwater recharge and subsequent recovery for agricultural, industrial or drinking water uses. This study investigated the effect of different dissolved organic carbon (DOC) composition in wastewater effluent on the fate of trace organic chemicals (TOrCs) during ARR. Four biologically active columns were setup receiving synthetic wastewater effluent with varying DOC compositions. The difference in DOC composition triggered variations in the microbial community’s diversity and hence its ability to degrade TOrCs. It was found that the presence of protein-like DOC enhances the removal of DOC in comparison with the presence of humic-like DOC. On the other hand, the presence of humic-like DOC, which is more difficult to degrade, improved the removal of several degradable TOrCs. Other column experiments were also carried out to investigate the role of previous and continuous exposure to TOrCs in their removal. The use of soil pre-exposed to low concentrations of TOrCs and DOC provided better removal of both DOC and TOrCs. The findings of this study suggest that the presence of more humic-like DOC in the effluent enhances the biotransformation of TOrCs during ARR. In addition, long exposure to both DOC and TOrCs increases the degree of their removal over time

  14. Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor.

    Science.gov (United States)

    Trinh, Trang; van den Akker, Ben; Coleman, Heather M; Stuetz, Richard M; Drewes, Jörg E; Le-Clech, Pierre; Khan, Stuart J

    2016-04-15

    Trace organic chemical (TrOC) contaminants are of concern for finished water from water recycling schemes because of their potential adverse environmental and public health effects. Understanding the impacts of seasonal variations on fate and removal of TrOCs is important for proper operation, risk assessment and management of treatment systems for water recycling such as membrane bioreactors (MBRs). Accordingly, this study investigated the fate and removal of a wide range of TrOCs through a full-scale MBR plant during summer and winter seasons. TrOCs included 12 steroidal hormones, 3 xeno-estrogens, 2 pesticides and 23 pharmaceuticals and personal care products. Seasonal differences in the mechanisms responsible for removing some of the TrOCs were evident. In particular the contribution of biotransformation and biomass adsorption to the overall removal of estrone, bisphenol A, 17β-estradiol and triclosan were consistently different between the two seasons. Substantially higher percentage removal via biotransformation was observed during the summer sampling period, which compensated for a reduction in removal attributed to biomass adsorption. The opposite was observed during winter, where the contribution of biotransformation to the overall removal of these TrOCs had decreased, which was offset by an improvement in biomass adsorption. The exact mechanisms responsible for this shift are unknown, however are likely to be temperature related as warmer temperatures can lower sorption efficiency, yet enhance biotransformation of these TrOCs.

  15. Spectrofluorometric determination and chemical speciation of trace concentrations of tungsten species in water using the ion pairing reagent procaine hydrochloride.

    Science.gov (United States)

    El-Shahawi, M S; Al Khateeb, L A

    2012-01-15

    A highly selective and low cost extractive spectrofluorimetric method was developed for determination of trace concentrations of tungsten (VI) in water. The method was based upon solvent extraction of the developed ion associate [(PQH(+))(2)·WO(4)(2-)] of the fluorescent ion-pairing reagent [2-(diethylamino)ethyl 4 aminobenzoate] hydrochloride namely procaine hydrochloride, PQH(+)·Cl(-) and tungstate (WO(4)(2-)) in aqueous solution of pH 6-7 followed by measuring the resulting fluorescence enhancement in n-hexane at λ(ex/em)=270/320nm. The fluorescence intensity of PQH(+)·Cl(-) increased linearly on increasing tungstate concentration in the range 25-250μgL(-1). The limits of detection (LOD) and quantification (LOQ) of tungsten (VI) were found 7.51 and 24.75μgL(-1), respectively. Chemical composition of the developed ion associate and the molar absorptivity at 270nm were found to be [(PQH(+))(2)·WO(4)(2-)] and 2.7×10(4)Lmol(-1)cm(-1), respectively. Other oxidation states (III, IV, V) of tungsten species could also be determined after oxidation with H(2)O(2) in aqueous solution to tungsten (VI). The method was applied for analysis of tungsten in certified reference material (IAEA Soil-7) and wastewater samples. The results were compared successfully (>95%) with the data of inductively coupled plasma-mass spectrometry (ICP-MS).

  16. ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris

    Science.gov (United States)

    Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; De Beck, E.; Homan, W.; Smith, N.; Van de Sande, M.; Walsh, C.

    2016-07-01

    Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims: We aim to study the inner-wind structure (Rarchetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods: We analyse high spatial resolution (~0.̋24×0.̋13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results: For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50° measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a

  17. Chemical evolution of protoplanetary disks - the effects of viscous accretion, turbulent mixing and disk winds

    CERN Document Server

    Heinzeller, Dominikus; Walsh, Catherine; Millar, Tom J

    2011-01-01

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line ...

  18. Evolution and chemical yields of AGB stars: effects of low-temperature opacities

    CERN Document Server

    Ventura, Paolo

    2009-01-01

    The studies focused on the Thermally-Pulsing Asymptotic Giant Branch phase experienced by low- and intermediate-mass stars are extremely important in many astrophysical contexts. In particular, a detailed computation of their chemical yields is essential for several issues, ranging from the chemical evolution of galaxies, to the mechanisms behind the formation of globular clusters. Among all the uncertainties affecting the theoretical modelling of this phase, and described in the literature, it remains to be fully clarified which results are severely affected by the use of inadequate low-temperature opacities, that are in most cases calculated on the basis of the original chemical composition of the stars, and do not consider the changes in the surface chemistry due to the occurrence of the third dredge-up and hot-bottom burning. Our investigation is aimed at investigating this point. By means of full evolutionary models including new set of molecular opacities computed specifically with the AESOPUS tool, we ...

  19. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    Science.gov (United States)

    Gioannini, L.; Matteucci, F.; Vladilo, G.; Calura, F.

    2016-09-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by AGB stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to Damped Lyman-α systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are: i) we can reproduce the observed gas to dust ratio in dwarf galaxies. ii) We find that the process of dust accretion plays a fundamental role in the evolution of dust and in certain cases it becomes the dominant process in the dust cycle. On the other hand, dust destruction seems to be a negligible process in irregulars. iii) Concerning Damped Lyman-α systems, we show that the observed gas-phase abundances of silicon, normalized to volatile elements (zinc and sulfur), are in agreement with our model. iv) The abundances of iron and silicon in DLA systems suggest that the two elements undergo a different history of dust formation and evolution. Our work casts light on the nature of iron-rich dust: the observed depletion pattern of iron is well reproduced only when an additional source of iron dust is considered. Here we explore the possibility of a contribution from Type Ia SNe as well as an efficient accretion of iron nano-particles.

  20. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    Science.gov (United States)

    Gioannini, L.; Matteucci, F.; Vladilo, G.; Calura, F.

    2017-01-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova (SN) explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by asymptotic giant branch stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to damped Lyman α (DLA) systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are the following. (i) We can reproduce the observed gas to dust ratio in dwarf galaxies. (ii) We find that the process of dust accretion plays a fundamental role in the evolution of dust and in certain cases it becomes the dominant process in the dust cycle. On the other hand, dust destruction seems to be a negligible process in irregulars. (iii) Concerning DLA systems, we show that the observed gas-phase abundances of silicon, normalized to volatile elements (zinc and sulfur), are in agreement with our model. (iv) The abundances of iron and silicon in DLA systems suggest that the two elements undergo a different history of dust formation and evolution. Our work casts light on the nature of iron-rich dust: the observed depletion pattern of iron is well reproduced only when an additional source of iron dust is considered. Here we explore the possibility of a contribution from Type Ia SNe as well as an efficient accretion of iron nanoparticles.

  1. Trace Chemical Analysis Methodology

    Science.gov (United States)

    1980-04-01

    silicon, silver, molybdenum, tin, and titanium .) It was expected that this curve would deviate from linearity at a lower ppm level than the curve for...12. Matsumur, T., Yamashit, T., Kudo, Y., and Kotani, N., "Spectrochemical Standard Samples of Titanium and Its Alloys," Japan Analyst 20(l), 91 (1971... Pickles , D., and Washbrook, C. C., "Determination of Low Concentra- tions of Metals in Lubricating Oils by Spectrometric Methods," Microchemical

  2. Evolution of particle properties and trace gas concentrations at the top of the Mexico City boundary layer

    Science.gov (United States)

    Raga, G.; Baumgardner, D.; Grutter, M.; Santos, B. T.; Moya, C. O.; Allan, J.

    2006-12-01

    The Altzomoni ridge is located in the Cortez Pass, in a national park, between the volcanoes of Iztaccihuatl and Popocatepetl, at an altitude of 4010 m, and 60 km to the SE of the center of Mexico City. This region is isolated from local emissions from combustion yet there is a daily incursion of pollution from either the Mexico City basin, when winds are from the west or from the Puebla valley when winds are from the east. This was the motivation for setting up instruments at this site to measure the concentrations of trace gases and the physical, chemical and optical properties of aerosol particles. A 12 m tower was also erected to measure fluxes of momentum, heat, condensation nuclei (CN) and CO2. Measurements were begun during the last week of November, 2005 and continued until early June, 2006. The concentrations of CN, CO2 and CO clearly indicate that the site is in the free troposphere at night and early morning, but the regional boundary layer grows to altitudes above the site every day. Hence, this site is ideal for making observations of atmospheric chemistry at the interface between rural and urban regions. The preliminary analyses have shown that the "free tropospheric" values of CN, particle bound polycyclic aromatic hydrocarbons (PPAH) and black carbon (BC) rarely decrease below 1000 cm-3, 4 ng m-3, 100 ng m-3, respectively, suggesting the presence of a residual layer of contaminants. Nighttime CO and O3 are usually above 0.1 and 0.05 ppm. The CO concentration at the measurement site is a tenth of the Mexico City value and reached its maximum approximately six hours after the maximum in the city center. The maximum O3 in Mexico City and Altzomoni are frequently the same concentration but with no repeatable pattern in the phase differences. The highly linear relationship between BC and CO reflects the removal and dilution processes, i.e. the average ratio between BC and CO in Mexico City is 1000:1 whereas it is 3000:1 in Altzomoni. This relationship

  3. Time Evolution of Thermo-Mechanically and Chemically Coupled Magma Chambers

    Science.gov (United States)

    Ozimek, C.; Karlstrom, L.; Erickson, B. A.

    2015-12-01

    Complexity in the volcanic eruption cycle reflects time variation both of magma inputs to the crustal plumbing system and of crustal melt storage zones (magma chambers). These data include timing and volumes of eruptions, as well as erupted compositions. Thus models must take into account the coupled nature of physical attributes. Here we combine a thermo-mechanical model for magma chamber growth and pressurization with a chemical model for evolving chamber compositions, in the limit of rapid mixing, to study controls on eruption cycles and compositions through time. We solve for the mechanical evolution of a 1D magma chamber containing melt, crystals and bubbles, in a thermally evolving and viscoelastic crust. This pressure and temperature evolution constrains the input values of a chemical box model (Lee et al., 2013) that accounts for recharge, eruption, assimilation and fractional crystallization (REAFC) within the chamber. We plan to study the influence of melt supply, input composition, and chamber depth eruptive fluxes and compositions. Ultimately we will explore multiple chambers coupled by elastic-walled dikes. We expect that this framework will facilitate self-consistent inversion of long-term eruptive histories in terms of magma transport physics. Lee, C.-T. A., Lee, T.-C., Wu, C.-T., 2013. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiationof arc magmas. Geochemica Cosmochimica Acta, http://dx.doi.org/10.1016/j.gca.2013.08.009.

  4. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    Science.gov (United States)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  5. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    CERN Document Server

    Andrews, Brett H; Schönrich, Ralph; Johnson, Jennifer A

    2016-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the IMF, the SNIa delay time distribution, stellar yields, and mixing of stellar populations. Using flexCE, a new, flexible one-zone chemical evolution code, we investigate the effects of individual parameters and the trade-offs between them. Two of the most important parameters are the SFE and outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] that do not match the observed bimodality in this plane. A mix of one-zone models with variations in their inflow timescales and outflow mass-loading parameters, as motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the high- and low-alpha sequences b...

  6. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali

    2014-11-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil columns were established in the laboratory, each receiving synthetic feed solutions comprising different ratios and concentrations of peptone-yeast and humic acid as the primary substrate to investigate the effect on removal of six TOrCs (atenolol, caffeine, diclofenac, gemfibrozil, primidone, and trimethoprim). Based on abiotic control experiments, adsorption was not identified as a significant attenuation mechanism for primidone, gemfibrozil and diclofenac. Caffeine, atenolol and trimethoprim displayed initial adsorptive losses, however, adsorption coefficients derived from batch tests confirmed that adsorption was limited and in the long-term experiment, biodegradation was the dominant attenuation process. Within a travel time of 16h, caffeine - an easily degradable compound exhibited removal exceeding 75% regardless of composition or concentration of the primary substrate. Primidone - a poorly degradable compound, showed no removal in any column regardless of the nature of the primary substrate. The composition and concentration of the primary substrate, however, had an effect on attenuation of moderately degradable TOrCs, such as atenolol, gemfibrozil and diclofenac, with the primary substrate composition seeming to have a larger impact on TOrC attenuation than its concentration. When the primary substrate consisted mainly of refractory substrate (humic acid), higher removal of the moderately degradable TOrCs was observed. The microbial communities in the columns receiving more refractory carbon, were noted to be more diverse and hence likely able to express a wider range of enzymes, which were more suitable for TOrC transformation. The effect of the primary substrate on microbial community composition, diversity

  7. The effect of interacting binaries on the chemical evolution of Globular Clusters

    CERN Document Server

    Vanbeveren, D; De Greve, J P

    2011-01-01

    The chemical processes during the Asymptotic Giant Branch (AGB) evolution of intermediate mass single stars (IMSSs) predict most of the observations of the different populations in globular clusters (GCs) although some important issues still need to be further clarified. In particular, to reproduce the observed anticorrelations of Na-O and Al-Mg and the helium distribution function, chemically enriched gas lost during the AGB phase of IMSSs must be mixed by pristine matter. The source of this pristine gas is still a matter of debate. Furthermore, observations reveal that a significant fraction of the intermediate mass and massive stars are born as components of close binaries. We will investigate the effects of binaries on the chemical evolution of GCs and on the origin of pristine matter that is needed for the single star AGB scenario to work. We use a population number synthesis code that accounts for all known binary physics in order to estimate the amount and the nature of the matter returned to the inter...

  8. The Influence of Radial Stellar Migration on the Chemical Evolution of the Milky Way

    CERN Document Server

    Wang, Yue

    2013-01-01

    Stellar migration is an important dynamical process in Galactic disk. Here we model the radial stellar migration in the Galactic disk with an analytical method, then add it to detailed Galactic chemical evolution model to study the influence of radial stellar migration on the chemical evolution of the Milky Way, especially for the abundance gradients. We found that the radial stellar migration in the Galactic disk can make the profile of the G-dwarf metallicity distribution of the solar neighborhood taller and narrower, thus it becomes another solution to the "G-dwarf problem". It can also scatter the age-metallicity relation. However, after the migration, the abundance distributions along the Galactic radius don't change much, namely the abundance gradients would not be flattened by the radial stellar migration, which is different from the predictions of many theoretical works. But it can flatten the radial gradients of the mean chemical abundance of stars, and older stars possess flatter abundance gradients...

  9. Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars

    CERN Document Server

    Spina, Lorenzo; Ramírez, Ivan

    2016-01-01

    Context: Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved. Aims: We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc. Methods: Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and $\\xi$), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the diff...

  10. From prebiotic chemistry to cellular metabolism--the chemical evolution of metabolism before Darwinian natural selection.

    Science.gov (United States)

    Meléndez-Hevia, Enrique; Montero-Gómez, Nancy; Montero, Francisco

    2008-06-07

    It is generally assumed that the complex map of metabolism is a result of natural selection working at the molecular level. However, natural selection can only work on entities that have three basic features: information, metabolism and membrane. Metabolism must include the capability of producing all cellular structures, as well as energy (ATP), from external sources; information must be established on a material that allows its perpetuity, in order to safeguard the goals achieved; and membranes must be able to preserve the internal material, determining a selective exchange with external material in order to ensure that both metabolism and information can be individualized. It is not difficult to understand that protocellular entities that boast these three qualities can evolve through natural selection. The problem is rather to explain the origin of such features under conditions where natural selection could not work. In the present work we propose that these protocells could be built by chemical evolution, starting from the prebiotic primordial soup, by means of chemical selection. This consists of selective increases of the rates of certain specific reactions because of the kinetic or thermodynamic features of the process, such as stoichiometric catalysis or autocatalysis, cooperativity and others, thereby promoting their prevalence among the whole set of chemical possibilities. Our results show that all chemical processes necessary for yielding the basic materials that natural selection needs to work may be achieved through chemical selection, thus suggesting a way for life to begin.

  11. Early Star Formation and Chemical Evolution in Proto-Galactic Clouds

    CERN Document Server

    Saleh, L; Mathews, G J; Saleh, Lamya; Beers, Timothy C.; Mathews, Grant J.

    2004-01-01

    We present numerical simulations to describe the evolution of pre-Galactic clouds in a model which is motivated by cold dark matter simulations of hierarchical galaxy formation. We adopt a SN-induced star-formation mechanism within a model that follows the evolution of chemical enrichment and energy input to the clouds by Type II and Type Ia supernovae. We utilize metallicity-dependent yields for all elements at all times, and include effects of finite stellar lifetimes. We derive the metallicity distribution functions for stars in the clouds, their age-metallicity relation, and relative elemental abundances for a number of alpha- and Fe-group elements. The stability of these clouds against destruction is discussed, and results are compared for different initial mass functions. We find that the dispersion of the metallicity distribution function observed in the outer halo is naturally reproduced by contributions from many clouds with different initial conditions. The predicted relative abundances of some alph...

  12. The first Step of Evolution from the View Point of chemical Catalysis

    Science.gov (United States)

    Parmon, V.; Snytnikov, V.

    A kinetic analysis of the steady state replication of molecules Xi due to consumption a "food" R via simple autocatalytic processes likekiktiR + Xi2Xi ,XiP,k -i and its more complicated analogs demonstrates inevitability of arising an irreversible and thus progressive evolution of autocatalyst molecules Xi , if only the autocatalysts can undergo a chemical mutation and the concentration of "food" R can fall below a critical valueRcri = k ti / k t . The natural selection of simple autocatalysts mimics a protolife and occurs in only one direction toward minimizing the value of Rcri which is improved through the mutation. The driving force of this selection is the long-term existence of a deficiency in "food" R. No doubt, this ability of simple autocatalytic systems to an irreversible progressive evolution is a total analogy of the existence of a primitive biological memory. This evidences in the possibility of starting a progressive prebiotic evolution even in the absence of special evolution information carriers like RNA or DNA molecules. One of the most plausible candidates for the first protolife autocatalytic reaction is the well-known "formosa" reaction of autocatalytic polymerization of formaldehyde into a variety of C3 -C6 monosaccharides in water solution catalyzed by the dissolved omnipresent calcium cations. Note, that formaldehyde was also a typical constituent of the Protoearth atmosphere. Mutation of saccharides is very easy and can be exemplified by any chemical modification of saccharide molecules, e.g., by nitrogen- or phosphate-containing derivatives, with the formation and progressive selection of initial biological building blocks. One may expect that the natural selection in abiogenous formosa systems could serve as a trigger of evolution mechanism. Also, formosa systems themselves may be a real precursor of appearance of the first and most primitive, but operating RNA molecules that resulted later in the first biological systems. Thus, the RNA or

  13. Functional evolution of the trace amine associated receptors in mammals and the loss of TAAR1 in dogs

    Directory of Open Access Journals (Sweden)

    Westmoreland Susan V

    2010-02-01

    Full Text Available Abstract Background The trace amine associated receptor family is a diverse array of GPCRs that arose before the first vertebrates walked on land. Trace amine associated receptor 1 (TAAR1 is a wide spectrum aminergic receptor that acts as a modulator in brain monoaminergic systems. Other trace amine associated receptors appear to relate to environmental perception and show a birth-and-death pattern in mammals similar to olfactory receptors. Results Across mammals, avians, and amphibians, the TAAR1 gene is intact and appears to be under strong purifying selection based on rates of amino acid fixation compared to neutral mutations. We have found that in dogs it has become a pseudogene. Our analyses using a comparative genetics approach revealed that the pseudogenization event predated the emergence of the Canini tribe rather than being coincident with canine domestication. By assessing the effects of the TAAR1 agonist β-phenylethylamine on [3H]dopamine uptake in canine striatal synaptosomes and comparing the degree and pattern of uptake inhibition to that seen in other mammals, including TAAR1 knockout mice, wild type mice and rhesus monkey, we found that the TAAR1 pseudogenization event resulted in an uncompensated loss of function. Conclusion The gene family has seen expansions among certain mammals, notably rodents, and reductions in others, including primates. By placing the trace amine associated receptors in an evolutionary context we can better understand their function and their potential associations with behavior and neurological disease.

  14. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys.

    Science.gov (United States)

    Zhang, Yanwen; Stocks, G Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C; Wang, Lumin; Béland, Laurent K; Stoller, Roger E; Samolyuk, German D; Caro, Magdalena; Caro, Alfredo; Weber, William J

    2015-10-28

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

  15. CHEMICAL EVOLUTION OF MILKY WAY TYPE GALAXIES IN THE MILLENNIUM SIMULATION

    Directory of Open Access Journals (Sweden)

    M. E. De Rossi

    2009-01-01

    Full Text Available In this work we make use of the Millennium Run, which is at the moment the largest high-resolution simulation of structure formation ever carried out, combined with the semi-analytical model of De Lucia & Blaizot (2007, to follow the chemical evolution of Milky Way type galaxies with the aim at understanding their level of enrich- ment and the dispersion in the mass-metallicity correlation. Our results suggest that Milky Way type systems tend to evolve passively with time without su ering signi cant mass accretion. The chemical e richment of these systems seems to be driven mainly by gas cooling, star formation eFFIciency and for the most massive progenitors by AGN feedback.

  16. Monazite chemical age and composition correlations, an insight in the Palaeozoic evolution of the Leaota Massif, South Carpathians

    Science.gov (United States)

    Săbău, Gavril; Negulescu, Elena

    2015-04-01

    Notwithstanding remarkable advantages of monazite microprobe U-Th-PbT geochronology of metamorphic formations, such as the direct investigation of a metamorphic mineral in a truly in situ setting, unequalled spatial resolution, and cost-effective analyses, it essentially remains affected by indeterminations as regards the accuracy and the representativity of the results. Besides the experimental hurdles related to trace element analyses with the microprobe (sensitivity, background and overlap effects) the method faces two main biases, firstly its inherently blind status emerging from the aprioric assumption of isotopic equilibrium, and secondly the marked susceptibility of monazite to fluid-stimulated chemical recrystallization and compositional resetting (e. g. Kelly et al. 2012). Age spectra obtained from individual sampled habitually display a significant scatter of calculated age data, in such a way that the separation of coherent and geologically relevant populations may often represent a substantial challenge. The interpretation of the results greatly benefits from the qualitative analysis of the textural and paragenetic setting or a trial-and error quantitative statistical assessment of distinct age clusters (Montel et al., 1996), though still maintaining a variable degree of subjectivity, as in any interpretative process not fully sustained by quantitative analysis. Additional dependable support can be gained from further qualitative parameters characterizing, besides the distribution of individual age data, also the global chemical composition of the analysed monazite grains, as well as the relationship to the corresponding metamorphic assemblages (Săbău & Negulescu, 2013). The quantitative assessment of the age patterns of individual samples can be achieved by plotting the normalized age gradient from the sorted age pattern, allowing distinction of quasi-gaussian distribution domains likely to correspond to coherent age clusters of geologic significance

  17. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge

    KAUST Repository

    Alidina, Mazahirali

    2014-06-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each receiving a different primary substrate, were utilized to simulate the dominant bulk organic carbon present in MAR systems receiving wastewater effluent of varying quality and having undergone different degrees of pre-treatment, as well as organic carbon prevalent at different stages of subsurface travel. Each pair of columns consisted of duplicate set-ups receiving the same feed solution with only one pre-exposed to a suite of eight TOrCs for approximately ten months. Following the pre-exposure period, a spiking experiment was conducted in which the non-exposed columns also received the same suite of TOrCs. TOrC attenuation was quantified for the pre- and non-exposed columns of each pair during the spiking experiment. The microbial community structure and function of these systems were characterized by pyrosequencing of 16S rRNA gene and metagenomics, respectively. Biotransformation rather than sorption was identified as the dominant removal mechanism for almost all the TOrCs (except triclocarban). Similar removal efficiencies were observed between pre-exposed and non-exposed columns for most TOrCs. No obvious differences in microbial community structure were revealed between pre- and non-exposed columns. Using metagenomics, biotransformation capacity potentials of the microbial community present were also similar between pre- and non-exposed columns of each pair. Overall, the pre-exposure of MAR systems to TOrCs at ng/L levels did not affect their attenuation and had no obvious influence on the resulting microbial community structure and function. Thus, other factors such as bioavailability of the primary substrate play a greater role regarding biotransformation of TOrCs. These results indicate that MAR systems adapted to a

  18. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  19. ASTRO-H White Paper - Chemical Evolution in High-z Universe

    CERN Document Server

    Tashiro, M S; Ohno, M; Sameshima, H; Seta, H; Ueno, H; Nakagawa, T; Tamura, T; Paerels, F; Kawai, N

    2014-01-01

    In this paper, we demonstrate ASTRO-H's capability to measure the chemical evolution in the high-z (z <~ 3) universe by observing X-ray afterglows of gamma-ray bursts (GRBs) and distant Blazars. Utilizing these sources as background light sources, the excellent energy resolution of ASTRO-H/SXS allows us to detect emission and absorption features from heavy elements in the circumstellar material in the host galaxies, from the intergalactic medium (IGM) and in the ejecta of GRB explosions. In particular, we can constrain the existence of the warm-hot intergalactic material (WHIM), thought to contain most of the baryons at redshift of z < ~3, with a typical exposure of one day for a follow-up observation of a GRB afterglow or 300 ks exposure for several distant Blazars. In addition to the chemical evolution study, the combination of the SGD, HXI, SXI and SXS will measure, for the first time, the temporal behavior of the spectral continuum of GRB afterglows and Blazars over a broad energy range and short ti...

  20. The Cosmic Chemical Evolution as seen by the Brightest Events in the Universe

    CERN Document Server

    Savaglio, Sandra

    2009-01-01

    Gamma-ray bursts (GRBs) are the brightest events in the universe. They have been used in the last five years to study the cosmic chemical evolution, from the local universe to the first stars. The sample size is still relatively small when compared to field galaxy surveys. However, GRBs show a universe that is surprising. At z > 2, the cold interstellar medium in galaxies is chemically evolved, with a mean metallicity of about 1/10 solar. At lower redshift (z < 1), metallicities of the ionized gas are relatively low, on average 1/6 solar. Not only is there no evidence of redshift evolution in the interval 0 < z < 6.3, but also the dispersion in the ~ 30 objects is large. This suggests that the metallicity of host galaxies is not the physical quantity triggering GRB events. From the investigation of other galaxy parameters, it emerges that active star-formation might be a stronger requirement to produce a GRB. Several recent striking results strongly support the idea that GRB studies open a new view o...

  1. Chemical evolution and the galactic habitable zone of M31 (the Andromeda Galaxy)

    CERN Document Server

    Carigi, L; Garcia-Rojas, J

    2012-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based mainly, but not exclusively, on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium. The GHZ was therefore obtained from a chemical evolution model built to reproduce a precise metallicity gradient in the galactic disk, [O/H](r) $ = -0.015 \\pm 0.003 dex kpc^{-1} x r(kpc) + 0.44 \\pm 0.04 dex $. This gradient is the most probable when intrinsic scatter is present in the observational data. The chemical evolution model predicted a higher star formation history in both the halo and disk components of M31 and a less efficient inside-out galactic formation, compared to those of the Milky Way. If we assumed that Earth-like planets form with a probability law that follows the Z distribution shown by stars with detected planets, the most probable GHZ with basic life is located between 6 and 17 kpc on planets with ages between 4.5 and 1 Gy, and the most probable GHZ with ...

  2. Extremely Metal-Poor Stars and a Hierarchical Chemical Evolution Model

    CERN Document Server

    Komiya, Yutaka

    2011-01-01

    Early phases of the chemical evolution and formation history of extremely metal poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree, and compare the model results to the metallicity distribution function (MDF) and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous studies, we argue that typical mass of EMP stars should be high-mass(~10Msun) based on studies of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain a observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al.(2006) and Chieffi & Limonge (2004) show reasonable agreement...

  3. The role of neutron star mergers in the chemical evolution of the Galactic halo

    CERN Document Server

    Cescutti, G; Matteucci, F; Chiappini, C; Hirschi, R

    2015-01-01

    Aims. We explore the problem of the site of production of Eu. We use also the information present in the observed spread in the Eu abundances in the early Galaxy, not only its average trend. Moreover, we extend to other heavy elements (Ba, Sr, Rb, Zr) our investigations to provide additional constraints to our results. Methods. We adopt a stochastic chemical evolution model taking into account inhomogeneous mixing. The adopted yields of Eu from neutron star mergers (NSM) and from core-collapse supernovae (SNII) are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighborhood stars, in the framework of a well-tested homogeneous model for the chemical evolution of the MilkyWay. Rb, Sr, Zr, and Ba are produced by both the s- and r-process. The s-process contribution by spinstars is the same as in our previous papers. Results. NSM that merge in less than 10 Myr or NSM combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic...

  4. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  5. Simple MCBR models of chemical evolution: an application to the thin and the thick disk

    CERN Document Server

    Caimmi, R

    2012-01-01

    Simple MCBR models of chemical evolution are extended to the limit of dominant gas inflow or outflow with respect to gas locked up into long-lived stars and remnants. For an assigned empirical differential oxygen abundance distribution, which can be linearly fitted, a family of theoretical curves is built up with assigned prescriptions. For curves with increasing cut parameter, the gas mass fraction locked up into long-lived stars and remnants is found to attain a maximum and then decrease towards zero as the flow tends to infinity, while the remaining parameters show a monotonic trend. The theoretical integral oxygen abundance distribution is also expressed. An application is performed to the empirical distribution deduced from two different samples of disk stars, for both the thin and the thick disk. The constraints on formation and evolution are discussed in the light of the model. The evolution is tentatively subdivided into four stages, A, F, C, E. The empirical distribution related to any stage is fitte...

  6. A simple multistage closed-(box+reservoir model of chemical evolution

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2011-01-01

    Full Text Available Simple closed-box (CB models of chemical evolution are extended on two respects, namely (i simple closed-(box+reservoir (CBR models allowing gas outflow from the box into the reservoir (Hartwick 1976 or gas inflow into the box from the reservoir (Caimmi 2007 with rate proportional to the star formation rate, and (ii simple multistage closed-(box+reservoir (MCBR models allowing different stages of evolution characterized by different inflow or outflow rates. The theoretical differential oxygen abundance distribution (TDOD predicted by the model maintains close to a continuous broken straight line. An application is made where a fictitious sample is built up from two distinct samples of halo stars and taken as representative of the inner Galactic halo. The related empirical differential oxygen abundance distribution (EDOD is represented, to an acceptable extent, as a continuous broken line for two viable [O/H]-[Fe/H] empirical relations. The slopes and the intercepts of the regression lines are determined, and then used as input parameters to MCBR models. Within the errors (-+σ, regression line slopes correspond to a large inflow during the earlier stage of evolution and to low or moderate outflow during the subsequent stages. A possible inner halo - outer (metal-poor bulge connection is also briefly discussed. Quantitative results cannot be considered for applications to the inner Galactic halo, unless selection effects and disk contamination are removed from halo samples, and discrepancies between different oxygen abundance determination methods are explained.

  7. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Science.gov (United States)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  8. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.

  9. Thermal dissociation atmospheric chemical ionization ion trap mass spectrometry with a miniature source for selective trace detection of dimethoate in fruit juices.

    Science.gov (United States)

    Ouyang, Yongzhong; Zhang, Xinglei; Han, Jing; Guo, Xiali; Zhu, Zhiqiang; Chen, Huanwen; Luo, Liping

    2013-01-21

    A miniature thermal dissociation atmospheric chemical ionization (TDCI) source, coupled with LTQ-MS, has been developed for rapid trace detection of pesticide residues such as dimethoate in highly viscous fruit juice samples. Instead of toxic organic solvents and the high electric field used in the conventional ionizations, an ionic liquid, a "green solvent", was employed to directly generate reagent ions in the TDCI process, followed by the proton or charge transfer with the analytes prior to the LTQ instrument for mass analysis. Trace amounts of dimethoate in fresh orange juices have been quantitatively detected, without any sample pretreatment or aid of high-pressure gas. A low limit of detection (LOD = 8.76 × 10(-11) g mL(-1)), acceptable relative standard deviation (RSD = 3.1-10.0%), and reasonable recoveries (91.2-102.8%) were achieved with this method for direct detection of dimethoate in highly viscous orange juice samples. The average analysis time for each single sample was less than 30 seconds. These experimental results showed that the miniature TDCI developed here is a powerful tool for the fast trace detection of pesticide residues in complex viscous fruit juices, with the advantage of high sensitivity, high speed, and high-throughput, ease of operation, and so on. Because of no chemical contamination and high voltage damage to the analytes and the environment, the technique has promising applications for online quality monitoring in the area of food safety.

  10. Evolution of chemical composition of fogwater in winter in Chengdu, China

    Institute of Scientific and Technical Information of China (English)

    Hongling Yin; Zhixiang Ye; Yingchun Yang; Wei Yuan; Changyan Qiu; Huawei Yuan; Min Wang

    2013-01-01

    Two sampling sites representing the urban and suburban area of Chengdu,China were sampled and analyzed for selected chemicals to characterize the evolution of the chemical composition of fogwater.A trend of total organic carbon (TOC) > total nitrogen (TN) >total inorganic carbon (TIC) was observed for both sites.Variation of inorganic ions indicated that inorganic pollutants were not accumulated in the fog.Concentrations of n-alkanes (Cll-C37) at the urban site ranged from 7.58 to 27.75 ng/mL while at the suburban site concentrations were 2.57-21.55 ng/mL.The highest concentration of n-alkanes was observed in the mature period of fog (393.12 ng/mL) which was more than ten times that in the fog formation period (27.83 ng/mL) and the fog dissipation period (14.87 ng/mL).Concentrations ofΣ15PAHs were in the range of 7.27-38.52 ng/mL at the urban site and 2.59-22.69 ng/mL at the suburban site.Contents of PAHs in the mature period of fog (27.15 ng/mL) > fog dissipation period (11.59 ng/mL) > fog formation period (6.42 ng/mL).Concentrations of dicarboxylic acids (C5-C9) ranged from 10.92 to 40.78 ng/mL,with glutaric acid (C5) as the dominant dicarboxylic acid.These data provide strong indications of the accumulation of certain organic chemicals of environmental concern in fog and fog water,and provide additional insights about processes in urban and suburban air acting on organic chemicals with similar physical chemical properties.

  11. Towards an improved modeling of chemical weathering in the SoilGen soil evolution model

    Science.gov (United States)

    Opolot, Emmanuel; Finke, Peter

    2014-05-01

    As the need for soil information particularly in the fields of agriculture, land evaluation, hydrology, biogeochemistry and climate change keeps increasing, models for soil evolution are increasingly becoming valuable tools to provide such soil information. Although still limited, such models are progressively being developed. The SoilGen model is one of such models with capabilities to provide soil information such as soil texture, pH, base saturation, organic carbon, CEC, etc over multi-millennia time scale. SoilGen is a mechanistic water flow driven pedogenetic model describing soil forming processes such as carbon cycling, clay migration, decalcification, bioturbation, physical weathering and chemical weathering. The model has been calibrated and confronted with field measurements in a number of case studies, giving plausible results. Discrepancies between measured and simulated soil properties as concluded from case studies have been mainly attributed to (i) the simple chemical weathering system (ii) poor estimates of initial data inputs such as bulk density and element fluxes, and (iii) incorrect values of variables that describe boundary conditions such as precipitation and potential evapotranspiration. This study focuses on extending the chemical weathering system, such that it can deal with a more heterogeneous composition of primary minerals and includes more elements such as Fe and Si. We propose and discuss here an extended description of chemical weathering in the model that is based on more primary minerals, taking into account the role of the specific area of these minerals, and the effect of physical weathering on these specific areas over time. In the initial stage, the proposed chemical weathering mechanism is also implemented in PHREEQC (a widely applied geochemical code with capabilities to simulate equilibrium reactions involving water and minerals, surface complexes and ion exchangers, etc.) to facilitate comparison with the model results

  12. The origin and chemical evolution of carbon in the Galactic thin and thick disks

    CERN Document Server

    Bensby, T

    2006-01-01

    [ABRIDGED] In order to trace the origin and evolution of carbon in the Galactic disk we have determined carbon abundances in 51 nearby F and G dwarf stars. The sample is divided into two kinematically distinct subsamples with 35 and 16 stars that are representative of the Galactic thin and thick disks, respectively. The analysis is based on spectral synthesis of the forbidden [C I] line at 872.7 nm using spectra of very high resolution (R~220000)and high signal-to-noise (S/N>300) that were obtained with the CES spectrograph on the ESO 3.6-m telescope on La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for the thin and thick disks are totally merged and flat for sub-solar metallicities. The thin disk that extends to higher metallicities than the thick disk,shows a shallow decline in [C/Fe] from [Fe/H]=0 and up to [Fe/H]=+0.4. The [C/O] versus [O/H] trends are well separated between the two disks (due to differences in the oxygen abundances)and bear a great resemblance to the [Fe/O] versus [O/H] tren...

  13. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies with GEAR

    CERN Document Server

    Revaz, Yves

    2011-01-01

    We present a fully parallel chemo-dynamical Tree/SPH code, GEAR, which allows to perform high resolution simulations with detailed chemical diagnostics. Starting from the public version of Gadget-2, we included the complex treatment of the baryon physics: gas cooling, star formation law, chemical evolution and supernovae feedback. We qualified the performances of GEAR with the case of dSph galaxies. GEAR conserves the total energy budget of the systems to better than 5% over 14Gyr and proved excellent convergence of the results with numerical resolution. We showed that models of dSphs in a static Euclidean space, where the expansion of the universe is neglected are valid. In addition, we tackled some of the existing open questions in the field, like the stellar mass fraction of dSphs and its link with the predicted dark matter halo mass function, the effect of the supernova feedback, the spatial distribution of the stellar populations, and the origin of the diversity in star formation histories and chemical a...

  14. The Composition of the Sagittarius Dwarf Spheroidal Galaxy and Implications for Nucleosynthesis and Chemical Evolution

    CERN Document Server

    McWilliam, A; William, Andrew Mc; Smecker-Hane, Tammy A.

    2004-01-01

    We outline the results of a study of the chemical composition of 14 stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph). For the Sgr dSph stars with [Fe/H]>-1 the abundances are highly unusual, showing a striking enhancement in heavy s-process elements, increasing with [Fe/H], deficiencies of the alpha- elements (O, Si, Ca, and Ti), deficiencies of Al and Na, and deficiencies of the iron-peak elements Mn and Cu. Our abundances suggest that the composition of the metal-rich Sgr dSph stars is dominated by the ejecta of an old, metal-poor population, including products of AGB stars and type Ia supernovae (SN). We suggest two scenarios to explain the observations: Prolonged chemical evolution in a galaxy experiencing significant mass-loss, and chemical enrichment with episodic bursts of star formation. The Galactic globular cluster Omega Cen, and the Fornax dwarf galaxy show similar abundance patterns, which suggests that those systems evolved similar to the Sgr dSph.

  15. Marine and terrestrial herbivores display convergent chemical ecology despite 400 million years of independent evolution.

    Science.gov (United States)

    Rasher, Douglas B; Stout, E Paige; Engel, Sebastian; Shearer, Tonya L; Kubanek, Julia; Hay, Mark E

    2015-09-29

    Chemical cues regulate key ecological interactions in marine and terrestrial ecosystems. They are particularly important in terrestrial plant-herbivore interactions, where they mediate both herbivore foraging and plant defense. Although well described for terrestrial interactions, the identity and ecological importance of herbivore foraging cues in marine ecosystems remain unknown. Here we show that the specialist gastropod Elysia tuca hunts its seaweed prey, Halimeda incrassata, by tracking 4-hydroxybenzoic acid to find vegetative prey and the defensive metabolite halimedatetraacetate to find reproductive prey. Foraging cues were predicted to be polar compounds but instead were nonpolar secondary metabolites similar to those used by specialist terrestrial insects. Tracking halimedatetraacetate enables Elysia to increase in abundance by 12- to 18-fold on reproductive Halimeda, despite reproduction in Halimeda being rare and lasting for only ∼36 h. Elysia swarm to reproductive Halimeda where they consume the alga's gametes, which are resource rich but are chemically defended from most consumers. Elysia sequester functional chloroplasts and halimedatetraacetate from Halimeda to become photosynthetic and chemically defended. Feeding by Elysia suppresses the growth of vegetative Halimeda by ∼50%. Halimeda responds by dropping branches occupied by Elysia, apparently to prevent fungal infection associated with Elysia feeding. Elysia is remarkably similar to some terrestrial insects, not only in its hunting strategy, but also its feeding method, defense tactics, and effects on prey behavior and performance. Such striking parallels indicate that specialist herbivores in marine and terrestrial systems can evolve convergent ecological strategies despite 400 million years of independent evolution in vastly different habitats.

  16. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  17. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    W. Junkermann

    2009-11-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18~March and the NCAR C130 one day later on 19~March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19~March plume and to help interpret

  18. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  19. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  20. Evolution of Autocatalytic Sets in Computational Models of Chemical Reaction Networks.

    Science.gov (United States)

    Hordijk, Wim

    2016-06-01

    Several computational models of chemical reaction networks have been presented in the literature in the past, showing the appearance and (potential) evolution of autocatalytic sets. However, the notion of autocatalytic sets has been defined differently in different modeling contexts, each one having some shortcoming or limitation. Here, we review four such models and definitions, and then formally describe and analyze them in the context of a mathematical framework for studying autocatalytic sets known as RAF theory. The main results are that: (1) RAF theory can capture the various previous definitions of autocatalytic sets and is therefore more complete and general, (2) the formal framework can be used to efficiently detect and analyze autocatalytic sets in all of these different computational models, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and (4) this could have important implications for a possible metabolism-first scenario for the origin of life.

  1. Evolution of Autocatalytic Sets in Computational Models of Chemical Reaction Networks

    Science.gov (United States)

    Hordijk, Wim

    2016-06-01

    Several computational models of chemical reaction networks have been presented in the literature in the past, showing the appearance and (potential) evolution of autocatalytic sets. However, the notion of autocatalytic sets has been defined differently in different modeling contexts, each one having some shortcoming or limitation. Here, we review four such models and definitions, and then formally describe and analyze them in the context of a mathematical framework for studying autocatalytic sets known as RAF theory. The main results are that: (1) RAF theory can capture the various previous definitions of autocatalytic sets and is therefore more complete and general, (2) the formal framework can be used to efficiently detect and analyze autocatalytic sets in all of these different computational models, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and (4) this could have important implications for a possible metabolism-first scenario for the origin of life.

  2. Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS

    CERN Document Server

    Boniface, Maxime; Danet, Julien; Guyomard, Dominique; Moreau, Philippe; Bayle-Guillemaud, Pascale

    2016-01-01

    Continuous solid electrolyte interface (SEI) formation remains the limiting factor of the lifetime of silicon nanoparticles (SiNPs) based negative electrodes. Methods that could provide clear diagnosis of the electrode degradation are of utmost necessity to streamline further developments. We demonstrate that electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) can be used to quickly map SEI components and quantify LixSi alloys from single experiments, with resolutions down to 5 nm. Exploiting the low-loss part of the EEL spectrum allowed us to circumvent the degradation phenomena that have so far crippled the application of this technique on such beam-sensitive compounds. Our results provide unprecedented insight into silicon aging mechanisms in full cell configuration. We observe the morphology of the SEI to be extremely heterogeneous at the particle scale but with clear chemical evolutions with extended cycling coming from both SEI accumulation and a transition fro...

  3. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    Science.gov (United States)

    Mandel, Ilya; de Mink, Selma E.

    2016-05-01

    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which we estimate typically merge 4-11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 10 Gpc-3 yr-1 at redshift z = 0, peaking at twice this rate at z = 0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M⊙. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.

  4. Evolution of limestone fracture permeability under coupled thermal, hydrologi-cal, mechanical, and chemical conditions

    Institute of Scientific and Technical Information of China (English)

    李凤滨; 盛金昌; 詹美礼; 徐力猛; 吴强; 贾春兰

    2014-01-01

    The effect of temperature on the rock fracture permeability is a very important factor in the prediction of the permeability of enhanced geothermal systems and in reservoir engineering. In this study, the flow-through experiments were conducted on a single limestone fracture at different temperatures of 25oC, 40oC and 60oC, and with differential pressures of 0.3 MPa and 0.4 MPa. The experimental results suggest a complex temporal evolution of the fracture aperture. The aperture increases considerably with increasing temperature and reduces gradually to a steady value at a stable temperature. The results of three short-term experiments (QT-1, QT-2, QT-3) indicate an exponential relationship between the permeability and the temperature change ratio (DT/T ) , which provides a further evidence that the rising temperature increases the aperture. It is shown that the changing temperature has its influence on two possible accounts:the chemical dissolution and the pressure dissolution. These two processes have opposite impacts on the fracture permeability. The chemical dissolution increases the permeability with a rising temperature while the pressure disso-lution reduces the permeability with a stable temperature. These make a very complex picture of the permeability evolution. Our results show that the fracture permeability reduces 39.2%when the temperature increases by 15oC (during the 25oC-40 C interval) and 42.6% when the temperature increases by 20oC (during the 40oC-60oC interval). It can be concluded that the permeability decreases to a greater extent for larger increases in temperature.

  5. Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution

    Science.gov (United States)

    Plesa, A.-C.; Breuer, D.

    2014-08-01

    In the present work, we investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution. Two of these reservoirs can be sustained during the entire evolution - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites.

  6. From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio

    CERN Document Server

    Adibekyan, V; Figueira, P; Dorn, C; Sousa, S G; Delgado-Mena, E; Israelian, G; Hakobyan, A A; Mordasini, C

    2015-01-01

    The main goal of this work is to study element ratios that are important for the formation of planets of different masses. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggests that low-mass planets are more prevalent around stars with high [Mg/Si]. Our results demonstrate the importance of Galactic...

  7. Oxygen abundance in local disk and bulge: chemical evolution with a strictly universal IMF

    Science.gov (United States)

    Caimmi, R.; Milanese, E.

    2009-09-01

    This paper has two parts: one about observational constraints related to the empirical differential oxygen abundance distribution (EDOD), and the other about inhomogeneous models of chemical evolution, in particular the theoretical differential oxygen abundance distribution (TDOD). In the first part, the EDOD is deduced from subsamples related to two different samples involving (i) N=532 solar neighbourhood (SN) stars within the range, -1.5Prochaska et al. in Astron. J. 120:2513, 2000); (3) the fit to thin disk data implies an oxygen abundance range similar to its thick disk counterpart, with the extension of conclusion (2) to the thin disk, and the evolution of the thick + thin disk as a whole (Haywood in Mon. Not. R. Astron. Soc. 388:1175, 2008) cannot be excluded; (4) leaving outside the outer halo, a fit to the data related to different environments is provided by models with a strictly universal IMF but different probabilities of a region being active, which implies different global efficiencies of the star formation rate; (5) a special case of stellar migration across the disk can be described by models with enhanced star formation, where a fraction of currently observed SN stars were born in situ and a comparable fraction is due to the net effect of stellar migration, according to recent results based on high-resolution N-body + smooth particle hydrodynamics simulations (Ro\\vskar et al. in Astrophys. J. Lett. 684:L79, 2008).

  8. Chemical evolution in the early phases of massive star formation II: Deuteration

    CERN Document Server

    Gerner, Th; Beuther, H; Semenov, D; Linz, H; Abertsson, T; Henning, Th

    2015-01-01

    The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ...

  9. Chemical studies of H chondrites-10 : contents of thermally labile trace elements are unaffected by late heating.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.-S.; Wolf, S. F.; Lipschutz, M. E.; Chemical Engineering; Purdue Univ.

    1999-09-01

    We have used radiochemical neutron activation analysis (RNAA) to determine 15 trace elements, including 10 moderately and highly volatile ones - Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl, In (in increasing volatility order) - in 6 H chondrite falls with low 3He contents. These plus prior RNAA data provide a compositional database of 92 H4-6 chondrite falls. Three suites of samples can be identified from their noble gas contents: 44 with 'normal' contents, and, therefore, 'normal' orbits and cosmic ray exposure histories; 8 that lost radiogenic gases, presumably by shock late in their histories; and 17 that lost cosmogenic gases by heating during close solar approach. We used the standard multivariate statistical techniques of linear discriminant analysis and logistic regression to compare contents of the 10 moderately and highly volatile trace elements, listed above, in these 3 suites. We found no significant differences. This contrasts sharply with similar comparisons involving random falls and H4-6 chondrites that landed on Earth at specific time intervals. Apparently, contents of volatile trace elements in H4-6 chondrites were established early in their histories and they are so retentively sited that loss during later heating episodes did not occur.

  10. CHEMICAL COMPOSITION AND SOMATIC CELL EVOLUTION DURING LACTATION IN ROMANIAN BLACK AND WHITE COWS

    Directory of Open Access Journals (Sweden)

    L.T. CZISZTER

    2013-12-01

    Full Text Available The aim of the paper was to study the evolution of the chemical composition and somatic cell count during lactation in Romanian Black and White cows and effect of calving season on the shape of the lactation curve. Lactations form 125 multiparous cows were studied. Milk yield and sampling were carried out using the official performance control method A4. Milk was analyzed for composition in infrared spectrometry and for SCC using a viscosimeter. Results were modeled using Wood’s incomplete gamma function y=abxe(-cx, and season effect was assessed using ANOVA/MANOVA. A discussion was carried out regarding the shape of the lactation curves for milk yield, each milk component and SCC. The calving season had a significant effect (p<0.005 on the shape of the lactation curve for milk yield, milk chemical composition and milk somatic cell count. Summer calving cows had flatter lactation curves for milk yield and composition compared to winter calving cows. For somatic cell count spring calving cows had the flattest lactation curve while autumn calving cows has the steepest lactation curve.

  11. Chemical and toxicological evolution of carbon nanotubes during atmospherically relevant aging processes.

    Science.gov (United States)

    Liu, Yongchun; Liggio, John; Li, Shao-Meng; Breznan, Dalibor; Vincent, Renaud; Thomson, Errol M; Kumarathasan, Premkumari; Das, Dharani; Abbatt, Jonathan; Antiñolo, María; Russell, Lynn

    2015-03-03

    The toxicity of carbon nanotubes (CNTs) has received significant attention due to their usage in a wide range of commercial applications. While numerous studies exist on their impacts in water and soil ecosystems, there is a lack of information on the exposure to CNTs from the atmosphere. The transformation of CNTs in the atmosphere, resulting in their functionalization, may significantly alter their toxicity. In the current study, the chemical modification of single wall carbon nanotubes (SWCNTs) via ozone and OH radical oxidation is investigated through studies that simulate a range of expected tropospheric particulate matter (PM) lifetimes, in order to link their chemical evolution to toxicological changes. The results indicate that the oxidation favors carboxylic acid functionalization, but significantly less than other studies performed under nonatmospheric conditions. Despite evidence of functionalization, neither O3 nor OH radical oxidation resulted in a change in redox activity (potentially giving rise to oxidative stress) or in cytotoxic end points. Conversely, both the redox activity and cytotoxicity of SWCNTs significantly decreased when exposed to ambient urban air, likely due to the adsorption of organic carbon vapors. These results suggest that the effect of gas-particle partitioning of organics in the atmosphere on the toxicity of SWCNTs should be investigated further.

  12. Chemical and isotopic evolution of the coastal batholith of southern Peru

    Science.gov (United States)

    Boily, M.; Brooks, C.; Ludden, J. N.; James, D. E.

    1989-09-01

    Southeast of Arequipa, the Coastal Batholith of southern Peru is composed of two segments (Arequipa and Toquepala) including five superunits which were emplaced in discrete magmatic pulses from the Jurassic to the Paleocene eras (190-61 Ma). Most superunits intruded a Precambrian basement dominated by granulitic and amphibolitic rocks showing a strong enrichment in large ion lithophile elements, low ɛNd p (-21 to -29) and 206Pb/204Pbp (16.11-17.03 (Tilton and Barreiro, 1980)), and high ɛSr p (+396 to +999) values. Major and trace element analyses reveal that each superunit is formed by distinct suites of calc-alkaline plutons (i.e., "I" type) that range in composition from quartz gabbro to monzogranite. For the whole plutonic suite located in southern Peru, the evolution toward negative ɛNd i and positive ɛSr i values is followed by a significant decrease in 206Pb/204Pbi ratios but is also related to the density of Precambrian outcrops. This led us to classify the intrusives into three groups. Group 1 consists of intrusives carrying positive ɛNd i (+2.4 to +0.4) and generally negative ɛSr i values (-7.4 to +0.7). They are located in the Ilo-Moquegua transect (17°22'-17°80'S), an area where Precambrian exposure is scarce. Group 2 consists of plutons with intermediate ɛ values (i.e., ɛNd i = +0.5 to -2.2 and ɛSr i = +7.1 to +55.7), which are found in the vicinity of Arequipa and Tarata where numerous Precambrian outcrops are present. Finally, group 3 is composed of intrusives showing negative ɛNd i (-4.4 to -8.0) and positive ɛSr i values (+27.1 to +56.1), including one anomalous granodiorite exposed near Tarata and two samples collected in the Arequipa quadrangle near the contact with the Charcani gneiss. There are several petrogenetic models which can explain the trace element, isotopic, and geographic correlations observed within the Coastal Batholith of southern Peru. One simple model advocates that the parental mafic magma(s) of the plutonic suites

  13. From the Beginning: The "Journal of Chemical Education" and Secondary School Chemistry

    Science.gov (United States)

    Lagowski, Joseph J.

    2014-01-01

    The people, events, and issues that were involved in the beginning and the evolution of the "Journal of Chemical Education" and the Division of Chemical Education (DivCHED) are traced and discussed. The constitution of the American Chemical Society incorporates the roots of chemical education as an area of interest to the Society. Both…

  14. Evolution of the quaternary magmatic system, Mineral Mountains, Utah: Interpretations from chemical and experimental modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nash, W.P.; Crecraft, H.R.

    1982-09-01

    The evolution of silicic magmas in the upper crust is characterized by the establishment of chemical and thermal gradients in the upper portion of magma chambers. The chemical changes observed in rhyolite magmas erupted over a period of 300,000 years in the Mineral Mountains are similar to those recorded at Twin Peaks, Utah, and in the spatially zoned Bishop Tuff from Long Valley, California. Chemical and fluid dynamic models indicate that cooling of a silicic magma body from the top and sides can result in the formation of a roof zone above a convecting region which is chemically and thermally stratified, as well as highly fractionated and water rich. Crystallization experiments have been performed with sodium carbonate solutions as an analog to crystallization in magmatic systems. Top and side cooling of a homogeneous sodium carbonate solution results in crystallization along the top and sides and upward convection of sodium carbonate-depleted fluid. A stably stratified roof zone, which is increasingly water rich and cooler upwards, develops over a thermally and chemically homogeneous convecting region. Crystallization at the top ultimately ceases, and continued upward convection of water-rich fluid causes a slight undersaturation adjacent to the roof despite cooler temperatures. By analogy, crystallization at the margins of a magma chamber and buoyant rise of the fractionated boundary layer into the roof zone can account for the chemical evolution of the magma system at the Mineral Mountains. To produce compositionally stratified silicic magmas requires thermal input to a silicic system via mafic magmas. The small volume, phenocryst-poor rhyolite magma which persisted for at least 300,000 years in the Mineral Mountains requires the presence of a continued thermal input from a mafic magma source. The presence of silicic lavas signifies that there is a substantial thermal anomaly both in the crust and upper mantle. The production of silicic lavas requires (1) the

  15. Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter?

    CERN Document Server

    Eistrup, Christian; van Dishoeck, Ewine F

    2016-01-01

    [Abridged] Chemical evolution in the protoplanetary disk midplane can modify the composition of ices and gases. We have investigated if and how chemical evolution affects the abundances and distributions of key volatile species in the midplane of a protoplanetary disk in the 0.2-30 AU range. A full chemical network including gas-phase, gas-grain interactions and grain-surface chemistry is used to evolve chemistry in time, for 1 Myr. Great diversity is observed in the relative abundance ratios of the main considered species: H2O, CO, CO2, CH4, O2, NH3 and N2. The choice of ionisation level, the choice of initial abundances, as well as the extent of chemical reaction types included are all factors that affect the chemical evolution. The only exception is the inheritance scenario with a low ionisation level, which results in negligible changes compared with the initial abundances, regardless of whether grain-surface chemistry is included. The chemical processing changes the C/O ratios for gas and ice significant...

  16. Tracing the evolution of nearby early-type galaxies in low density environments. The Ultraviolet view from GALEX

    CERN Document Server

    Rampazzo, R; Marino, A; Bianchi, L; Bressan, A; Buson, L M; Clemens, M; Panuzzo, P; Zeilinger, W W; 10.1007/s10509-010-0586-5

    2011-01-01

    We detected recent star formation in nearby early-type galaxies located in low density environments, with GALEX Ultraviolet (UV) imaging. Signatures of star formation may be present in the nucleus and in outer rings/arm like structures. Our study suggests that such star formation may be induced by different triggering mechanisms, such as the inner secular evolution driven by bars, and minor accretion phenomena. We investigate the nature of the (FUV-NUV) color vs. Mg2 correlation, and suggest that it relates to "downsizing" in galaxy formation.

  17. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    Science.gov (United States)

    Yin, J.

    2011-05-01

    Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the

  18. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    Science.gov (United States)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.

    2012-12-01

    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  19. The Heating of Mid-Infrared Dust in the Nearby Galaxy M33: A Testbed for Tracing Galaxy Evolution

    CERN Document Server

    Calapa, M; Draine, B T; Boquien, M; Kramer, C; Xilouris, M; Verley, S; Braine, J; Relaño-Pastor, M; van der Werf, P; Israel, F; Hermelo, I; Albrecht, M

    2014-01-01

    Because the 8 {\\mu}m polycyclic aromatic hydrocarbon (PAH) emission has been found to correlate with other well-known star formation tracers, it has widely been used as a star formation rate (SFR) tracer. There are, however, studies that challenge the accuracy and reliability of the 8 {\\mu}m emission as a SFR tracer. Our study, part of the Herschel M33 Extended Survey (HERM33ES) open time key program, aims at addressing this issue by analyzing the infrared emission from the nearby spiral galaxy M33 at the high spatial scale of 75 pc. Combining data from the Herschel Space Observatory and the Spitzer Space Telescope we find that the 8 {\\mu}m emission is better correlated with the 250 {\\mu}m emission, which traces cold interstellar gas, than with the 24 {\\mu}m emission. The L(8)/L(24) ratio is highly depressed in 24 {\\mu}m luminous regions, which correlate with known HII regions. We also compare our results with the dust emission models by Draine & Li (2007). We confirm that the depression of 8 {\\mu}m PAH e...

  20. Radial metallicity gradients in spiral galaxies from H II regions and planetary nebulae: probing galactic chemical evolution

    Science.gov (United States)

    Stanghellini, Letizia

    2015-08-01

    Radial metallicity gradients, typically observed in spiral galaxies, are excellent constraints for chemical evolution models. The contemporary studies of the two stellar populations, whose progenitors have formed at different times, yield to the chemical and time constraining of the models. In this context, planetary nebula and HII region analysis proved to be ideal two-epochs test populations. We present an assortment of galaxies whose oxygen abundances have been determined both with weak- and strong-line methods, and whose radial metallicity gradients and their evolution in time have disclosed very interesting correlations with the galaxy characteristics. New results from our Gemini/GMOS observations, and a review of the best literature data, set the stage for a better understanding of spiral galaxy evolution.

  1. Valence shell charge concentration (VSCC) evolution: a tool to investigate the transformations within a VSCC throughout a chemical reaction.

    Science.gov (United States)

    Cortés-Guzmán, Fernando; Gómez, Rosa María; Rocha-Rinza, Tomas; Sánchez-Obregón, María Azucena; Guevara-Vela, José Manuel

    2011-11-17

    Theoretical studies about reaction mechanisms are usually limited to the determination of the energetic paths that connect reactants, transition states, and products. Recently, our group proposed the structural evolution, which has provided insights about the molecular structure changes occurring along a reaction path. Structural evolution may be defined as the development of a chemical reaction system across the partitioning of the nuclear configuration space into a finite number of structural regions defined on account of the topology of a scalar field, e.g., the electron density. In this paper, we present a tool to investigate within the framework of the Quantum Theory of Atoms in Molecules the evolvement of the Valence Shell Charge Concentration, the VSCC evolution, which is the description of the changes of electron density concentrations and depletions around the bonding area of an atom. The VSCC evolution provides supplementary information to the structural evolution because it allows the analysis of valence shells within a structural region, i.e., a subset of R(Q) with the same connectivity among the atoms forming a molecule. This new approach constitutes also a complement to the Valence-Shell Electron Pair Repulsion (VSEPR) model because it gives an account of the adjustments of electron pairs in the valence shell of an atom across a chemical reaction. The insertion reaction in the hydroformylation reaction of ethylene, the reduction of cyclohexanone with lithium aluminum hydride, the oxidation of methanol with chlorochromate, and the bimolecular nucleophilic substitution of CH(3)F with F(-) are used as representatives examples of the application of the VSCC evolution. Overall, this paper shows how the VSCC evolution through an analysis of the modifications of local charge concentrations and depletions in individual steps of a chemical reaction gives new insights about these processes.

  2. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    Science.gov (United States)

    Truitt, Amanda; Young, Patrick A.

    2017-01-01

    For my dissertation under the supervision of Dr. Young, I investigate how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of the classical HZ - the range of distances from a star over which liquid water could exist on a planet's surface - determined primarily by the host star's luminosity and spectral characteristics. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a more complete understanding of what factors play a role in creating the “habitable” conditions of a planet. I discuss how stellar evolution is integral to how we define a HZ, and how this work will apply to the search for habitable Earth-like planets in the future.I developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements (and not just total metallicity) can impact evolutionary lifetime. The time-dependent HZ boundaries have also been calculated for each stellar track. Additionally, I recently created a grid of models for M-dwarfs, and I am currently working to make preliminary estimates of stellar activity vs. age for each representative star in the catalog.My results indicate that to gauge the habitability potential of a given system, both the evolutionary history as well as the detailed chemical characterization of the host star must be considered. This work can be used to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed

  3. Quantifying impacts of coupled chemical and physical heterogeneity on water quality evolution during Aquifer Storage and Recovery

    Science.gov (United States)

    Deng, H.; Descourvieres, C.; Seibert, S.; Harris, B.; Atteia, O.; Siade, A. J.; Prommer, H.

    2014-12-01

    Aquifer storage and recovery (ASR) is an important water management option in water-scarce regions. During wet periods surplus water is injected into suitable aquifers for storage and later recovery. ASR sites are, however, also ideal natural laboratories that provide opportunities for studying coupled physical and geochemical processes and water quality evolution at field-scale under well-controlled hydrological conditions. In this study, we use reactive transport modelling to assess the impacts of physical and chemical heterogeneities on the water quality evolution during the injection of oxic surface water into the anoxic, pyrite-bearing Leederville aquifer in Perth, Western Australia. Physical heterogeneity was identified from geophysical well logs and time lapse temperature logs. Those data were used to define the spatial, depth-varying alternation of three lithofacies (sandstone, siltstone and clay). Chemical heterogeneity was incorporated through distinct chemical zones, based on data derived from a comprehensive pre-trial geochemical characterization and from dedicated laboratory respirometer experiments. Calibration of flow and conservative transport parameters was constrained by the spatially varying measured chloride breakthrough behavior. Subsequent reactive transport modeling discerned the key geochemical processes that affected the water quality evolution during ASR. Clearly identified processes included oxidation of pyrite, mineralization of sedimentary organic carbon, ion exchange, dissolution of calcite and precipitation of ferrihydrite and siderite. We use the calibrated model to analyze the individual and the combined effects of the physical and chemical heterogeneities on the chemical composition of the recovered water during ASR.

  4. Evolution of near-field physico-chemical characteristics of the SFR repository

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D. [Quintessa Ltd., Nottingham (United Kingdom); Stenhouse, M. [Monitor Scientific LLC, Denver, CO (United States); Benbow, S. [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10{sup -3} M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10{sup -3} M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR

  5. Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages

    Science.gov (United States)

    Olier, P.; Malaplate, J.; Mathon, M. H.; Nunes, D.; Hamon, D.; Toualbi, L.; de Carlan, Y.; Chaffron, L.

    2012-09-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for fission and fusion applications thanks to their improved properties related to both their fine grained microstructure and high density of Y-Ti-O nanoscale clusters (NCs). The Fe-14Cr-1 W-0.3Ti-0.3Y2O3 ODS ferritic steel was produced by powder metallurgy: Iron-base gas atomized powders were mechanically alloyed with 0.3% Y2O3 particles in an attritor. Then, the ODS powders were encapsulated in a soft steel can, consolidated by hot extrusion and cold rolled under the shape of tube cladding. The present work investigates the evolution of the chemical composition and the microstructure after each stage of the fabrication route (i.e. mechanical alloying, extrusion and cold rolling). Chemical analysis indicates a significant increase of the carbon content and a moderate increase of oxygen and nitrogen after mechanical alloying compared to initial atomized powders. After extrusion, the measured oxygen content corresponds mainly to the oxygen coming from yttria addition during MA process. In addition, electron microprobe analyses are performed after hot extrusion to determine the concentration and the distribution of the constitutive elements (Cr, Ti, W, Y, O). The microstructure was investigated by transmission electron microscopy (TEM) and small angle neutron scattering (SANS) in order to characterize the size distribution of Y-Ti-O particles. TEM results reveal a fine microstructure (average grain size of 600 nm in the transverse direction) including Y-Ti-O NCs with a mean diameter close to 3 nm after extrusion. A slight coarsening of Y-Ti-O NCs is evidenced by SANS after cold rolling and heat treatments.

  6. The Effects of Cluster Environment on the Chemical Evolution of Galaxies

    Science.gov (United States)

    Pilyugin, L. S.; Ferrini, F.

    The values of oxygen deficiency have been derived for nine Virgo cluster spiral galaxies from the sample of Skillman et al (1996) which ranges from HI deficient spirals (three galaxies near the center of cluster) to spirals with normal HI contents (three galaxies at the periphery of cluster). The chemical properties of Virgo cluster spiral galaxies have been compared with chemical properties of field spiral galaxies considered by Pilyugin and Ferrini (1998). It has been found that the sample of spirals at the periphery of the cluster is a mixture of objects without, with moderate, and with significant oxygen abundance deficiency. It confirms the conclusion of Skillman et al (1996) that spirals at the periphery of the cluster are indistinguishable from field galaxies. All the spirals near the center of the cluster, within the limited sample here considered, have no oxygen deficiency, and are more advanced in evolution than spirals at the periphery of the cluster or than field spirals. These facts can be considered as a hint that, in the case of spiral galaxies near the center of a cluster, the cluster environment inhibits gas exchange between the galaxy and its surroundings at the present epoch and can slightly enhance the efficiency of star formation. The positions of Virgo spirals without oxygen abundance deficiency in the gas mass fraction μ -- O/H diagram agree closely with the positions of field spiral galaxies without oxygen abundance deficiency and are in agreement with the location of one-zone closed-box models. This is strong evidence in favour that the oxygen yield (or, in consequence, the initial mass function) in cluster spiral galaxies does not differ from that in spiral galaxies in the field.

  7. Trace element and isotopic geochemistry of Cretaceous magmatism in NE Asia: Spatial zonation, temporal evolution, and tectonic controls

    Science.gov (United States)

    Tikhomirov, Petr L.; Kalinina, Elena A.; Moriguti, Takuya; Makishima, Akio; Kobayashi, Katsura; Nakamura, Eizo

    2016-11-01

    Results of a comprehensive geochemical study (major and trace elements, and isotopes of Sr, Nd, Pb, Hf) of Cretaceous volcanic rocks from the Chukotka area in northeastern Russia are presented. Synthesis of available geological and geochronological data suggests diachronous onset of activity of the Okhotsk-Chukotka volcanic belt (OCVB), the largest magmatic province in the region. The OCVB consists of ca. 106 km3 of volcanic rocks. At 106-105 Ma, subduction-related magmatism initiated in the southern and central segments of the OCVB. In the Central and Northern Chukotka areas, where the northern OCVB is exposed, onset of arc magmatism occurred ca. 10 m.y. after extension-related magmatism of the Chaun igneous province at 109-104 Ma. Mafic rocks from the OCVB yield (87Sr/86Sr)80 Ma of 0.7033 to 0.7047, εNd80 Ma of 0.0 to 7.10, εHf80 Ma of 4.12 to 12.88, (206Pb/204Pb)80 Ma of 18.11 to 18.42, and (208Pb/204Pb)80 Ma of 37.96 to 38.21. Volcanic rocks from the Chaun province, as well as OCVB rocks from Northern Chukotka, originate from a relatively enriched source and have (87Sr/86Sr)80 Ma of 0.7088 to 0.7100, εNd80 Ma of - 5.81 to - 3.42, εHf80 Ma of - 3.40 to - 0.25, (206Pb/204Pb)80 Ma of 18.69 to 18.90, and (208Pb/204Pb)80 Ma of 38.65 to 38.86. No definitive across-arc elemental or isotopic zonation of the OCVB has been revealed, probably because of wide-scale crustal melting and subsequent contamination of mantle-derived melts. However, there is a clear along-arc isotopic zonation. In our interpretation, this results from heterogeneity of the subcontinental lithospheric mantle, which likely was a major contributor to the magma source. The similar isotopic signatures of silicic (dominantly crust-derived) and mafic (mantle-derived) volcanic rocks in each OCVB segment imply that remelting of juvenile mafic underplated material was the main process responsible for the crust-derived magma generation. These data from the major Cretaceous magmatic provinces of northeast

  8. Evolution of microbiological and physico-chemical quality of pasteurized milk

    Directory of Open Access Journals (Sweden)

    Natalia Gonzaga

    2015-11-01

    Full Text Available Milk quality is defined, among other parameters, by a reduced number of spoilage microorganisms, low somatic cell count and the absence of pathogens and chemical waste. Several studies conducted in different regions of the country have emphasized the high percentage of samples not complying with the standard. The purpose of this study was to evaluate the evolution of microbiological and physicochemical quality of pasteurized milk produced in the State of Paraná over 7 years. A total of 457 samples of pasteurized milk were analyzed, 104 samples in 2008, 269 samples in 2011 and 84 samples in 2014. The samples were subjected to physicochemical analysis of cryoscopy and enzyme search for alkaline phosphatase and peroxidase. Regarding microbiological tests, coliform counts were performed at 30°C and 45°C and count plate pattern. In the laboratory, physicochemical analysis were performed according to the Normative 68 and microbiological as normative instruction 62, both of the Brazilian Ministry of Agriculture, Livestock and Food Supply. The results showed that over the years the microbiological quality of milk decreased, with an increase of non-standard samples. For enzymes alkaline phosphatase, peroxidase, the pasteurization temperature has been observed over time and the overheating of the milk was more frequent in 2011. Fraud by addition of water in milk has either decreased or become more sophisticated, making its detection difficult.

  9. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Science.gov (United States)

    Harte, Allan; Topping, M.; Frankel, P.; Jädernäs, D.; Romero, J.; Hallstadius, L.; Darby, E. C.; Preuss, M.

    2017-04-01

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr)2 and Zr2(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr)2, predominantly from the edge region, and homogeneously in the case of Zr2(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr2(Fe,Ni) SPP with respect to the Zr(Fe,Cr)2. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed.

  10. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    Science.gov (United States)

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.

  11. Organics Produced by Irradiation of Frozen and Liquid HCN Solutions: Implications for Chemical Evolution Studies

    Science.gov (United States)

    Colín-García, M.; Negrón-Mendoza, A.; Ramos-Bernal, S.

    2009-04-01

    Hydrogen cyanide (HCN), an important precursor of organic compounds, is widely present in extraterrestrial environments. HCN is also readily synthesized in prebiotic simulation experiments. To gain insight into the radiation chemistry of one of the most important and highly versatile constituents of cometary ices, we examined the behavior of over-irradiated frozen and liquid HCN solutions under ionizing radiation. The samples were exposed to gamma radiation at a dose range from 0 up to 419 kGy. Ultraviolet spectroscopy and gas chromatography were used to follow the process. The analyses confirmed that gamma-ray irradiation of liquid HCN solutions generates several organic products. Many of them are essential to life; we verified the presence of carboxylic acids (some of them members of the Krebs cycle) as well as free amino acids and urea. These are the first studies to reveal the presence of these compounds in experiments performed at low temperatures and bulk irradiation. Organic material was produced even at low temperatures and low radiation doses. This work strongly supports the presumption that, as a parent molecule, HCN played a central essential role in the process of chemical evolution on early Earth, comets, and other extraterrestrial environments.

  12. 3-D Simulations of the Chemical and Dynamical Evolution of the Galactic Bulge

    CERN Document Server

    Nakasato, N; Nakasato, Naohito; Nomoto, Ken'ichi

    2003-01-01

    A three-dimensional hydrodynamical N-body model for the formation of the Galaxy is presented with special attention to the formation of the bulge component. Starting with cosmologically motivated initial conditions, we obtain a qualitatively similar stellar system to the Galaxy. Then we analyze the chemical and kinematic properties of the bulge stars in our model and find qualitative agreement with observational data. The early evolution of our model has revealed that most bulge stars form during the sub-galactic merger (merger component of the bulge stars). Because of the strong star burst induced by the merger, the metallicity distribution function of such stars becomes as wide as observed. We find that another group of the bulge stars forms later in the inner region of the disk (non-merger component of the bulge stars). Because of the difference in the formation epoch, the main source of iron for this group of stars is different from the merger component. Iron in the merger and non-merger components comes ...

  13. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  14. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    CERN Document Server

    Jin Shi

    2003-01-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  15. Early Star Formation, Nucleosynthesis, and Chemical Evolution in Proto-Galactic Clouds

    CERN Document Server

    Saleh, L; Mathews, G J

    2006-01-01

    We present numerical simulations to describe the nucleosynthesis and evolution of pre-Galactic clouds in a model which is motivated by cold dark matter simulations of hierarchical galaxy formation. We adopt a SN-induced star-formation mechanism and follow the chemical enrichment and energy input by Type II and Type Ia SNe. We utilize metallicity-dependent yields and include finite stellar lifetimes. We derive the metallicity distribution functions, the age-metallicity relation, and relative elemental abundances for a number of alpha- and Fe-group elements. We find that the dispersion of the metallicity distribution function of the outer halo is reproduced by contributions from clouds with different initial conditions. Clouds with initial masses greater than that of present globular clusters are found to survive the first 0.1 Gyr, suggesting that such systems may have contributed to the formation of the first stars, and could have been self-enriched. More massive clouds are only stable when one assumes an init...

  16. Chemical Evolution of Dwarf Irregular Galaxies chemodynamical models and the effect of gas infall

    CERN Document Server

    Hensler, G; Köppen, J; Hensler, Gerhard; Rieschick, Andreas; K"oppen, Joachim

    1999-01-01

    Because of their low gravitational energies dwarf galaxies are greatly exposed to energetical influences by the interstellar medium, like e.g. stellar radiation, winds or explosions, or by their environment. While the metallicity depletion in dwarf galaxies can be explained in general by supernova-driven galactic winds, the reason for their low N/O ratios at low O abundance is not yet completely understood. Stellar yields enrich the different gas phases with elements that are characteristic for their stellar progenitors. Gas-phase transitions are necessary for a mixing of elements, but depend sensitively on the thermal and dynamical state of the interstellar medium. Models of chemical evolution start usually with a high N/O ratio at low O abundance according to a metal enrichment by ancient stellar populations with traditional yields, but can only reproduce the N/O-O peculiarity by the stepwise element release and mostly by the application of multiple starbursts in order to account also for a selective elemen...

  17. Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms

    Institute of Scientific and Technical Information of China (English)

    Xu Chen; Wenli Du; Feng Qian

    2016-01-01

    Dynamic optimization problems (DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are in-valid. In this article, a technology named ranking-based mutation operator (RMO) is presented to enhance the previous differential evolution (DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.

  18. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.

    Science.gov (United States)

    Lukowski, Mark A; Daniel, Andrew S; Meng, Fei; Forticaux, Audrey; Li, Linsen; Jin, Song

    2013-07-17

    Promising catalytic activity from molybdenum disulfide (MoS2) in the hydrogen evolution reaction (HER) is attributed to active sites located along the edges of its two-dimensional layered crystal structure, but its performance is currently limited by the density and reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst. Here we report dramatically enhanced HER catalysis (an electrocatalytic current density of 10 mA/cm(2) at a low overpotential of -187 mV vs RHE and a Tafel slope of 43 mV/decade) from metallic nanosheets of 1T-MoS2 chemically exfoliated via lithium intercalation from semiconducting 2H-MoS2 nanostructures grown directly on graphite. Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites. These distinct and previously unexploited features of 1T-MoS2 make these metallic nanosheets a highly competitive earth-abundant HER catalyst.

  19. Organics produced by irradiation of frozen and liquid HCN solutions: implications for chemical evolution studies.

    Science.gov (United States)

    Colín-García, M; Negrón-Mendoza, A; Ramos-Bernal, S

    2009-04-01

    Hydrogen cyanide (HCN), an important precursor of organic compounds, is widely present in extraterrestrial environments. HCN is also readily synthesized in prebiotic simulation experiments. To gain insight into the radiation chemistry of one of the most important and highly versatile constituents of cometary ices, we examined the behavior of over-irradiated frozen and liquid HCN solutions under ionizing radiation. The samples were exposed to gamma radiation at a dose range from 0 up to 419 kGy. Ultraviolet spectroscopy and gas chromatography were used to follow the process. The analyses confirmed that gamma-ray irradiation of liquid HCN solutions generates several organic products. Many of them are essential to life; we verified the presence of carboxylic acids (some of them members of the Krebs cycle) as well as free amino acids and urea. These are the first studies to reveal the presence of these compounds in experiments performed at low temperatures and bulk irradiation. Organic material was produced even at low temperatures and low radiation doses. This work strongly supports the presumption that, as a parent molecule, HCN played a central essential role in the process of chemical evolution on early Earth, comets, and other extraterrestrial environments.

  20. On the formation and evolution of magnetic chemically peculiar stars in the solar neighborhood

    CERN Document Server

    Poehnl, H; Maitzen, H M

    2005-01-01

    In order to put strict observational constraints on the evolutionary status of the magnetic chemically peculiar stars (CP2) of the upper main sequence, we have investigated a well established sample of galactic field CP2 objects within a radius of 200pc from the Sun in the (X,Y) plane. In total, 182 stars with accurate parallax measurements from the Hipparcos satellite were divided into Si, SiCr and SrCrEu subgroups based on classification resolution data from the literature. Primarily, it was investigated if the CP2 phenomenon occurs at very early stages of the stellar evolution, significantly before these stars reach 30% of their life-time on the main sequence. This result is especially important for theories dealing with stellar dynamos, angular momentum loss during the pre- as well as main sequence and stellar evolutionary codes for CP2 stars. For the calibration of the chosen sample, the well-developed framework of the Geneva 7-color and Stromgren uvbybeta photometric system was used. We are able to show...

  1. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  2. Can Galactic chemical evolution explain the oxygen isotopic variations in the Solar System?

    CERN Document Server

    Lugaro, Maria; Ireland, Trevor R; Maddison, Sarah T

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16O-rich CO and 16O-poor H2O, where the H2O subsequently combined with interstellar dust to form relatively 16O-poor solids within the Solar Nebula. Another model for creating the different reservoirs of 16O-rich gas and 16O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the Solar System dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the Solar System. The GCE scenario is in contradiction with observations of the 18O/17O ratios in nearby molecular clouds and young stellar objects. ...

  3. Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids

    CERN Document Server

    Lepine, Jacques R D; Barros, Douglas A; Junqueira, Thiago C; Scarano, Sergio

    2013-01-01

    In order to understand the Barium abundance distribution in the Galactic disk based on Cepheids, one must first be aware of important effects of the corotation resonance, situated a little beyond the solar orbit. The thin disk of the Galaxy is divided in two regions that are separated by a barrier situated at that radius. Since the gas cannot get across that barrier, the chemical evolution is independent on the two sides of it. The barrier is caused by the opposite directions of flows of gas, on the two sides, in addition to a Cassini-like ring void of HI (caused itself by the flows). A step in the metallicity gradient developed at corotation, due to the difference in the average star formation rate on the two sides, and to this lack of communication between them. In connection with this, a proof that the spiral arms of our Galaxy are long-lived (a few billion years) is the existence of this step. When one studies the abundance gradients by means of stars which span a range of ages, like the Cepheids, one has...

  4. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    Science.gov (United States)

    Reardon, E. J.; Mozeto, A. A.; Fritz, P.

    1980-11-01

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (-2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO 2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.

  5. The Influence of Environment on the Chemical Evolution in Low-mass Galaxies

    CERN Document Server

    Liu, Yiqing; Peng, Eric

    2016-01-01

    The mean alpha-to-iron abundance ratio ([$\\alpha$/Fe]) of galaxies is sensitive to the chemical evolution processes at early time, and it is an indicator of star formation timescale ($\\tau_{{\\rm SF}}$). Although the physical reason remains ambiguous, there is a tight relation between [$\\alpha$/Fe] and stellar velocity dispersion ($\\sigma$) among massive early-type galaxies (ETGs). However, no work has shown convincing results as to how this relation behaves at low masses. We assemble 15 data sets from the literature and build a large sample that includes 192 nearby low-mass ($18<\\sigma<80$~\\kms) ETGs. We find that the [$\\alpha$/Fe]-$\\sigma$ relation generally holds for low-mass ETGs, except in extreme environments. Specifically, in normal galaxy cluster environments, the [$\\alpha$/Fe]-$\\sigma$ relation and its intrinsic scatter are, within uncertainties, similar for low-mass and high-mass ETGs. However, in the most massive relaxed galaxy cluster in our sample, the zero point of the relation is higher an...

  6. Chemical Evolution in High-Mass Star-Forming Regions: Results from the MALT90 Survey

    CERN Document Server

    Hoq, Sadia; Foster, Jonathan B; Sanhueza, Patricio; Guzman, Andres; Whitaker, J Scott; Claysmith, Christopher; Rathborne, Jill M; Vasyunina, Tatiana; Vasyunin, Anton

    2013-01-01

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust tempe...

  7. Traces of co-evolution in high z X-ray selected and submm-luminous QSOs

    CERN Document Server

    Khan-Ali, A; Page, M J; Stevens, J A; Mateos, S; Symeonidis, M; Orjales, J M Cao

    2014-01-01

    We present a detailed study of a X -ray selected sample of 5 submillimeter bright QSOs at $z\\sim2$, where the highest rates of star formation (SF) and further growth of black holes (BH) occur. Therefore, this sample is a great laboratory to investigate the co-evolution of star formation and AGN. We present here the analysis of the spectral energy distributions (SED) of the 5 QSOS, including new data from Herschel PACS and SPIRE. Both AGN components (direct and reprocessed) and like Star Formation (SF) are needed to model its SED. From the SED and their UV-optical spectra we have estimated the mass of the black hole ($M_{BH} = 10^9 - 10^{10} M_{SUN}$) and bolometric luminosities of AGN ($L_{BOL} = (0.8-20) \\times 10^{13} L_{SUN}$). These objects show very high luminosities in the far infrared range (at the H/ULIRG levels) and very high rates of SF (SFR = 400-1400 $M_{SUN}$/y). Known their current SFR and their BH masses, we deduce that their host galaxies must be already very massive, or would not have time to...

  8. NUCLEOSYNTHESIS AND THE INHOMOGENEOUS CHEMICAL EVOLUTION OF THE CARINA DWARF GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Venn, Kim A.; Divell, Mike [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Shetrone, Matthew D. [McDonald Observatory, University of Texas at Austin, HC75 Box 1337-McD, Fort Davis, TX 79734 (United States); Irwin, Mike J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB03 0HA (United Kingdom); Hill, Vanessa [Laboratoire Cassiopee UMR 6202, Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d' Azur (France); Jablonka, Pascale [GEPI, Observatoire de Paris, CNRS UMR 8111, Universite Paris Diderot, F-92125, Meudon, Cedex (France); Tolstoy, Eline; Lemasle, Bertrand; Starkenburg, Else; Helmi, Amina [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Letarte, Bruno [South African Astronomical Observatory, Observatory Road, 7935 Observatory (South Africa); Baldner, Charles [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Battaglia, Giuseppina; Primas, Francesca [European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Kaufer, Andreas, E-mail: kvenn@uvic.ca [European Southern Observatory, Alonso de Cordova 3107, Santiago (Chile)

    2012-06-01

    The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using standard methods (local thermodynamic equilibrium and plane-parallel radiative transfer) to spectra ranging from 380 to 680 nm. Stellar parameters are found to be consistent between photometric and spectroscopic analyses, both at moderate and high resolution. The stars in this analysis range in metallicity from -2.9 < [Fe/H] <-1.3, and adopting the ages determined by Lemasle et al., we are able to examine the chemical evolution of Carina's old and intermediate-aged populations. One of the main results from this work is the evidence for inhomogeneous mixing in Carina and therefore for a poor statistical sampling of the supernova contributions when forming stars; a large dispersion in [Mg/Fe] indicates poor mixing in the old population, an offset in the [{alpha}/Fe] ratios between the old and intermediate-aged populations (when examined with previously published results) suggests that the second star formation event occurred in {alpha}-enriched gas, and one star, Car-612, seems to have formed in a pocket enhanced in SN Ia/II products. This latter star provides the first direct link between the formation of stars with enhanced SN Ia/II ratios in dwarf galaxies to those found in the outer Galactic halo (Ivans et al.). Another important result is the potential evidence for SN II driven winds. We show that the very metal-poor stars in Carina have not been enhanced in asymptotic giant branch or SN Ia products, and therefore their very low ratios of [Sr/Ba] suggests the loss of contributions from the early SNe II. Low ratios of [Na/Fe], [Mn/Fe], and [Cr/Fe] in two of these stars support this scenario, with additional evidence from the low [Zn/Fe] upper limit for one star. It is

  9. Introducing Graduate Students to the Chemical Information Landscape: The Ongoing Evolution of a Graduate-Level Chemical Information Course

    Science.gov (United States)

    Currano, Judith N.

    2016-01-01

    The University of Pennsylvania's doctoral chemistry curriculum has included a required course in chemical information since 1995. Twenty years later, the course has evolved from a loosely associated series of workshops on information resources to a holistic examination of the chemical literature and its place in the general research process. The…

  10. Seawater-like trace element signatures (REE + Y) of Eoarchaean chemical sedimentary rocks from southern West Greenland, and their corruption during high-grade metamorphism

    Science.gov (United States)

    Friend, C. R. L.; Nutman, A. P.; Bennett, V. C.; Norman, M. D.

    2008-02-01

    Modern chemical sediments display a distinctive rare earth element + yttrium (REE + Y) pattern involving depleted LREE, positive La/La*SN, Eu/Eu*SN, and YSN anomalies (SN = shale normalised) that is related to precipitation from circumneutral to high pH waters with solution complexation of the REEs dominated by carbonate ions. This is often interpreted as reflecting precipitation from surface waters (usually marine). The oldest broadly accepted chemical sediments are c. 3,700 Ma amphibolite facies banded iron-formation (BIF) units in the Isua supracrustal belt, Greenland. Isua BIFs, including the BIF international reference material IF-G are generally considered to be seawater precipitates, and display these REE + Y patterns (Bolhar et al. in Earth Planet Sci Lett 222:43 60, 2004). Greenland Eoarchaean BIF metamorphosed up to granulite facies from several localities in the vicinity of Akilia (island), display REE + Y patterns identical to Isua BIF, consistent with an origin by chemical sedimentation from seawater and a paucity of clastic input. Furthermore, the much-debated magnetite-bearing siliceous unit of “earliest life” rocks (sample G91/26) from Akilia has the same REE + Y pattern. This suggests that sample G91/26 is also a chemical sediment, contrary to previous assertions (Bolhar et al. in Earth Planet Sci Lett 222:43 60, 2004), and including suggestions that the Akilia unit containing G91/26 consists entirely of silica-penetrated, metasomatised, mafic rock (Fedo and Whitehouse 2002a). Integration of our trace element data with those of Bolhar et al. (Earth Planet Sci Lett 222:43 60, 2004) demonstrates that Eoarchaean siliceous rocks in Greenland, with ages from 3.6 to 3.85 Ga, have diverse trace element signatures. There are now geographically-dispersed, widespread examples with Isua BIF-like REE + Y signatures, that are interpreted as chemically unaltered, albeit metamorphosed, chemical sediments. Other samples retain remnants of LREE depletion but

  11. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability

    Science.gov (United States)

    Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Wang, Yuxuan; Wu, Ye; Zhu, Chuanyong; Liu, Kaiyun; Zhou, Junrui; Liu, Xingang; Chen, Jing; Hao, Jiming

    2014-12-01

    The seasonal and spatial variation characteristics of 19 elements (Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Se, Zn) in TSP/PM10/PM2.5 samples were investigated, which were collected from April 2011 to January 2012 simultaneously at an urban downtown site, a traffic roadside site, a suburban site, and a rural site in Beijing. The elevated concentrations of several toxic trace elements (As, Cd, Mn, Ni, Pb, etc.) in particles revealed that the contamination of toxic elements in Beijing could not be neglected. Positive matrix factorization method (PMF) was applied for source apportionment of trace elements in PM, and three factors (crust related sources, combustion sources, and traffic and steel industrial related sources) were identified. Furthermore, the chemical speciation and bioavailability of various elements were identified by applying European Community Bureau of Reference (BCR) procedure. Our results showed that eight toxic elements (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) exhibited higher mobility in PM2.5 than in PM10. Notably, elements of As, Cd, Pb and Zn were presented with higher mobility than the other elements, and these elements were lightly to release into the environment and easily available to human body. Additionally, As, Cd, Pb and Zn also accounted for higher percentages in the bound to mobile fractions at the central urban areas of Beijing. Therefore, special concerns should be paid to these toxic trace elements which had relatively high mobility in fine particles, when planning and implementing the comprehensive air pollution mitigation policies in Beijing.

  12. Chemical evolution in the environment of intermediate mass young stellar objects

    Science.gov (United States)

    Fuente, A.; Rizzo, J. R.; Caselli, P.; Bachiller, R.; Henkel, C.

    2005-04-01

    We have carried out a molecular survey of the Class 0 IM protostar NGC 7129 - FIRS 2 (hereafter FIRS 2) and the Herbig Be star LkHα 234 with the aim of studying the chemical evolution of the envelopes of intermediate-mass (IM) young stellar objects (YSOs). The two objects have similar luminosities (~500 L_⊙) and are located in the same molecular cloud which minimizes the chemical differences due to different stellar masses or initial cloud conditions. Moreover, since they are located at the same distance, we have the same spatial resolution in both objects. A total of 17 molecular species (including rare isotopes) have been observed in both objects and the structure of their envelopes and outflows has been determined with unprecedent detail. Our results show that the protostellar envelopes are dispersed and warmed up during the evolution of the YSO into a pre-main sequence star. In fact, the envelope mass decreases by a factor >5 from FIRS 2 to LkHα 234, while the kinetic temperature increases from ~13 K to 28 K. On the other hand, there is no molecular outflow associated with LkHα 234. The molecular outflow seems to stop before the star becomes visible. These physical changes strongly affect the chemistry of their envelopes. The N2H+ and NH3 abundances seem to be quite similar in the two objects. However, the H13CO+ abundance is a factor of ~3 lower in the densest part of FIRS 2 than in LkHα 234, very likely because of depletion. In contrast, the SiO abundance is larger by a factor of ~100 in FIRS 2 than in LkHα 234. CS presents complex behavior since its emission arises in different envelope components (outflow, cold envelope, hot core) and could also suffer from depletion. The CH3OH and H2CO column densities are very similar in FIRS 2 and LkHα 234 which implies that the beam-averaged abundances are a factor >5 larger in LkHα 234 than in FIRS 2. The same is found for the PDR tracers CN and HCN which have similar column densities in both objects. Finally

  13. A Multimedia Fate Model to Support Chemical Management in China: A Case Study for Selected Trace Organics.

    Science.gov (United States)

    Zhu, Ying; Price, Oliver R; Kilgallon, John; Rendal, Cecilie; Tao, Shu; Jones, Kevin C; Sweetman, Andrew J

    2016-07-05

    SESAMe v3.3, a spatially explicit multimedia fate model for China, is a tool suggested to support quantitative risk assessment for national scale chemical management. The key advantage over the previous version SESAMe v3.0 is consideration of spatially varied environmental pH. We evaluate the model performance using estimates of emission from total industry usage of three UV filters (benzophenone-3, octocrylene, and octyl methoxycinnamate) and three antimicrobials (triclosan, triclocarban, and climbazole). The model generally performs well for the six case study chemicals as shown by the comparison between predictions and measurements. The importance of accounting for chemical ionization is demonstrated with the fate and partitioning of both triclosan and climbazole sensitivity to environmental pH. The model predicts ionizable chemicals (triclosan, climbazole, benzophenone-3) to primarily partition into soils at steady state, despite hypothetically only being released to freshwaters, as a result of agricultural irrigation by freshwater. However, further model calibration is needed when more field data becomes available for soils and sediments and for larger areas of water. As an example, accounting for the effect of pH in the environmental risk assessment of triclosan, limited freshwater areas (0.03% or ca. 55 km(2)) in mainland China are modeled to exceed its conservative environmental no-effect threshold. SESAMe v3.3 can be used to support the development of chemical risk assessment methodologies with the spatial aspects of the model providing a guide to the identification regions of interest in which to focus monitoring campaigns or develop a refined risk assessment.

  14. TSP, PM depositions, and trace elements in the vicinity of a cement plant and their source apportionments using chemical mass balance model in Izmir, Turkey.

    Science.gov (United States)

    Yatkin, Sinan; Bayram, Abdurrahman

    2010-08-01

    Total suspended particles mass concentrations (TSP) and bulk depositions of particulate matter (PM depositions) were measured around a cement plant located in the multi-impacted area to assess the affect of the plant on the ambient air in the vicinity in Izmir, Turkey. TSP samples were collected five times a month whereas PM depositions were sampled monthly at four sites between August 2003 and January 2004. The concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn in TSP and PM depositions (except Cu) were reported. Chemical mass balance (CMB) receptor model with local source profiles was run in order to calculate the source contributions of the PM sources to the concentrations of TSP, PM depositions, and trace elements. Traffic was found to be the major contributor to TSP whereas PM depositions dominantly result from area sources including several stone quarries, concrete plants, lime kilns, and asphalt plants in the region. CMB model results indicate that the cement plant is a significant contributor to TSP, PM depositions, and trace elements, particularly Cd.

  15. Garnet formation and evolution in Cordilleran source rocks: inherited zircon trace element chemistry from the Transverse Ranges, CA

    Science.gov (United States)

    Economos, R. C.; Barth, A. P.; Wooden, J. L.; Chapman, A. D.

    2011-12-01

    Pre-magmatic (inherited) Proterozoic cores are common in Mesozoic plutons from the Transverse Ranges, southern California. These grains record chronological and compositional information that constrains the mineralogy of the source region at the time of its formation. Whole rock geochemical compositions indicate the mineralogy of the source region when re-mobilized in Mesozoic time. These constraints can be compared to yield an impression of major changes in the lower crust between these events. The behavior of garnet is of particular interest due to its role as an indicator of crystallization depth and its distinctive geochemical imprint, both on co-crystallizing zircons and magmatic chemistry as a whole. While the trace element signal of co-crystallization of garnet and zircon is well constrained for metamorphic rocks, similar signals in magmatic rocks have received less thorough treatment. We compare Yb/Gd and Th/U from zircons from garnet bearing granites and tonalites from the deeply-crystallized western Tehachapi Mountains with results for a range of metamorphic environments. A main trend in log-log Yb/Gd vs Th/U space represents the trajectory of magmatic composition in a typical granodiorite as recorded in zircons. A population of zircons from both metamorphic and igneous garnet-bearing rocks falls off this main trend towards lower Yb/Gd, interpreted as a signature of heavy REE depletion via the influence of garnet during co-crystallization. When carrying the signal of garnet co-crystallization, igneous and metamorphic zircons can be distinguished on the basis of Th/U ratio. The Yb/Gd vs. Th/U relationship is generally a better indicator than Th/U alone for discerning the formation environment of zircons, since in the main populations there is significant overlap in Th/U ratio among metamorphic and evolved magmatic zircons that make them difficult to discern. Proterozoic premagmatic zircons sampled by Mesozoic plutons in the Transverse Ranges have a

  16. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    CERN Document Server

    Majumdar, Liton; Chakrabarti, Sandip K; Chakrabarti, Sonali

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge of the rate coefficients of various reactions which take place in the ISM & molecular clouds. In order to obtain accurate final compositions in the ISM, we find out the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to find out the chemical evolution and the final abundances of the pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapsing phase of a proto-star. We study extensively the formation of these molecules via successive neutral-neutral(NN) and radical-radical(RR)/radical-molecular(RM) reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud....

  17. Factors controlling the chemical composition of colloidal and dissolved fractions in soil solutions and the mobility of trace elements in soils

    Science.gov (United States)

    Gangloff, Sophie; Stille, Peter; Schmitt, Anne-Désirée; Chabaux, François

    2016-09-01

    The objectives of this study were to determine the processes and physico-chemical conditions that affect the composition of the soil solutions of a forest soil and to elucidate their impact on the transport of major and trace elements through the colloidal (0.2 μm to 5 kDa) and dissolved (microbial activity influences the composition of the colloidal and dissolved fractions, and possibly enriches the colloidal fraction in Ca, Mn and P, diminishes the concentrations of Pb, V, Cr and Fe in the dissolved fraction, and changes the structure of organic carbon (OC). These results are important for a better understanding of the role of the colloidal and dissolved (pollutants and the bioavailability of nutrients for forested ecosystems.

  18. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2015-02-01

    This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, thereby reducing organic and nutrient removal. The removal of hydrophilic TrOCs by MBR decreased due to salinity build-up. By contrast, with the exception of 17α-ethynylestradiol, the removal of all hydrophobic TrOCs was not affected at high salinity. Moreover, salinity build-up had negligible impact on the residual accumulation of TrOCs in the sludge phase except for a few hydrophilic compounds. Additionally, the response of the biomass to salinity stress also dramatically enhanced the release of both soluble microbial products (SMP) and extracellular polymeric substances (EPS), leading to severe membrane fouling.

  19. SETUP, a program of representative laboratory simulations of Titan's atmosphere dedicated to better understand and quantify its chemical evolution pathways

    Science.gov (United States)

    Gazeau, M.; Bahrini, C.; Benilan, Y.; Jolly, A.; Landsheere, X.; Lebert, B.

    2013-12-01

    Atmospheres are enormously complex systems. Therefore, experimental simulations are a welcome tool in the researcher's toolbox since they provide an alternative source to compare with direct measurements and theoretical models. This is important for Titan, since direct measurements are limited and theoretical models often lack important parameters. The advantage of experimental simulations is that they reduce the problem to only the chemical reactions in a certain region by neglecting atmospheric dynamics. The experimental simulations of Titan's atmosphere performed in the frame of the SETUP (French acronym for Experimental and Theoretical Simulations Useful for Planetology) program are the most representative ever achieved towards Titan's condition in term of energy deposition: the coupled N2/CH4 chemistry is initiated in a flow reactor using microwave plasma discharge as well as Ly-alpha photons delivered by a continuous H2/He lamp. The vacuum pumping and measurement system limit the experiment to pressures above 1x10-3 mbar, which corresponds well to the lower thermosphere and below. The experiment is run at ambient temperature which does not correspond directly with any region, however the upper stratosphere and above is the closest match. According to pressure and temperature, SETUP best represents from the upper stratosphere up to the lower thermosphere. The ability to perform in-situ and absolute analysis is another improvement of SETUP over its predecessors: the chemical composition is probed in-situ using cavity ring-down spectroscopy (CRDS, an absolute and highly sensitive laser spectroscopic technique based upon absorption spectroscopy) allowing us to study the evolution of the resulting gas sample. We have chosen to use a difference-frequency generation technique that combines the advantages of decent sensitivity over widely tunable wavelength range in the mid-infrared region. Indeed, numerous molecular species exhibit their fundamental vibrational

  20. Evolution of near-field physico-chemical characteristics of the SFR repository

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D. [Quintessa Ltd., Nottingham (United Kingdom); Stenhouse, M. [Monitor Scientific LLC, Denver, CO (United States); Benbow, S. [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10{sup -3} M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10{sup -3} M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR

  1. Chemical evolution of interstellar dust, comets and the origins of life.

    Science.gov (United States)

    Greenberg, J M; Zhao, N; Hage, J

    1989-04-01

    It now appears that the chemical evolution of the pre-solar system interstellar dust ensures that a major fraction of comets is in the form of complex organic molecules at least partially of a prebiotic nature and that the submicron interstellar dust preserves its chemical integrity as result of forming a very tenuous low density comet structure whose solid matter occupies approximately 1/5 of the total volume. This low density micro structure further provides a physical basis for comets bringing a significant fraction of the original interstellar organic molecules to the earth unmodified by the impact event. Finally, the evidence for a large number of comet collisions with the early earth ensured that the major organic molecular budget on the earth's surface was "continuously" supplied along with water well before 3.8 billion years ago which is the earliest date for life. The chemistry and morphological structure of a comet nucleus as an aggregate of interstellar dust is used to provide comparisons with a variety of comet Halley results: the density of the nucleus and of the dust; the dust cloud model and its consequences on the production of C+ and CN in the coma by small organic grains; the surface albedo and the low nucleus heat conductivity and high surface temperature; the appearance of 10(-14) g and 10(-17) g dust particles along with higher masses; the mass spectra of dust and infrared spectroscopy as evidence for complex organic grain mantles and of very small (approximately 0.01 micrometer) carbonaceous and silicate grains; the appearance of small grains resulting from breakup of larger grains. The cosmic ray dosage of a comet nucleus during its 4.5 billion years in the Oort cloud appears to be many orders of magnitude less than the dosage of the preaggregated interstellar dust by ultraviolet photons except perhaps in the outer few meters of the nucleus of a new comet. The heat conductivity calculated for aggregated dust is certainly less than 10(-4) that

  2. Mercury's thermo-chemical evolution from numerical models constrained by Messenger observations

    Science.gov (United States)

    Tosi, N.; Breuer, D.; Plesa, A. C.; Wagner, F.; Laneuville, M.

    2012-04-01

    The Messenger spacecraft, in orbit around Mercury for almost one year, has been delivering a great deal of new information that is changing dramatically our understanding of the solar system's innermost planet. Tracking data of the Radio Science experiment yielded improved estimates of the first coefficients of the gravity field that permit to determine the normalized polar moment of inertia of the planet (C/MR2) and the ratio of the moment of inertia of the mantle to that of the whole planet (Cm/C). These two parameters provide a strong constraint on the internal mass distribution and, in particular, on the core mass fraction. With C/MR2 = 0.353 and Cm/C = 0.452 [1], interior structure models predict a core radius as large as 2000 km [2], leaving room for a silicate mantle shell with a thickness of only ~ 400 km, a value significantly smaller than that of 600 km usually assumed in parametrized [3] as well as in numerical models of Mercury's mantle dynamics and evolution [4]. Furthermore, the Gamma-Ray Spectrometer measured the surface abundance of radioactive elements, revealing, besides uranium and thorium, the presence of potassium. The latter, being moderately volatile, rules out traditional formation scenarios from highly refractory materials, favoring instead a composition not much dissimilar from a chondritic model. Considering a 400 km thick mantle, we carry out a large series of 2D and 3D numerical simulations of the thermo-chemical evolution of Mercury's mantle. We model in a self-consistent way the formation of crust through partial melting using Lagrangian tracers to account for the partitioning of radioactive heat sources between mantle and crust and variations of thermal conductivity. Assuming the relative surface abundance of radiogenic elements observed by Messenger to be representative of the bulk mantle composition, we attempt at constraining the degree to which uranium, thorium and potassium are concentrated in the silicate mantle through a broad

  3. Laboratory experimental simulations: Chemical evolution of the organic matter from interstellar and cometary ice analogs

    Science.gov (United States)

    Abou Mrad, N.; Vinogradoff, V.; Duverney, F.; Danger, G.; Theulé, P.; Borget, F.; Chiavassa, T.

    2015-01-01

    This contribution addresses the different approaches that are developed in our laboratory to study the chemical evolution of organic matter in stellar or interplanetary environments. In the first approach, starting from interstellar or cometary ice analogs subjected to different energy processes (thermal, photochemical), we aim to explain the mechanism of formation of key molecules (RING project: Reactivity in INterstellar ice Grains) such as HMT, POM or amino acid precursors that are or may be detected in future space missions. In a second approach, we are interested in the detection of volatile molecules sublimating from ice analogs when these latter are heated and/or irradiated (VAHIIA project: Volatile Analysis from the Heating of Interstellar Ice Analogs) through an online experimental device coupling the simulation chamber where ices are formed to a GC-MS instrument. The objective is thus to simulate the effects of the ice material warming when a young star forms or when a comet becomes active. This project provides an inventory of molecules that can be found in hot corinos or in the gaseous phase of comets. In a third approach, we analyze the organic matter contained in the refractory residues that can be considered as cometary analogs (RAHIIA Project: Residue Analysis from the Heating of Interstellar Ice Analogs) using very high resolution mass spectrometry (VHRMS). The results of these analyses show that residues present an important molecular diversity. This technique gives also the possibility to determine the elementary composition of these residues that can be compared to the meteorite composition. These residues can then be a basic material to develop, in a specific planetary environment, a prebiotic chemistry.

  4. Evolution of chemical-physical parameters and rheological characteristics of Sarda and Maltese goat dry hams

    Directory of Open Access Journals (Sweden)

    Rina Mazzette

    2012-10-01

    Full Text Available In Sardinia, goat farming is a very important resource. Sarda and Maltese breed are reared mainly for milk production and for suckling kids meat, while meat from adult goats is undervalued. The use of adult goat meat to obtain ripened ham will contribute to safeguard the Sardinian goat supply chain. The aim of the present study was to characterize Sarda and Maltese goat dry ham in order to evaluate the quality of autochthonous goat breed meat. Chemical-physical characteristics were determined dur-ing the production stages, while the rheological and colour parameters and the composition of the goat ham were determined at the end of ripening. The pH evolution during processing were similar to other cured meat products, e.g. sheep hams, even though the values were high, especially in the products from Sarda breed. The aw value regularly decreased during processing. Colour parameters (L*, a*, b* in the hams from Maltese goat breed were significantly (P<0.05 higher than in those from Sarda. The Sarda goat ham showed a significantly lower percentage of moisture (42% vs 52%, an higher protein content (44.35% vs 34.19%, while no differences were pointed out in the total fat content. Among the ham rheological properties, hardness parameters showed higher levels (13850.22±7589.92 vs 11073.99±6481.31, respectively in Sarda and Maltese hams in comparison to similar products from pork and sheep, while adhesiveness value was lower. The results show that the quality parameters of goat ripened hams are affected mainly by the charac-teristics of the goat meat, in relation on the breed and the breeding system, and, less, by the traditional technology.

  5. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  6. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    Energy Technology Data Exchange (ETDEWEB)

    Lugaro, Maria [Monash Centre for Astrophysics (MoCA), Building 28, Monash University, Clayton, VIC 3800 (Australia); Liffman, Kurt [CSIRO/MSE, P.O. Box 56, Highett, VIC 3190 (Australia); Ireland, Trevor R. [Planetary Science Institute and Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Maddison, Sarah T., E-mail: maria.lugaro@monash.edu [Centre for Astrophysics and Supercomputing, Swinburne University, H39, P.O. Box 218, Hawthorn, VIC 3122 (Australia)

    2012-11-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced {sup 16}O-rich CO and {sup 16}O-poor H{sub 2}O, where the H{sub 2}O subsequently combined with interstellar dust to form relatively {sup 16}O-poor solids within the solar nebula. Another model for creating the different reservoirs of {sup 16}O-rich gas and {sup 16}O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the {sup 18}O/{sup 17}O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  7. Chemical Evolution in High-mass Star-forming Regions: Results from the MALT90 Survey

    Science.gov (United States)

    Hoq, Sadia; Jackson, James M.; Foster, Jonathan B.; Sanhueza, Patricio; Guzmán, Andrés; Whitaker, J. Scott; Claysmith, Christopher; Rathborne, Jill M.; Vasyunina, Tatiana; Vasyunin, Anton

    2013-11-01

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel/Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N2H+ and HCO+ abundances increase as a function of evolutionary stage, whereas the N2H+ (1-0) to HCO+ (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.

  8. Chemical Evolution in Sersic 159-03 Observed with Xmm-Newton

    Energy Technology Data Exchange (ETDEWEB)

    de Plaa, Jelle; Werner, N.; Bykov, A.M.; Kaastra, J.S.; Mendez, M.; Vink, J.; Bleeker, J.A.M.; Bonamente, M.; Peterson, J.R.; /SRON, Utrecht /Utrecht, Astron. Inst.

    2006-03-10

    Using a new long X-ray observation of the cluster of galaxies Sersic 159-03 with XMM-Newton, we derive radial temperature and abundance profiles using single- and multi-temperature models. The fits to the EPIC and RGS spectra prefer multi-temperature models especially in the core. The radial profiles of oxygen and iron measured with EPIC/RGS and the line profiles in RGS suggest that there is a dip in the O/Fe ratio in the centre of the cluster compared to its immediate surroundings. A possible explanation for the large scale metallicity distribution is that SNIa and SNII products are released in the ICM through ram-pressure stripping of in-falling galaxies. This causes a peaked metallicity distribution. In addition, SNIa in the central cD galaxy enrich mainly the centre of the cluster with iron. This excess of SNIa products is consistent with the low O/Fe ratio we detect in the centre of the cluster. We fit the abundances we obtain with yields from SNIa, SNII and Population-III stars to derive the clusters chemical evolution. We find that the measured abundance pattern does not require a Population-III star contribution. The relative contribution of the number of SNIa with respect to the total number of SNe which enrich the ICM is about 25-50%. Furthermore, we discuss the possible presence of a non-thermal component in the EPIC spectra. A potential source of this non-thermal emission can be inverse-Compton scattering between Cosmic Microwave Background (CMB) photons and relativistic electrons, which are accelerated in bow shocks associated with ram-pressure stripping of in-falling galaxies.

  9. The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows

    CERN Document Server

    Spitoni, E; Sozzetti, A

    2014-01-01

    The galactic habitable zone is defined as the region with sufficient abundance of heavy elements to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events. Galactic chemical evolution models can be useful for studying the galactic habitable zones in different systems. We apply detailed chemical evolution models including radial gas flows to study the galactic habitable zones in our Galaxy and M31. We compare the results to the relative galactic habitable zones found with "classical" (independent ring) models, where no gas inflows were included. For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance the number of stars hosting a habitable planet with respect to the "classical" model results, in the region of maximum probability for this occurrence, relative to the classical model results. These results are obtained by taking into account the supernova destruction process...

  10. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law

    Science.gov (United States)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-01

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution dot{ω }= - ω ^2 along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)], 10.1063/1.4809593 this outcome will be naturally

  11. Beverton-Holt discrete pest management models with pulsed\\ud chemical control and evolution of pesticide resistance

    OpenAIRE

    Liang, Juhua; Tang, Sanyi; Cheke, Robert

    2016-01-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel disc...

  12. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    Science.gov (United States)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  13. On the Galactic chemical evolution of sulphur. Sulphur abundances from the [S i] 1082 nm line in giants

    CERN Document Server

    Matrozis, E; Dupree, A K

    2013-01-01

    Context. The Galactic chemical evolution of sulphur is still under debate. At low metallicities some studies find no correlation between [S/Fe] and [Fe/H], others find [S/Fe] increasing towards lower metallicities, and still others find a combination of the two. Each scenario has different implications for the Galactic chemical evolution of sulphur. Aims. To contribute to the discussion on the Galactic chemical evolution of sulphur by deriving sulphur abundances from non-LTE insensitive spectral diagnostics in Disk and Halo stars with homogeneously determined stellar parameters. Methods. We derive Teff from photometric colours, logg from stellar isochrones and Bayesian estimation, and [Fe/H] and [S/Fe] from spectrum synthesis. We derive [S/Fe] from the [S i] 1082 nm line in 39 mostly cool and metal-poor giants, using 1D LTE MARCS model atmospheres to model our high-resolution NIR spectra obtained with the VLT, NOT and Gemini South telescopes. Results. We derive homogeneous stellar parameters for 29 stars. Our...

  14. 生命之树与进化模式:导言%Tracing Patterns of Evolution through the Tree of Life: Introduction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ One and half centuries ago, Charles Darwin (1859) presented overwhelming evidence and argued that all life on the earth shared common descent, and "from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved". Ernst Haeckel (1886) and several of his contemporaries attempted to trace the pattern of descent among all extant and extinct forms in what Darwin referred to as "the great Tree of Life". Ever since then, systematists and evolutionary biologists have been exploring morphological, cytogenetic, chemical, developmental and molecular characters, and actively developing theories and methods to infer phylogenetic relationships among organisms from these characters. This endeavor has been especially stimulated by the rise of molecular biology and the emergence of computer science over the past 50 years. At the beginning of the 21st century, we are presented with an unprecedented opportunity to reconstruct the entire Tree of Life, and further, to study evolutionary processes and mechanisms in the context of a robust phylogenetic framework.

  15. Chemical and physical drivers of the evolution of organic aerosols over forests

    NARCIS (Netherlands)

    Janssen, R.H.H.

    2013-01-01

    Diurnal evolution of organic aerosol over boreal and tropical forests The first research question of this thesis is: how do local surface forcings and large-scale meteorological forcings shape the evolution of organic aerosol over the boreal and tropical forest? This question is de

  16. Chemical and isotopical characterisation of atmospheric pollution from urban and rural environments of the Rhine Valley (PCBs, trace elements and Sr-, Nd- and Pb- isotope determinations)

    Science.gov (United States)

    Guéguen, F.; Stille, P.; Millet, M.; Dietze, V.; Gieré, R.

    2010-05-01

    Atmosheric samples (gas and particulate matter (PM)) have been collected in the urban environment of the cities of Strasbourg and Kehl and in the rural environment of the Vosges mountains. For sampling of gas phase pollutants and particles two different passive sampler devices have been applied (PAS and Sigma-2, respectively). The PAS has been used for gas phase Polychlorinated Biphenyls (PCBs) sampling and is based on the passive adsorption of gas phase pollutants onto XAD-2 resin. The Sigma-2 sampler is based on the sedimentation principle (Stoke's law), collects particles in the size range 2.5-100 μm and allows the calculation of ambient air concentration. The sampler is mainly used for routine air quality measurements in German health and recreation resorts and in this field study the first time for collection of samples for subsequent trace element and isotope analysis. The collection time for the Sigma-2 and PAS are four and two weeks, respectively. Major and trace elements have been analyzed by ICP-MS and the Sr, Nd and Pb isotope ratios by a sector field MC-ICP-MS (Neptune) while PCBs were ASE extracted and analysed by GC-ECD. The aerosol data are compared with those from tree barks which have previously been used successfully as biomonitors of atmospheric pollution (Lahd Geagea et al. 2008)1. The outer 1 mm thick part of the bark has been analyzed corresponding to about 2 to 8 years of accumulation. Some of the trace elements (Cr, Ni and Mo) of the aerosol samples are strongly (up to 1000 times) enriched compared to average 'upper continental crust (UCC)'. Normalization to a « natural » sample with an atmospheric baseline composition allows to identify industrial contributions: transition metals (Cr, Mn, Fe, Co, Ni, Zn, Mo, Cd), Ba and Pb appear to be important elements in steel plant and incinerator (chemical waste) emissions. Similarly enrichment in light rare earth elements (La, Pr, Nd) is observable. The enrichments increase with decreasing distance

  17. Evolution and prospects of Spanish chemical sector. An overview from its Industrial Observatory; Evolucion y perspectivas del sector quimico espanol. Vision desde su observatorio industrial

    Energy Technology Data Exchange (ETDEWEB)

    Collado Bravo, J.; Sanchez Sanchez, F.

    2012-07-01

    The Industrial Observatory of the Chemical Sector was created in 2005 in order to follow the evolution of the Spanish chemical sector and to improve the competitiveness of the chemical companies operating in Spain. For this sector and its evolution over the years, know their main problems and the actions can be undertaken to solve or minimize them and, ultimately, learn how improve its competitiveness, the Industrial Observatory of the Chemical Sector is a good source of information. This article analyzes the Spanish chemical sector and its evolution in the period 2003-2010 using the field and the data produced within the Observatory, and then to state, through competitive factors discussed in it, what are the main measures proposed to improve the chemical sector. (Author)

  18. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    Science.gov (United States)

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  19. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water.

  20. Tracing long term tectonic evolution of accretionary orogens by U-Pb zircon geochronology: Proterozoic to Jurassic tectonics of the Santander Massif, northern Colombia

    Science.gov (United States)

    Valencia, V. A.; Cardona, A.; Gehrels, G. E.; Ruiz, J.; Ibañez, M.

    2009-12-01

    Accurate orogenic models are nedded to reconstruct complex tectonic histories of long lived convergent margins. Integrated zircon U-Pb geochronology on igneous, sedimentary and metasedimentry rocks within single crustal domains is a powerful tool, as it can be used to trace the timing of rock forming events, magmatic style and episodity, and identify crustal recycling. U-Pb detrital zircon and magmatic geochronology was carried on multiple litostratigraphic units of the Santander Massif in the northeastern Andes, in order to reconstruct its long term Late Proterozoic to Early Mesozoic tectonic evolution. Major zircon forming events includ well defined Grenvillian, Late Neoproterozoic to Ordovician, Silurian, Early Permian and Jurassic events. Major peaks of activity at ca. 197 Ma, 440-410 Ma and 470-490 Ma and 950-1052 Ma, support the existence of continental scale tectonic cycles. Older Mesoproterozoic (1.3-1.5 Ga) crustal input in metasediments and magmatic rocks link these units to crustal recycling on the margins of the Amazon Craton, whereas the older 950-1052 Ma peak indicates the link of this crustal segment with other Andean Grenvillian remnant. Previous interpretations of the Paleozoic Silgara Formation seem incorrect, as acquired dates from this study includ different metamorphic units, deposited and formed after the Silurian and Permian during final stages of Pangea's assemblage, probably as Laurentia migrated to its final Alleghanian position. Finally the presence of the NW South America Jurassic arc is also present in the region by granitoid ages. The limited input of this arc signature within the contemporaneous and overlapping Early Cretaceous sedimentary rocks suggest that this arc was developed in a back arc setting.

  1. Chemical fertilizers as a source of (238)U, (40)K, (226)Ra, (222)Rn, and trace metal pollutant of the environment in Saudi Arabia.

    Science.gov (United States)

    Alshahri, Fatimh; Alqahtani, Muna

    2015-06-01

    The specific activities of (238)U, (226)Ra, (40)K, and (222)Rn in chemical fertilizers were measured using gamma ray spectrometer and Cr-39 detector. In this study, 21 chemical fertilizers were collected from Eastern Saudi Arabian markets. The specific activities of (238)U ranged from 23 ± 0.5 to 3900 ± 195 Bq kg(-1); (226)Ra ranged from 5.60 ± 2.80 to 392 ± 18 Bq kg(-1); and (40)K ranged from 18.4 ± 3 to 16,476 ± 820 Bq kg(-1). The radon concentrations and the radon exhalation rates were found to vary from 3.20 ± 1.20 to 1532 ± 160 Bq m(-3) and from 1.60 to 774 mBq m(-2) h(-1), respectively. Radium equivalent activities (Raeq) were calculated for the analyzed samples to assess the radiation hazards arising due to the use of these chemical fertilizers in the agriculture soil. The Raeq for six local samples (nitrogen, phosphorous, and potassium (NPK) and single superphosphate (SSP)) and one imported sample (Sulfate of Potash (SOP)) were greater than the acceptable value 370 Bq kg(-1). The total air absorbed doses rates in air 1 m above the ground (D) were calculated for all samples. All samples, except one imported granule sample diammonium phosphate (DAP), were higher than the estimated average global terrestrial radiation of 55 nGy h(-1). The highest annual effective dose was in triple super phosphate (TSP) fertilizers (2.1 mSv y(-1)). The results show that the local TSP, imported SOP, and local NPK (sample 13) fertilizers were unacceptable for use as fertilizers in agricultural soil. Furthermore, the toxic elements and trace metals (Pb, Cd, Cr, Co, Ni, Hg, and As) were determined using atomic absorption spectrometer. The concentrations of chromium in chemical fertilizers were higher than the global values.

  2. Estimated total emissions of trace gases from the Canberra Wildfires of 2003: a new method using satellite measurements of aerosol optical depth & the MOZART chemical transport model

    Directory of Open Access Journals (Sweden)

    C. Paton-Walsh

    2010-06-01

    Full Text Available In this paper we describe a new method for estimating trace gas emissions from large vegetation fires using satellite measurements of aerosol optical depth (AOD at 550 nm, combined with an atmospheric chemical transport model. The method uses a threshold value to screen out normal levels of AOD that may be caused by raised dust, sea salt aerosols or diffuse smoke transported from distant fires. Using this method we infer an estimated total emission of 15±5 Tg of carbon monoxide, 0.05±0.02 Tg of hydrogen cyanide, 0.11±0.03 Tg of ammonia, 0.25±0.07 Tg of formaldehyde, 0.03±0.01 of acetylene, 0.10±0.03 Tg of ethylene, 0.03±0.01 Tg of ethane, 0.21±0.06 Tg of formic acid and 0.28±0.09 Tg of methanol released to the atmosphere from the Canberra fires of 2003. An assessment of the uncertainties in the new method is made and we show that our estimate agrees (within expected uncertainties with estimates made using current conventional methods of multiplying together factors for the area burned, fuel load, the combustion efficiency and the emission factor for carbon monoxide. A simpler estimate derived directly from the satellite AOD measurements is also shown to be in agreement with conventional estimates, suggesting that the method may, under certain meteorological conditions, be applied without the complication of using a chemical transport model. The new method is suitable for estimating emissions from distinct large fire episodes and although it has some significant uncertainties, these are largely independent of the uncertainties inherent in conventional techniques. Thus we conclude that the new method is a useful additional tool for characterising emissions from vegetation fires.

  3. Start-up performance of a full-scale riverbank filtration site regarding removal of DOC, nutrients, and trace organic chemicals.

    Science.gov (United States)

    Regnery, Julia; Barringer, Jessica; Wing, Alexandre D; Hoppe-Jones, Christiane; Teerlink, Jennifer; Drewes, Jörg E

    2015-05-01

    The performance of a full-scale riverbank filtration facility in Colorado was evaluated from initial start-up over a period of seven years including the impact of seasonal variations to determine whether sustainable attenuation of various chemical constituents could be achieved. Both, annual and seasonal average concentrations were determined for several wastewater-derived constituents including dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm, nitrate, phosphate for the years 2006, 2009, 2010, 2012, and trace organic chemicals (TOrC) for years 2009, 2010, and 2012. ANOVA analyses and Student's t-tests were performed to evaluate the consistency of contaminant attenuation at the site. Findings revealed no significant statistical differences for any of the bulk parameters with the exception of phosphate suggesting a highly reliable attenuation of DOC and nitrate from start-up to full-scale performance. Phosphate attenuation, however, exhibited a steady decline, which was likely attributed to exhaustion of sorption sites in the subsurface porous media. The river's flow regime influenced both occurrence levels and attenuation of TOrC during riverbank filtration, i.e. less river discharge resulted in higher TOrC concentrations and lower proportion of river water in the recovered groundwater. Differences in removal performance between annual data sets for caffeine, trimethoprim, sulfamethoxazole, and carbamazepine were caused by variations in the source; concentrations in riverbank filtrate remained similar over several years. The seasonal assessment for TOrC revealed steady or improving removal between winter and summer seasons based on the statistical analysis with atenolol being the only exception likely due to an increased microbial activity at elevated temperatures.

  4. Simple multistage closed-(box+reservoir) models of chemical evolution: an application to the inner Galactic halo

    CERN Document Server

    Caimmi, R

    2010-01-01

    Simple closed-box (CB) models of chemical evolution are extended on two respects: (i) simple closed-(box+reservoir) (CBR) models allowing gas outflow from the box into the reservoir or gas inflow into the box from the reservoir with same composition as the preexisting gas and rate proportional to the star formation rate, and (ii) simple multistage closed-(box+reservoir) (MCBR) models allowing different stages of evolution characterized by different inflow or outflow rates. The stellar initial mass function is assumed to be universal, and mass conservation holds for the whole system (box+reservoir) while it is violated for each subsystem (box and reservoir). The theoretical differential oxygen abundance distribution (TDOD) predicted by the model, under the assumption of instantaneous recycling, is a continuous broken line, where different slopes are related to different inflow rates. For an application of the model (a) a fictitious sample is built up from two distinct samples and taken as representative of the...

  5. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  6. Vertical exchange and chemical conversion of trace elements over topographically complex terrain; Vertikaler Austausch und chemische Umwandlung von Spurenstoffen ueber topographisch gegliedertem Gelaende

    Energy Technology Data Exchange (ETDEWEB)

    Kuntze, K.

    2001-10-01

    The influence of topography on the vertical exchange of trace elements was investigated with the aid of a numeric simulation model. It is a couopled 3D model consisting of the mesoscale model KAMM and the dispersion model DRAIS, extended by the gaseous phase mechanism of the RADM model. This way, both meteorological and chemical processes can be analyzed in a preselected time and spatial resolution. The simulations were validated by a comparison with measurements made during the TRACT campaign. Satisfactory agreement between the two was established. [German] In der vorliegenden Arbeit wurde der Einfluss der Topographie auf den vertikalen Austausch von Spurenstoffen mit Hilfe eines numerischen Simulationsmodells untersucht. Bei dem Simulationsmodell handelt es sich um ein dreidimensionales gekoppeltes Modell, welches aus dem mesoskaligen Modell KAMM und dem um den Gasphasenmechanismus des RADM-Modells erweiterten Ausbreitungsmodell DRAIS besteht. Mit diesem Modellsystem war es moeglich, sowohl meterologische als auch chemische Prozesse in einer vorher gewaehlten zeitlichen und raeumlichen Aufloesung zu betrachten. Um die Qualitaet der Simulation und damit deren Verwendbarkeit fuer die Untersuchungen festzustellen, wurde ein Vergleich mit Messungen durchgefuehrt. Dazu wurden berechnete meterologische und chemische Groessen mit den waehrend der Feldmesskampagne TRACT gemessenen Groessen verglichen. Der Vergleich der simulierten Groessen sowohl mit Radiosondenaufstiegen als auch mit Zeitreihen und Flugzeugmessungen lieferte eine gute Uebereinstimmung. (orig.)

  7. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 Al, I, HCO3, SiO2 Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  8. Quantification of trace fatty acid methyl esters in diesel fuel by using multidimensional gas chromatography with electron and chemical ionization mass spectrometry.

    Science.gov (United States)

    Webster, R L; Rawson, P M; Evans, D J; Marriott, P J

    2016-07-01

    Measurement of contamination of marine and naval diesel fuels (arising from product mixing or adulteration) with biodiesel or fatty acid methyl esters can be problematic, especially at very low levels. A suitable solution for this task for trace amounts of individual fatty acid methyl esters with resolution and quantification can be achieved by using a multidimensional gas chromatographic approach with electron and chemical ionization mass spectrometric detection. A unique column set comprising a 100 m methyl-siloxane nonpolar first dimension column and high-temperature ionic liquid column in the second dimension enabled identification of individual fatty acid methyl esters at below the lowest concentrations required to be reported in a diesel fuel matrix. Detection limits for individual fatty acid methyl esters compounds ranged from 0.5 to 5.0 mg/L, with excellent linearity up to 5000 mg/L and repeatability of the method from 1.3 to 3.2%. The method was applied to the analysis of diesel fuel samples with suspected biodiesel contamination. Contamination at 568 mg/L was calculated for an unknown sample and interpretation of the results permitted the determination of a likely source of the contamination.

  9. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems

    KAUST Repository

    Li, Dong

    2014-03-26

    This study was performed to reveal the microbial community characteristics in simulated managed aquifer recharge (MAR), a natural water treatment system, under different concentrations and compositions of biodegradable dissolved organic carbon (BDOC) and further link these to the biotransformation of emerging trace organic chemicals (TOrCs). Two pairs of soil-column setups were established in the laboratory receiving synthetic feed solutions composed of different peptone/humic acid ratios and concentrations. Higher BDOC concentration resulted in lower microbial community diversity and higher relative abundance of Betaproteobacteria. Decreasing the peptone/humic acid ratio resulted in higher diversity of the community and higher relative abundances of Firmicutes, Planctomycetes, and Actinobacteria. The metabolic capabilities of microbiome involved in xenobiotics biodegradation were significantly promoted under lower BDOC concentration and higher humic acid content. Cytochrome P450 genes were also more abundant under these primary substrate conditions. Lower peptone/humic acid ratios also promoted the attenuation of most TOrCs. These results suggest that the primary substrate characterized by a more refractory character could increase the relative abundances of Firmicutes, Planctomycetes, and Actinobacteria, as well as associated cytochrome P450 genes, all of which should play important roles in the biotransformation of TOrCs in this natural treatment system. © 2014 Springer-Verlag.

  10. Thresholds on star formation and the chemical evolution of galactic discs cosmochronology and the age of the galaxy

    CERN Document Server

    Chamcham, K

    1995-01-01

    In this paper we analyse different chronometers based on the models of chemical evolution developed in Chamcham, Pitts \\& Tayler (1993; hereafter CPT) and Chamcham \\& Tayler (1994; hereafter CT). In those papers we discussed the ability of our models to reproduce the observed G-dwarf distribution in the solar neighbourhood, age-metallicity relation and radial chemical abundance gradients. We now examine their response to the predictions of cosmochronology. We use the recent production ratios of the actinide pairs ^{235}U/^{238}U and ^{232}Th/^{238}U provided by Cowan, Thielemann \\& Truran (1991) and the observed abundance ratios from Anders \\& Grevesse (1989) to determine the duration of nucleosynthesis in the solar neighbourhood, and thus to determine maximum likelihood estimates and confidence intervals for the infall parameter, \\beta, which controls the growth rate of the disc in our models. We compare our predictions for the age of the disc with the age of the galaxy estimated from models ...

  11. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis Part II: evaluation of measured and modeled trace gases and particle size distributions

    Directory of Open Access Journals (Sweden)

    C. Ochoa

    2012-11-01

    Full Text Available This study extends the work of Baumgardner et al. (2009 in which measurements of trace gases and particles, at a remote, high altitude mountain site, 60 km from Mexico City were analyzed with respect to the origin of the air masses. In the current evaluation, the temperature, water vapor mixing ratio (WMR, ozone (O3, carbon monoxide (CO, sulfur dioxide (SO2 and acyl peroxy nitrate (APN are simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. Comparisons between the model and measurements are also evaluated for particle size distributions (PSDs of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM. The model predictions of the diurnal trends in temperature, WMR and trace gases were generally well correlated; 13 of the 18 correlations were significant at a confidence level of <0.01. Less satisfactory were the average hourly differences between model and measurements that showed predicted values within expected, natural variation for only 10 of the 18 comparisons. The model performed best when comparing with the measurements during periods when the air originated from the east. In that case all six of the parameters being compared had average differences between the model and measurements less than the expected standard deviation. For the cases when the air masses are from the southwest or west northwest, only two of the comparisons from each case showed differences less than the expected standard deviation. The differences appear to be a result of an overly rapid growth of the boundary layer predicted by the model and too much dilution. There also is more O3 being produced, most likely by photochemical production, downwind of the emission sources than is predicted by the model.

    The measured and modeled PSD compare very well with respect to their general shape and the diameter of the peak concentrations. The spectra are log

  12. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Science.gov (United States)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 58Ni(nth,γ) 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  13. The physical and chemical evolution of protostellar disks. The growth of protostellar disks: Progress to date

    Science.gov (United States)

    Stahler, Steven W.

    1993-01-01

    This study constitutes one part of our multi-disciplinary approach to the evolution of planet-forming disks. The goal is to establish the disks' thermal and mechanical properties as they grow by the infall of their parent interstellar clouds. Thus far, significant advances toward establishing the evolving surface density of such disks was made.

  14. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  15. Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

    CERN Document Server

    Mitschang, A W; Zucker, D B; Anguiano, B; Bensby, T; Feltzing, S

    2013-01-01

    The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as GALAH and the Gaia-ESO survey, will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work we perform the first ever blind chemical tagging experiment, i.e., tagging stars with no known or otherwise discernable associations, on a sample of 714 disc field stars with a number of high quality high resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thou...

  16. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Zimmerman, Jess K; Nash, David R

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia...

  17. Chemical evolution, petrogenesis, and regional chemical correlations of the flood basalt sequence in the central Deccan Traps, India

    Indian Academy of Sciences (India)

    Leone Melluso; Mario Barbieri; Luigi Beccaluva

    2004-12-01

    The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16 ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lowermost formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for 87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the northwestern outcrops. The mildly enriched high field strength element contents of the samples with TiO2 < 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high 87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.

  18. Characterizing the chemical evolution of air masses via multi-platform measurements of volatile organic compounds (VOCs) during CalNEX: Composition, OH reactivity, and potential SOA formation

    Science.gov (United States)

    Gilman, J. B.; Kuster, W. C.; Bon, D.; Warneke, C.; Lerner, B. M.; Williams, E. J.; Holloway, J. S.; Pollack, I. B.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Herndon, S. C.; Zahniser, M. S.; Vlasenko, A. L.; Li, S.; Alvarez, S. L.; Rappenglueck, B.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; De Gouw, J. A.

    2011-12-01

    Volatile organic compounds (VOCs) are critical components in the photochemical production of ozone (O3) and secondary organic aerosol (SOA). During the CalNex 2010 field campaign, an extensive set of VOCs were measured at the Pasadena ground site, and aboard the NOAA WP-3D aircraft and the WHOI Research Vessel Atlantis. The measurements from each platform provide a unique perspective into the emissions, transport, and atmospheric processing of VOCs within the South Coast Air Basin (SoCAB). The observed enhancement ratios of the hydrocarbons measured on all three platforms are in good agreement and are generally well correlated with carbon monoxide (CO), indicating the prevalence of on-road VOC emission sources throughout the SoCAB. Offshore measurements aboard the ship and aircraft are used to characterize the air mass composition as a function of the land/sea-breeze effect. VOC ratios and other trace gases are used to identify air masses containing relatively fresh emissions that were often associated with offshore flow and re-circulated continental air associated with onshore flow conditions. With the prevailing southwesterly airflow pattern in the LAB throughout the daytime, the Pasadena ground site effectively functions as a receptor site and is used to characterize primary VOC emissions from downtown Los Angeles and to identify the corresponding secondary oxidation products. The chemical evolution of air masses as a function of the time of day is investigated in order to determine the relative impacts of primary emissions vs. secondary VOC products on OH reactivity and potential SOA formation. The reactivity of VOCs with the hydroxyl radical (OH) at the Pasadena site was dominated by the light hydrocarbons, isoprene, and oxygenated VOCs including aldehydes (secondary products) and alcohols (primary anthropogenic emissions). Toluene and benzaldehyde, both of which are associated with primary anthropogenic emissions, are the predominant VOC precursors to the

  19. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    Science.gov (United States)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching

  20. Contribution of Neutron Star Mergers to the R-process Chemical Evolution in the Hierarchical Galaxy Formation

    CERN Document Server

    Komiya, Yutaka

    2016-01-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [Fe/H] $< -3$. Recently, Tsujimoto & Shigeyama (2014) pointed out that NSM ejecta can spread into much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [Fe/H] $\\sim -3$ are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-...

  1. Contribution of Neutron Star Mergers to the r-Process Chemical Evolution in the Hierarchical Galaxy Formation

    Science.gov (United States)

    Komiya, Yutaka; Shigeyama, Toshikazu

    2016-10-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from the perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [{Fe}/{{H}}]\\lt -3. Recently, Tsujimoto & Shigeyama pointed out that NSM ejecta can spread into a much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [{Fe}/{{H}}]∼ -3 are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay-time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-galaxies changes the abundance distribution at [{Fe}/{{H}}]\\lt -3 and obtains distribution compatible with observations of the Milky Way halo stars. In particular, the pre-enrichment of intergalactic medium explains the observed scarcity of extremely metal-poor stars without Ba and abundance distribution of r-process elements at [{Fe}/{{H}}]≲ -3.5.

  2. Chemical Evolution of Damped Ly $\\alpha$ galaxies The [S/Zn] abundance ratio at redshift z > 2

    CERN Document Server

    Centurion, M; Molaro, P; Vladilo, G; Centurion, Miriam; Bonifacio, Piercarlo; Molaro, Paolo; Vladilo, Giovanni

    2000-01-01

    Relative elemental abundances, and in particular the alpha/Fe ratio, are an important diagnostic tool of the chemical evolution of damped Ly alpha systems (DLAs). The S/Zn ratio is not affected by differential dust depletion and is an excellent estimator of the alpha/Fe ratio. We report 6 new determinations of sulphur abundance in DLAs at zabs greater than or equal to 2 with already known zinc abundances. The combination with extant data from the literature provides a measure of the S/Zn abundance ratio for a total of 11 high redshift DLA systems. The observed [S/Zn] ratios do not show the characteristic [alpha/Fe] enhancement observed in metal-poor stars of the Milky Way at comparable level of metallicity ([Zn/H] ~ -1). The behaviour of DLAs data is consistent with a general trend of decreasing [S/Zn] ratio with increasing metallicity [Zn/H]. This would be the first evidence of the expected decrease of the alpha/Fe ratio in the course of chemical evolution of DLA systems. However, in contrast to what observe...

  3. The evolution of chemical nature on U–0.79 wt.%Ti surface during vacuum annealing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Peng [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Zhao, Yawen; Fu, Xiaoguo [China Academy of Engineering Physics, Mianyang 621900 (China); Ao, Bingyun; Bai, Bin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Wang, Xiaolin, E-mail: xlwang@caep.cn [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-07-15

    Graphical abstract: The evolution of the U–0.79Ti alloy surface character during vacuum annealing. - Highlights: • The evolution of surface character of U–0.79Ti during vacuum annealing was in situ studied by XPS. • The formation and later decomposition of an oxycarbide layer were observed during the vacuum annealing from R.T. to 700 °C. • A surface segregation of titanium was noticed during high-T heat-treatment in vacuum. - Abstract: The evolution of the oxide-overlayer's chemical nature on the surface of U–0.79 wt.%Ti alloy during vacuum annealing has been examined in situ by X-ray photoelectron spectroscopy (XPS). A specimen sheet of the alloy covered by oxide films is heated from room temperature to 700 °C in vacuum. It is found that the UO{sub 2+x} outer oxide layer starts to be reduced to UO{sub 2} at 200 °C. Between 300 and 400 °C, an oxycarbide (UO{sub x}C{sub y}) layer is observed due to the reaction between UO{sub 2} and carbon. Above 500 °C, UO{sub x}C{sub y} decomposes and the surface covered oxide layer starts to be reduced to the metallic state, meanwhile, a thermal driven segregation of Ti to the surface is also observed.

  4. Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2009-12-01

    Full Text Available The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20–50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NOx and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 50–100%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of

  5. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    Science.gov (United States)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  6. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers | Office of Cancer Genomics

    Science.gov (United States)

    Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis.

  7. Models of disk chemical evolution focusing the pure dynamical radial mixing

    Directory of Open Access Journals (Sweden)

    Re Fiorentin P.

    2012-02-01

    Full Text Available We performed N-body simulations to study the dynamical evolution of a stellar disk inside a Dark Matter (DM halo. Our results evidence how a standard -radially decreasing- metallicity gradient produces a negative vϕ vs. [Fe/H] correlation, similar to that shown by the thin disk stars, while an inverse radial gradient generates a positive rotation-metallicity correlation, as that observed in the old thick population.

  8. Enzymatic Neutralization of the Chemical Warfare Agent VX: Evolution of Phosphotriesterase for Phosphorothiolate Hydrolysis

    OpenAIRE

    Bigley, Andrew N.; Xu, Chengfu; Henderson, Terry J.; Steven P. Harvey; Raushel, Frank M.

    2013-01-01

    The V-type nerve agents (VX and VR) are among the most toxic substances known. The high toxicity and environmental persistence of VX makes the development of novel decontamination methods particularly important. The enzyme phosphotriesterase (PTE) is capable of hydrolyzing VX but with an enzymatic efficiency more than 5-orders of magnitude lower than with its best substrate, paraoxon. PTE has previously proven amenable to directed evolution for the improvement of catalytic activity against se...

  9. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    Institute of Scientific and Technical Information of China (English)

    Liton Majumdar; Ankan Das; Sandip K. Chakrabarti; Sonali Chakrabarti

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds.Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules.So far these have been used to study the abundances of these molecules in space.However,in order to obtain more accurate final compositions in these media,we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory.We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star.We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star.We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radicalmolecular reactions.We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud.We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models.Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions.The presence of grains strongly affects the abundances of the gas phase species.We also carry out a comparative study between different pathways available for the synthesis of adenine,alanine,glycine and other molecules considered in our network.Despite the huge abundances of the neutral reactive species,production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways.If all the

  10. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis – Part 2: Evaluation of measured and modeled trace gases and particle size distributions

    Directory of Open Access Journals (Sweden)

    C. Ochoa

    2012-04-01

    Full Text Available This study extends the work of Baumgardner et al. (2009 in which measurements of trace gases and particles, at a remote, high altitude mountain site, 60 km from Mexico City were analyzed with respect to the origin of the air masses. In the current evaluation, the temperature, water vapor, ozone (O3, carbon monoxide (CO, acyl peroxy nitrate (APN and particle size distributions (PSDs of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM were simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. The model predictions of the diurnal trends of the gases were well correlated with the measurements before the regional mixed layer (RML reached the measurement site but underestimated the concentration after that time. The differences are caused by an over rapid growth of the boundary layer by the model and too much dilution. There also is more O3 being actually produced by photochemical production downwind of the emission sources than predicted by the model.

    The measured and modeled PSDs compare very well with respect to their general shape and diameter of the peak concentrations. The spectra are lognormal with most of the mass in the accumulation mode and the geometric diameter centered at 200±20 nm, showing little observed or predicted change with respect to the time when the RML is above the Altzomoni research station. Only the total mass changed with time and air mass origin. The invariability of average diameter of the accumulation mode suggests that there is very little growth of the particles by condensation or coagulation past about six hours of aging downwind of the major sources of anthropogenic emissions in Mexico's Megapolis. This could greatly simplify parameterization in climate models although it is not known at this time if this invariance can be extended to other megacity regions.

  11. Introduction to astrochemistry chemical evolution from interstellar clouds to star and planet formation

    CERN Document Server

    Yamamoto, Satoshi

    2017-01-01

    This important book describes the basic principles of astrochemistry—an interdisciplinary field combining astronomy, physics, and chemistry—with particular emphasis on its physical and chemical background. Chemical processes in diffuse clouds, dense quiescent molecular clouds, star-forming regions, and protoplanetary disks are discussed. A brief introduction to molecular spectroscopy and observational techniques is also presented. These contents provide astronomers with a comprehensive understanding of how interstellar matter is evolved and brought into stars and planets, which is ultimately related to the origin of the solar system. The subject matter will also be understandable and useful for physical chemists who are interested in exotic chemical processes occurring in extreme physical conditions. The book is a valuable resource for all researchers beginning at the graduate level.

  12. The western Aeolian Islands volcanoes (Southern Tyrrhenian Sea, Italy) : the temporal and chemical evolution of a complex magmatic system

    Science.gov (United States)

    Leocat, E.; Peccerillo, A.; Gillot, P.-Y.

    2012-04-01

    The Aeolian Archipelago is located on the northern continental margin of the Calabro-Peloritan basement. This volcanic province emplaces in the geodynamic system linked to the convergence of African and European plates. In this study, we focused on Alicudi, Filicudi, Salina, Lipari and Vulcano to understand the temporal and geochemical evolution of western Aeolian Islands magmatism. These volcanoes contain the whole geochemical compositions typical of convergence settings ranging from calc-alkaline (CA) and high-K CA (HKCA) to shoshonitic (SHO) and potassic rocks (KS). Moreover, these magmas were emitted over a short time span, which attests to the complexity of the geodynamical setting. Geochemical data, consisting in major and trace elements whole rock analysis, were carried out on dated samples, whose geochronological data are based on K-Ar technique. The first magmas, emitted at Filicudi, Salina and Lipari after 300 ka, have relatively the same CA composition, whereas some Lipari lavas have early HKCA affinity. Around 120-130 ka, Alicudi and Vulcano emerged simultaneously in the western and central volcanic province that is influenced by two contrasted magmatic systems. In fact, the SHO magmatism in the central sector is coeval with CA activity in the western arc. After 40 ka, the last activity of Filicudi consists of mafic magmas of HKCA affinity while Salina and Alicudi emitted CA products. In contrast, mainly differentiated magmas of HKCA-SHO affinity were emplaced at Lipari and Vulcano. Overall, the K and incompatible elements enrichments increase through time mostly in the central arc. At the scale of the archipelago, the magmatic changes occurring around 120 and 40 ka may be explained by deep and regional processes, as mantle source contamination variations. However, at smaller space and time-scales, the magmatic evolution is more complex reflecting peculiar processes, as crustal assimilation and fractional crystallisation, specific to each volcano

  13. Monitoring the Evolution of Major Chemical Compound in Dairy Products During Shelf-Life by FTIR

    Directory of Open Access Journals (Sweden)

    Adriana Păucean

    2014-11-01

    Full Text Available Fourier-transform infrared (FTIR spectroscopy is considered to be a comprehensive and sensitive method to characterize the chemical composition and for detection of molecular changes in different samples. In this study, FTIRspectroscopy  was employed as an rapid and low-cost technique in order to characterize the FTIR spectra and identify appropriate spectral regions for dairy product fermented by a lactic culture consisting by species of Lactococcus lactis and Leuconostoc mesenteroides. A second objective was to monitore the key chemical compounds (lactose, lactic acid, flavors during fermentation and refrigerated storage (1-21 days, at 4-6°C. By FT-IR fingerprint during fermentation we identified changes of the spectra pattern with specific increasing or decreasing peaks for lactose, lactic acid, esters, aromatic compounds, aminoacids, fatty acids. Also the technique was able to identify chemical compounds involved in the microbial activity such as phosphates and phosphorylated carbohydrates during fermentation and dairy product shelf-life. All the major chemical compounds recorded significant increaments during fermentation and refrigerated storage comparing with the raw milk.

  14. 鳄嘴花叶氨基酸和微量元素分析及其化学成分研究%Analysis of Amino Acids, Trace Elements and Chemical Constituents from the Leaves of Clinacanthus nutans

    Institute of Scientific and Technical Information of China (English)

    易博; 徐文彤; 邓盾; 邓涛

    2012-01-01

    目的 分析鳄嘴花叶中的氨基酸、微量元素及主要化学成分.方法 采用HPLC法和等离子体发射光谱法测定了鳄嘴花叶中氨基酸和微量元素的成分和含量,采用柱色谱法对鳄嘴花叶中的主要化学成分进行研究.结果 从鳄嘴花叶中分析测定出了17种氨基酸和11种微量元素,叶中总氨基酸含量达11.54%.分离鉴定出4种主要化学成分,羽扇豆醇(1)、异牡荆苷(2)、β-胡萝卜苷(3)、肥皂草苷(4).结论 鳄嘴花叶富含大量的人体必需氨基酸、微量元素及活性天然产物,具有较高的营养价值和药用价值.%Objective To analyze amino acids, trace elements and chemical constituents from the leaves of Clinacanthus nutans . Methods The amino acids and trace elements were detected by HPLC and ICP-OES, respectively. Chemical constituents were identified by the combination of column chromatography and spectral analysis. Results The leaves contained seventeen varieties of amino acids, eleven trace elements, and four primary chemical components. Conclusion The leaves are rich in amino acids, trace elements and bioactive chemical constituents, suggesting that Clinacanthus nutans is of high nutritional value.

  15. Evolution of South Atlantic density and chemical stratification across the last deglaciation.

    Science.gov (United States)

    Roberts, Jenny; Gottschalk, Julia; Skinner, Luke C; Peck, Victoria L; Kender, Sev; Elderfield, Henry; Waelbroeck, Claire; Vázquez Riveiros, Natalia; Hodell, David A

    2016-01-19

    Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected δ(18)O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer δ(13)C and foraminifer/coral (14)C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.

  16. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    Science.gov (United States)

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance

  17. Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    CERN Document Server

    Cunha, K; Cunha, Katia; Smith, Verne V.

    2006-01-01

    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying a...

  18. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    Science.gov (United States)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  19. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation

    Science.gov (United States)

    Vigneresse, Jean-Louis

    2012-11-01

    Magmas are commonly described through the usual content of 10 major oxides. This requires a complex dimensional plot. Concepts of hard-soft acid-base (HSAB) interactions allow estimating chemical reactivity of elements, such as electronegativity, i.e. the chemical potential changed of sign, hardness and electrophilicity. For complex system, those values result from equalization methods, i.e. the equalization of the respective chemical potentials, or from ab-initio computations through density functional theory (DFT). They help to characterize silicate magmas by a single value describing their reactivity. Principles of minimum electrophilicity (mEP), maximum hardness (MHP) and minimum polarizability (mPP) indicate trends towards regions of higher stability. Those parameters are plotted within a fitness landscape diagram, highlighting toward which principle reactions trend. Major oxides, main minerals and magmas determine the respective fields in which evolve natural rocks. Three poles are identified, represented by silica and alkalis, whereas oxidation forms the third trend. Mantle-derived rocks show a large variation in electrophilicity compared to hardness. They present all characters of a closed chemical system, being simply described by the free Gibbs energy. Conversely, rocks contaminated within the continental crust show a large variation in hardness between a silica pole and an alkaline, defining two separate trends. The trends show the character of an open chemical system, requiring a Grand Potential description (i.e. taking into account the difference in chemical potential). The terms open and closed systems refer to thermodynamical description, implying contamination for the crust and recycling for the mantle. The specific role of alkalis contrasts with other cations, pointing to their behavior in modifying silicate polymer structures. A second application deals with the reactivity of the melt and its fluid phase. It leads to a better understanding on the

  20. Structural and Chemical Evolution of Methylammonium Lead Halide Perovskites during Thermal Processing from Solution

    Energy Technology Data Exchange (ETDEWEB)

    Nenon, David P.; Christians, Jeffrey A.; Wheeler, Lance M.; Blackburn, Jeffrey L.; Sanehira, Erin M.; Dou, Benjia; Olsen, Michele L.; Zhu, Kai; Berry, Joseph J.; Luther, Joseph M.

    2016-06-01

    Following the prominent success of CH3NH3PbI3 in photovoltaics and other optoelectronic applications, focus has been placed on better understanding perovskite crystallization from precursor and intermediate phases in order to facilitate improved crystallinity often desirable for advancing optoelectronic properties. Understanding of stability and degradation is also of critical importance as these materials seek commercial applications. In this study, we investigate the evolution of perovskites formed from targeted precursor chemistries by correlating in situ temperature-dependent X-ray diffraction, thermogravimetric analysis, and mass spectral analysis of the evolved species. This suite of analyses reveals important precursor composition-induced variations in the processes underpinning perovskite formation and degradation. The addition of Cl- leads to widely different precursor evolution and perovskite formation kinetics, and results in significant changes to the degradation mechanism, including suppression of crystalline PbI2 formation and modification of the thermal stability of the perovskite phase. This work highlights the role of perovskite precursor chemistry in both its formation and degradation.

  1. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers

    Science.gov (United States)

    McCreery, Melissa Q; Halliwill, Kyle D; Chin, Douglas; Delrosario, Reyno; Hirst, Gillian; Vuong, Peter; Jen, Kuang-Yu; Hewinson, James; Adams, David J; Balmain, Allan

    2016-01-01

    Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis. Shared mutations between primary carcinomas and their matched metastases have the distinct A-to-T signature of the initiating carcinogen dimethylbenzanthracene, but non-shared mutations are primarily G-to-T, a signature associated with oxidative stress. The existence of carcinomas that either did or did not metastasize in the same host animal suggests that there are tumor-intrinsic factors that influence metastatic seeding. We also demonstrate the importance of germline polymorphisms in determining allele-specific mutations, and we identify somatic genetic alterations that are specifically related to initiation of carcinogenesis by Hras or Kras mutations. Mouse tumors that mimic the genetic heterogeneity of human cancers can aid our understanding of the clonal evolution of metastasis and provide a realistic model for the testing of novel therapies. PMID:26523969

  2. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    CERN Document Server

    Mandel, Ilya

    2016-01-01

    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4 to 11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about $10$ Gpc$^{-3}$ yr$^{-1}$ at redshift $z=0$, peaking at...

  3. Monitoring the Evolution of Major Chemical Compound in Dairy Products During Shelf-Life by FTIR

    OpenAIRE

    Adriana Păucean; Dan Vodnar; Carmen Socaciu; Simona Man

    2014-01-01

    Fourier-transform infrared (FTIR) spectroscopy is considered to be a comprehensive and sensitive method to characterize the chemical composition and for detection of molecular changes in different samples. In this study, FTIRspectroscopy  was employed as an rapid and low-cost technique in order to characterize the FTIR spectra and identify appropriate spectral regions for dairy product fermented by a lactic culture consisting by species of Lactococcus lactis and Leuconostoc mesenteroides. A s...

  4. In-situ examination of diffusion and precipitation processes during the evolution of chemical garden systems

    OpenAIRE

    Glaab, Fabian

    2012-01-01

    “Chemical” or “silicate gardens” are a well known example for the spontaneous formation of a complex and structured system from ordinary educts. Simply by addition of soluble metal salt crystals to alkaline silica sols, dissolution of the metal salt and subsequent solidification initiate a self-organization process, which not only produces two separated compartments with drastically different chemical conditions by precipitation of a closed and tubular membrane but also produces a variety of ...

  5. Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium

    Science.gov (United States)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Lai, Geng-Xin; Ni, Chuen-Fa

    2009-06-01

    SummaryThe dissolution-induced finger or wormhole patterns in porous medium or fracture rock play a crucial role in a variety of scientific, industrial, and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front

  6. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    Science.gov (United States)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  7. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  8. Novel Control Vector Parameterization Method with Differential Evolution Algorithm and Its Application in Dynamic Optimization of Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    SUN Fan; ZHONG Weimin; CHENG Hui; QIAN Feng

    2013-01-01

    Two general approaches are adopted in solving dynamic optimization problems in chemical processes,namely,the analytical and numerical methods.The numerical method,which is based on heuristic algorithms,has been widely used.An approach that combines differential evolution (DE) algorithm and control vector parameterization (CVP) is proposed in this paper.In the proposed CVP,control variables are approximated with polynomials based on state variables and time in the entire time interval.Region reduction strategy is used in DE to reduce the width of the search region,which improves the computing efficiency.The results of the case studies demonstrate the feasibility and efficiency of the proposed methods.

  9. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  10. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs - Implications for stellar and Galactic chemical evolution

    CERN Document Server

    Smiljanic, R; Bragaglia, A; Donati, P; Magrini, L; Friel, E; Jacobson, H; Randich, S; Ventura, P; Lind, K; Bergemann, M; Nordlander, T; Morel, T; Pancino, E; Tautvaisiene, G; Adibekyan, V; Tosi, M; Vallenari, A; Gilmore, G; Bensby, T; Francois, P; Koposov, S; Lanzafame, A C; Recio-Blanco, A; Bayo, A; Carraro, G; Casey, A R; Costado, M T; Franciosini, E; Heiter, U; Hill, V; Hourihane, A; Jofre, P; Lardo, C; de Laverny, P; Lewis, J; Monaco, L; Morbidelli, L; Sacco, G G; Sbordone, L; Sousa, S G; Worley, C C; Zaggia, S

    2016-01-01

    Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~ 1.5--2.0 Msun. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of the Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to quite different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey, using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. Abundances of Na in giants with mass below ~2.0 Msun, and of Al in giants below ~3.0 Msun, seem to be unaffected by internal mixing processes. For more massive giants, the Na o...

  11. Characterizing the local population of star-forming and passive galaxies with analytical models of chemical evolution

    CERN Document Server

    Spitoni, E; Matteucci, F

    2016-01-01

    Analytical models of chemical evolution, including inflow and outflow of gas, are important tools to study how the metal content in galaxies evolves as a function of time. In this work, we present new analytical solutions for the evolution of the gas mass, total mass and metallicity of a galactic system, when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation; in this way, we can derive how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation time scales, infall masses and mass loading factors. We find that the local passive galaxies are on average older and assembled on shorter typical time-scales than the local star-forming ones; on the other hand, the larger mass star-forming galaxies show generally older ages and longer typical ...

  12. Evolution of the distribution of tropospheric chemical species during the past decade

    Science.gov (United States)

    D'Angiola, Ariela; Granier, Claire; Bessagnet, Bertrand; Heil, Angelika; Khokhar, Fahim; Guenther, Alex; Jean-Francois, Lamarque; Meleux, Frederik; Mieville, Aude; Rouil, Laurence

    2010-05-01

    Megacities, with a population exceeding ten million inhabitants, represent hot spots of emissions that need to be correctly quantified in order to evaluate their effects at the local, regional and global scale. Within the 7th Framework European project CityZen (Megacity - Zoom for the Environment), the impact of changes in emissions on the global distributions of chemical compounds is being assessed, with a focus on the impact of megacities in Europe, Northern Africa and China. The goal of the project is to comprehend the feedbacks between climate change and air quality from the largest world cities at the global and regional scales. In order to simulate the changes in the distribution of gaseous compounds as well as aerosols we have used the MOZART (Model for OZone And Related chemical Tracers) global chemistry transport model. This model is driven by offline meteorological fields: for the present study we have used the meteorological fields provided by the National Center for Environmental Prediction (NCEP). The focus of the study is the 1996-2007 period, during which the changes in the distribution of the chemical compounds related to changes in emissions during that period will be discussed. The global emissions used in the present study are derived from the new dataset developed in support of the next IPCC (Intergovernmental Panel on Climate Change) AR5 report under discussion. We will discuss the methodology we have used to update the IPCC anthropogenic emissions up to year 2007. The new emissions inventory for Europe developed within CityZen for the 1996-2007 period will be discussed and compared with the emissions provided by other inventories. Furthermore, we will discuss the biomass burning inventory used in this work, which provides monthly averaged emissions for the full period of the study. Emissions of biogenic volatile organic compounds are derived from the most recent version of the MEGAN (Model of Emissions of Gases and Aerosols from Nature) model

  13. The evolution of a LIMS (laboratory information management system). [Chemical analyses at BNFL

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-01

    Changes in the world and United Kingdom markets for nuclear fuels during the 1990s have prompted British Nuclear Fuels (BNFL) to maximise cost effectiveness in its Chemical and Metallurgical Services department. A laboratory information management system (LIMS) was introduced in order to keep records of analytical techniques and equipment up to date by coordinating various computer systems. Wherever possible automated systems have replaced traditional, labour intensive techniques. So successful has the LIMS system been, that the team now hopes to expand into expert systems. (UK).

  14. Carbon stars and galactic chemical evolution: production of s-elements and wind heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    De Laverny, P [Observatoire de la Cote d' Azur, Dept. Cassiopee, UMR 6202, Nice (France)], E-mail: laverny@oca.eu

    2008-12-15

    Cool carbon stars found on the asymptotic giant branch are characterized by their production of specific chemical species and by strong but complex winds. This is illustrated below by (i) discussing their production of s-elements in the Milky Way and in neighbour satellite galaxies and (ii) describing the strong heterogeneities observed in the massive dusty circumstellar envelope of the nearby carbon star IRC+10216. Some similarities existing between the inner clumpy envelope of IRC+10216 with the dusty clumps recently detected around the more evolved variable stars of R Coronae Borealis type are also discussed.

  15. Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter?

    Science.gov (United States)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2016-11-01

    Context. The atmospheres of extrasolar planets are thought to be built largely through accretion of pebbles and planetesimals. Such pebbles are also the building blocks of comets. The chemical composition of their volatiles are usually taken to be inherited from the ices in the collapsing cloud. However, chemistry in the protoplanetary disk midplane can modify the composition of ices and gases. Aims: To investigate if and how chemical evolution affects the abundances and distributions of key volatile species in the midplane of a protoplanetary disk in the 0.2-30 AU range. Methods: A disk model used in planet population synthesis models is adopted, providing temperature, density and ionisation rate at different radial distances in the disk midplane. A full chemical network including gas-phase, gas-grain interactions and grain-surface chemistry is used to evolve chemistry in time, for 1 Myr. Both molecular (inheritance from the parent cloud) and atomic (chemical reset) initial conditions are investigated. Results: Great diversity is observed in the relative abundance ratios of the main considered species: H2O, CO, CO2, CH4, O2, NH3 and N2. The choice of ionisation level, the choice of initial abundances, as well as the extent of chemical reaction types included are all factors that affect the chemical evolution. The only exception is the inheritance scenario with a low ionisation level, which results in negligible changes compared with the initial abundances, regardless of whether or not grain-surface chemistry is included. The grain temperature plays an important role, especially in the critical 20-28 K region where atomic H no longer sticks long enough to the surface to react, but atomic O does. Above 28 K, efficient grain-surface production of CO2 ice is seen, as well as O2 gas and ice under certain conditions, at the expense of H2O and CO. H2O ice is produced on grain surfaces only below 28 K. For high ionisation levels at intermediate disk radii, CH4 gas is

  16. NGC 1866: a milestone for understanding the chemical evolution of stellar populations in the LMC

    CERN Document Server

    Mucciarelli, A; Brocato, E; Pasquini, L; Straniero, O; Caffau, E; Raimondo, G; Kaufer, A; Musella, I; Ripepi, V; Romaniello, M; Walker, A R

    2010-01-01

    We present new FLAMES@VLT spectroscopic observations of 30 stars in the field of the LMC stellar cluster NGC 1866. NGC 1866 is one of the few young and massive globular cluster that is close enough so that its stars can be individually studied in detail. Radial velocities have been used to separate stars belonging to the cluster and to the LMC field and the same spectra have been used to derive chemical abundances for a variety of elements, from [Fe/H] to the light (i.e. Na, O, Mg...) to the heavy ones. The average iron abundance of NGC 1866 turns out to be [Fe/H]= -0.43+-0.01 dex (with a dispersion of 0.04 dex), from the analysis of 14 cluster-member stars. Within our uncertainties, the cluster stars are homogeneous, as far as chemical composition is concerned, independent of the evolutionary status. The observed cluster stars do not show any sign of the light elements 'anti-correlation' present in all the Galactic globular clusters so far studied, and also found in the old LMC stellar clusters. A similar la...

  17. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    Science.gov (United States)

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    2016-12-03

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  18. Modeling the chemical evolution of Omega Centauri using three-dimensional hydrodynamical simulations

    CERN Document Server

    Marcolini, A; D'Ercole, A; Gibson, B K; Ferraro, F R

    2007-01-01

    We present a hydrodynamical and chemical model for the globular cluster Omega Cen, under the assumption that it is the remnant of an ancient dwarf spheroidal galaxy (dSph), the bulk of which was disrupted and accreted by our Galaxy ~10 Gyr ago. We highlight the very different roles played by Type II and Type Ia supernovae (SNe) in the chemical enrichment of the inner regions of the putative parent dSph. While the SNe II pollute the interstellar medium rather uniformly, the SNe Ia ejecta may remain confined inside dense pockets of gas as long as succesive SNe II explosions spread them out. Stars forming in such pockets have lower alpha-to-iron ratios than the stars forming elsewhere. Owing to the inhomogeneous pollution by SNe Ia, the metal distribution of the stars in the central region differs substantially from that of the main population of the dwarf galaxy, and resembles that observed in Omega Cen. This inhomogeneous mixing is also responsible for a radial segregation of iron-rich stars with depleted [alp...

  19. Chemical evolution using SPH cosmological simulations. I implementation, tests and first results

    CERN Document Server

    Mosconi, M B; Lambas, D G; Cora, S A

    2000-01-01

    We develop a model to implement metal enrichment in a cosmological context based on the hydrodynamical AP3MSPH code described by Tissera, Lambas and Abadi (1997). The star formation model is based on the Schmidt law and has been modified in order to describe the transformation of gas into stars in more detail. The enrichment of the interstellar medium due to supernovae I and II explosions is taken into account by assuming a Salpeter Initial Mass Function and different nucleosynthesis models.The different chemical elements are mixed within the gaseous medium according to the Smooth Particle Hydrodynamics technique.We have performed cosmological simulations in a standard Cold Dark Matter scenario and we present results of the analysis of the star formation and chemical properties of the interstellar medium and stellar population of the simulated galactic objects. We have compared the results of the simulations with an implementation of the one-zone Simple Model, finding significant differences in the global met...

  20. New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies

    Science.gov (United States)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.

    2017-02-01

    Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical

  1. Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration.

    Science.gov (United States)

    Francesca, Nicola; Romano, Raffaele; Sannino, Ciro; Le Grottaglie, Laura; Settanni, Luca; Moschetti, Giancarlo

    2014-02-03

    The aim of the present work was to investigate the microbiological, chemical, and sensory characteristics of red wine subjected to post-fermentation maceration that was extended to 90 days. For this purpose, the 'Aglianico di Taurasi' grape was used as a case study. The total yeast concentration increased until day 40 of maceration and decreased thereafter, whereas the concentration of lactic acid bacteria slightly increased. Dekkera/Brettanomyces spp. and acetic acid bacteria were not detected. The yeast community was composed of Saccharomyces cerevisiae, Zygosaccharomyces bisporus, Metschnikowia pulcherrima, Hanseniaspora guilliermondii, Hanseniaspora uvarum, Pichia guilliermondii, Aureobasidium pullulans and Debaryomyces carsonii. Nine S. cerevisiae strains were detected at high levels at different times of maceration. The results of all the conventional chemical analyses of the wines were in agreement with the regulations of commercial production and, interestingly, the changes in terms of concentration demonstrated the presence of yeast and LAB populations that were not only alive but also in a metabolically active state until day 90 of maceration. The alcohol and glycerol contents slightly increased until day 90. The concentrations of malic acid decreased, whereas those of lactic acid slightly increased throughout the maceration process. Furthermore, different durations of maceration resulted in significant differences in the total polyphenol content, which was higher at 40-50 days. The main phenolic compounds were benzoic and cinnamic acids and catechins. Interestingly, the highest ratio between (+)-catechin and (-)-epicatechin was found on day 40. In addition, the highest antioxidant activity was observed between days 40 and 50. The concentration of volatile organic compounds, which were mainly represented by alcohols, increased until the end of the maceration process. Sensory analysis revealed that samples that were subjected to maceration for a long

  2. Interaction of Tryptophane and Phenylalanine with Cadmium and Molybdenum Ferrocyanides and Its Implications in Chemical Evolution and Origins of Life.

    Science.gov (United States)

    Tewari, Brij

    2016-07-01

    Insoluble metal hexacyanoferrate(II) complexes could have concentrated biomonomers from dilute prebiotic soup during course of chemical evolution and origin of life or primitive earth. In the light of above hypothesis, adsorption of tryptophane and phenylalanine was studied on cadmium and molybdenum ferrocyanides at neutral pH (7.0 ± 0.01) and at a temperature of 30 ± 1º C. Interaction of amino acids with metal ferrocyanides are found to be maximum at neutral pH. Neutral pH is chosen for the adsorption studies because most of the reactions in biological systems taken place at neutral pH range. Adsorption trend follow Langmuir isotherm model. The Langmuir constants b and Qo were calculated at neutral pH, tryptophane was found to more adsorbed than phenylalanine on both metal ferrocyanides studied. Molybdenum ferrocyanides studied. Molybdenum ferrocyanides was found to have more uptake capacity for both adsorbates than cadmium ferrocyanides. The present study suggests that metal ferrocyanides might have played a role in the stabilization of biomolecules through their surface activity during course of chemical solution and origins of life on primitive earth.

  3. Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?

    CERN Document Server

    Plesa, A -C; Breuer, D

    2014-01-01

    The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. [...] Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid (Elkins-Tanton et al., 2003). A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set t...

  4. Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way

    CERN Document Server

    Stanghellini, L; Cunha, K; Manchado, A; Villaver, E

    2006-01-01

    This paper presents a homogeneous study of abundances in a sample of 79 northern galactic planetary nebulae whose morphological classes have been uniformly determined. Ionic abundances and plasma diagnostics were derived from selected optical line strengths in the literature, and elemental abundances were estimated with the Ionization Correction Factor developed by Kingsbourgh & Barlow (1994). We compare the elemental abundances to the final yields obtained from stellar evolution models of low-and intermediate-mass stars, and we confirm that most Bipolar planetary nebulae have high nitrogen and helium abundance, and are the likely progeny of stars with main-sequence mass larger than 3 solar masses. We derive =0.27, and discuss the implication of such a high ratio in connection with the solar neon abundance. We determine the galactic gradients of oxygen and neon, and found Delta log (O/H)/Delta R=-0.01 dex/kpc$ and Delta log (Ne/H)/Delta R=-0.01 dex/kpc. These flat PN gradients do not reconcile with galact...

  5. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    Science.gov (United States)

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  6. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies

    CERN Document Server

    Qian, Yong-Zhong

    2012-01-01

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that for infall rates far below the net rate of gas loss to star formation and outflows...

  7. Using multiple chemical systems in zircon to unravel the evolution of high-grade terranes

    Science.gov (United States)

    Clark, Chris; Taylor, Richard

    2016-04-01

    Since the turn of the century the rare earth element (REE) partitioning between zircon and garnet has facilitated the coupling of U-Pb ages to metamorphism, particularly in the granulite facies. The combination of in situ analysis and rapid data acquisition, particularly through combined techniques such as Laser Ablation Split Stream (LASS), means that complex terranes can be interrogated with increasing detail. However this detail provided by large datasets must also be combined with an understanding of the processes involved, for example the relative mobility of the REE and U-Pb systems with zircon grains that have withstood intense P-T conditions to varying degrees. For example, some high-temperature metapelites that seem to have all the right ingredients for the "equilibrium" to be achieved (e.g. they contain garnet, zircon, monazite and rutile, they've melted and experienced temperatures in excess of 900 °C) display variations in the REE partitioning between zircon and garnet that varies over the length-scale of a single thin section. This presentation seeks to highlight some complexities in the application of these undoublty useful techniques to high-temperature metamorphic rocks from a number of terranes and hopefully provide some useful comments on developing more efficient strategies to characterise the P-T-t evolution of high-grade terranes.

  8. Viewing the Chemical Evolution of the Quark-Gluon Plasma with Charge Balance Functions

    CERN Document Server

    Pratt, Scott

    2013-01-01

    Correlations from charge conservation are affected by when charge/anticharge pairs are created during the course of a relativistic heavy ion collision. For charges created early, balancing charges are typically separated by the order of one unit of spatial rapidity by the end of the collision, whereas those charges produced later in the collision are far more correlated. By analyzing correlations from STAR for different species, I show that one can distinguish the two separate waves of charge creation expected in a high-energy collision, one at early times when the QGP is formed and a second at hadronization. Further, I extract the density of up, down and strange quarks at in the QGP and find agreement at the 20% level with expectations for a chemically thermalized plasma.

  9. Chemical evolution of the Salton Sea, California: Nutrient and selenium dynamics

    Science.gov (United States)

    Schroeder, R.A.; Orem, W.H.; Kharaka, Y.K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (???44 000 mg l-1 dissolved solids) lake started as fresh water in 1905-07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr-1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  10. The evolution of chemical and microbiological properties of fresh goat milk cheese during its shelf life.

    Science.gov (United States)

    Masotti, F; Battelli, G; De Noni, I

    2012-09-01

    This study investigated the changes in chemical and microbiological properties of fresh goat milk cheese stored in an open deck refrigerated display cabinet (6 ± 2°C) or in a dark cold room (4 ± 1°C). The effects of partial-vacuum packaging and fluorescent lighting were studied during the cheese shelf life (45 d) and 15 d after. Storage conditions did not affect the pH values (4.3), whereas a slight decrease in moisture (ca. 1%) and in water activity (cheese packaged in the presence of air and stored in a lighted cabinet. The proteolytic trend was also studied through capillary zone electrophoresis by monitoring the degradation of the main casein fractions and the formation of new peptides. In particular, 2 indices, based on peak area ratio of new-formed peptides and casein fractions were related to cheese age. Lipolysis, measured by solid-phase microextraction gas chromatography coupled to mass spectrometry of volatile fatty acids, was unaffected by air or light and did not proceed through storage. As expected, hexanal formed mainly in cheeses stored under light and packaged in air. Evaluation of sensorial quality, performed using a hedonic scale, showed significantly lower scores of cheeses kept under light compared with those kept in the dark, both at 45 and 60 d storage. Overall, the microbiological and chemical results suggested that the shelf life of soft goat milk cheese would be extended from 45 to 60 d. Such conclusion was supported also by the sensory quality evaluation.

  11. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  12. Assessment of contamination, distribution and chemical speciation of trace metals in water column in the Dakar coast and the Saint Louis estuary from Senegal, West Africa.

    Science.gov (United States)

    Diop, Cheikh; Dewaelé, Dorothée; Diop, Mamadou; Touré, Aminata; Cabral, Mathilde; Cazier, Fabrice; Fall, Mamadou; Diouf, Amadou; Ouddane, Baghdad

    2014-09-15

    The water column from Dakar coast and Saint Louis estuary in Senegal, West Africa, was sampled in order to measure the contamination level by trace metals. The speciation of metals in water allowed performing a distribution between dissolved and particulate trace metals. For the dissolved metals, the metallic concentration and repartition between the organic fraction and the inorganic fraction were performed. The results show that the pollution of the estuary was more serious than in Dakar coast for Co, Cr, Ni, Pb and Zn; while, Cd and Cu were higher in Dakar coast. A strong affinity between metals and suspended particles has been revealed. Dissolved metals that have a tendency to form organic metal complexes are in decreasing order: Cd, Zn, Pb, Co=Cr=Mn, Cu and Ni. The results showed that the mobility of trace metals in estuary is controlled by dissolved organic carbon, while in coast it depends on chlorides.

  13. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  14. Chemical surface inhomogeneities in late B-type stars with Hg and Mn peculiarity I Spot evolution in HD 11753 on short and long time scales

    CERN Document Server

    Korhonen, H; Briquet, M; Soriano, M Flores; Hubrig, S; Savanov, I; Hackman, T; Ilyin, I V; Eulaers, E; Pessemier, W

    2013-01-01

    Aims: Time series of high-resolution spectra of the late B-type star HD 11753 exhibiting HgMn chemical peculiarity are used to study the surface distribution of different chemical elements and their temporal evolution. Methods: High-resolution and high signal-to-noise ratio spectra were obtained using the CORALIE spectrograph at La Silla in 2000, 2009, and 2010. Surface maps of YII, SrII, TiII, and CrII were calculated using the Doppler imaging technique. The results were also compared to equivalent width measurements. The evolution of chemical spots both on short and long time scales were investigated. Results: We determine the binary orbit of HD 11753 and fine-tune the rotation period of the primary. The earlier discovered fast evolution of the chemical spots is confirmed by an analysis using both the chemical spot maps and equivalent width measurements. In addition, a long-term decrease in the overall YII and SrII abundances is discovered. A detailed analysis of the chemical spot configurations reveals som...

  15. Design Evolution and Verification of the A-3 Chemical Steam Generator

    Science.gov (United States)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  16. Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis.

    Science.gov (United States)

    Bigley, Andrew N; Xu, Chengfu; Henderson, Terry J; Harvey, Steven P; Raushel, Frank M

    2013-07-17

    The V-type nerve agents (VX and VR) are among the most toxic substances known. The high toxicity and environmental persistence of VX make the development of novel decontamination methods particularly important. The enzyme phosphotriesterase (PTE) is capable of hydrolyzing VX but with an enzymatic efficiency more than 5 orders of magnitude lower than with its best substrate, paraoxon. PTE has previously proven amenable to directed evolution for the improvement of catalytic activity against selected compounds through the manipulation of active-site residues. Here, a series of sequential two-site mutational libraries encompassing 12 active-site residues of PTE was created. The libraries were screened for catalytic activity against a new VX analogue, DEVX, which contains the same thiolate leaving group of VX coupled to a diethoxyphosphate core rather than the ethoxymethylphosphonate core of VX. The evolved catalytic activity with DEVX was enhanced 26-fold relative to wild-type PTE. Further improvements were facilitated by targeted error-prone PCR mutagenesis of loop-7, and additional PTE variants were identified with up to a 78-fold increase in the rate of DEVX hydrolysis. The best mutant hydrolyzed the racemic nerve agent VX with a value of kcat/Km = 7 × 10(4) M(-1) s(-1), a 230-fold improvement relative to wild-type PTE. The highest turnover number achieved by the mutants created for this investigation was 137 s(-1), an enhancement of 152-fold relative to wild-type PTE. The stereoselectivity for the hydrolysis of the two enantiomers of VX was relatively low. These engineered mutants of PTE are the best catalysts ever reported for the hydrolysis of nerve agent VX.

  17. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Av. Reforma 113, Cuernavaca, Morelos 62490 (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico)

    2009-04-15

    The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone-packstone-dolomite host rocks at the Jujo-Tecominoacan oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl-Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl-Ca-Na and Cl-Na-Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-M{phi}ller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO{sub 3} and Sr by water-rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo-Tecominoacan reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water-rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo-Tecominoacan oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent

  18. Potassium: a new actor on the globular cluster chemical evolution stage. The case of NGC 2808

    CERN Document Server

    Mucciarelli, A; Merle, T; Plez, B; Dalessandro, E; Ibata, R

    2015-01-01

    We derive [K/Fe] abundance ratios for 119 stars in the globular cluster NGC 2808, all of them having O, Na, Mg and Al abundances homogeneously measured in previous works. We detect an intrinsic star-to-star spread in the Potassium abundance. Moreover [K/Fe] abundance ratios display statistically significant correlations with [Na/Fe] and [Al/Fe], and anti-correlations with [O/Fe] and [Mg/Fe]. All the four Mg deficient stars ([Mg/Fe]<0.0) discovered so far in NGC 2808 are enriched in K by ~0.3 dex with respect to those with normal [Mg/Fe]. NGC 2808 is the second globular cluster, after NGC 2419, where a clear Mg-K anti-correlation is detected, albeit of weaker amplitude. The simultaneous correlation/anti-correlation of [K/Fe] with all the light elements usually involved in the chemical anomalies observed in globular cluster stars, strongly support the idea that these abundance patterns are due to the same self-enrichment mechanism that produces Na-O and Mg-Al anti-correlations. This finding suggests that det...

  19. The chemical evolution of the Bootes I ultra-faint dwarf galaxy

    CERN Document Server

    Frebel, Anna; Gilmore, Gerard; Wyse, Rosemary F G

    2016-01-01

    We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Bootes I, based on Magellan/MIKE high-resolution spectra. For Boo I-980, with [Fe/H]=-3.1, we present the first elemental abundance measurements while Boo I-127, with [Fe/H]=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Bootes I stars, as well as those of most other Boootes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend, and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correctio...

  20. On the oxygen and nitrogen chemical abundances and the evolution of the "green pea" galaxies

    CERN Document Server

    Amorín, Ricardo O; Vílchez, J M

    2010-01-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies with redshifts between $\\sim$0.11-0.35, popularly referred to as "green peas". Direct and strong-line methods sensitive to the N/O ratio applied to their SDSS spectra reveals that these systems are genuine metal-poor galaxies, with mean oxygen abundances 20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local star-forming galaxies in the SDSS, we find that the mass--metallicity relation of the "green peas" is offset $\\ga$0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formati...

  1. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-Song [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Xi, Bei-Dou, E-mail: hexs82@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Cui, Dong-Yu [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Liu, Yong [Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China)

    2014-03-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol{sub e−} (g C){sup −1} and 57.1– 346.07 μmol{sub e−} (g C){sup −1}, respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting.

  2. Phase evolution theory for polymer blends with extreme chemical dispersity: parameterization of DDFT simulations and application to poly(propylene) impact copolymers

    NARCIS (Netherlands)

    Fraaije, J.G.E.M.; Nath, S.K.; Remerie, K.; Groenewold, J.

    2011-01-01

    DDFT is applied to phase formation in homopolymer/copolymer blends in which the copolymer is extremely disperse with a uniform chemical composition distribution. Such systems develop a core/shell structure with a thick interface. This study is motivated by peculiarities in the phase evolution of ind

  3. Hydrologic characterization of the Fry Canyon, Utah site prior to field demonstration of reactive chemical barriers to control radionuclide and trace-element contamination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Naftz, D.L.; Freethey, G.W. [Geological Survey, Salt Lake City, UT (United States); Davis, J.A. [Geological Survey, Menlo Park, CA (United States)] [and others

    1997-12-31

    The Fry Canyon Site in southeastern Utah has been selected as a long term demonstration site to assess the performance of selected reaction barrier technologies for the removal of uranium and other trace elements from ground water. Objectives include site characterization and evaluation of barrier technologies.

  4. The Chemical Evolution of the Bootes I Ultra-faint Dwarf Galaxy

    Science.gov (United States)

    Frebel, Anna; Norris, John E.; Gilmore, Gerard; Wyse, Rosemary F. G.

    2016-08-01

    We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Boötes I, based on Magellan/MIKE high-resolution spectra. For Boo-980, with {{[Fe/H]}}=-3.1, we present the first elemental abundance measurements, while Boo-127, with {{[Fe/H]}}=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Boötes I stars, as well as those of most other Boötes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correction. We reassess the metallicity distribution functions for the CEMP stars and non-CEMP stars, and confirm earlier claims that CEMP stars might belong to a different, earlier population. Applying a set of abundance criteria to test to what extent Boötes I could be a surviving first galaxy suggests that it is one of the earliest assembled systems that perhaps received gas from accretion from other clouds in the system, or from swallowing a first galaxy or building block type object. This resulted in the two stellar populations observable today. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  5. Chemical composition and oxidative evolution of Sacha Inchi (Plukentia volubilis L. oil from Xishuangbanna (China

    Directory of Open Access Journals (Sweden)

    Liu, Q.

    2014-03-01

    Full Text Available Sacha Inchi oil was studied for its physicochemical characteristics, chemical composition, radical scavenging activity and storage stability. The fatty acid composition was studied by gas chromatography–flame ionization (GC–FID and the analysis showed that the oil is highly enriched in α–linolenic (43.5% and linoleic (39.6% acids. The tocopherol content in the oil analyzed by high performance liquid chromatography/ultraviolet– visible detector (HPLC/UV–VIS was also high (161.87 mg.100 g-1. Both DPPH and ABTS assays detected relatively high radical scavenging activity. After twelve months of storage, the oil showed relatively good storage stability. The results will help guide further investigation of the health benefits of Sacha Inchi oil for the population and the development of better edible oil products and nutraceuticals.Se ha estudiado las características físico-químicas, la actividad de captación de radicales y la estabilidad durante el almacenamiento de aceites de sacha inchi. La composición en ácidos grasos se estudió mediante cromatografía de gases (GC-FID y mostró que el aceite es altamente rico en α-linolénico (43,5% y linoleico (39,6%. El contenido de tocoferoles analizado mediante cromatografía líquida y detección mediante ultravioleta-visible (HPLC/UV-VIS fue alto (161,87 mg.100 g-1. Los ensayos de DPPH y ABTS detectaron actividad captadora de radicales relativamente alta. Tras doce meses de almacenamiento los aceites mostraron una relativamente buena estabilidad. Los resultados ayudarán a orientar investigación adicional sobre los beneficios para la salud del aceite de Sacha Inchi para la población y al desarrollo de mejores productos de aceites comestibles y nutracéuticos.

  6. The impact of magnetic fields on the chemical evolution of the supernova-driven ISM

    Science.gov (United States)

    Pardi, A.; Girichidis, P.; Naab, T.; Walch, S.; Peters, T.; Heitsch, F.; Glover, S. C. O.; Klessen, R. S.; Wünsch, R.; Gatto, A.

    2017-03-01

    We present three-dimensional magneto-hydrodynamical simulations of the self-gravitating interstellar medium (ISM) in a periodic (256 pc)3 box with a mean number density of 0.5 cm-3. At a fixed supernova rate we investigate the multi-phase ISM structure, H2 molecule formation and density-magnetic field scaling for varying initial magnetic field strengths (0, 6 × 10-3, 0.3, 3 μG). All magnetic runs saturate at mass-weighted field strengths of ∼1-3 μG but the ISM structure is notably different. With increasing initial field strengths (from 6 × 10-3 to 3 μG) the simulations develop an ISM with a more homogeneous density and temperature structure, with increasing mass (from 5 to 85 per cent) and volume filling fractions (VFFs; from 4 to 85 per cent) of warm (300 105 K) and with a decreasing H2 mass fraction (from 70 to magnetic pressure dominates over the thermal pressure increases by a factor of 10, from 0.07 for an initial field of 6 × 10-3 μG to 0.7 for a 3 μG initial field. In all but the simulations with the highest initial field strength self-gravity promotes the formation of dense gas and H2, but does not change any other trends. We conclude that magnetic fields have a significant impact on the multi-phase, chemical and thermal structure of the ISM and discuss potential implications and limitations of the model.

  7. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.

    Science.gov (United States)

    Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang

    2014-05-01

    Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.

  8. THE COMPARATIVE CHEMICAL EVOLUTION OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, Ryan; Venn, Kim A.; Mendel, J. Trevor [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Brooks, Alyson M. [California Institute of Technology, M/C 350-17, Pasadena, CA 91125 (United States); Battaglia, Giuseppina [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Cole, Andrew A. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS (Australia); Ibata, Rodrigo A. [Observatoire Astronomique, Universite de Strasbourg, CNRS, 11 rue de l' Universite, F-67000 Strasbourg (France); Irwin, Mike J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); McConnachie, Alan W. [National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria BC V9E 2E7 (Canada); Starkenburg, Else; Tolstoy, Eline, E-mail: rleaman@iac.es [Kapteyn Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands)

    2013-04-20

    Building on our previous spectroscopic and photometric analysis of the isolated Local Group dwarf irregular (dIrr) galaxy WLM, we present a comparison of the metallicities of its red giant branch stars with respect to the well-studied Local Group dwarf spheroidal galaxies (dSphs) and Magellanic Clouds. We calculate a mean metallicity of [Fe/H] =-1.28 {+-} 0.02 and an intrinsic spread in metallicity of {sigma} = 0.38 {+-} 0.04 dex, similar to the mean and spread observed in the massive dSph Fornax and the Small Magellanic Cloud. Thus, despite WLM's isolated environment, its global metallicity still follows expectations for mass and its global chemical evolution is similar to other nearby luminous dwarf galaxies (gas-rich or gas-poor). The data also show a radial gradient in [Fe/H] of d[Fe/H]/dr{sub c} = -0.04 {+-} 0.04 dex r{sub c}{sup -1}, which is flatter than that seen in the unbiased and spatially extended surveys of dSphs. Comparison of the spatial distribution of [Fe/H] in WLM, the Magellanic Clouds, and a sample of Local Group dSphs shows an apparent dichotomy in the sense that the dIrrs have statistically flatter radial [Fe/H] gradients than the low angular momentum dSphs. The correlation between angular momentum and radial metallicity gradient is further supported when considering the Local Group dEs. This chemodynamic relationship offers a new and useful constraint for environment-driven dwarf galaxy evolution models in the Local Group.

  9. Deep mantle heat flow and thermal evolution of the Earth's core based on thermo-chemical mantle convection

    Science.gov (United States)

    Nakagawa, T.; Tackley, P.; Buffett, B.

    2004-12-01

    A coupled core-mantle evolution model that combines the global heat balance in the core with a fully-dynamical thermo-chemical mantle convection [Nakagawa and Tackley, 2004 published in EPSL] is used to investigate the deep mantle heat flow that is required to sustain the magnetic field generated by the geodynamo process. Effects of a radioactive heat source due to potassium in the core are also included in the global heat balance in the Earth??s core. Two important parameters are checked in this study; (1) density variation between depleted hartzbergite and basaltic material (0 to 3 percent) and (2) concentration of radioactive potassium in the core alloy (0ppm to 400ppm). The parameter set that most closely satisfies the criteria of size of the inner core (1220km at present time) is around 2 percent of density difference in a convecting mantle and 200ppm of radioactive heat source in the core. The concentration of potassium in the core is consistent with the geochemical approach [Murthy et al., 2003] but smaller than other successful thermal evolution models [Labrosse, 2003; Nimmo et al., 2004]. Heat flow through the core-mantle boundary and the contribution of radioactive heat sources in the core are consistent with theoretical estimates [e.g. Buffett, 2002] and geochemical constraints [Gessmann and Wood, 2002]. The power available to the geodynamo, based on the predicted heat flow through the core-mantle boundary, is approximately four times greater than the value predicted by numerical models of the geodynamo [Christensen and Kutzner, 2004] but closer to theoretical estimates [e.g. Buffett, 2002].

  10. Chemical evolution on planetary surfaces: from simple gases to organic macrocycles

    Science.gov (United States)

    Fox, Stefan; Strasdeit, Henry

    It is generally accepted that α-amino acids existed in the primordial ocean on the Hadean / early Archean Earth. They had been abiotically synthesized from smaller molecules such as H2 , CH4 , H2 O, NH3 , HCN, aldehydes, ketones, and alcohols [1-3]. Once the amino acids had been formed, they probably reacted to more complex molecules. One possibility is the thermal transformation at hot volcanic coasts. In a first step, amino acid-containing seawater evaporated in the vicinity of lava streams. A salt crust remained in which amino acids were embedded. In a second step, these embedded amino acids were thermally transformed to new compounds. In order to simulate this hot-volcanic-coast scenario artificial salt crusts with embedded amino acids were prepared and heated to 300-800 ° C in a slow stream of nitrogen gas. We found that in the salt crusts glycine, DL-alanine and -aminoisobutyric acid were chemically bonded to calcium or magnesium ions. This metal coordination prevents the sublimation of the amino acids and permits the thermal formation of pyridines, piperazine-2,5-diones, polycyclic aromatic hydrocarbons, and especially several alkylated pyrroles. Thus an abiotic source of pyrroles on young Earth-like planets may exist. Amino acids and pyrroles are building blocks of important biomolecules. It might seem plausible that amino acids formed peptides on the early Earth. However, in aqueous solution the condensation reaction is unfavorable, and even if short peptides would have formed they would have tended to hydrolyze. This argument is equally true for nucleic acid components [4]. In contrast to that, it is known that pyrrole, in aqueous HCl solutions, reacts with formaldehyde to form oligopyrroles [5]. Prebiotic oligopyrroles and their metal complexes may have been utilized by primitive metabolizing systems and later modified into porphyrin-like macrocycles such as chlorophyll. [1] Miller, S. L. (1953) Science, 117, 528. [2] Johnson, A. P., Cleaves, H. J

  11. Chemical evolution of saline waters in the Jordan-Dead Sea transform and in adjoining areas

    Science.gov (United States)

    Möller, Peter; Rosenthal, Eliyahu; Geyer, Stefan; Flexer, Akiva

    2007-06-01

    The Ca Mg relationship in groundwaters strongly points to the overall dolomitization and local albitization. The Mg/Ca ratios reveal two trends by which saline waters develop: increase of Mg/Ca ratio by evaporation and decreasing Mg/Ca ratios due to dolomitization and albitization. Br/Cl vs. Na/Cl ratios demonstrate that albitization does not play a major role which leaves dolomitization to be the main source for decreasing Mg/Ca ratios in saline waters. In the eastern and southern Region of Lake Kinneret, salinization occurs by mixing with a Ca/Mg molar ratio 1 dominates, which developed by the albitization of plagioclase in abundant mafic volcanics and the dolomitization of limestones. The most saline groundwater of the Tabgha-, Fuliya-, and Tiberias clusters could be regional derivatives of at least two mother brines: in diluted form one is represented by Ha’On water, the other is a Na-rich brine of the Zemah type. Additionally, a deep-seated Ca-dominant brine may ascend along the fractures on the western side of Lake Kinneret, which is absent on the eastern side. Groundwaters of the Lower Jordan Valley are chemically different on both sides of the Jordan River, indicating that the exchange of water is insignificant. All saline waters from the Dead Sea and its surroundings represent a complex mixture of brines, and precipitation and local dissolution of halite and gypsum. Many wells of the Arava/Araba Valley pump groundwater from the Upper Cretaceous limestone aquifer, the origin of the water is actually from the Lower Cretaceous Kurnub Group sandstones. Groundwater drawn from the Quaternary alluvial fill either originates from Kurnub Group sandstones (Eilat 108, Yaalon 117) or from altered limestones of the Judea Group. The origin of these waters is from floods flowing through wadis incised into calcareous formations of the Judea Group. On the other hand, as a result of step-faulting, hydraulic contact is locally established between the Kurnub- and the Judea

  12. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  13. Chemical evolution of 244Pu in the solar vicinity and its implications for the properties of r-process production

    Science.gov (United States)

    Tsujimoto, Takuji; Yokoyama, Tetsuya; Bekki, Kenji

    2017-01-01

    Meteoritic abundances of r-process elements are analyzed to deduce the history of chemical enrichment by the r-process, from the beginning of disk formation to the present time in the solar vicinity. Our analysis combines the abundance information from short-lived radioactive nuclei such as 244Pu with the abundance information from stable r-process nuclei such as Eu. These two types of nuclei can be associated with one r-process event and an accumulation of events until the formation of the solar system, respectively. With the help of the observed local star formation (SF) history, we deduce the chemical evolution of 244Pu and obtain three main results: (i) the last r-process event occurred 130–140 Myr before the formation of the solar system; (ii) the present-day low 244Pu abundance as measured in deep-sea reservoirs results from the low recent SF rate compared to ∼4.5‑5 Gyr ago; and (iii) there were ∼15 r-process events in the solar vicinity from the formation of the Galaxy to the time of solar system’s formation and ∼30 r-process events to the present time. Then, adopting the hypothesis that a neutron star (NS) merger is the r-process production site, we find that the ejected r-process elements are extensively spread out and mixed with interstellar matter, with a mass of ∼ 3.5× {10}6 M⊙, which is about 100 times larger than that for supernova ejecta. In addition, the event frequency of r-process production is estimated to be 1 per ~1400 core-collapse supernovae, which is identical to the frequency of NS mergers estimated from the analysis of stellar abundances.

  14. Chemical vapor deposition of monolayer WS2 nano- sheets on Au foils toward direct application in hydrogen evolution

    Institute of Scientific and Technical Information of China (English)

    Yanshuo Zhang[1; Jianping Shi[1; Gaofeng Han[3; Minjie Li[2; Qingqing Ji[2; Donglin Ma[2; Yu Zhang[1,2; Cong Li[1,2; Xingyou Lang[3; Yanfeng Zhang[1,2; Zhongfan Liu[2

    2015-01-01

    Monolayer tungsten disulfide (WS2), a typical member of the semiconducting transition metal dichalcogenide family has drawn considerable interest because of its unique properties. Intriguingly the edge of WS2 exhibits an ideal hydrogen binding energy which makes WS2 a potential alternative to Pt-based electrocatalysts for the hydrogen evolution reaction (HER). Here, we demonstrate for the first time the successful synthesis of uniform monolayer WS2 nanosheets on centimeter- scale Au foils using a facile, low-pressure chemical vapor deposition method. The edge lengths of the universally observed triangular WS2 nanosheets are tunable from -100 to N1,000 nm. The WS2 nanosheets on Au foils featuring abundant edges were then discovered to be efficient catalysts for the HER, exhibiting a rather high exchange current density of -30.20 μA/cm2 and a small onset potential of Nl10 mV. The effects of coverage and domain size (which correlate closely with the active edge density of WS2) on the electrocatalytic activity were investigated. This work not only provides a novel route toward the batch-production of monolayer WS2 via the introduction of metal foil substrates but also opens up its direct application for facile HER.

  15. The population of planetary nebulae and HII regions in M81. A study of radial metallicity gradients and chemical evolution

    CERN Document Server

    Stanghellini, Letizia; Villaver, Eva; Galli, Daniele

    2010-01-01

    We analyze the chemical abundances of planetary nebulae and HII regions in the M81 disk for insight on galactic evolution, and compare it with that of other galaxies, including the Milky Way. We acquired Hectospec/MMT spectra of 39 PNe and 20 HII regions, with 33 spectra viable for temperature and abundance analysis. Our PN observations represent the first PN spectra in M81 ever published, while several HII region spectra have been published before, although without a direct electron temperature determination. We determine elemental abundances of helium, nitrogen, oxygen, neon, sulfur, and argon in PNe and HII regions, and determine their averages and radial gradients. The average O/H ratio of PNe compared to that of the HII regions indicates a general oxygen enrichment in M81 in the last ~10 Gyr. The PN metallicity gradient in the disk of M81 is -0.055+-0.02 dex/kpc. Neon and sulfur in PNe have a radial distribution similar to that of oxygen, with similar gradient slopes. If we combine our HII sample with th...

  16. Chemical Evolution in Hierarchical Models Of Cosmic Structure I: Constraints on the Early Stellar Initial Mass Function

    CERN Document Server

    Tumlinson, J

    2006-01-01

    I present a new Galactic chemical evolution model motivated by and grounded in the hierarchical theory of galaxy formation, as expressed by a halo merger history of the Galaxy. This model accurately reproduces the "metallicity distribution function" (MDF) for Population II stars residing today in the Galactic halo. The observed MDF and the apparent absence of true Population III stars from the halo strongly imply that there is some critical metallicity, Z_crit = 8 - 42 Msun. This mass range is similar to the masses predicted by models of primordial star formation that account for formation feedback. The model also implies that metal-poor halo stars below [Fe/H] <~ -3 had only 1 - 10 metal-free stars as their supernova precursors, such that the relative abundances in these halo stars exhibit IMF-weighted averages over the intrinsic yields of the first supernovae. This paper is the first part of a long term project to connect the high-redshift in situ indicators of early star formation with the low-z, old r...

  17. THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Katharine J. [Research School of Astronomy and Astrophysics, Australian National University, Weston, ACT 2611 (Australia); Johnson, Jennifer A.; Schoenrich, Ralph [Department of Astronomy, The Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Rockosi, Constance M. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Lee, Young Sun [Tombaugh Fellow, Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Morrison, Heather L.; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Allende Prieto, Carlos [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Beers, Timothy C. [Department of Physics and Astronomy and JINA (Joint Institute for Nuclear Astrophysics), Michigan State University, East Lansing, MI 48824 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Penn State University, 408A Davey Laboratory, University Park, PA 16802 (United States); Chiappini, Cristina; Da Costa, Luiz N.; Maia, Marcio A. G.; Rocha-Pinto, Helio; Santiago, Basilio X. [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rua Gal. Jose Cristino 77, 20921-400 Rio de Janeiro (Brazil); Minchev, Ivan [Leibniz-Institut fuer Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2012-12-20

    We present the metallicity distribution function (MDF) for 24,270 G and 16,847 K dwarfs at distances from 0.2 to 2.3 kpc from the Galactic plane, based on spectroscopy from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. This stellar sample is significantly larger in both number and volume than previous spectroscopic analyses, which were limited to the solar vicinity, making it ideal for comparison with local volume-limited samples and Galactic models. For the first time, we have corrected the MDF for the various observational biases introduced by the SEGUE target-selection strategy. SEGUE is particularly notable for its sample of K dwarfs, which are too faint to examine spectroscopically far from the solar neighborhood. The MDF of both spectral types becomes more metal-poor with increasing |Z|, which reflects the transition from a sample with small [{alpha}/Fe] values at small heights to one with enhanced [{alpha}/Fe] above 1 kpc. Comparison of our SEGUE distributions to those of two different Milky Way models reveals that both are more metal-rich than our observed distributions at all heights above the plane. Our unbiased observations of G and K dwarfs provide valuable constraints over the |Z|-height range of the Milky Way disk for chemical and dynamical Galaxy evolution models, previously only calibrated to the solar neighborhood, with particular utility for thin- and thick-disk formation models.

  18. Abundance Ratios in Stars vs. Hot Gas in Elliptical Galaxies: the Chemical Evolution Modeller Point of View

    CERN Document Server

    Pipino, A

    2009-01-01

    I will present predictions from chemical evolution model aimed at a self-consistent study of both optical (i.e. stellar) and X-ray (i.e.gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium (ISM) are taken into and allow a reliable modelling of the SN-driven galactic wind. SNe Ia activity, in fact, may power a galactic wind lasting for a considerable amount of the galactic lifetime, even in the case for which the efficiency of energy transfer into the ISM per SN Ia event is less than unity. The model simultaneously reproduces the mass-metallicity, the colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. The "iron discrepancy", namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, can be solved by taking into ...

  19. Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    CERN Document Server

    Esteban, C; Carigi, L; Peimbert, M; Bresolin, F; López-Sánchez, A R; Mesa-Delgado, A

    2014-01-01

    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mkn 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the HII region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 $\\AA$ range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C$^{2+}$ and/or O$^{2+}$ from faint pure recombination lines (RLs) in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O vs. O/H, C/O vs. N/O and C/N vs. O/H relations for Galactic and extragalactic HII regions and comparing with results for halo stars and DLAs. We find that HII regions in star-forming dwarf galaxies occupy a different locus in the C/O...

  20. A Spectroscopic Study of Blue Supergiant Stars in the Sculptor Galaxy NGC 55: Chemical Evolution and Distance

    Science.gov (United States)

    Kudritzki, R. P.; Castro, N.; Urbaneja, M. A.; Ho, I.-T.; Bresolin, F.; Gieren, W.; Pietrzyński, G.; Przybilla, N.

    2016-10-01

    Low-resolution (4.5-5 Å) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities, and metallicities (from iron peak and α-elements). A metallicity gradient of -0.22 ± 0.06 dex/R 25 is detected. The central metallicity on a logarithmic scale relative to the Sun is [Z] = -0.37 ± 0.03. A chemical evolution model using the observed distribution of column densities of the stellar and interstellar medium gas mass reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extraplanar metal-poor H ii regions detected in previous work 1.13 to 2.22 kpc above the galactic plane are ionized by massive stars formed in situ outside the disk. For a subsample of supergiants, for which Hubble Space Telescope photometry is available, the flux-weighted gravity-luminosity relationship is used to determine a distance modulus of 26.85 ± 0.10 mag.

  1. Self-similarity in the chemical evolution of galaxies and the delay time distribution of SNe Ia

    CERN Document Server

    Walcher, C J; Minchev, I; Chiappini, C; Bergemann, M; Bruzual, G; Charlot, S; Coelho, P R T; Gallazzi, A; Martig, M

    2016-01-01

    Recent improvements in the age dating of stellar populations and single stars allow us to study the ages and abundance of stars and galaxies with unprecedented accuracy. We here compare the relation between age and \\alpha-element abundances for stars in the solar neighborhood to that of local, early-type galaxies. We find both relations to be very similar. Both fall into two regimes with a flat slope for ages younger than ~9 Gyr and a steeper slope for ages older than that value. This quantitative similarity seems surprising, given the different types of galaxies and scales involved. For the sample of early-type galaxies we also show that the data are inconsistent with literature delay time distributions of either single or double Gaussian shape. The data are consistent with a power law delay time distribution. We thus confirm that the delay time distribution inferred for the Milky Way from chemical evolution arguments also must apply to massive early-type galaxies. We also offer a tentative explanation for t...

  2. Radiogenic p-isotopes from SNIa, nuclear physics uncertainties and Galactic chemical evolution compared with values in primitive meteorites

    CERN Document Server

    Travaglio, C; Rauscher, T; Dauphas, N; Roepke, F K R; Hillebrandt, W

    2014-01-01

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae with different metallicities. The predicted abundances of the short-lived radioactive isotopes 92Nb, 97Tc, 98Tc and 146Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and 13C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SNIa to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNeIa in the production of 92Nb and 146Sm. We find that, if standard Chandrasekhar-mass SNeIa are at least 50% of all SNIa, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  3. A spectroscopic study of blue supergiant stars in the Sculptor galaxy NGC 55: chemical evolution and distance

    CERN Document Server

    Kudritzki, Rolf; Castro, Norberto; Ho, I-Ting; Bresolin, Fabio; Gieren, Wolfgang; Pietrzynski, Grzegorz; Przybilla, Norbert

    2016-01-01

    Low resolution (4.5 to 5 Angstroem) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities and metallicities (from iron peak and alpha-elements). A metallicity gradient of -0.22 +/- 0.06$ dex/R_25 is detected. The central metallicity on a logarithmic scale relative to the Sun is [Z] = -0.37 +\\- 0.03. A chemical evolution model using the observed distribution of stellar and interstellar medium gas mass column densities reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extra-planar metal poor HII regions detected in previous work 1.13 to 2.22 kpc above th...

  4. Chemical characteristics of aerosols at coastal station in Hong Kong.Ⅱ.Environmental behavior of trace elements during the April 1995 to April 1996

    Institute of Scientific and Technical Information of China (English)

    K. S. Lam; L. Cheng; S.C. Kot; C. W . Tsang

    2004-01-01

    An one-year of sampling aerosol program was carried out during the period of April 1995 to April 1996 atcoastal region, Cape D'Aguilar, in Hong Kong. The trace element composition of aerosol particles(TSP and PM10)were measured and analyzed by using the Instrumental Neutron Activation Analysis (INAA) and Inductive CouplePlasma-Mass Spectrometry(ICP-MS) techniques. The results showed that the polluted elements such as: V, Zn,As, Pb, Cd, Sb, I, Se, Bi, with high enrichment factor( E. F) values, are derived from anthropogenic sources ,while Sc, Al, Fe, Mn, Sm, La, Sr are less than 10 in E. F, these elements are related the crust and soil. Theconcentration of the trace elements are present seasonal variation i.e. summer low and winter high, whereas the Vor noncrustal V(V* ) present summer high and winter low, this phenomenon might be explained by local or regionaloil combustion sources. Use three type of elemental ratio, e.g. La/Sm, Mn* /V* and Bi/Al indicate that both TSPand PM10 of La/Sm ratios are mainly related to soil and dust, Mn*/V* are probably represent fossil combustion andBi/Al are possibly associated with refuse incineration, ferromanganese alloys and aluminum production. The varimaxrotation factor analysis for trace elements was performed. By means of the absolute principal component analysis(APCA) and multiple regression, the contribution of trace elements to possible sources and overall means of traceelements were estimated. The results showed that the present station is impacted by the anthropogenic species,although the quantities are different during the summertime and wintertime.

  5. Tracing the spatio-temporal evolution of the Merapi 2010 erupted deposits based on object-oriented classification and object-based image analysis of multi-temporal VHR optical and ALOS radar imagery

    Science.gov (United States)

    Thouret, J. C.; Solikhin, A.; Pinel, V.; Kassouk, Z.; Gupta, A.; Liew, S. C.; Oehler, J. F.

    2015-12-01

    We compare the extent to which VHR optical and radar images delineate the eruption impacts and trace the evolution of erupted deposits on active volcanoes. We could identify about 75% of the 2010 Merapi erupted deposits recognized in traditional geological mapping using object-oriented classification and spectral indices on sub-metric GeoEye and Pléiades images. We recognized sixteen PDC depositional units including high-energy surge deposits on the upper south flank, valley-confined BAF deposits channeled in the Gendol River, and overbank BAF with ash-cloud surge deposits on valley margins. We used an innovative method to map PDC and tephra-fall deposits exploiting direct- and cross-polarized L-band SAR data from ALOS-PALSAR before and after the eruption and combining changes in amplitude of the radar signal with temporal decorrelation. Deposits were separated according to increase or decrease in ground backscattering in direct (HH) and cross (HV) polarizations. The maximum likelihood classification applied to ALOS images provided a result consistent with previous studies with 70% classification accuracy for deposits overall. Scatter diagrams of NDWI, NDVI and NDRSI from three VHR images and morphometric analysis of the initial drainage network enabled us to trace the spatio-temporal evolution (2010-2012) of impacted areas against re-vegetation and surficial erosion. In two years after the eruption, the drainage network was fully developed in the upper catchment devastated by high energy surges but far less developped on fans formed by overbank BAF deposits in the middle valley, suggesting the importance of slope gradient and the deposit grain size, permeability and thickness. We updated the Merapi hazard assessment using Pleiades images as the 2010 eruption changed the summit crater morphology and valley channels. Potential sites favorable to future lahar overbank were identified by computing three morphometric parameters of the river channels.

  6. Growth and Evolution of the Kerala Khondalite Belt, Southern India: Mineral and Whole rock Chemical Evidence for Intracrustal Melting and Magmatic Petrogenesis

    Science.gov (United States)

    Gundlupet Rangasetty, R.; Chettootty, S.

    2011-12-01

    The Kerala Khondalite Belt (KKB) constitutes an important lower crustal segment in the southern Indian granulite terrain. Dominant rock types, except sillimanite bearing gneisses, are classified as sodic and potassic granitoids and a general supracrustal origin is ascribed to these rocks. We present here new results from our studies on mineral and whole rock major- and trace-element and REE systematic of major litho units of the belt. We address the petrogenesis, physical conditions during crystallization and tectonic setting of KKB rocks. Granitoids (gneiss and variants of charnockites) makeup more than 70% of exposed rock types in KKB. They are classified as sodic and potassic groups based on K2O/Na2O ratios. Mineral chemical analysis of granitoids, especially biotites from different groups document igneous parentage and as potential indicator of nature of the magma. Biotites from sodic group are Mg2+-rich (XMg:0.47-0.63), denote calc-alkaline host in contrast to those from potassic groups, which are Fe2+-types with much lower XMg (0.37-0.44) and suggest an alkaline host. Biotites in potassic group are poorer in A12O3 than sodic, indicating evolved nature of the magmatic protolith. Decrease in ΣAl with increasing Fe/(Fe+Mg) values of biotites indicate progressive oxidising condition during magma evolution. Compositional variation of biotite allow us to speculate that the host magmas of sodic charnockites as calc-alkaline, arc-type with features typical of Archaean TTGs and potassic groups as partial melts of meta-igneous lower crust with little mantle contribution. The sodic group has geochemical affinity to Archaean tonalities with low-K, calc-alkaline, metaluminous to peraluminous chemistry. Compositionally contrasting K-rich rocks are essentially of granitic composition. Most oxides in both the groups, with exceptions of K2O and Na2O, show negative correlation with SiO2. The sodic group is enriched in Sr and depleted in Rb and Th. They exhibit geochemical

  7. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution.

    Science.gov (United States)

    Meléndez-Hevia, E; Waddell, T G; Cascante, M

    1996-09-01

    The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one-taking the available material to build new pathways-demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into a single-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.

  8. Evolution of stalk/spore ratio in a social amoeba: cell-to-cell interaction via a signaling chemical shaped by cheating risk.

    Science.gov (United States)

    Uchinomiya, Kouki; Iwasa, Yoh

    2013-11-07

    The social amoeba (or cellular slime mold) is a model system for cell cooperation. When food is depleted in the environment, cells aggregate together. Some of these cells become stalks, raising spores to aid in their dispersal. Differentiation-inducing factor-1 (DIF-1) is a signaling chemical produced by prespore cells and decomposed by prestalk cells. It affects the rate of switching between prestalk and prespore cells, thereby achieving a stable stalk/spore ratio. In this study we analyzed the evolution of the stalk/spore ratio. Strains may differ in the production and decomposition rates of the signaling chemical, and in the sensitivity of cells to switch in response to the signaling chemical exposure. When two strains with the same stalk/spore ratio within their own fruiting body are combined into a single fruiting body, one strain may develop into prespores to a greater degree than the other. Direct evolutionary simulations and quantitative genetic dynamics demonstrate that if a fruiting body is always formed by a single strain, the cells evolve to produce less signaling chemical and become more sensitive to the signaling chemical due to the cost of producing the chemical. In contrast, if a fruiting body is formed by multiple strains, the cells evolve to become less sensitive to the signaling chemical and produce more signaling chemical in order to reduce the risk of being exploited. In contrast, the stalk-spore ratio is less likely to be affected by small cheating risk.

  9. Chemical evolution of galaxies

    Directory of Open Access Journals (Sweden)

    Gregory A. Shields

    2002-01-01

    Full Text Available Las abundancias qu micas dan claves importantes sobre la evoluci on de las galaxias. Las nebulosas ionizadas est an entre las fuentes principales de mediciones de abundancias qu micas, especialmente en las galaxias externas. Estudios de regiones H II han mostrado que la metalicidad total de las galaxias se incrementa con la luminosidad gal actica, y que las galaxias espirales tienen caracter sticamente gradientes radiales de composici on qu mica. Hay indicaciones de in uencias ambientales sobre las abundancias qu micas. Las nebulosas planetarias proporcionan otra medida de las abundancias en la V a L actea y otras galaxias. Instrumentos en el espacio exterior han permitido mediciones para elementos que son inaccesibles en longitudes de onda opticas. Los grandes telescopios hacen posible el estudio de estrellas individuales en galaxias externas y el estudio de abundancias interestelares en galaxias de corrimiento al rojo intermedio y alto. Estos avances son promesa de una epoca excitante, mientras los astrof sicos se esfuerzan por completar una teor a de evoluci on gal actica desde la Gran Explosi on hasta el presente.

  10. Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network

    Directory of Open Access Journals (Sweden)

    Marchetto A

    2014-04-01

    Full Text Available Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Since 1997, atmospheric deposition was sampled and analyzed in the permanent plots of the Italian network for the evaluation of forest health (CONECOFOR, under the coordination of the Italian Forest Service. This paper presents the results of the activity carried out in 2009, when the EU-funded LIFE+ “FutMon” project allowed to extend the sampling network to 22 sites. Long-term trends will also be evaluated for the sampling sites with the longest time series. The sampling of open field bulk deposition was performed in a clearance close to the CONECOFOR permanent plots, while throughfall deposition and stemflow (in beech stand, only were sampled in the plot. Deposition samples were collected weekly and sent to the laboratories, where they were analyzed for pH, conductivity, major ions, and total carbon and nitrogen. Most measured variables showed a strong geographical gradient. For example, nitrogen deposition was relatively high in the Po plain (where the emissions of nitrogen oxides and ammonia are the highest and surrounding hills, reaching 10-20 kgN ha-1 y-1 in the open field and 13-25 kgN ha-1 y-1 in the throughfall. Sulphate deposition also showed a marked geographical gradient. Deposition of marine aerosol also had an important impact on the chemical composition of atmospheric deposition in Italy, together with the episodic deposition of Saharan dust, which showed a marked gradient, with highest values in the southernmost plots. Trend analysis was carried out on 10 sites running since the beginning of the program. A general negative trend in sulphate concentration was detected, paralleled in most plots by a positive trend in deposition pH, in good agreement with the strong reduction in the emission of sulphur dioxide recorded in the last decades. Nitrogen concentration also showed a significant decrease

  11. A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2013-04-01

    Full Text Available Characteristics of the chemical and optical properties of aerosols in urban Shanghai and their relationship were studied over a three-day period in October 2011. A suite of real-time instruments, including an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS, a Monitor for AeRosols and GAses (MARGA, a Cavity Ring Down Spectrometer (CRDS, a nephelometer and a Scanning Mobility Particle Sizer (SMPS, was employed to follow the quick changes of the aerosol properties within the 72 h sampling period. The origin of the air mass arriving in Shanghai during this period shifted from the East China Sea to the northwest area of China, offering a unique opportunity to observe the evolution of aerosols influenced by regional transport from the most polluted areas in China. According to the meteorological conditions and temporal characterizations of the chemical and optical properties, the sampling period was divided into three periods. During Period 1 (00:00–23:00 LT, 13 October, the aerosols in urban Shanghai were mainly fresh and the single scattering albedo varied negatively with the emission of elemental carbon, indicating that local sources dominated. Period 2 (23:00 LT on 13 October to 10:00 LT on 15 October was impacted by regionally transported pollutants and had the highest particulate matter (PM mass loading and the lowest particle acidity, characterized by large fractions of aged particles and high secondary ion (nitrate, sulfate and ammonium mass concentrations. Comparison between ATOFMS particle acidity and quantitative particle acidity by MARGA indicated the significance of semi-quantitative calculation in ATOFMS. Two sub-periods were identified in Period 2 based on the scattering efficiency of PM1 mass. Period 3 (from 10:00 LT on 15 October to 00:00 LT on 16 October had a low PM1/PM10 ratio and a new particle formation event. The comparison of these sub-periods highlights the influence of particle mixing state on aerosol optical properties

  12. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Aldaba, Hugo [Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo (Mexico); Valles, O. Paola [Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo (Mexico); Instituto Tecnológico de Durando, UPIDET, Av. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, 34080 Durango, Dgo (Mexico); Vazquez-Arenas, Jorge [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México DF 09340 (Mexico); Rojas-Contreras, J. Antonio [Instituto Tecnológico de Durando, UPIDET, Av. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, 34080 Durango, Dgo (Mexico); Valdez-Pérez, Donato [Instituto Politécnico Nacional, UPALM, Edif. Z-4 3er Piso, CP 07738 México D.F (Mexico); Ruiz-Baca, Estela [Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo (Mexico); and others

    2016-10-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240 h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS{sub 2})-like, orpiment (As{sub 2}S{sub 3})-like and elementary sulfur and polysulfide (S{sub n}{sup 2−}/S{sup 0}) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including S{sub n}{sup 2−}/S{sup 0}, pyrite-like and orpiment-like phases. - Highlights: • Biofilm structures occur as compact micro-colonies. • Surface transformation reactions control arsenopyrite and cell

  13. Tracing back EFL gene evolution in the cryptomonads-haptophytes assemblage: separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads.

    Science.gov (United States)

    Sakaguchi, Miako; Takishita, Kiyotaka; Matsumoto, Takuya; Hashimoto, Tetsuo; Inagaki, Yuji

    2009-07-15

    A recently identified GTPase, elongation factor-like (EFL) protein is proposed to bear the principal functions of translation elongation factor 1alpha (EF-1alpha). Pioneering studies of EF-1alpha/EFL evolution have revealed the phylogenetically scattered distribution of EFL amongst eukaryotes, suggesting frequent eukaryote-to-eukaryote EFL gene transfer events and subsequent replacements of EF-1alpha functions by EFL. We here determined/identified seven new EFL sequences of the photosynthetic cryptomonad Cryptomonas ovata, the non-photosynthetic cryptomonad (goniomonad) Goniomonas amphinema, the foraminifer Planoglabratella opecularis, the haptophyte Chrysochromulina sp., the centroheliozoan Raphidiophrys contractilis, and two red algae Chondrus crispus and Gracilaria changii. The analyses of these EFL sequences successfully brought new insights into lateral EFL gene transfer amongst eukaryotes. Of most interest is a complex EFL evolution in a monophyletic assemblage comprised of cryptomonads and haptophytes. Since our analyses rejected any phylogenetic affinity amongst the EFL sequences from Goniomonas, photosynthetic cryptomonads, and haptophytes, the EFL genes of the three lineages most likely originated from different phylogenetic sources.

  14. The chemical evolution and paragenesis of uranium minerals from the ruggles and palermo granitic pegmatites, New Hampshire

    Science.gov (United States)

    Korzeb, S.L.; Foord, E.E.; Lichte, F.E.

    1997-01-01

    A study of the chemical evolution and paragenesis of the uranium minerals at the Palermo No. 1 and Ruggles granitic pegmatites, Grafton County, New Hampshire, revealed four stages of secondary mineralization. A total of eight uranium minerals were identified in the four stages. The first stage is a mixture of uranyl oxide hydroxide-hydrates represented by mineral "A", which surrounds and replaces a uraninite core. The second stage is a carbonate stage found only at the Palermo No. 1 pegmatite, and is represented by rutherfordine. The third stage is represented by uranyl silicates. At the Palermo No. 1 pegmatite, this stage consists of ??-uranophane, and at the Ruggles pegmatite, it consists of soddyite and ??-uranophane. A final fourth stage is a phosphate stage represented by phosphuranylite and meta-autunite I. The first three stages of mineralization developed from hydrothermal and meteoric processes. With dropping temperatures, hydrothermal fluids reached meteoric temperatures and acquired the characteristics of meteoric water. The pH shifted from acidic (pH less than about 6 at 100??C) to alkaline (pH > 7 at 25??C). Since mineral "A" contains hydroxyl and a low amount of molecular water, it probably formed at a temperature greater than 100??C in the acidic environment. After the first stage, the hydrothermal fluids likely reached the temperatures of meteoric water. The initial pH of the meteoric water was acidic (pH less than about 6 at 25??C) and then slowly shifted to alkaline. The mineralizing fluids became oversaturated in CO3, Ca, K, and Si. Uraninite and mineral "A" became unstable and were replaced by rutherfordine and uranyl silicates. The fourth or phosphate stage developed from the introduction of groundwater. The uranyl phosphate minerals precipitated from an acidic fluid (pH < 7 at 25??C) that was oversaturated with Ca, K, U, and P.

  15. Evaluation of fouling formation and evolution on hollow fibre membrane: effects of ageing and chemical exposure on biofoulant.

    Science.gov (United States)

    Xu, Qianhui; Ye, Yun; Chen, Vicki; Wen, Xianghua

    2015-01-01

    Bio-deposition and biofouling, a major challenge for membrane filtration, is still not fully understood due to its complex structure and intricate evolution with time and chemical environment. In this work, diluted sludge from an anaerobic bioreactor with low mixed liquor suspended solid (MLSS) concentration was filtered for 3.5 h to form initial fouling layers which were then exposed to various solution environments for 17 h. Apart from monitoring the hydraulic resistance of membrane fouling, a real time direct observation (DO) technique was applied to monitor the change of thickness in the fouling layer. The cohesion and adhesion of different fouling layer were investigated by monitoring the transmembrane pressure (TMP) and thickness change after applying relaxation (cessation of filtration) and backwash. It was found that TMPs and resistances of the aged fouling layers increased significantly after 17 h filtration. All the aged fouling layers exhibited lower compressibility as a result of more soluble microbial products (SMP) and extracellular polymeric substances (EPS) excretion, biofilm growth. From in situ imaging, the fouling on the membrane surface appeared to be inhomogeneous from the inner (lumen) surface outwards. During long term filtration of fouling layer with Milli-Q water, direct observation (DO) results indicated the reorganization of the fouling layer in terms of peeling, rolling over and re-depositing on the membrane surface, resulting into more compressed fouling layers with higher resistances. Confocal Laser Scanning Microscopy (CLSM) analysis of aged fouling layers also indicated that the dead/total ratio of microorganisms was not uniform and increased gradually from the bottom to the top of the fouling layers.

  16. Influence of chemical and mineralogical properties of organic amendments on the selection of an adequate analytical procedure for trace elements determination.

    Science.gov (United States)

    García-Delgado, C; Cala, V; Eymar, E

    2012-01-15

    Six digestion procedures were tested to improve extraction methods for determination of trace elements in various organic amendments with high inorganic fractions. These procedures were tested in terms of pH, CaCO(3), organic matter, elemental analysis, BCR sequential extraction and X-ray diffraction analysis. Aqua regia extraction (ISO 11466), total digestion HF-HNO(3)-HClO(4) and four microwave-assisted digestions (i.e., HNO(3), HCl-HNO(3), HNO(3)-HF and HCl-HNO(3)-HF) were used. The effect of acid mixtures on microwave-assisted digestion of mineral fractions was assessed by Si and Al analysis and X-ray diffraction in the solid residues obtained. Microwave HF acid mixtures obtained highest trace element recoveries for all tested metals except Al. CaF(2) and CaAlF(5) precipitates were also detected using X-ray diffraction in the residues after microwave digestions with HF acid mixtures of amendments with high calcium content. A decision flowchart was suggested to determine the best acid mixture according to the amendment and the metals to be analyzed.

  17. Stability of Aspartic Acid at 77°K under Gamma Radiation in a Comet Cores Simulation: Implications for Chemical Evolution Studies

    OpenAIRE

    2016-01-01

    The synthesis of organic matter in a simulated primitive environment (terrestrial or extraterrestrial) has been widely studied. The stability of organic matter of biological significance, exposed to energy fields in primitive conditions, is equally important in the context of chemical evolution. We present a detailed analysis of the stability of prebiotic organic molecules under the effect of ionizing radiation at a low temperature, simulating a comet core. The laboratory simulation con...

  18. On the Chemical Evolution of Upper Mantle of the Early Earth—An Experimental Study on Melting of the Silicate Phase in Jilin Chondrite at High Pressures

    Institute of Scientific and Technical Information of China (English)

    谢鸿森; 方虹; 等

    1989-01-01

    Relatively old ages of chondrites(normally around 4.5Ga)suggest that their parent bodies did not experience any mely-fractionation under high temperature and high pressure conditions pertaining to the interior of terrestrial plaets.Therefore,it is reasonable to take chondrites as starting materials in the study of the chemical evolution of the early earth.The sillicate phase in the Jilin chondrite (H5)was chosen for this purpose because it possesses a chemical composition similar to that of the primitive mantle.The melting experiment was carried out at 20-30 k bar and has rsulted in a product which contains1-5% melts in addition to solid cryustal phase.The chemical composition of the melt phases and the partitioning of various elements between the coexisting silicate melts are geochemically similar to those of anatectic rocks on the earth.This can thus serve as the basis for discussing the chemical evolution of the early upper mantle.

  19. Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts

    DEFF Research Database (Denmark)

    Gagnevin, D.; Waight, Tod Earle; Daly, J.S.

    2007-01-01

    Plagioclase phenocrysts in dacites from the high-K calc-alkaline CapraiaVolcano were investigated for major, trace element and Sr isotope variations in order to gain better insight into the proposed open-system behaviour of the volcano. Repeated dissolution zone in plagioclases from the early-eru...

  20. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark