WorldWideScience

Sample records for chemical engineering practice

  1. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    Science.gov (United States)

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  2. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    Science.gov (United States)

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  3. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  4. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Engineering of polymers and composite materials. Catalysis in chemical engineering

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning polymer and composite materials technology as well as catalysis in chemical engineering. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  5. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  6. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Plenary reports. Engineering of inorganic substances and materials

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of inorganic substances and materials. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  7. Massachusetts Institute of Technology School of Chemical Engineering Practice, Brookhaven station: Summary of projects, 1983-1986

    International Nuclear Information System (INIS)

    1987-11-01

    The MIT Graduate School of Chemical Engineering Practice stresses engineering problem solving. The Practice School program, as it is commonly called, develops in a unique and particularly effective way the student's ability to apply fundamentals to problems in the chemical industry and thus accelerates one's professional development. The themes of atomization, emthanol production and utilization, hydrogen production and compression, localized electrochemical corrosion and biochemical engineering reflect some of the major programs at the Laboratory. The titles of all the projects are listed in chronological order in the index at the end of this document. Brief summaries are presented for each project with related projects grouped together

  8. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  9. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  10. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  11. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  12. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Materials of All-Russian Symposium on chemistry and extraction engineering. Chemical-metallurgical processes of ore and secondary raw material processing. Analytical control of chemical industries, man-made and natural objects

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning polymer and composite materials technology as well as catalysis in chemical engineering. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  13. 5th National meeting of the SA Institution of Chemical Engineers: chemical engineering in support of industry and society. V. 1-3

    International Nuclear Information System (INIS)

    1988-01-01

    The 5th national meeting of the SA Institution of Chemical Engineering was held from 15-16 August 1988 at Pretoria. The subject scope covered on the meeting include the broad spectrum of work done by the chemical engineer. The main categories include the processing of agricultural products, biotechnology, coal and hydrocarbons, the chemical engineering practice, fluid dynamics, gas treatment, heat and mass transfer, materials of construction, minerals processing, source materials and products, training and education, vapour-liquid equilibrium, and water and effluents. One seminar specifically covers process engineering in the context of nuclear reactors and two other papers cover supported liquid membrane extraction of uranium

  14. Studying Engineering Practice

    DEFF Research Database (Denmark)

    Buch, Anders

    2015-01-01

    The study of engineering practices has been the focus of Engineering Studies over the last three decades. Theses studies have used ethnographic and grounded methods in order to investigate engineering practices as they unfold in natural settings - in workplaces and engineering education. However......, engineering studies have not given much attention to conceptually clarifying what should be understood by 'engineering practices' and more precisely account for the composition and organization of the entities and phenomena that make up the practices. This chapter investigates and discusses how a 'practice...... will draw out some methodological consequences and discuss the ramifications of a practice theoretical approach for Engineering Studies....

  15. Chemical engineering and chemistry : education in a changing world

    NARCIS (Netherlands)

    Reijenga, J.C.

    2006-01-01

    Current trends in science and engineering research are analyzed, together with an inventory of changes in the field of employment and practice in industry. The resulting demands on university education of chemists and chemical engineers have been translated into a more or less continuous updating of

  16. Special theory on chemical engineering

    International Nuclear Information System (INIS)

    1987-06-01

    This book give a special description about chemical engineering. The contents of this book are special technique for isolation on introduction and separation by membrane, biochemistry engineering, process system engineering, energy engineering, environment engineering, a high molecular new material, election material and research on surface property of catalyst. It has appendixes on history of transition on Korean chemical engineering text contents and history of the activity of Korea chemical engineering institute.

  17. Using Simulation to Increase Yields in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    William C. Conley

    2003-06-01

    Full Text Available Trying to increase the yields or profit or efficiency (less pollution of chemical processes is a central goal of the chemical engineer in theory and practice. Certainly sound training in chemistry, business and pollution control help the engineer to set up optimal chemical processes. However, the ever changing demands of customers and business conditions, plus the multivariate complexity of the chemical business can make optimization challenging. Mathematical tools such as statistics and linear programming have certainly been useful to chemical engineers in their pursuit of optimal efficiency. However, some processes can be modeled linearly and some can not. Therefore, presented here will be an industrial chemical process with potentially five variables affecting the yield. Data from over one hundred runs of the process has been collected, but it is not known initially whether the yield relationship is linear or nonlinear. Therefore, the CTSP multivariate correlation coefficient will be calculated for the data to see if a relationship exists among the variables. Then once it is proven that there is a statistically significant relationship, an appropriate linear or nonlinear equation can be fitted to the data, and it can be optimized for use in the chemical plant.

  18. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...... and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... skills. Such skills are important in Chemical Product Engineering when dealing with open-ended problems, creative problem solutions, operating in a team working environment and exercising project management. In our course we emphasise team activites, formative feed back to the students as well as helping...

  19. A New Paradigm for Chemical Engineering?

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    evidence of this change comes from the jobs taken by graduating chemical engineering professionals in North America, Europe, and some of the Asian countries. In terms of where the graduating chemical engineers are going to work, a clear shift from the commodity chemical industry to the product oriented...... businesses has been observed. There is an increasing trend within the chemical industry to focus on products and the sustainable processes that can make them. Do these changes point to a paradigm shift in chemical engineering as a discipline? Historically, two previous paradigm shifts in chemical engineering...... corresponded to major shifts in chemical engineering as a discipline, which affected not only the education of chemical engineers, but also the development of chemical engineering as a discipline. Has the time come for a new paradigm shift that will prepare the current and future chemical engineering graduates...

  20. Discussion on the Development of Green Chemistry and Chemical Engineering

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  1. Chemical Engineering Students: A Distinct Group among Engineers

    Science.gov (United States)

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  2. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  3. Chemical Engineering in the "BIO" world

    DEFF Research Database (Denmark)

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical...... engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering...... baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy...

  4. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    Kim, Yeong Geol

    1990-10-01

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  5. Modern Cast Irons in Chemical Engineering

    Science.gov (United States)

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  6. Chemical Engineering in the "BIO" World.

    Science.gov (United States)

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The large dictionary on chemical engineering

    International Nuclear Information System (INIS)

    1995-03-01

    This book mentions the large dictionary on chemical engineering. It starts the preface. It mentions introduction for publish committee. It also has signature of publish committee. It introduces explanatory notes. It gives descriptions of glossary on chemical engineering. This has appendixes and index. This book consists of seven part to explain chemical engineering glossary. It was written by chemical engineering dictionary publish committee.

  8. Teaching Engineering Practices

    Science.gov (United States)

    Cunningham, Christine M.; Carlsen, William S.

    2014-03-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.

  9. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    topics (transport phenomena, separations, reaction engineering, etc.) must remain strong, should the applications that currently emphasize commodity chemicals also include new topics such as sustainability, and product design? In Europe, the European Federation of Chemical Engineering (EFCE) has taken...... has a product focus. With this shift of the chemical industry, what should be the curriculum of the chemical engineering degrees at the BSc- and MSc-levels, and, are the skill set of chemical engineers appropriate for this altered chemical industry? While the basic skill set, defined by the core...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  10. Practical electrical engineering

    CERN Document Server

    N Makarov, Sergey; Bitar, Stephen J

    2016-01-01

    This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical and computer engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as robotics, mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. Provides a self-contained, fundamental textbook on electric circuits and basic electronic...

  11. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov (United States)

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  12. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  13. Ideas of holistic engineering meet engineering work practices

    DEFF Research Database (Denmark)

    Buch, Anders

    2016-01-01

    This article critically reflects on the viability of the idea that reforming engineering education will result in more holistic engineering work practices. Drawing on an empirical study, the article aims to demonstrate that in order to change existing engineering work practices, it might...... be necessary to change engineers’ knowledge and skills; however, such changes are far from sufficient. Conditions and circumstances external to practitioners’ knowledge and skills are crucial if engineering work is to become more holistic. To illustrate this point, the article outlines an empirical study...... of a small team of professionals who engage in holistic engineering work practices in an engineering consultancy company. The work practices are investigated using a philosophical empirical method that inquires into the doings, sayings, and relatings of the practitioners. The study describes the practice...

  14. Engineering chemical interactions in microbial communities.

    Science.gov (United States)

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  15. Teaching Chemical Engineers about Teaching

    Science.gov (United States)

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  16. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  17. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  18. Engineering justice transforming engineering education and practice

    CERN Document Server

    Leydens, Jon A

    2018-01-01

    Using social justice as a catalyst for curricular transformation, Engineering Justice presents an examination of how politics, culture, and other social issues are inherent in the practice of engineering. It aims to align engineering curricula with socially just outcomes, increase enrollment among underrepresented groups, and lessen lingering gender, class, and ethnicity gaps by showing how the power of engineering knowledge can be explicitly harnessed to serve the underserved and address social inequalities. This book is meant to transform the way educators think about engineering curricula through creating or transforming existing courses to attract, retain, and motivate engineering students to become professionals who enact engineering for social justice. Engineering Justice offers thought-provoking chapters on: why social justice is inherent yet often invisible in engineering education and practice; engineering design for social justice; social justice in the engineering sciences; social justice in human...

  19. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  20. Situational Analysis of Engineering Practice

    DEFF Research Database (Denmark)

    Buch, Anders

    STS inspired studies of engineering work practices provide new material for a richer understanding of engineering culture. However, the specific and strictly situated focus of many of these studies threatens to limit discussions of engineering practices to departmental and discrete institutional...... settings. This micro perspective potentially overlooks the inherent and overarching normativities that inform engineering culture. Furthermore, the micro perspective has difficulties in transgressing institutional boundaries in order to investigate the dynamics of cultural reproduction in engineering....... The paper will propose a research agenda that – inspired by George Marcus’ multi-sited ethnographic methodology (Marcus 1998) and Adele Clarke’s situational analysis (Clarke 2005) – analyze (and contrasts) engineering practices in diverse settings (e.g. engineering education and engineering work) in order...

  1. Activist engineering: changing engineering practice by deploying praxis.

    Science.gov (United States)

    Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E

    2015-02-01

    In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?

  2. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    Science.gov (United States)

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  3. Indian Chemical Engineering Congress 1995: 48th annual session of Indian Institute of Chemical Engineers: abstracts and invited lectures

    International Nuclear Information System (INIS)

    1995-01-01

    The 48th Annual Session of Indian Institute of Chemical Engineers was held in Kalpakkam during December 27-30, 1995. The book contains the proceeding of the conference, both abstracts and invited lectures. The topics covered included various aspects pertaining to chemical engineering and technology along with the chemical and engineering processes relevant to nuclear fuel cycle like uranium ore processing, fuel fabrication, reactor operation, fuel reprocessing and radioactive waste management. Papers relevant to INIS are indexed separately

  4. Progress in reforming chemical engineering education.

    Science.gov (United States)

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  5. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-01-01

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  6. Incorporating Sustainability into Engineering and Chemical Education Using E-Learning

    Directory of Open Access Journals (Sweden)

    Edmond Sanganyado

    2018-03-01

    Full Text Available The purpose of this study was to develop e-learning activities that could facilitate the integration of sustainability concepts and practices in engineering and chemical education. Using an online learning management system (LMS, undergraduate students in an applied chemistry program at a public university in Zimbabwe participated in an online discussion on the role of chemical reaction engineering in achieving environmental sustainability goals. In the second activity, the students were instructed to prepare a design report for a cost-effective and innovative wastewater treatment plant for a rural hospital. The design report was evaluated through peer review online. Quantitative and qualitative analyses were performed on the two online activities to evaluate student engagement, quality of responses and the incorporation of sustainability into their learning. In the online discussion, 97 comments were made averaging 120 words per comment. Furthermore, the students averaged 3.88 comments, with the majority of comments exhibiting simple and complex argumentation, a deep reflection and widespread use of terms associated with sustainability such as recycling, pollution, waste and the environment. Furthermore, the evaluation of peer reviews revealed that participants demonstrated they could identify the strengths and shortcomings in the design reports. Therefore, this study demonstrated that e-learning, particularly peer review and online discussion, could help chemistry and engineering students appreciate the need for chemical and engineering activities that encourage sustainable development.

  7. Practical knowledge engineering

    CERN Document Server

    Kelly, Richard

    1991-01-01

    This book provides knowledge engineers with practical methods for initiating, designing, building, managing, and demonstrating successful commercial expert systems. It is a record of what actually works (and does not work) in the construction of expert systems, drawn from the author's decade of experience in building expert systems in all major areas of application for American, European, and Japanese organizations.The book features:* knowledge engineering programming techniques* useful skills for demonstrating expert systems * practical costing and metrics* guidelines for using knowledge repr

  8. Making room in engineering design practices

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer; Buch, Anders

    2016-01-01

    This article aims to explore the challenges that occur from a practice perspective when a new approach to engineering design enters an existing ecology of professional practices in a workplace. Using four empirical episodes, the article illustrates a concrete effort to challenge what counts...... as ‘real engineering’ or what is recognized as part of the engineering expertise. Using an ethnographic, case-studybased research design the article documentshowholistically minded professionals do engineering design ‘by other means’, in ways that strive to promote user experience approaches. The article...... aims to show how engineering practices do not exist in isolation within an organization and how ambitions to transform professional engineering work practices require a change in the very ecologies of practices that exist across an organization...

  9. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  10. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  11. Second-Guessing Scientists and Engineers: Post Hoc Criticism and the Reform of Practice in Green Chemistry and Engineering.

    Science.gov (United States)

    Lynch, William T

    2015-10-01

    The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.

  12. Career Opportunities in Chemistry and Chemical Engineering.

    Science.gov (United States)

    Glover, Trienne

    This pamphlet discusses career and employment opportunities in chemical engineering. Necessary college preparation is described and median salaries by degree are tabulated. Nontraditional careers in chemistry are also described. Future demand for chemists and chemical engineers is projected to 1985 and the availability of jobs for women and…

  13. Team- and project work in engineering practices

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2015-01-01

    in teamwork practices, and, thirdly, how team- and project work affect engineering professionalism and collaborative work practices. A practice theoretical framework informs the analysis. Teamwork is investigated as a phenomenon enacted through the sayings, doings and relatings of practitioners in landscapes......In this paper we investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals. The paper investigates how professional engineering practices are enacted in two engineering...... consultancy companies in Denmark where teamwork has been or is an ideal for organizing work. Through a practice-based lens the article sets out to investigate, firstly, how discourses about teamand project work affect engineering work practices, secondly, how technology-mediated management is reconciled...

  14. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  15. Hafnium - material for chemical apparatus engineering

    International Nuclear Information System (INIS)

    Jennert, D.

    1981-01-01

    This work describes - on the background of available literature - the properties of hafnium in technical quality (DIN-material No. 2.6400) as material for chemical apparatus engineering. The occurence, refining, physical and chemical properties will be described as well as the material behavior. In conclusion, it has been found that there is, at present, sufficient information for the engineering of hafnium which has to be completed by additional investigations for special applications. (orig.) [de

  16. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  17. Team and Project Work in Engineering Practices

    Directory of Open Access Journals (Sweden)

    Anders Buch

    2015-11-01

    Full Text Available In this article, we investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals. The article investigates how professional engineering practices are enacted in two engineering consultancy companies in Denmark where teamwork has been or is an ideal for organizing work. Through a practice-based lens, the article sets out to investigate, firstly, how discourses about team and project work affect engineering work practices; secondly, how technologymediated management is reconciled in teamwork practices; and thirdly, how team and project work affect engineering professionalism and collaborative work practices. A practice theoretical framework informs the analysis. Teamwork is investigated as a phenomenon enacted through the sayings, doings and relatings of practitioners in landscapes of practices and the interconnectedness of the practices is traced through the setup of specific ecologies in the sites.

  18. Chemical Engineering at NASA

    Science.gov (United States)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  19. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  20. Chemical engineering aspects in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chmiel, H

    1981-04-01

    Many basic chemical engineering processes are based on transport processes due, for example, to differences in temperature, pressure, and concentration. Such transport processes abound in the healthy circulatory system. Thus, metabolic processes supply the human body with the necessary warmth. The heart serves as a blood pump to provide optimal blood pressure in all vessels. Highly complex membranes in the kidneys ensure the efficient detoxification of the blood. It is therefore natural that the chemical engineer be involved in the solution of a number of biomedical engineering problems that come up in the field of medicine. Some typical tasks are: the characterization of the flow properties of biological fluids; research on the interaction between blood and foreign substances of the purpose of finding materials suitable for temporary or permanent use in the body and the development of blood pumps and artifical substitutes for the lungs, the liver, and the kidneys.

  1. Proceedings of 20. Symposium of Malaysian Chemical Engineers (SOMChE 2006)

    International Nuclear Information System (INIS)

    2006-12-01

    The objective of the symposium is to provide a platform for participants and relevant chemical engineering community to meet and encourage expertise and knowledge sharing and to allow recent chemical engineering research and innovation works to be properly documented, displayed and made known to interested parties. The subjects discussed are advanced material modeling and simulation bioprocess, catalysis, chemical engineering education (outcome-based education), computational fluid dynamics, drying technology, energy, environment, fine chemicals, food engineering, oil and gas, oleochemical, particle technology, petrochemical, pharmaceutical engineering, polymer technology, process control, process system, engineering, reaction engineering, renewable energy, separation

  2. Engineering microbes for efficient production of chemicals

    Science.gov (United States)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  3. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    Science.gov (United States)

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  4. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  5. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    Science.gov (United States)

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  6. Efficiency of Energy Transduction in a Molecular Chemical Engine

    OpenAIRE

    Sasaki, Kazuo; Kanada, Ryo; Amari, Satoshi

    2006-01-01

    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in...

  7. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    Science.gov (United States)

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Fostering Creative Engineers: A Key to Face the Complexity of Engineering Practice

    Science.gov (United States)

    Zhou, Chunfang

    2012-01-01

    Recent studies have argued a shift of thinking about engineering practice from a linear conception to a system understanding. The complexity of engineering practice has been thought of as the root of challenges for engineers. Moreover, creativity has been emphasised as one key capability that engineering students should master. This paper aims to…

  9. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  10. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  11. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  12. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan

    2012-01-01

    Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics...

  13. At Age 100, Chemical Engineering Education Faces Changing World.

    Science.gov (United States)

    Krieger, James

    1988-01-01

    Stresses the need for chemical engineering education to keep abreast of current needs. Explores the need for global economics, marketing strategy, product differentiation, and patent law in the curriculum. Questions the abilities of current chemical engineering graduate students in those areas. (MVL)

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  15. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  16. Defense programs business practices re-engineering QFD exercise

    International Nuclear Information System (INIS)

    Murray, C.; Halbleib, L.

    1996-03-01

    The end of the cold war has resulted in many changes for the Nuclear Weapons Complex (NWC). We now work in a smaller complex, with reduced resources, a smaller stockpile, and no new phase 3 weapons development programs. This new environment demands that we re-evaluate the way we design and produce nuclear weapons. The Defense Program (DP) Business Practices Re-engineering activity was initiated to improve the design and production efficiency of the DP Sector. The activity had six goals: (1) to identify DP business practices that are exercised by the Product Realization Process (PRP); (2) to determine the impact (positive, negative, or none) of these practices on defined, prioritized customer criteria; (3) to identify business practices that are candidates for elimination or re-engineering; (4) to select two or three business practices for re-engineering; (5) to re-engineer the selected business practices; and (6) to exercise the re-engineered practices on three pilot development projects. Business practices include technical and well as administrative procedures that are exercised by the PRP. A QFD exercise was performed to address (1)-(4). The customer that identified, defined, and prioritized the criteria to rate the business practices was the Block Change Advisory Group. Five criteria were identified: cycle time, flexibility, cost, product performance/quality, and best practices. Forty-nine business practices were identified and rated per the criteria. From this analysis, the group made preliminary recommendations as to which practices would be addressed in the re-engineering activity. Sixteen practices will be addressed in the re-engineering activity. These practices will then be piloted on three projects: (1) the Electronic Component Assembly (ECA)/Radar Project, (2) the B61 Mod 11, and (3) Warhead Protection Program (WPP)

  17. 6th world congress of chemical engineering. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The 6th World Congress of Chemical Engineering, held in Melbourne, was structured around 6 Vision Lectures which lead to 800 oral presentations and 600 poster presentations, spanning the entire range of chemical engineering. The main topics of the Congress were: environment, health and safety; energy; industrial applications; process simulation and control; management and education and the future. Items in INIS scope have been separately indexed

  18. Antibiotic Algae by Chemical Surface Engineering.

    Science.gov (United States)

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Epistemic Practices of Engineering for Education

    Science.gov (United States)

    Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering offers new educational opportunities for students, yet also poses challenges about how to conceptualize the disciplinary core ideas, crosscutting concepts, and science and engineering practices of the disciplinary fields of engineering. In this paper, we draw from empirical studies of engineering in professional and school settings to…

  20. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  1. Chemical engineer in business; Kemikaru enjinia to bijinesu

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yasuaki

    1999-05-05

    It is Coca-Cola and General Electric Co. (GE) that the aggregate market value is drastically expanding in U.S.A. throughout over past of 15. Direct common point is not very much found to these 2 companies. During over of 15 years, the leadership was demonstrated as management top of both companies, 2 managers who drastically contributed to the enterprise value improvement are the chemical engineer graduate both. It does be not done either mere in which that both persons with the grounded ability of chemical engineering contributed to the enterprise value improvement of the dramatic was not accidental. It is the essence of the chemical engineering,'By discerning essence of the process, the appropriate countermeasure is passed' there was it for the basis of the management of both persons. (NEDO)

  2. The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice

    Science.gov (United States)

    Yadav, Vikramaditya G.; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-01-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. PMID:22629571

  3. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    Science.gov (United States)

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  4. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  5. Understanding structural engineering from theory to practice

    CERN Document Server

    Chen, Wai-Fah

    2011-01-01

    In our world of seemingly unlimited computing, numerous analytical approaches to the estimation of stress, strain, and displacement, including analytical, numerical, physical, and analog techniques, have greatly advanced the practice of engineering. Combining theory and experimentation, computer simulation has emerged as a third path for engineering design and performance evaluation. As a result, structural engineers working in the practical world of engineering must apply, and ideally, thrive, on these idealizations of science-based theories. Analyzing the major achievements in the field, Und

  6. Journal of Civil Engineering Research and Practice

    African Journals Online (AJOL)

    The Journal of Civil Engineering Research and Practice aims to publish original research papers of high standard, containing material of significant contribution to civil engineering, with emphasis being placed on material that is applicable to the solution of practical problems.

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  9. Sustainability in Chemical Engineering Curriculum

    Science.gov (United States)

    Glassey, Jarka; Haile, Sue

    2012-01-01

    Purpose: The purpose of this paper is to describe a concentrated strategy to embed sustainability teaching into a (chemical) engineering undergraduate curriculum throughout the whole programme. Innovative teaching approaches in subject-specific context are described and their efficiency investigated. Design/methodology/approach: The activities in…

  10. The future of metabolic engineering and synthetic biology: towards a systematic practice.

    Science.gov (United States)

    Yadav, Vikramaditya G; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-05-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  12. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    Science.gov (United States)

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  13. Mystery Well: Chemical-Engineering Solution to the Internal Rain Problem.

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek

    2017-01-01

    Roč. 174, DEC 31 (2017), s. 396-402 ISSN 0009-2509 Institutional support: RVO:67985858 Keywords : precipitation * humidity-driven convection * buoyant instability Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.895, year: 2016

  14. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  15. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  16. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  17. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    Science.gov (United States)

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  18. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    Science.gov (United States)

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  19. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  20. Professional ethics in biomedical engineering practice and research.

    Science.gov (United States)

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  1. Challenges and opportunities in synthetic biology for chemical engineers.

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.

  2. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. Thermodynamics in finite time: A chemically driven engine

    International Nuclear Information System (INIS)

    Ondrechen, M.J.; Berry, R.S.; Andresen, B.

    1980-01-01

    The methods of finite time thermodynamics are applied to processes whose relaxation parameters are chemical rate coefficients within the working fluid. The direct optimization formalism used previously for heat engines with friction and finite heat transfer rates: termed the tricycle method: is extended to heat engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an engine. Conditions are established for the achievement of maximum power from such a system. Emphasis is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here, there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate

  4. Critical technologies: The role of chemistry and chemical engineering

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this report is to identify and illustrate key contributions of chemical and chemical engineering research to the development of technologies that have been deemed critical to the economy, security, and well-being of our nation. The report surveys a wide range of vital technologies that are heavily reliant or even critically dependent on chemical or chemical engineering research. Examples were taken from the fields of materials, manufacturing, energy, transportation, public health, information and communications, and the environment. While loosely following the structure of the critical technologies report of the NCTP, our committee decided on a different approach, that of using examples backed up by extensive illustrations

  5. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  6. Challenges and opportunities in synthetic biology for chemical engineers

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  7. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    Science.gov (United States)

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  9. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    Science.gov (United States)

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  10. Engineering electrical properties of graphene: chemical approaches

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Yuna; Hong, Byung Hee; Novoselov, Konstantin

    2015-01-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed. (topical review)

  11. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...... such as applied chemistry and process engineering throughout Europe. The result has been a set of recommendations for the first (BS), second (MS) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  12. Leveling the Playing Field: Teacher Perception of Integrated STEM, Engineering, and Engineering Practices

    Science.gov (United States)

    Fincher, Bridgette Ann

    The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering

  13. Chemical engineering challenges and investment opportunities in sustainable energy.

    Science.gov (United States)

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  14. Practical chemical thermodynamics for geoscientists

    CERN Document Server

    Fegley, Bruce, Jr

    2012-01-01

    Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applications Numerous worked examples in each chapter Brief historical summaries and biographies of key thermodynamicists-including their fundamental research and discoveries Extensive references to relevant literature.

  15. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    Science.gov (United States)

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  16. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  17. Relative Importance of Professional Practice and Engineering Management Competencies

    Science.gov (United States)

    Pons, Dirk

    2016-01-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering…

  18. The role of chemical engineering in medicinal research including Alzheimer's.

    Science.gov (United States)

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.

  19. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  20. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  1. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  2. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  3. Geometry of surfaces a practical guide for mechanical engineers

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...

  4. MULTIDISCIPLINARY PROJECTS FOR SECOND YEAR CHEMICAL AND MECHANICAL ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2013-04-01

    Full Text Available In the second semester of the second year of a Mechanical Engineering course, students are supposed to take a Module Outside the Main Discipline (MOMD. This module is chosen to be “Product Design Exercise” a module that is offered to Chemical Engineering students at the same stage. The aim was to expose students from both disciplines to an environment in which they are encouraged to interact with and engage team members with a relatively different background. The students were divided into eight groups all comprised of Chemical and Mechanical Engineering students, and they were offered different open-ended projects that were selected to exploit the knowledge developed by the students thus far and they were slightly skewed towards Chemical Engineering. The students demonstrated a high level of cooperation and motivation throughout the period of the project. Effective communication and closing of knowledge gaps were prevalent. At the end of the project period, students produced a journal paper in lieu of the project report.

  5. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    on each topic. The chapter reviews the some of the scientific and technical challenges in metabolic engineering and the new possibilities emerging from recent technological developments. It concludes by discussing the outlook for bioengineered chemical defences as part of crop protection strategies, also...... with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews...

  6. Appropriate Programs for Foreign Students in U.S. Chemical Engineering Curricula.

    Science.gov (United States)

    Findley, M. E.

    Chemical engineers in developing countries may need abilities in a number of diverse areas including management, planning, chemistry, equipment, processes, politics, and improvisation. Chemical engineering programs for foreign students can be arranged by informed advisers with student input for inclusion of some of these areas in addition to…

  7. Theory and practice in engineering thermodynamics

    International Nuclear Information System (INIS)

    Polak, P.

    1983-01-01

    The book is a new approach to engineering thermodynamics for students of mechanical engineering at diploma and degree levels. There is an explanation of the basic principles of thermodynamics, followed by several chapters illustrating these principles as applied to piston engines, the gas turbine, steam power, and refrigerators and heat pumps. The book aims to introduce some key features of theory and current practice in a way that students will find interesting

  8. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    Science.gov (United States)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  9. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    Science.gov (United States)

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  10. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  11. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  12. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  13. Energy efficiency as an example of cross-discipline collaboration in chemical engineering

    DEFF Research Database (Denmark)

    de Hemptinne, J.-C; Ferrasse, J.-H.; Górak, A.

    2017-01-01

    This paper summarizes the round-table discussion that was held during the European Congress of Chemical Engineering (ECCE) in Nice, France, in October 2015 on this topic. The panellists come from different fields of chemical engineering and have thus brought in different perspectives. The objective...... (industrials, mostly market-driven, or academic), or in terms of discipline. The role of professional societies as the European Federation for Chemical Engineers (EFCE) is stressed as a promotor of collaboration between disciplines.Finally, once willingness for collaboration is identified, the final question...

  14. Guest Editorial: The Professional Status of European Chemists and Chemical Engineers.

    Science.gov (United States)

    Salzer, Reiner; Taylor, Philip; Majcen, Nineta H; De Angelis, Francesco; Wilmet, Sophie; Varella, Evangelia; Kozaris, Ioannis

    2015-07-06

    Which country pays its chemists and chemical engineers the highest salaries? Where can I find a new job quickest? Which chemical sub-discipline offers most jobs? Reliable answers for these and other questions have been derived from the first European employment survey for chemists and chemical engineers, which was carried out in 2013. Here we publish the first general evaluation of the results of this survey. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. My contribution to broadening the base of chemical engineering.

    Science.gov (United States)

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  16. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1997-01-01

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  17. The Chemical Weapons Convention and the Role of Engineers and Scientists

    Directory of Open Access Journals (Sweden)

    Matoušek, J

    2010-02-01

    Full Text Available Chemical weapons, like all military technology, are associated with activities of scientists and engineers. However, chemical weapons differ from any other military technology because they were invented, and their first mass use directly developed by famous chemists. The active contribution of engineers and scientists and their organisations in the negotiations on chemical disarmament, including drafting the Chemical Weapons Convention, is described. Their present and future role in implementing the Convention is analysed, taking into consideration the threats and benefits of advances in science and technology, and stressing the independent expertise of the OPCW Scientific Advisory Board.

  18. Abstracts Book of 42. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1999-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important chemical forum of Polish chemists organised annually. The state of art of many fundamental and applied investigations have been presented and discussed. The following scientific sessions and microsymposia have been proposed: plenary session, analytical chemistry, inorganic chemistry, organic chemistry, chemistry and environment, chemistry and technology of polymers, chemistry didactics, electrochemistry, young scientists forum, chemical technology, chemical engineering, high energetics materials, computers in research and teaching of chemistry, structure modelling and polymer properties, silicon-organic compounds

  19. Role of knowledge based engineering in Heavy Water Plants and its relevance to chemical industry

    International Nuclear Information System (INIS)

    Sonde, R.R.

    2002-01-01

    The development of heavy water technology under the Department of Atomic Energy in India is carried out based on a mission oriented programme and this was backed up by a committed and highly trained manpower with a single minded pursuit to achieve the goal of making India self-sufficient in this challenging area. The paper gives step by step methodology followed in completion of the above mission which has become a benchmark in the chemical industry. A large sized chemical industry (Heavy Water plant being once such industry) has many features which are similar. The process design typically includes design of reactors, distillation columns, heat exchange networks, fluid transfer machinery, support utility systems etc. Besides, there are other issues like safety engineering, selection of materials, commissioning strategies and operating philosophies which are quite common to almost all chemical industries. Heavy water board has engineered and set up large scale heavy water plants and the technology for production of heavy water is completely assimilated in India and this paper tries to bring about some of the strategies which were instrumental in achieving this. The story of success in this technology can most certainly be followed in development of any other process technology. The important factors in the development of this technology is based on integration of R and D, process design, engineering backup, safety features, role of good construction and project management and good operating practices. One more important fact in this technology development is continuous improvement in operation and use of knowledge based engineering for debottlenecking. (author)

  20. Clinical Engineering: Experiences of assisted professional practices

    International Nuclear Information System (INIS)

    Langone, Luis; Vanetta, Marcos; Vazquez, Marcelo; Rotger, Viviana I; Olivera, Juan Manuel

    2007-01-01

    In the curricula of the Biomedical Engineering career of the Facultad de Ciencias Exactas y TecnologIa of the Universidad Nacional de Tucuman, Argenitna, there are the Assisted Professional Practices. Within this framework, the students have the possibility of performing practices in the clinic Sanatorio 9 de Julio. One of the objectives of these practices is to apply the concepts, methods and procedures studied along the career in the field work under real work conditions. From the point of view of the host institution, the objective is to improve the performance of the different services and areas applying the tools of Biomedical Engineering. The present work shows an example of such practices where an equipment preliminary analysis was made, its use and maintenance corresponding to the surgical unit of the clinic

  1. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  2. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  3. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  4. The history of Korean Institute Chemical Engineers for fifteen years

    International Nuclear Information System (INIS)

    2012-12-01

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  5. The history of Korean Institute Chemical Engineers for fifteen years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  6. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  7. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  8. Practice-based systems engineering programme

    CSIR Research Space (South Africa)

    Goncalves, D

    2010-08-01

    Full Text Available the required system engineering competencies is introduced. A practice-based approach is presented as part of the solution, including the roles of universities, students and industry within this approach. Finally we elaborate on a proposed curriculum for a...

  9. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    Science.gov (United States)

    L'Heureux, Zara E.

    designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is

  10. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  11. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  12. Big Data Analytics in Chemical Engineering.

    Science.gov (United States)

    Chiang, Leo; Lu, Bo; Castillo, Ivan

    2017-06-07

    Big data analytics is the journey to turn data into insights for more informed business and operational decisions. As the chemical engineering community is collecting more data (volume) from different sources (variety), this journey becomes more challenging in terms of using the right data and the right tools (analytics) to make the right decisions in real time (velocity). This article highlights recent big data advancements in five industries, including chemicals, energy, semiconductors, pharmaceuticals, and food, and then discusses technical, platform, and culture challenges. To reach the next milestone in multiplying successes to the enterprise level, government, academia, and industry need to collaboratively focus on workforce development and innovation.

  13. Introduction of Life Cycle Assessment and Sustainability Concepts in Chemical Engineering Curricula

    Science.gov (United States)

    Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence

    2018-01-01

    Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…

  14. Design and analysis of questionnaires for survey skills in chemical engineering

    Directory of Open Access Journals (Sweden)

    Susana Lucas

    2011-09-01

    Full Text Available 800x600 Normal 0 21 false false false CA X-NONE X-NONE The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the identification of the main general and transferable skills, the implementation of the new teaching and learning strategies necessary to achieve them and, in addition, an evaluation procedure for determining the importance and the degree of development of a student´s skills and competences. In this exercise, two obligatory chemical reactor engineering subjects of the still in effect Chemical Engineering degree were chosen as examples of competence-based learning disciplines. For each one, a significant group of transferable and specific skills were selected to be developed. The identification and selection of skills was made according to the recommendations of the European Federation of Chemical Engineering (EFCE together with the established requirements in the ministerial order for the new Chemical Engineering Degree (Ministerial order CIN/351/2009. In order to check the effectiveness of teaching strategies in helping students to acquire these abilities, specific questionnaires were designed. These tests allowed for the utility of the competences in question to be evaluated in terms of the students´ professional work as future chemical engineering graduates and also facilitated the perception of skill development acquired through the methodology implemented in these subjects. The results of the skill evaluation questionnaires revealed the importance that both university collectives (students and professors give to the development of transferable skills. These skills included the ability to communicate effectively (including in English, to work in

  15. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  16. A numerical primer for the chemical engineer

    NARCIS (Netherlands)

    Zondervan, E.

    2015-01-01

    This book provides an introduction to numerical methods for students in chemical engineering. The book starts with a recap on linear algebra. It then presents methods for solving linear and nonlinear equations, with a special focus on Gaussian elimination and Newton’s method. It also discusses

  17. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  18. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  19. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  20. Best practices in incident investigation in the chemical process industries with examples from the industry sector and specifically from Nova Chemicals

    International Nuclear Information System (INIS)

    Morrison, Lisa M.

    2004-01-01

    This paper will summarize best practices in incident investigation in the chemical process industries and will provide examples from both the industry sector and specifically from NOVA Chemicals. As a sponsor of the Center for Chemical Process Safety (CCPS), an industry technology alliance of the American Institute of Chemical Engineers, NOVA Chemicals participates in a number of working groups to help develop best practices and tools for the chemical process and associated industries in order to advance chemical process safety. A recent project was to develop an update on guidelines for investigating chemical process incidents. A successful incident investigation management system must ensure that all incidents and near misses are reported, that root causes are identified, that recommendations from incident investigations identify appropriate preventive measures, and that these recommendations are resolved in a timely manner. The key elements of an effective management system for incident investigation will be described. Accepted definitions of such terms as near miss, incident, and root cause will be reviewed. An explanation of the types of incident classification systems in use, along with expected levels of follow-up, will be provided. There are several incident investigation methodologies in use today by members of the CCPS; most of these methodologies incorporate the use of several tools. These tools include: timelines, sequence diagrams, causal factor identification, brainstorming, checklists, pre-defined trees, and team-defined logic trees. Developing appropriate recommendations and then ensuring their resolution is the key to prevention of similar events from recurring, along with the sharing of lessons learned from incidents. There are several sources of information on previous incidents and lessons learned available to companies. In addition, many companies in the chemical process industries use their own internal databases to track recommendations from

  1. Reliability engineering theory and practice

    CERN Document Server

    Birolini, Alessandro

    2014-01-01

    This book shows how to build in, evaluate, and demonstrate reliability and availability of components, equipment, systems. It presents the state-of-theart of reliability engineering, both in theory and practice, and is based on the author's more than 30 years experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The structure of the book allows rapid access to practical results. This final edition extend and replace all previous editions. New are, in particular, a strategy to mitigate incomplete coverage, a comprehensive introduction to human reliability with design guidelines and new models, and a refinement of reliability allocation, design guidelines for maintainability, and concepts related to regenerative stochastic processes. The set of problems for homework has been extended. Methods & tools are given in a way that they can be tailored to cover different reliability requirement levels and be used for safety analysis. Because of the Appendice...

  2. Reliability engineering theory and practice

    CERN Document Server

    Birolini, Alessandro

    2017-01-01

    This book shows how to build in and assess reliability, availability, maintainability, and safety (RAMS) of components, equipment, and systems. It presents the state of the art of reliability (RAMS) engineering, in theory & practice, and is based on over 30 years author's experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The book structure allows rapid access to practical results. Methods & tools are given in a way that they can be tailored to cover different RAMS requirement levels. Thanks to Appendices A6 - A8 the book is mathematically self-contained, and can be used as a textbook or as a desktop reference with a large number of tables (60), figures (210), and examples / exercises^ 10,000 per year since 2013) were the motivation for this final edition, the 13th since 1985, including German editions. Extended and carefully reviewed to improve accuracy, it represents the continuous improvement effort to satisfy reader's needs and confidenc...

  3. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  4. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  5. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    Science.gov (United States)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  6. Advancing the practice of systems engineering at JPL

    Science.gov (United States)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  7. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  8. Interactive Mathematica Simulations in Chemical Engineering Courses

    Science.gov (United States)

    Falconer, John L.; Nicodemus, Garret D.

    2014-01-01

    Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…

  9. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    Science.gov (United States)

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  10. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  11. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  12. An introduction to network modeling and simulation for the practicing engineer

    CERN Document Server

    Burbank, Jack; Ward, Jon

    2011-01-01

    This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.

  13. Chemistry of fossil fuels and biofuels (cambridge series in chemical engineering)

    CERN Document Server

    Schobert, Harold

    2013-01-01

    Focusing on today's major fuel resources - ethanol, biodiesel, wood, natural gas, petroleum products and coal - this book discusses the formation, composition and properties of the fuels, and the ways in which they are processed for commercial use. The book examines the origin of fuels through natural processes such as photosynthesis and the geological transformation of ancient plant material; the relationships between their composition, molecular structures, and physical properties; and the various processes by which they are converted or refined into the fuel products appearing on today's market. Fundamental chemical aspects such as catalysis and the behaviour of reactive intermediates are presented, and global warming and anthropogenic carbon dioxide emissions are also discussed. The book is suitable for graduate students in energy engineering, chemical engineering, mechanical engineering and chemistry, as well as professional scientists and engineers.

  14. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  15. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  16. An approach in building a chemical compound search engine in oracle database.

    Science.gov (United States)

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.

  17. The role of chemical engineering in medicinal research including Alzheimer’s

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10–15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53......:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute......” disease), and Alzheimer’s which are connected to “protein aggregation.” Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics...

  18. Introducing survival ethics into engineering education and practice.

    Science.gov (United States)

    Verharen, C; Tharakan, J; Middendorf, G; Castro-Sitiriche, M; Kadoda, G

    2013-06-01

    Given the possibilities of synthetic biology, weapons of mass destruction and global climate change, humans may achieve the capacity globally to alter life. This crisis calls for an ethics that furnishes effective motives to take global action necessary for survival. We propose a research program for understanding why ethical principles change across time and culture. We also propose provisional motives and methods for reaching global consensus on engineering field ethics. Current interdisciplinary research in ethics, psychology, neuroscience and evolutionary theory grounds these proposals. Experimental ethics, the application of scientific principles to ethical studies, provides a model for developing policies to advance solutions. A growing literature proposes evolutionary explanations for moral development. Connecting these approaches necessitates an experimental or scientific ethics that deliberately examines theories of morality for reliability. To illustrate how such an approach works, we cover three areas. The first section analyzes cross-cultural ethical systems in light of evolutionary theory. While such research is in its early stages, its assumptions entail consequences for engineering education. The second section discusses Howard University and University of Puerto Rico/Mayagüez (UPRM) courses that bring ethicists together with scientists and engineers to unite ethical theory and practice. We include a syllabus for engineering and STEM (Science, Technology, Engineering and Mathematics) ethics courses and a checklist model for translating educational theory and practice into community action. The model is based on aviation, medicine and engineering practice. The third and concluding section illustrates Howard University and UPRM efforts to translate engineering educational theory into community action. Multidisciplinary teams of engineering students and instructors take their expertise from the classroom to global communities to examine further the

  19. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    Science.gov (United States)

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  20. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Unifying principles of irreversibility minimization for efficiency maximization in steady-flow chemically-reactive engines

    International Nuclear Information System (INIS)

    Ramakrishnan, Sankaran; Edwards, Christopher F.

    2014-01-01

    Systems research has led to the conception and development of various steady-flow, chemically-reactive, engine cycles for stationary power generation and propulsion. However, the question that remains unanswered is: What is the maximum-efficiency steady-flow chemically-reactive engine architecture permitted by physics? On the one hand the search for higher-efficiency cycles continues, often involving newer processes and devices (fuel cells, carbon separation, etc.); on the other hand the design parameters for existing cycles are continually optimized in response to improvements in device engineering. In this paper we establish that any variation in engine architecture—parametric change or process-sequence change—contributes to an efficiency increase via one of only two possible ways to minimize total irreversibility. These two principles help us unify our understanding from a large number of parametric analyses and cycle-optimization studies for any steady-flow chemically-reactive engine, and set a framework to systematically identify maximum-efficiency engine architectures. - Highlights: • A unified thermodynamic model to study chemically-reactive engine architectures is developed. • All parametric analyses of efficiency are unified by two irreversibility-minimization principles. • Variations in internal energy transfers yield a net work increase that is greater than engine irreversibility reduced. • Variations in external energy transfers yield a net work increase that is lesser than engine irreversibility reduced

  2. A Chemical Engineering Perspective on the Origins of Life

    Directory of Open Access Journals (Sweden)

    Martha A. Grover

    2015-05-01

    Full Text Available Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry.

  3. An Alternative Route to Chemical Engineering for Minority and Other Students.

    Science.gov (United States)

    Cussler, E. L.

    The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…

  4. The Chemical Engineering behind How Carbonated Beverages Go Flat: A Hands-On Experiment for Freshmen Students

    Science.gov (United States)

    Hohn, Keith L.

    2007-01-01

    A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…

  5. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  6. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels.

    Science.gov (United States)

    Srirangan, Kajan; Bruder, Mark; Akawi, Lamees; Miscevic, Dragan; Kilpatrick, Shane; Moo-Young, Murray; Chou, C Perry

    2017-09-01

    Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].

  7. Practical Application of Sociology in Systems Engineering

    Science.gov (United States)

    Watson, Michael D.; Andrews, James G.; Eckley, Jeri Cassel; Culver, Michael L.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, who often have different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated will all relevant information informing system decisions. The practical application of the sociology in systems engineering brings in various organizational development concepts including the principles of planned renegotiation and the application of principles to address information barriers created by organizational culture. Concepts such as specification of ignorance, consistent terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that help address the organizational social structure (culture). In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, and insider-outsider behavior. Unintended consequences can result when these social issues are present. These issues can occur when localized subcultures shift from the overarching organizational culture, or when the organizational culture prevents achievement of system goals. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information and provides key sociological barriers to information flow through the organization. This paper will discuss the practical application of sociological principles to systems engineering.

  8. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    Science.gov (United States)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward

  9. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    Science.gov (United States)

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  10. Chemical Reaction Engineering: Current Status and Future Directions.

    Science.gov (United States)

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  11. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  12. Teaching practice and reform of the cultivation of excellent engineer based on the idea of engineering education

    Science.gov (United States)

    Shen, Hanxin; Xiong, Feibing; Huang, Zhangchao; Bai, Zijun

    2017-08-01

    How to realize the joint cultivation of excellent engineer for the school and the enterprise is an important task of the project of excellent engineers. In five years of teaching practice, based on the concept of engineering education certification, through target management of school and enterprise, cultural fusion, stage implementation and feedback, excellent engineer education training plan of opto-electronic specialty is being implemented. It standardizes the specialty construction and practice and explores new teaching management mode, which gets the recognition of graduates and enterprises and achieves a win-win situation for school and enterprise.

  13. Journal of Civil Engineering Research and Practice: Submissions

    African Journals Online (AJOL)

    Author Guidelines. AIMS AND SCOPE The Journal of Civil Engineering Research and Practice aims to publish original research papers of high standard, containing material of broad interest and of significant contribution to civil engineering, with emphasis being placed on material that is applicable to the solution of ...

  14. Military Engineers and Chemical Warfare Troops (Inzhenernye Voiska Khimicheskie Voiska),

    Science.gov (United States)

    MILITARY FORCES(FOREIGN), *MILITARY ORGANIZATIONS, MILITARY ENGINEERING , INFANTRY, AMPHIBIOUS OPERATIONS, MINELAYING, ARMORED VEHICLES, NUCLEAR...RADIATION, DOSIMETERS, CHEMICAL WARFARE, PROTECTIVE CLOTHING, DECONTAMINATION, HEALTH PHYSICS.

  15. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    Science.gov (United States)

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  16. selectivity engineering in sustainable production of chemicals, fuels ...

    Indian Academy of Sciences (India)

    admin

    Cost. Landfill. –400. Source: Tuck et al., Science, 337 (6095): 695-699 10 August ... libraries for novel enzymes that transform lignocellulosics ... Bio-process engineering for optimal production of ... fine chemicals and petrochemical industries. ..... Mole ratio : Epichlorohydrin to acetone of 1:8 , 100 % atom economy. Sr.No.

  17. HBCUs and Chemical Engineering: Analysis of Baccalaureate Programs

    Science.gov (United States)

    Reeves, Sheena; Thompson, Audie

    2018-01-01

    Historically Black Colleges and Universities (HBCUs) provide significant STEM degrees to African Americans. Initiatives toward increasing diversity in STEM fields have been implemented by government and industry leaders. HBCUs annually award over 20% of all African American baccalaureate chemical engineering degrees. This speaks volume to the…

  18. The Intersection of Gender and Race: Exploring Chemical Engineering Students' Attitudes

    Science.gov (United States)

    Goodwin, Allison; Verdín, Dina; Kirn, Adam; Satterfield, Derrick

    2018-01-01

    We surveyed 342 first-year engineering students at four U.S. institutions interested in a chemical engineering career about their feelings of belonging in engineering, motivation, and STEM identities. We compared these students by both gender and race/ethnicity on these attitudinal factors. We found several significant differences in…

  19. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    Science.gov (United States)

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  20. Engineering cyanobacteria for fuels and chemicals production.

    Science.gov (United States)

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  1. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    Science.gov (United States)

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Industrial practices

    International Nuclear Information System (INIS)

    Velasquez Torrez, Patricia Irma

    1999-01-01

    This document reports the industrial practices carried out by the author viewing the requirements fulfilled for obtention the academic degree in chemical engineering of the San Andres University - Bolivia

  3. Chemical Reaction Engineering Applications in Non-traditional Technologies. A Textbook Supplement.

    Science.gov (United States)

    Savage, Phillip E.; Blaine, Steven

    1991-01-01

    A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)

  4. Relative importance of professional practice and engineering management competencies

    Science.gov (United States)

    Pons, Dirk

    2016-09-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering management competencies. Findings: Results show that communication and project planning were the two most important topics, followed by others as identified. The context in which practitioners use communication skills was found to be primarily with project management, with secondary contexts identified. The necessity for engineers to develop the ability to use multiple soft skills in an integrative manner is strongly supported by the data. Originality: This paper is one of only a few large-scale surveys of practising engineers to have explored the soft skill attributes. It makes a didactic contribution of providing a ranked list of topics which can be used for designing the curriculum and prioritising teaching effort, which has not previously been achieved. It yields the new insight that combinations of topics are sometimes more important than individual topics.

  5. Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses

    Science.gov (United States)

    Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff

    2013-01-01

    Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…

  6. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  7. Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory

    Science.gov (United States)

    Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra

    2017-01-01

    We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…

  8. Constructing engineers through practice: Gendered features of learning and identity development

    Science.gov (United States)

    Tonso, Karen L.

    How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of

  9. Practical Engineering Aspects of Catalysis in Microreactors

    Czech Academy of Sciences Publication Activity Database

    Křišťál, Jiří; Stavárek, Petr; Vajglová, Zuzana; Vondráčková, Magdalena; Pavlorková, Jana; Jiřičný, Vladimír

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9357-9371 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * homogeneous catalysis * photo catalysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  10. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  11. Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.

    Science.gov (United States)

    Gladden, Lynn F; Sederman, Andrew J

    2017-06-07

    This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to chemical engineering research.

  12. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  13. Reliability engineering. Theory and practice. 6. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Birolini, Alessandro

    2010-07-01

    This book shows how to build in, evaluate, and demonstrate reliability and availability of components, equipment, systems. It presents the state-of-the-art of reliability engineering, both in theory and practice, and is based on the author's 30 years experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The structure of the book allows rapid access to practical results. Besides extensions to cost models and approximate expressions, new in this edition are investigations on common cause failures, phased-mission systems, availability demonstration and estimation, confidence limits at system level, trend tests for early failures or wearout, as well as a review of maintenance strategies, an introduction to Petri nets and dynamic FTA, and a set of problems for home-work. Methods and tools are given in a way that they can be tailored to cover different reliability requirement levels and be used for safety analysis as well. This book is a textbook establishing a link between theory and practice, with a large number of tables, figures, and examples to support the practical aspects. (orig.)

  14. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2001-01-01

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  15. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  16. Ten Engineers Reading: Disjunctions between Preference and Practice in Civil Engineering Faculty Responses

    Science.gov (United States)

    Taylor, Summer Smith; Patton, Martha D.

    2006-01-01

    Previous research has indicated that engineering faculty do not follow best practices when commenting on students' technical writing. However, it is unclear whether the faculty prefer to comment in these ineffective ways, or whether they prefer more effective practices but simply do not enact them. This study adapts a well known study of response…

  17. Materials of 48. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical

    International Nuclear Information System (INIS)

    2005-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: chemistry of metalorganic and supramolecular compounds; organic and bioorganic chemistry; coordination and bioinorganic chemistry; chemistry of polymers and biopolymers; physical and theoretical chemistry; catalysis; structural chemistry; analytical chemistry and environmental protection chemistry of materials and nanomaterials; technology and chemical engineering; didactics of chemistry; young scientist forum; chemistry for economy

  18. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  19. Abstracts of the 54. Canadian Chemical Engineering Conference : Energy for the Future

    International Nuclear Information System (INIS)

    2004-01-01

    The key energy challenges facing the chemical process industries were addressed at this international conference. Chemical engineering was shown to play a critical role in offering technical solutions to the challenges of climate change and pollution abatement on a global scale. The sessions addressed a variety of issues dealing with heavy oil processing and utilization, natural gas processing, reservoir engineering and biotechnology process systems. The presentations also addressed issues dealing with applied thermodynamics, new technologies, polymer engineering and other fundamental processes, including some used by the pulp and paper industry. The conference featured more than 500 presentations from around the world, including Canada, the United States, Asia and Europe. A total of 84 papers have been indexed separately for inclusion in this database

  20. Situational Analysis and Engineering Work Practices

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2013-01-01

    boundaries in order to investigate the dynamics of cultural reproduction in expert work practices. The paper will propose a new research agenda that – inspired by George Marcus’ multi-sited ethnographic methodology (Marcus 1998) and Adele Clarke’s situational analysis (Clarke 2005) – analyze (and contrasts...... of analysis and allowing the situation to be scalable. Likewise, it aspires to overcome the widespread dualism of ‘text’ and ‘con-text’ that pervades contemporary social science methods. We will argue that expert work practices – although reproduced and enacted in local settings – are also enactments......Studies of work practices of scientists and engineers inspired by Science and Technology Studies (STS) provide new material for a richer understanding of expert cultures and expert work practices. However, the specific and strictly situated focus of many of these studies threatens to limit...

  1. Small hydroelectric engineering practice

    CERN Document Server

    Leyland, Bryan

    2014-01-01

    Small Hydroelectric Engineering Practice is a comprehensive reference book covering all aspects of identifying, building, and operating hydroelectric schemes between 500 kW and 50 MW. In this range of outputs there are many options for all aspects of the scheme and it is very important that the best options are chosen.As small hydroelectric schemes are usually built against a limited budget it is extremely important that the concept design is optimum and every component is designed to maximise the benefi t and minimise the cost. As operating costs are often a high proportion of the income it i

  2. Using vegetable oils and animal fats in Diesel Engines: chemical analyses and engine texts

    International Nuclear Information System (INIS)

    Marmino, I.; Verhelst, S.; Sierens, R.

    2008-01-01

    In this work, some vegetable oils (rapeseed oil, palm oil) and animal fat were tested in a Diesel engine at a range of engine spreads and torque settings, after preheating at 70 0 C. Engine performance, fuel consumption and NOx, unburnt hydrocarbons and soot emissions have been recorded. The results have been compared to those obtained with diesel fuel in the same test conditions. The oils and fats were also analyzed for their physical and chemical properties (viscosity, composition, unsaturation, heating value). NOx emissions were found to be lower for the oils than for the diesel fuel. This, combined with higher HC emissions, can probably be explained through less effective atomization due to the higher viscosity of the oils and fat. On the other hand, soot emissions were found to decrease. [it

  3. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  4. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices; TOPICAL

    International Nuclear Information System (INIS)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2002-01-01

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document

  5. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    Science.gov (United States)

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  6. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    Science.gov (United States)

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  7. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  8. Engineering microbial chemical factories to produce renewable "biomonomers".

    Science.gov (United States)

    Adkins, Jake; Pugh, Shawn; McKenna, Rebekah; Nielsen, David R

    2012-01-01

    By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called "biomonomers." Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way toward new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible.

  9. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    Science.gov (United States)

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  10. Modeling as an Engineering Habit of Mind and Practice

    Science.gov (United States)

    Lammi, Matthew D.; Denson, Cameron D.

    2017-01-01

    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  11. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  12. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    Science.gov (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  13. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  14. Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

    Science.gov (United States)

    Tang, F. R.; Zhang, Rong; Li, Huichao; Li, C. N.; Liu, Wei; Bai, Long

    2018-05-01

    The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

  15. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  16. Applied chemistry and environmental engineering for engineers. Manual for students and practicians. 2. ed.; Angewandte Chemie und Umwelttechnik fuer Ingenieure. Handbuch fuer Studium und betriebliche Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Fessmann, J.; Orth, H.

    2002-07-01

    This is a practically oriented textbook for chemistry and environmental protection training of students of mechanical engineering, vehicle engineering, electrical engineering, space HVAc engineering etc. Students are also given useful information on the practical applications of chemistry and on environmental protection in industrial practice. The book also contains problem solutions for managing engineers in organizations of the metal and electrical branch who are confronted with chemical problems in chemical engineering, quality assurance, industrial safety and environmental protection. [German] Das Handbuch vermittelt in konzentrierter Form die Grundlagen der Chemie und Umwelttechnik und schlaegt rasch die Bruecke zur industriellen Anwendung bevorzugt in der Metall- und Elektroindustrie. Das Handbuch ist ein praxisorientiertes Lehrbuch fuer die Chemie- und Umweltschutzausbildung von Ingenieurstudenten der Fachrichtungen Maschinenbau, Fahrzeugtechnik, Elektrotechnik, Versorgungstechnik u.a. Darueberhinaus finden Schueler von Chemieleistungskursen an Gymnasien oder Chemiestudenten an Fachhochschulen oder Universitaeten viele nuetzliche Informationen ueber die Anwendungen von Chemie und Umweltschutz in der industriellen Praxis. Nicht zuletzt enthaelt das Buch Problemloesungen fuer Betriebsingenieure, insbesondere aus dem Bereich der Metall- und Elektrobranche, die mit chemischen Fragestellungen in der Verfahrenstechnik, Qualitaetssicherung oder Arbeits-/Umweltschutzueberwachung konfrontiert sind. (orig.)

  17. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Burris, L.; Webster, D.S.; Barney, D.L.; Cafasso, F.A.; Steindler, M.J.

    1981-06-01

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO 2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  18. Materials of 47. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry. Volume 3

    International Nuclear Information System (INIS)

    2004-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum

  19. Transient Seepage Analyses in Levee Engineering Practice

    Science.gov (United States)

    2016-07-01

    and contractors in conventional engineering practice has outpaced the development of guidance documents and design recommendations. The major...ERDC TR-16-8 99 B.5 Final solution The final solution is obtained by first solving for ht from Equation B.5 as follows: t t tssˆh h h  (B

  20. Exploration and practice for engineering innovative talents training based on project-driven

    Science.gov (United States)

    Xu, Yishen; Lv, Qingsong; Ye, Yan; Wu, Maocheng; Gu, Jihua

    2017-08-01

    As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students' innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.

  1. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  2. Excel 2016 for engineering statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching engineering statistics effectively. Similar to the previously published Excel 2013 for Engineering Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However,Excel 2016 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and...

  3. Practical pulse engineering: Gradient ascent without matrix exponentiation

    Science.gov (United States)

    Bhole, Gaurav; Jones, Jonathan A.

    2018-06-01

    Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.

  4. Rurality as an Asset for Inclusive Teaching in Chemical Engineering

    Science.gov (United States)

    Gomez, Jamie; Svihla, Vanessa

    2018-01-01

    We developed and tested a pedagogical strategy--asset-based design challenges--to enhance diversity in early chemical engineering coursework. Using qualitative methods, we found first-year students justified high-cost solutions with ethical arguments; teams that included rural expertise argued instead for economically-viable solutions. In the…

  5. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    Science.gov (United States)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  7. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    Science.gov (United States)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  8. Abstracts Book of Jubilee Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2000-01-01

    Scientific Assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are most important chemical discussion forum organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as sections and symposia topics: organic chemistry, physical chemistry (chemical kinetics, catalysis, thermodynamics), membranes and membrane processes, biological chemistry, biotechnology, metalorganic compounds and complexes, polymer chemistry, crystallochemical study, spectroscopy in nowadays chemistry, supramolecular chemistry, chemistry and technology of coal, high-energetic materials, environment protection, didactics in chemistry, radiation chemistry, photochemistry, electrochemistry, chemistry and technology of carbohydrates, theoretical and computer chemistry, young scientists forum, history of chemistry

  9. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    Science.gov (United States)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  10. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    International Nuclear Information System (INIS)

    Gajewski, Juliusz B; Glogowski, Marek J; Paszkowski, Maciej; Czarnik-Matusewicz, Boguslawa

    2011-01-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  11. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    Science.gov (United States)

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  12. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    Science.gov (United States)

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  13. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL...... on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering...

  14. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  15. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  16. Adapting Infrastructure and Civil Engineering Practice to a Changing Climate: Developing a Manual of Practice

    Science.gov (United States)

    Walker, D.; Ayyub, B. M.

    2017-12-01

    According to U.S. Census, new construction spending in the U.S. for 2014 was $993 Billion (roughly 6 percent of U.S. GDP). Informing the development of standards of engineering practice related to design and maintenance thus represents a significant opportunity to promote climate adaptation and mitigation, as well as community resilience. The climate science community informs us that extremes of climate and weather are changing from historical values and that the changes are driven substantially by emissions of greenhouse gases caused by human activities. Civil infrastructure systems traditionally have been designed, constructed, operated and maintained for appropriate probabilities of functionality, durability and safety while exposed to climate and weather extremes during their full service lives. Because of uncertainties in future greenhouse gas emissions and in the models for future climate and weather extremes, neither the climate science community nor the engineering community presently can define the statistics of future climate and weather extremes. The American Society for Civil Engineering's (ASCE) Committee on Adapting to a Changing Climate is actively involved in efforts internal and external to ASCE to promote understanding of the challenges climate change represents in engineering practice and to promote a re-examination of those practices that may need to change in light of changing climate. In addition to producing an ASCE e-book, as well as number of ASCE webinars, the Committee is currently developing a Manual of Practice intended to provide guidance for the development or enhancement of standards for infrastructure analysis and design in a world in which risk profiles are changing (non-stationarity) and climate change is a reality, but cannot be projected with a high degree of certainty. This presentation will explore both the need for such guidance as well as some of the challenges and opportunities facing its implementation.

  17. INFUSING INDUSTRY PRACTICES INTO AN ENGINEERING CAPTSONE PROJECT: A LEARNING OUTCOME ATTAINMENT CASE STUDY

    Directory of Open Access Journals (Sweden)

    SATESH NAMASIVAYAM

    2016-04-01

    Full Text Available A capstone project in current engineering education is often introduced to enable the holistic attainment of engineering knowledge by an engineering undergraduate. Essentially project-based in nature, there exists a need to ensure that part of the attainment process involves key industry practices – such practices being necessary in attaining the status of a professional engineer. Herein lies the synergy that can be made use of between industry and academia. By exposing engineering undergraduates to a project which addresses an engineering challenge and providing them with the opportunity to learn from professional engineers who are experts in the fields of safety, sustainability, quality management, ethics and project management, this culminates in the implementation of a prototype design which incorporates the amalgamation of knowledge from industry and academia. This paper presents the unique curriculum developed in a capstone project module, incorporating learning sessions from professional engineers in the five (5 key areas of industry practice highlighted above and how these have contributed to significantly enhancing the learning outcome and hence programme outcome attainment of the engineering undergraduates who have experienced the module.

  18. Practical microcontroller engineering with ARM technology

    CERN Document Server

    Bai, Ying

    2016-01-01

    This book introduces the basic concepts and practical techniques in designing and building ARM® microcontrollers in industrial and commercial applications Practical Microcontroller Engineering with ARM® Technology provides the full scope of components and materials related to ARM® Cortex®–M4 microcontroller systems. Chapters 2 through 9 provide the fundamentals and detailed discussions about ARM® Cortex®-M4 MCU applications with the most widely used peripherals such as flash memory, EEPROM, ADC, DAC, PWM, UART, USB, I2C, SSI, LCD and GPTM. The remaining chapters cover advanced and optional peripherals such as Control Area Network (CAN), Quadrature Encoder Interface (QEI), Analog Comparators (ACMP) and detailed discussions of Floating Point Unit (FPU) and ARM® Cortex®-M4 Memory Protection Unit (MPU).

  19. Engineering Microbial Chemical Factories to Produce Renewable ‘Biomonomers’

    Directory of Open Access Journals (Sweden)

    Jake eAdkins

    2012-08-01

    Full Text Available By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called ‘biomonomers’. Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way towards new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible.

  20. Engineering microbial chemical factories to produce renewable “biomonomers”

    Science.gov (United States)

    Adkins, Jake; Pugh, Shawn; McKenna, Rebekah; Nielsen, David R.

    2012-01-01

    By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called “biomonomers.” Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way toward new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible. PMID:22969753

  1. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  2. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  3. An Introduction to Thermal-Fluid Engineering

    Science.gov (United States)

    Warhaft, Zellman

    1998-01-01

    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  4. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  5. Environmental protection, a task of chemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, H

    1980-12-01

    The environmental burden in air and water in Germany is surveyed. The terms 'eco-unobjectionable technology' and 'disposal technology' are then considered with the aid of examples. These are fundamental chemical engineering approaches for reducing or eliminating environmental burdens due to industrial production processes. 'Eco-unobjectionable processes' are those in which undesired pollutants are not even formed, i.e. when possible emissions are eliminated at source. If this is only partly possible, or impossible, then disposal measures are adopted. This means removal of unavoidable pollutants from waste gases and waste water, and the disposal of other wastes.

  6. Some radiation chemical aspects of nuclear engineering

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Kabakchi, S.A.; Egorov, G.F.

    1988-01-01

    Some radiation chemical aspects of nuclear engineering are discussed (predominantly on the base of the works performed in the Soviet Union). The data on the influence of temperature within the range of 0-300 0 C on the yields of water radiolysis products are considered. The results obtained from the study of reactivity of actinide ions towards inorganic free radicals in acid aqueous solutions are summarized. The information on composition and properties of the products of radiolytic transformations of different extragents and diluents and on their influence on the behaviour of extraction systems during processing of irradiated nuclear fuel is presented. (author)

  7. The assessment of learning in engineering education practice and policy

    CERN Document Server

    Heywood, John

    2016-01-01

    Explores how we judge engineering education in order to effectively redesign courses and programs that will prepare new engineers for various professional and academic careers This book considers the functions of assessment and its measurement in engineering education. Chapters two through three discuss efforts toward alternative curriculum in engineering and advanced level exams for university entry in engineering science. Chapter four reviews investigations of what engineers do at work and their implications assessment. Chapter five records the development of competency based assessment and considers its implications for the engineering curriculum. Chapter six discusses the impact of the accrediting authorities on assessment, outcomes based assessment, taxonomies and assessment in mastery and personalized systems of instruction. Chapters seven through eight consider student variability (e.g. intellectual development, emotional intelligence) and reflective practice. Questio s are raised about the assessment...

  8. Artificial organ engineering

    CERN Document Server

    Annesini, Maria Cristina; Piemonte, Vincenzo; Turchetti, Luca

    2017-01-01

    Artificial organs may be considered as small-scale process plants, in which heat, mass and momentum transfer operations and, possibly, chemical transformations are carried out. This book proposes a novel analysis of artificial organs based on the typical bottom-up approach used in process engineering. Starting from a description of the fundamental physico-chemical phenomena involved in the process, the whole system is rebuilt as an interconnected ensemble of elemental unit operations. Each artificial organ is presented with a short introduction provided by expert clinicians. Devices commonly used in clinical practice are reviewed and their performance is assessed and compared by using a mathematical model based approach. Whilst mathematical modelling is a fundamental tool for quantitative descriptions of clinical devices, models are kept simple to remain focused on the essential features of each process. Postgraduate students and researchers in the field of chemical and biomedical engineering will find that t...

  9. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    Science.gov (United States)

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  10. Teaching Technical Writing in a Lab Course in Chemical Engineering

    Science.gov (United States)

    Lombardo, Stephen J.

    2010-01-01

    Techniques are presented for improving the technical writing of chemical engineering students enrolled in an undergraduate laboratory course. The principles of writing covered are adopted from the book, Style: Lessons in Clarity and Grace, by Joseph M. Williams: General examples of writing are taken from this book and then are recast into examples…

  11. Y2K of the society of chemical engineers, Japan; Kagaku kogakukai no 2000nen mondai

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, K. [Kobe University, Kobe (Japan)

    2000-01-05

    In this paper, the coming problem of the Y2K problems by the cataclysm of economic society that the Society of Chemical Engineers holds is described. And it is explained in dividing into the present problems for the development of the Society of Chemical Engineers, a science and technology promotion policy, a university/industry cooperation, a regional cooperation, an internationality and international contribution, an effect of an independent administrative corporation of national universities, the movement of a future plan, the terms of member needs and a base establishment. In the paragraph of the movement of a future plan, the facts that a basic philosophy of the Society of Chemical Engineers was suggested standing on the report of the Vision Settlement Preparation Committee organized in 1998, the Chemical Industry Vision 2011 Settlement Committee was inaugurated for constituting its future images and the Working Group composed of the members of the Industry Institute in their forties leading the next generation was established is introduced. (NEDO)

  12. Sharing best practices in teaching biomedical engineering design.

    Science.gov (United States)

    Allen, R H; Acharya, S; Jancuk, C; Shoukas, A A

    2013-09-01

    In an effort to share best practices in undergraduate engineering design education, we describe the origin, evolution and the current status of the undergraduate biomedical engineering design team program at Johns Hopkins University. Specifically, we describe the program and judge the quality of the pedagogy by relating it to sponsor feedback, project outcomes, external recognition and student satisfaction. The general pedagogic practices, some of which are unique to Hopkins, that have worked best include: (1) having a hierarchical team structure, selecting team leaders the Spring semester prior to the academic year, and empowering them to develop and manage their teams, (2) incorporating a longitudinal component that incudes freshmen as part of the team, (3) having each team choose from among pre-screened clinical problems, (4) developing relationships and fostering medical faculty, industry and government to allow students access to engineers, clinicians and clinical environments as needed, (5) providing didactic sessions on topics related to requirements for the next presentation, (6) employing judges from engineering, medicine, industry and government to evaluate designs and provide constructive criticisms approximately once every 3-4 weeks and (7) requiring students to test the efficacy of their designs. Institutional support and resources are crucial for the design program to flourish. Most importantly, our willingness and flexibility to change the program each year based on feedback from students, sponsors, outcomes and judges provides a mechanism for us to test new approaches and continue or modify those that work well, and eliminate those that did not.

  13. Excel 2013 for engineering statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach engineering statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs...

  14. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    Science.gov (United States)

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Virtual Chemical Engineering: Guidelines for E-Learning in Engineering Education

    Directory of Open Access Journals (Sweden)

    Damian Schofield

    2010-11-01

    Full Text Available Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry can allow educational developers to rapidly create realistic three-dimensional, virtual environments. This technology has been used to generate a range of interactive learning environments across a broad spectrum of industries.The paper will discuss the implementation of these systems and extrapolate the lessons learnt into general guidelines to be considered for the development of a range of educational learning resources. These guidelines will then be discussed in the context of the development of ViRILE (Virtual Reality Interactive Learning Environment, software which simulates the configuration and operation of a polymerisation plant. This software package has been developed for use by undergraduate chemical engineers at the University of Nottingham.

  16. Energy and environmental challenges to chemical engineers

    International Nuclear Information System (INIS)

    McHenry, K.W.

    1991-01-01

    The National Research Council's report, Frontiers in Chemical Engineering, was written four years ago. Three high-priority research areas concerned with energy and the environment were identified in the report: in situ processing, liquid fuels for the future, and responsible management of hazardous wastes. As outlined in the recently released National Energy Strategy, in situ processing is viewed by the Department of Energy (DOE) primarily through its use in enhanced oil recovery, and some research is still funded. Industry, driven by the economics of low oil prices, is doing little research on in situ processing but much more on reservoir characterization, a prerequisite to processing. Research on liquid fuels for the future is driven more by environmental concerns now than by energy security concerns. It appears to be wise policy for the future to try to solve the alternative fuel problem as quickly and simply as possible. Otherwise, the nation will find itself with a costly and complex fuel and vehicle system that may have to be changed again in a generation. For the interim, we should look closely at reformulated gasoline followed by compressed natural gas, if necessary. In the long run, vehicle systems based on electricity seem most promising for the middle of the next century. To deliver this technology we need to capitalize on three new high-priority research areas: batteries, fuel cells, and nuclear power. For chemical engineers, future challenges of a different sort will be added to the technical challenges, among them are explaining to a skeptical public the wisdom of proceeding to design the interim system of alternative fuel(s) and to move expeditiously to a final solution

  17. Factors Affecting the Behavior of Engineering Students toward Safety Practices in the Machine Shop

    Directory of Open Access Journals (Sweden)

    Jessie Kristian M. Neria

    2015-08-01

    Full Text Available This study aimed to determine the factors that affect the behavior of engineering student toward safety practices in the machine shop. Descriptive type of research was utilized in the study. Results showed that most of the engineering students clearly understand the signage shown in the machine shop. Students are aware that they should not leave the machines unattended. Most of the engineering students handle and use the machine properly. The respondents have an average extent of safety practices in the machine shop which means that they are applying safety practices in their every activity in machine shop. There is strong relationship between the safety practices and the factors affecting behavior in terms of signage, reminder of teacher and rules and regulation.

  18. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  19. Introduction to computational mass transfer with applications to chemical engineering

    CERN Document Server

    Yu, Kuo-Tsong

    2014-01-01

    This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds  mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...

  20. Automatic differentiation tools in the dynamic simulation of chemical engineering processes

    Directory of Open Access Journals (Sweden)

    Castro M.C.

    2000-01-01

    Full Text Available Automatic Differentiation is a relatively recent technique developed for the differentiation of functions applicable directly to the source code to compute the function written in standard programming languages. That technique permits the automatization of the differentiation step, crucial for dynamic simulation and optimization of processes. The values for the derivatives obtained with AD are exact (to roundoff. The theoretical exactness of the AD comes from the fact that it uses the same rules of differentiation as in differential calculus, but these rules are applied to an algorithmic specification of the function rather than to a formula. The main purpose of this contribution is to discuss the impact of Automatic Differentiation in the field of dynamic simulation of chemical engineering processes. The influence of the differentiation technique on the behavior of the integration code, the performance of the generated code and the incorporation of AD tools in consistent initialization tools are discussed from the viewpoint of dynamic simulation of typical models in chemical engineering.

  1. Materials of 46. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical. Volume 1,2,3

    International Nuclear Information System (INIS)

    2003-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meetings organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects were proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum as well as the reports of results of works sponsored by Committee of Scientific Research

  2. ["Two professions for a single task". The introduction of chemical engineering in Spain during the first Francoism].

    Science.gov (United States)

    Toca, Angel

    2006-01-01

    Through the first half of the 20th century, chemical engineering was established as an academic option in the training of specialists for the North-American and European chemical industry, whereas it was not a special field of study in Spain until the 1990s. The reason for this delay was a battle of interests between chemist and industrial engineers to control this career during the first Francoism. This article will try to show the development and professionalization of specialists for the Spanish chemical industry.

  3. English Language Publishing in Chemical Engineering Journals from an Indian Academic's Point of View--A Broad Scientific Perspective

    Science.gov (United States)

    Palit, Sukanchan

    2016-01-01

    Scientific vision and scientific understanding in today's world are in the path of new glory. Chemical Engineering science is witnessing drastic and rapid changes. The metamorphosis of human civilization in this century is faced with vicious challenges. Progress of Chemical Engineering science, the vision of technology and the broad chemical…

  4. Abstracts of the 47. Canadian chemical engineering conference

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical engineering and its role in the development of Western Canada's oil sands and heavy oil reserves was the main focus of this conference. The presentations revolved around the theme, 'The Competitive Advantage'. Features of the conference included strong participation by industry, professional development courses, and government. Energy-related sessions were entitled: (1) oil and bitumen recovery, (2) bitumen extraction and froth treatment, (3) bitumen upgrading, (4) in-situ recovery and enhanced oil recovery, (5) air quality, (6) cracking and hydrogenation, and (7) sulfur recovery and gas processing

  5. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit

    2009-01-01

    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  6. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  7. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    Science.gov (United States)

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  8. Human Factors Engineering: Current Practices and Development Needs in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Savioja, Paula; Norros, Leena; Liinasuo, Marja; Laarni, Jari [VTT Technical Research Centre of Finland, Finland (Finland)

    2011-08-15

    This paper describes initial findings from a study concerning the practices and development needs of Human Factors Engineering (HFE) in Finland. HFE is increasing in importance as the Radiation and Nuclear Safety Authority Finland (STUK) is renewing the regulatory guidelines and the intention is to include requirements concerning HFE. The motivation for the paper is to discover how HFE is conducted currently in order to envision what should be aimed at when modifying requirements for design practices. In an interview with STUK it was discovered that current HFE practices encompass mainly activities related to control room modifications and as such namely verification and validation of new designs. The adoption of the entire HFE process in design and modification projects requires changes that include better integration of technical and Human Factors Engineering approaches. Boundary objects that mediate between different design disciplines are needed in order to enforce the stronger integration. Concept of operations (CONOPS) is suggested as a such boundary object.

  9. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds.

    Science.gov (United States)

    Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen

    2018-05-01

    Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.

  10. Current earthquake engineering practice for Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Park, Y.J.; Costello, J.F.

    1992-01-01

    This paper provides a brief overview of seismic research being conducted in Japan and describes USNRC efforts to understand Japanese seismic practice. Current earthquake engineering practice for Japanese nuclear power plants is descried in JEAG 4601-1987, ''Technical Guidelines for Aseismic Design of Nuclear Power Plants.'' The USNRC has sponsored BNL to translate this document into English. Efforts are underway to study and understand JEAG 4601-1987 and make the translation more readily available in the United States

  11. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors

    International Nuclear Information System (INIS)

    Ma, Yuanyuan; Qu, Yongquan; Zhou, Wei

    2013-01-01

    Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO 2 ) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO 2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO 2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO 2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO 2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. (author)

  13. Incorporating Computer-Aided Software in the Undergraduate Chemical Engineering Core Courses

    Science.gov (United States)

    Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A.

    2014-01-01

    Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…

  14. Design and Analysis of Questionnaires for Survey Skills in Chemical Engineering

    Science.gov (United States)

    Lucas Yagüe, Susana; Coca Sanz, Mónica; González Benito, Gerardo; Cartón López, Ángel; Urueña Alonso, Miguel Ángel; García Cubero, Mª Teresa

    2011-01-01

    The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the…

  15. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    Science.gov (United States)

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery

  16. MATLAB Meets LEGO Mindstorms--A Freshman Introduction Course into Practical Engineering

    Science.gov (United States)

    Behrens, A.; Atorf, L.; Schwann, R.; Neumann, B.; Schnitzler, R.; Balle, J.; Herold, T.; Telle, A.; Noll, T. G.; Hameyer, K.; Aach, T.

    2010-01-01

    In today's teaching and learning approaches for first-semester students, practical courses more and more often complement traditional theoretical lectures. This practical element allows an early insight into the real world of engineering, augments student motivation, and enables students to acquire soft skills early. This paper describes a new…

  17. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  18. Quality of Work and Team- and Project Based Work Practices in Engineering

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2015-01-01

    It is the aim of this paper to investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals and eventually their quality of work. The paper investigates how professional engineering...... ractices are enacted in two engineering consultancy companies in Denmark where ‘teamwork’ has been or is an ideal for organizing work....

  19. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    OpenAIRE

    Jarboe, Laura R.; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C.; Shanmugam, K. T.; Ingram, Lonnie O.

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibito...

  20. Evaluation of social competencies in chemical engineering: Application and results of the pilot test (academic year 2012-2013

    Directory of Open Access Journals (Sweden)

    Francisco José Suñé Grande

    2015-06-01

    Full Text Available The Escola Tècnica Superior d’Enginyeria Química has a long tradition in the deployment of social competencies in engineering curricula through Integrated Projects (IP carried out in structured teams. Social competencies are taught and practiced during the development of the IPs. We conceptually introduce a methodology for a 360o assessment of the students’ social competencies, as a tool to foster the improvement of their competency levels. In this article we analyze the results of the pilot test where the aforementioned methodology has been implemented in the Bachelor studies of Chemical Engineering. The results indicate that it is possible to objectively obtain the student’s competency level discriminating among different social competencies, as well as among different students in the same team. The application of this tool fosters the development of specific educative actions to help the students with low competency profile, to reach acceptable levels for a successful insertion in the labor market.

  1. Real-time embedded systems design principles and engineering practices

    CERN Document Server

    Fan, Xiaocong

    2015-01-01

    This book integrates new ideas and topics from real time systems, embedded systems, and software engineering to give a complete picture of the whole process of developing software for real-time embedded applications. You will not only gain a thorough understanding of concepts related to microprocessors, interrupts, and system boot process, appreciating the importance of real-time modeling and scheduling, but you will also learn software engineering practices such as model documentation, model analysis, design patterns, and standard conformance. This book is split into four parts to help you

  2. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    Science.gov (United States)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  3. Regulation and practice of workers' protection from chemical exposures during container handling

    DEFF Research Database (Denmark)

    Nørgaard Fløe Pedersen, Randi; Jepsen, Jørgen Riis; Ádám, Balázs

    2014-01-01

    instructions relate to container handling, the provided information is not sufficiently detailed to conduct safe practice in many aspects. In accordance with the scientific literature, the interviewees estimate that there is a high frequency (5 to 50%) of containers with hazardous chemical exposure......Background: Fumigation of freight containers to prevent spread of pests and off-gassing of freight are sources of volatile chemicals that may constitute significant health risks when released. The aim of the study was to investigate the regulation and practice of container handling in Denmark...... with focus on preventive measures to reduce risk of chemical exposure. Methods: A comprehensive systematic search of scientific literature, legislation and recommendations related to safe work with transport containers from international and Danish regulatory bodies was performed. The practice of handling...

  4. Chemical interaction of tetravalent actinides simulators and the engineering barrier

    International Nuclear Information System (INIS)

    Chain, Pablo; Alba, Maria D.; Castro, Miguel A.; Pavon, Esperanza; Mar Orta, M.

    2010-01-01

    Document available in extended abstract form only. The Deep Geological Repository (DGR) is the most internationally accepted option for the storage of high radioactive wastes. This confinement is based on the Multi-barrier Concept where the engineered barrier is a crucial safety wise. Nowadays, bentonite is accepted as the best argillaceous material in the engineered barrier of DGR. Additionally to its well-known physical role, a chemical interaction between lutetium, as actinide simulator, and the smectite has been demonstrated. The existence of a reaction mechanism, which was not previously described, based on the chemical interaction between the lanthanide cations and the orthosilicate anions of the lamellar structure has been identified. This finding has aroused the interest of the scientific community because lanthanides are used as simulators of high activity radionuclide (HAR) in agreement with the guidelines established in the bibliography. It has been observed that in conditions of moderate temperature and pressure a chemical interaction exists between smectites and rare earth elements (RE) and phases of insoluble di-silicate, RE 2 Si 2 O 7 , which would immobilize RE, are generated. It is remarkable that the reaction extends to all the set of the smectites, although they do not display the same reactivity, the saponite being the most reactive. The main isotopes present in the HLW belong to the actinide elements Np, Pu, Am and Cm, in addition to uranium generated by neutron capture during the fuel combustion process. The study of the mobilization of actinide (IV) thorough the bentonite barrier is limited because of their radioactivity. However, U(IV), Np(IV), Pu(IV) and Th(IV) can be simulated by the stable isotopes of the Zr(IV) and Hf(IV), because they exhibit ionic radius and physicochemical properties very similar to those of the actinide elements. It is the main objective of this research to investigate the chemical interaction of Zr(IV) as actinide

  5. Development of Chemical Engineering Course Methods Using Action Research: Case Study

    Science.gov (United States)

    Virkki-Hatakka, Terhi; Tuunila, Ritva; Nurkka, Niina

    2013-01-01

    This paper reports on the systematic development of a teaching methodology for two chemical engineering courses. The aim was to improve the quality of teaching to achieve expected learning outcomes more effectively. The development was carried out over a period of several years based on an action research methodology with data systematically…

  6. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.; Vandegrift, G.

    2004-01-01

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  7. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    Science.gov (United States)

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  9. Self-Reflection and Professional Competences in the Master Program for Chemical Engineers

    NARCIS (Netherlands)

    Reijenga, J.C.; Vinken, E.; Gupta-Bhowon, M.; Jhaumeer-Laulloo, S.; Li Kam Wah, H.; Ramasami, P.

    2009-01-01

    This paper presents an investigation into the quality of self-reflection during industrial intern-ships by Chemical Engineering students at the Eindhoven University of Technology in The Netherlands. The quality of the self-reflection reports written at the end of a compulsory in-dustrial internship

  10. Compilation of contract research for the Chemical Engineering Branch, Division of Engineering Technology. Annual report for FY 1985

    International Nuclear Information System (INIS)

    1986-07-01

    This compilation of annual research reports by the contractors to the Chemical Engineering Branch, DET, is published to disseminate information from ongoing programs and covers research conducted during fiscal year 1985. The programs covered in this document include research on: (1) engineered safety feature (ESF) system effectiveness in terms of fission product retention under severe accident conditions; (2) effectiveness and safety aspects of selected decontamination methods; (3) decontamination impacts on solidification and waste disposal; (4) evaluation of nuclear facility decommissioning projects and concepts, and (5) operational schemes to prevent or mitigate the effects of hydrogen combustion during LWR accidents

  11. Chemical respiratory allergy: Reverse engineering an adverse outcome pathway

    International Nuclear Information System (INIS)

    Kimber, Ian; Dearman, Rebecca J.; Basketter, David A.; Boverhof, Darrell R.

    2014-01-01

    Allergic sensitisation of the respiratory tract by chemicals is associated with rhinitis and asthma and remains an important occupational health issue. Although less than 80 chemicals have been confirmed as respiratory allergens the adverse health effects can be serious, and in rare instances can be fatal, and there are, in addition, related socioeconomic issues. The challenges that chemical respiratory allergy pose for toxicologists are substantial. No validated methods are available for hazard identification and characterisation, and this is due in large part to the fact that there remains considerable uncertainty and debate about the mechanisms through which sensitisation of the respiratory tract is acquired. Despite that uncertainty, there is a need to establish some common understanding of the key events and processes that are involved in respiratory sensitisation to chemicals and that might in turn provide the foundations for novel approaches to safety assessment. In recent years the concept of adverse outcome pathways (AOP) has gained some considerable interest among the toxicology community as a basis for outlining the key steps leading to an adverse health outcome, while also providing a framework for focusing future research, and for developing alternative paradigms for hazard characterisation. Here we explore application of the same general principles to an examination of the induction by chemicals of respiratory sensitisation. In this instance, however, we have chosen to adopt a reverse engineering approach and to model a possible AOP for chemical respiratory allergy working backwards from the elicitation of adverse health effects to the cellular and molecular mechanisms that are implicated in the acquisition of sensitisation

  12. Codes of Practice related to Harbour and Coastal Engineering in Denmark

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2000-01-01

    Codes of practice for building and civil engineering works have been produced since 1893 by the "Danish Society of Engineers". Among the early codes are: Reinforces concrete structures (1908, 1943), calculation of reinforced concrete structures in harbour works (1926), Harbour Works (1927), Steel...... structures (1941). The codes were based on the principle of allowable stresses. However, already in 1948 a Danish consulting engineer used a partial safety factor concept for a power station design in order to secure satisfactory safety. The concept was in fact old as it was used by Gerber in his design...

  13. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  14. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  15. Telecommunications system reliability engineering theory and practice

    CERN Document Server

    Ayers, Mark L

    2012-01-01

    "Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"

  16. Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media

    International Nuclear Information System (INIS)

    Gladden, Lynn F; Mitchell, Jonathan

    2011-01-01

    Magnetic resonance (MR) techniques are increasingly used to improve our understanding of the multi-component, multi-phase processes encountered in chemical engineering. This review brings together many of the MR techniques used, and often developed specifically, to study chemical engineering systems and, in particular, processes occurring within porous media. Pulse sequences for relaxometry, pulsed field gradient measurements of diffusion, imaging and velocimetry measurements are described. Recent applications of these MR pulse sequences to microporous, mesoporous and macroporous structures are then reviewed. Considering the microporous and mesoporous systems, we focus attention on studies of rock cores, manufactured materials such as cement and gypsum plaster, and catalysts. When considering macroporous structures, the transport through packed beds of particles typical of fixed-bed catalytic reactors is reviewed; a brief overview of the increasing research interest in gas-solid fluidized beds is also presented. We highlight the field of sparse k-space sampling as an area that is in its infancy and suggest that, combined with Bayesian methods, it will offer new opportunities in both extending the application of high-field MR techniques to chemical engineering and increasing the range of measurements that can be carried out using low-field hardware.

  17. Proceedings of chemical engineering in nuclear technology - national seminar on recent advances in fuel cycle technologies: book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    Kalpakkam Regional Centre of Indian Institute of Chemical Engineers is embarking on conducting a series of national seminars on Chemical Engineering in Nuclear Technology 2014. For CHEMENT-2014 the theme was Seminar on recent advances in fuel cycle technologies. The topics covered included research and development, modeling and simulation and equipment development. Papers relevant to INIS are indexed separately

  18. High-throughput screening of chemicals as functional substitutes using structure-based classification models

    Science.gov (United States)

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional...

  19. eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory

    Science.gov (United States)

    Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel

    2016-01-01

    Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…

  20. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    Science.gov (United States)

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.

  1. On-line services offered by 'Fachinformationszentrum Chemie' to the chemical engineer

    International Nuclear Information System (INIS)

    Krietsch, W.

    1979-01-01

    An introduction to some basic concepts of computerized literature searches is followed by an account of the data stores at 'Fachinformationszentrum Chemie', insofar as they are of interest to chemical engineers. An example of a dialogue search is presented. Some data banks of affiliated organizations and other information centres are then presented. In conclusion current developments and especially EURONET are considered. (orig.) [de

  2. Cultivation mode research of practical application talents for optical engineering major

    Science.gov (United States)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student

  3. Practical applications of soft computing in engineering

    CERN Document Server

    2001-01-01

    Soft computing has been presented not only with the theoretical developments but also with a large variety of realistic applications to consumer products and industrial systems. Application of soft computing has provided the opportunity to integrate human-like vagueness and real-life uncertainty into an otherwise hard computer program. This book highlights some of the recent developments in practical applications of soft computing in engineering problems. All the chapters have been sophisticatedly designed and revised by international experts to achieve wide but in-depth coverage. Contents: Au

  4. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice

    Science.gov (United States)

    Al-Himdani, Sarah; Jessop, Zita M.; Al-Sabah, Ayesha; Combellack, Emman; Ibrahim, Amel; Doak, Shareen H.; Hart, Andrew M.; Archer, Charles W.; Thornton, Catherine A.; Whitaker, Iain S.

    2017-01-01

    Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering “holds the promise of revolutionizing patient care in the twenty-first century.” The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20–30 years from the start of basic science research to clinical utility

  5. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice.

    Science.gov (United States)

    Al-Himdani, Sarah; Jessop, Zita M; Al-Sabah, Ayesha; Combellack, Emman; Ibrahim, Amel; Doak, Shareen H; Hart, Andrew M; Archer, Charles W; Thornton, Catherine A; Whitaker, Iain S

    2017-01-01

    Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering "holds the promise of revolutionizing patient care in the twenty-first century." The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20-30 years from the start of basic science research to clinical utility

  6. The Potential Of Cultural And Chemical Control Practices For ...

    African Journals Online (AJOL)

    The Potential Of Cultural And Chemical Control Practices For Enhancing ... and a significant (P < 0.05) increase in yield components of hands per bunch and finger ... Une étude de l\\'effet de la population de plantes, l\\'application des engrais, ...

  7. Covalent and non-covalent chemical engineering of actin for biotechnological applications.

    Science.gov (United States)

    Kumar, Saroj; Mansson, Alf

    2017-11-15

    The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  9. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  10. Teaching Engineering Practices

    Science.gov (United States)

    Cunningham, Christine M.; Carlsen, William S.

    2014-01-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be…

  11. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Elementary Education Program for Engineering by Dual System of Workshop and Teaching Program with Practical Subject

    Science.gov (United States)

    Hara, Toshitsugu

    Elementary education program for engineering by the dual system combined with workshop program and teaching program with practical subject was discussed. The dual system which consists of several workshop programs and fundamental subjects (such as mathematics, English and physics) with practical material has been performed for the freshmen. The elementary workshop program (primary course) has four workshops and the related lectures. Fundamental subjects are taught with the practical or engineering texts. English subjects are taught by specified teachers who have ever worked in engineering field with English. The dual system was supported by such systems as the center for success initiative and the English education center.

  13. Tracer research in process engineering

    International Nuclear Information System (INIS)

    Iller, E.

    1992-01-01

    The book is a review of modern applications of tracer techniques in chemical and process engineering studies. The next topics have been extensively presented: 1) media flow through apparatus; 2) the tracers in the study of media flow dynamics through apparatus; 3) mathematical interpretation of experimental data from impulse-response method; 4) the models of media flow through chemical reactors and apparatus; 5) radiotracers in mass transport study; 6) examples of practical applications of tracer methods in industrial objects. 84 refs, 96 figs, 31 tabs

  14. Findings on Motivation and the Environmental Awareness and Practice of Future Engineers in Zagreb

    Directory of Open Access Journals (Sweden)

    Damir Milos

    2014-04-01

    Full Text Available This article is the result of a survey conducted on first year students of the Faculty of Mechanical Engineering and Naval Architecture in Zagreb. Heavy particles in the focus of this article are intrinsic and extrinsic motivation of students and their ecological awareness and practice. Accordingly, we wanted to examine which form of motivation was prevalent in students when choosing a career in engineering and the degree of environmental awareness and practice of those students. The results show that extrinsic elements of motivation were more important to students in terms of their future career. When it comes to environmental awareness and practices, results show a higher level of environmental awareness and practices among students. Conclusively, it can be noted that the dominance of extrinsic motivation for a career does not compromise the interest in environmental issues or environmental practices.

  15. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    Science.gov (United States)

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  16. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  17. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  18. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.

    Science.gov (United States)

    Bilal, Muhammad; Nawaz, Muhammad Zohaib; Iqbal, Hafiz M N; Hou, Jialin; Mahboob, Shahid; Al-Ghanim, Khalid A; Cheng, Hairong

    2018-01-01

    Rising environmental concerns and recent global scenario of cleaner production and consumption are leading to the design of green industrial processes to produce alternative fuels and chemicals. Although bioethanol is one of the most promising and eco-friendly alternatives to fossil fuels yet its production from food and feed has received much negative criticism. The main objective of this study was to present the noteworthy potentialities of lignocellulosic biomass as an enormous and renewable biological resource. The particular focus was also given on engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals on sustainable and environmentally basis. Herein, an effort has been made to extensively review, analyze and compile salient information related to the topic of interest. Several authentic bibliographic databases including PubMed, Scopus, Elsevier, Springer, Bentham Science and other scientific databases were searched with utmost care, and inclusion/ exclusion criterion was adopted to appraise the quality of retrieved peer-reviewed research literature. Bioethanol production from lignocellulosic biomass can largely satisfy the possible inconsistency of first-generation ethanol since it utilizes inedible lignocellulosic feedstocks, primarily sourced from agriculture and forestry wastes. Two major polysaccharides in lignocellulosic biomass namely, cellulose and hemicellulose constitute a complex lignocellulosic network by connecting with lignin, which is highly recalcitrant to depolymerization. Several attempts have been made to reduce the cost involved in the process through improving the pretreatment process. While, the ligninolytic enzymes of white rot fungi (WRF) including laccase, lignin peroxidase (LiP), and manganese peroxidase (MnP) have appeared as versatile biocatalysts for delignification of several lignocellulosic residues. The first part of the review is mainly focused on engineering ligninolytic consortium

  19. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors.

    Science.gov (United States)

    Cho, Seunghee H; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-01-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  20. Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications

    International Nuclear Information System (INIS)

    Maliaritsi, E.; Zoumpoulakis, L.; Simitzis, J.; Vassiliou, P.; Hristoforou, E.

    2006-01-01

    Coagulation sensors based on the magnetostrictive delay line technique are presented in this paper. They are based on magnetostrictive ribbons and are used for measuring the coagulation, curing or solidification time of different liquids. Experimental results indicate that the presented sensing elements can determine the blood coagulation with remarkable repeatability, thus allowing their use as blood coagulation sensors. Additionally, results indicate that they can also measure curing time of resins, solidification of fluids and coagulation of chemical substances, therefore allowing their implementation in chemical engineering applications

  1. Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education

    Science.gov (United States)

    Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin

    2018-01-01

    3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…

  2. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  3. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    Science.gov (United States)

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  4. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    Science.gov (United States)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  6. Practical experience with measurement of diesel engine smoke pursuant to ECE-R 24

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, W

    1975-01-01

    Since the ECE regulation 24 demands that diesel smoke of automobiles be measured with opacimeters or units yielding equivalent results, the smoke density of diesel engines was measured with opacimeters and filter units for comparison. Conversion tables, comparative curves, and calculations are provided permitting the conversion of grey tones into opacity units with an accuracy sufficient for practical use. The correlation of measurements obtained with the filters and opacimeters was studied during operation at constant full load and at free acceleration. A relationship could be found in most cases; however, it provided no basis for setting up correlations. Finally, smoke characteristics of induction diesel engines were compared with supercharged engines at different geographical altitudes, based upon practical road tests in the Grossglockner mountains. A linear smoke increase with increasing altitude or decreasing air density was observed.

  7. Best practices for the retention of women engineers and scientists in the oil and gas sector

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, C.J. [Wise Newfoundland and Labrador, St. John' s, NF (Canada); Williams, F.M. [Petro-Canada Inc., (Canada); Sherk, S. [AMEC Earth and Environmental Ltd., St. John' s, NF (Canada)

    2000-07-06

    This conference paper was the result of a workshop discussion at a national conference that brought together those in industry who work in positions promoting diversity, together with women scientists and engineers from the sector. The objective was to identify effective workplace policies and practices that support and advance women's careers in the sector, and thus enhance retention. The conference paper discusses women in science, engineering and technology fields and in the oil and gas sector. It discusses best practices for the retention of women scientists and engineers in the oil and gas sector. It presents a summary of the workshop, best practices for the industry, and best practices for others. Best practices for the industry that are presented in the paper include: commitment from the top, management training, organizational policy and programs, balancing career and personal life, and career development and training. The paper concluded that companies should be recognized for thoughtful and forward-looking policies and best practice initiatives and that the strongest of the best practices is to make managers accountable for diversity progress in their areas of responsibility. 1 app., 8 refs.

  8. Proceedings of the sixty-sixth annual session of Indian Institute of Chemical Engineers and joint Indo-North American symposium: oral and poster abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of the symposium was to to discuss the current trends and future developments in the field of chemical engineering technology. The main themes of the symposium were: Advanced Separation Techniques; Biochemical Engineering; Process Intensification; Fossil Fuel, Nuclear and Alternate Energy; Novel Reactors and operating strategies; Green Chemistry and Engineering; Food Security; Water Treatment, Reuse and Recycle; Healthcare Technology; Nanomaterials; Process Development; Process Engineering and Control; Borderless Chemical Engineering; Fluid Mechanics and CFD; Intellectual Property Rights; Sustainable Development etc. Papers relevant to INIS are indexed separately

  9. Occupational chemical exposures in artificial organic fiber industries

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  10. Digital video and audio broadcasting technology a practical engineering guide

    CERN Document Server

    Fischer, Walter

    2010-01-01

    Digital Video and Audio Broadcasting Technology - A Practical Engineering Guide' deals with all the most important digital television, sound radio and multimedia standards such as MPEG, DVB, DVD, DAB, ATSC, T-DMB, DMB-T, DRM and ISDB-T. The book provides an in-depth look at these subjects in terms of practical experience. In addition it contains chapters on the basics of technologies such as analog television, digital modulation, COFDM or mathematical transformations between time and frequency domains. The attention in the respective field under discussion is focussed on aspects of measuring t

  11. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    Ryu, Jun-hyung

    2013-01-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  12. Chemical engineering in fuel reprocessing. The French experience

    International Nuclear Information System (INIS)

    Viala, M.; Sombret, C.; Bernard, C.; Miquel, P.; Moulin, J.P.

    1992-01-01

    Reprocessing is the back-end of the nuclear fuel cycle, designed to recover valuable fissile materials, especially plutonium, and to condition safely all the wastes ready for disposal. For its new commercial reprocessing plants (UP 3 and UP 2 800) COGEMA decided to include many engineering innovations as well as new processes and key-components developed by CEA. UP 3 is a complete new plant with a capacity of 800 t/y which was put in operation in August 1990. UP 2 800 is an extension of the existing UP 2 facility, designed to achieve the same annual capacity of 800 t/y, to be put in operation at the end of 1993 by the commissioning of a new head-end and highly active chemical process facilities

  13. MEMS product engineering handling the diversity of an emerging technology best practices for cooperative development

    CERN Document Server

    Ortloff, Dirk; Hahn, Kai; Bieniek, Tomasz; Janczyk, Grzegorz; Bruck, Rainer

    2014-01-01

    This book provides the methodological background to directing cooperative product engineering projects in a micro and nanotechnology setting. The methodology is based on well-established methods like PRINCE2 and StageGate, which are supplemented by best practices that can be individually tailored to the actual nature and size of the project at hand. This book is intended for everyone who takes an active role in either practical product engineering or in teaching it. This includes project and product management staff and program management offices in companies working on innovation projects, those active in innovation, as well as professors and students in engineering and management.

  14. Class and Home Problems: Humidification, a True "Home" Problem for p. Chemical Engineer

    Science.gov (United States)

    Condoret, Jean-Stephane

    2012-01-01

    The problem of maintaining hygrothermal comfort in a house is addressed using the chemical engineer's toolbox. A simple dynamic modelling proved to give a good description of the humidification of the house in winter, using a domestic humidifier. Parameters of the model were identified from a simple experiment. Surprising results, especially…

  15. Satellite-instrument system engineering best practices and lessons

    Science.gov (United States)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  16. Model Reduction in Chemical Engineering : Case studies applied to process analysis, design and operation

    NARCIS (Netherlands)

    Dorneanu, B.

    2011-01-01

    During the last decades, models have become widely used for supporting a broad range of chemical engineering activities, such as product and process design and development, process monitoring and control, real time optimization of plant operation or supply chain management. Although tremendous

  17. A Triangular Approach to Integrate Research, Education and Practice in Higher Engineering Education

    Science.gov (United States)

    Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka

    2017-01-01

    Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is…

  18. Holographic black hole engineering at finite baryon chemical potential

    International Nuclear Information System (INIS)

    Rougemont, Romulo

    2017-01-01

    This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with 2 + 1 flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential. (paper)

  19. The thermodynamics of heat- and mass exchange in chemical engineering. Vol. 1. 2. rev. ed.

    International Nuclear Information System (INIS)

    Matz, G.

    1979-01-01

    The second and completely revised edition of the approved textbook 'The thermodynamics of heat- and mass exchange in chemical engineering' is devoted to students of technical and natural science disciplines as well as to practicians and scientists, which are confronted with thermodynamical problems of chemical engineering. Starting from the different phases and properties of matter, the first and the second law of thermodynamics are discussed together with many applications. After an introduction of the equilibrium state, the general principle of similarity for heat- and mass exchange is discussed, considering in particular the heat- and mass exchange in the counter flow between two phases. In a final chapter, the heat- and mass exchange between the vapor- and liquid phase is discussed, with special emphasis on problems as evaporation and drying. (orig./HK) [de

  20. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    Science.gov (United States)

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  1. Technology Development as a Normative Practice: A Meaning-Based Approach to Learning About Values in Engineering-Damming as a Case Study.

    Science.gov (United States)

    Nia, Mahdi G; Harandi, Mehdi F; de Vries, Marc J

    2017-11-10

    Engineering, as a complex and multidimensional practice of technology development, has long been a source of ethical concerns. These concerns have been approached from various perspectives. There are ongoing debates in the literature of the philosophy of engineering/technology about how to organize an optimized view of the values entailed in technology development processes. However, these debates deliver little in the way of a concrete rationale or framework that could comprehensively describe different types of engineering values and their multi-aspect interrelations in real engineering practices. Approaching engineering values from a meaning-based perspective, as in this paper, can be a reliable method of tackling such a controversial problem. This paper therefore proposes that technology development be considered a systemic normative practice and attempts to provide a comprehensive view of various built-in values, their different origins and features, and a way of prioritizing them in real engineering processes. Studying two cases of the Zayandeh Rood Dam and the Abbasi Dam will lead to practical insights into how to understand norms in technology development and incorporate them into engineering practice.

  2. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  3. Biocommodity Engineering.

    Science.gov (United States)

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  4. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    Science.gov (United States)

    Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2016-11-01

    To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    Science.gov (United States)

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-28

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS 2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS 2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  6. Insights from industry: a quantitative analysis of engineers' perceptions of empathy and care within their practice

    Science.gov (United States)

    Hess, Justin L.; Strobel, Johannes; Pan, Rui Celia; Wachter Morris, Carrie A.

    2017-11-01

    This study focuses on two seldom-investigated skills or dispositions aligned with engineering habits of mind - empathy and care. In order to conduct quantitative research, we designed, explored the underlying structure of, validated, and tested the reliability of the Empathy and Care Questionnaire (ECQ), a new psychometric instrument. In the second part, we used the ECQ to explore the perceptions of empathy and care of alumni/ae of an internationally ranked US institution, along with how perceptions differed by work experience and gender. Results show that participants perceived empathy and care to be important in multiple respects, most notably in relational aspects of engineering practice. Engineers with more engineering experience were more likely to perceive empathy and care as existing in engineering practice and as important to their work. While these phenomena are sometimes depicted as feminine qualities, we found no gender differences among our respondents.

  7. Differences in Chemical Engineering Student-Faculty Interactions by Student Age and Experience at a Large, Public, Research University

    Science.gov (United States)

    Ciston, Shannon; Sehgal, Sanya; Mikel, Tressa; Carnasciali, Maria-Isabel

    2018-01-01

    Adult undergraduate students aged 25+ in engineering disciplines are an important demographic bringing a wealth of life experience to the classroom. This study uses qualitative data drawn from semi-structured interviews with two groups of undergraduate chemical engineering students at a large, public research university: adult students with…

  8. Design of chemical plant

    International Nuclear Information System (INIS)

    Lee, Dong Il; Kim, Seung Jae; Yang, Jae Ho; Ryu, Hwa Won

    1993-01-01

    This book describes design of chemical plant, which includes chemical engineer and plan for chemical plant, development of chemical process, cost engineering pattern, design and process development, general plant construction plan, project engineering, foundation for economy on assets and depreciation, estimation for cost on capital investment and manufacturing cost, design with computers optimal design and method like fluid mechanics design chemical device and estimation for cost, such as dispatch of material and device writing on design report and appendixes.

  9. Environmental Protection Versus Foundry Engineering Practice

    Directory of Open Access Journals (Sweden)

    Maj M.

    2017-06-01

    Full Text Available • Theory and practice of environmental protection in the case of foundries in Europe and Asia • Experience resulting from the cooperation with the foundries in a few European countries, China and India • Phenomena and factors affecting the pollution of the natural environment and the implementation of measures aiming at the environmental protection. Every specialist dealing with foundry processes and their impact on environmental pollution must have encountered in their professional careers numerous situations in which the theory of environmental protection confronts the stark reality. The discrepancy between theory and practice can particularly be noticed in foundry engineering in developing countries where the contrasts between different countries and casting plants are extremely striking. The comparison of working conditions in European and Asian foundries provides a vast scope for further observations and analyses. Environmental protection seems not only a concern of manufacturers of castings, but also of their customers whose opinion exerts a significant influence on both the acceptability of working conditions and on the approach to environmental pollution adopted in metal casting industry. The article presents a number of examples of various outlooks on environmental issues in foundries manufacturing a wide range of cast steel and cast iron castings, where different technologies and production processes are applied.

  10. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  11. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  12. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production

    NARCIS (Netherlands)

    Mans, R.; Daran, J.G.; Pronk, J.T.

    2018-01-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical

  13. Data Management Practices and Perspectives of Atmospheric Scientists and Engineering Faculty

    Science.gov (United States)

    Wiley, Christie; Mischo, William H.

    2016-01-01

    This article analyzes 21 in-depth interviews of engineering and atmospheric science faculty at the University of Illinois Urbana-Champaign (UIUC) to determine faculty data management practices and needs within the context of their research activities. A detailed literature review of previous large-scale and institutional surveys and interviews…

  14. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    Science.gov (United States)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found

  15. A Model for Implementing Practical Design in the Education of Mechanical Engineers

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Mouritsen, Ole Ø.; Andersen, Torben Ole

    2006-01-01

    In this paper the PBL model used at Aalborg University in the mechanical engineering is shortly presented. A specific semester with a both theoretical and practical content that allow the students to is presented in detail. It is then used as a reference project for a subsequent discussion on three...... potential concerns with respect to the continued succes of problem and project based learning in mechanical and mechatronics engineering namely: individual assessment, bologna (student exchange) model and research based teaching....

  16. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    Science.gov (United States)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  17. First Steps into Practical Engineering for Freshman Students Using MATLAB and LEGO Mindstorms Robots

    Directory of Open Access Journals (Sweden)

    A. Behrens

    2008-01-01

    Full Text Available Besides lectures on basic theoretical topics, contemporary teaching and learning concepts for first semester students give more and more consideration to practically motivated courses. In this context, a new first-year introductory course in practical engineering has been established in the first semester curriculum of Electrical Engineering at RWTH Aachen University, Germany. Based on a threefold learning concept, programming skills in MATLAB are taught to 309 students within a full-time block course laboratory. The students are encouraged to transfer known mathematical basics to program algorithms and real-world applications performed by 100 LEGO Mindstorms robots. A new MATLAB toolbox and twofold project tasks have been developed for this purpose by a small team of supervisors. The students are supervised by over 60 tutors at 23 institutes, and are encouraged to create their own robotics applications. We describe how the laboratory motivates the students to act and think like engineers and to solve real-world issues with limited resources. The evaluation results show that the proposed practical course concept successfully boosts students’ motivation, advances their programming skills, and encourages the peer learning process. 

  18. Benefits of ecological engineering practices

    NARCIS (Netherlands)

    Van den Boomen, R.; Chaudhuri, N.; Heeb, J.; Jenssen, P.; Kalin, M.; Schönborn, A.; Brüll, A.; Van Bohemen, H.; Costanza, R.; Mitsch, W.J.

    2011-01-01

    With the intention to further promote the field of ecological engineering and the solutions it provides, a workshop on “Benefits of Ecological Engineering Practices” was held 3 Dec 2009. It was conducted by the International Ecological Engineering Society in Paris at the conference “Ecological

  19. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    Science.gov (United States)

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  1. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    Science.gov (United States)

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  2. Knowledge and Learning in Engineering Practice

    DEFF Research Database (Denmark)

    Buch, Anders

    2007-01-01

    , this chapter discusses the cencept of learning and purports to theorize learning in a Social Theory of Learning (STL). The attempt to reconstruct learning in an STL addresses three main issues: an STL must try to specify the subject-world relationship, describe the 'mechanism' of learning, and identify......During the 20th century, traditional epistemological theories of knowledge have been under siege. In recent years, efforts have been made to reconstruct the concept of 'knowledge' to emphasize its contextual, situated and social character. Drawing on the results and methods of these efforts...... the 'telos' of learning. This attempt will in fact give answers to three fundamental questions: 1) What is learning? 2) How do we learn? and 3) Why do we learn? These questions are discussed in relation to engineering practices of getting to know and learning....

  3. Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms

    Science.gov (United States)

    Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy

    2017-06-01

    The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.

  4. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  5. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective...... production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological...

  6. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  7. Effect of Continuous Assessment on Learning Outcomes on Two Chemical Engineering Courses: Case Study

    Science.gov (United States)

    Tuunila, R.; Pulkkinen, M.

    2015-01-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning…

  8. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    Science.gov (United States)

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  9. TECHNOLOGY ASSESSMENT IN ENGINEERING PRACTICE. THE CASE OF BIOLIQ® – FUEL PRODUCTION FROM BIOMASS

    Directory of Open Access Journals (Sweden)

    Armin GRUNWALD

    2013-04-01

    Full Text Available This paper includes a brief overview of the basic motivations and objectives of TA, followed by a description of the three main operating fields of TA: providing scientific advice for decision‐making in the political system, contributing to public debate, and enriching technology development and engineering practice. These issues will then be considered in more detail by referring to various approaches to the relationship between TA and technology development and by presenting a specific case study of an accompanying TA process over various development stages of the bioliq® process for converting dry biomass into fuel (Biomass to Liquid and chemicals. The accompanying TA work on the bioliq® process can, as a result of more than ten years of experience, be considered a successful technology assessment as it has opened up a new research field with a highly precautionary aspect on the one hand, and helped to win over technology‐oriented research institutes to reorienting their research work, on the other. The results of the TA studies allowed to assess e.g. the competitiveness of the bioliq® process at a very early stage. The mutual trust built up in the course of the historical development between the parties involved has always been essential for this ongoing accompanying TA process. TA has been proven, in this way, a useful tool to uncover new chances for engineering research and development, and to accompany the research process.

  10. Molecular and multiscale modeling: review on the theories and applications in chemical engineering

    International Nuclear Information System (INIS)

    Morales M, Giovanni; Martinez R, Ramiro

    2010-01-01

    We call molecular modeling to the application of suitable laws in the analysis of phenomena occurred at scales less than those accounted for by the macroscopic world. Such different scales (including micro-, meso- and macro scales), can be linked and integrated in order to improve understanding and predictions of complex physical chemistry phenomena, thus originating a global or multi scale analysis. A considerable amount of chemical engineering phenomena are complex due to the interrelation among these different realms of length and time. Multi scale modeling rises as an alternative for an outstanding mathematical and conceptual representation of such phenomena. This adequate representation may help to design and optimize chemical and petrochemical processes from a microscopic point of view. Herein we present a brief introduction to both molecular and multi scale modeling methods. We also comment and examine opportunities for applying the different levels of modeling to the analysis of industrial problems. The fundamental mathematical machinery of the molecular modelling theories is presented in order to motivate the study of these new engineering tools. Finally, we show a classification of different strategies for applying multilevel analysis, illustrating various examples of each methodology.

  11. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    Science.gov (United States)

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  12. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    Science.gov (United States)

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  13. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    Science.gov (United States)

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  14. Knowledge, attitude and practices for design for safety: A study on civil & structural engineers.

    Science.gov (United States)

    Goh, Yang Miang; Chua, Sijie

    2016-08-01

    Design for safety (DfS) (also known as prevention through design, safe design and Construction (Design and Management)) promotes early consideration of safety and health hazards during the design phase of a construction project. With early intervention, hazards can be more effectively eliminated or controlled leading to safer worksites and construction processes. DfS is practiced in many countries, including Australia, the UK, and Singapore. In Singapore, the Manpower Ministry enacted the DfS Regulations in July 2015, which will be enforced from August 2016 onwards. Due to the critical role of civil and structural (C&S) engineers during design and construction, the DfS knowledge, attitude and practices (KAP) of C&S engineers have significant impact on the successful implementation of DfS. Thus, this study aims to explore the DfS KAP of C&S engineers so as to guide further research in measuring and improving DfS KAP of designers. During the study, it was found that there is a lack of KAP studies in construction management. Therefore, this study also aims to provide useful lessons for future applications of the KAP framework in construction management research. A questionnaire was developed to assess the DfS KAP of C&S engineers. The responses provided by 43 C&S engineers were analyzed. In addition, interviews with experienced construction professionals were carried out to further understand perceptions of DfS and related issues. The results suggest that C&S engineers are supportive of DfS, but the level of DfS knowledge and practices need to be improved. More DfS guidelines and training should be made available to the engineers. To ensure that DfS can be implemented successfully, there is a need to study the contractual arrangements between clients and designers and the effectiveness of different implementation approaches for the DfS process. The questionnaire and findings in this study provided the foundation for a baseline survey with larger sample size, which is

  15. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  16. Recent chemical engineering requirements as the result of TMI on-site experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E. Sr.

    1980-01-01

    From the experiences gained from the on-site experience at TMI, it is apparent that the role of chemical engineers should increase in order for the nuclear option to proceed in a safe and efficient fashion. It is also obvious that as the results of the reports investigating the causes and effects of the accident come to light and attempts to backfit system designs to prevent a recurrence are studied, more technical demands will be placed on the profession

  17. Finding hidden chemistry in ancient egyptian artifacts: Pigment degradation taught in a chemical engineering course

    OpenAIRE

    Giménez Izquierdo, Francisco Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled

  18. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  19. Practical and Efficient Searching in Proteomics: A Cross Engine Comparison

    Science.gov (United States)

    Paulo, Joao A.

    2014-01-01

    Background Analysis of large datasets produced by mass spectrometry-based proteomics relies on database search algorithms to sequence peptides and identify proteins. Several such scoring methods are available, each based on different statistical foundations and thereby not producing identical results. Here, the aim is to compare peptide and protein identifications using multiple search engines and examine the additional proteins gained by increasing the number of technical replicate analyses. Methods A HeLa whole cell lysate was analyzed on an Orbitrap mass spectrometer for 10 technical replicates. The data were combined and searched using Mascot, SEQUEST, and Andromeda. Comparisons were made of peptide and protein identifications among the search engines. In addition, searches using each engine were performed with incrementing number of technical replicates. Results The number and identity of peptides and proteins differed across search engines. For all three search engines, the differences in proteins identifications were greater than the differences in peptide identifications indicating that the major source of the disparity may be at the protein inference grouping level. The data also revealed that analysis of 2 technical replicates can increase protein identifications by up to 10-15%, while a third replicate results in an additional 4-5%. Conclusions The data emphasize two practical methods of increasing the robustness of mass spectrometry data analysis. The data show that 1) using multiple search engines can expand the number of identified proteins (union) and validate protein identifications (intersection), and 2) analysis of 2 or 3 technical replicates can substantially expand protein identifications. Moreover, information can be extracted from a dataset by performing database searching with different engines and performing technical repeats, which requires no additional sample preparation and effectively utilizes research time and effort. PMID:25346847

  20. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  1. Environmental Engineering and Sustainable Development

    OpenAIRE

    Said Salah Eldin Elnashaie

    2018-01-01

    Chemical Engineering is a very rich discipline and it is best classified using System Theory (ST) and utilized using the Integrated System Approach (ISA). Environmental Engineering (EE) is a subsystem of Chemical Engineering and also a subsystem of Sustainable Development (SD). In this paper both EE and SD are discussed from a Chemical Engineering point of view utilizing ST and ISA.

  2. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    Science.gov (United States)

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Automatic evaluation of practices in Moodle for Self Learning in Engineering

    Directory of Open Access Journals (Sweden)

    Carles Sanchez

    2015-06-01

    Full Text Available The first years in engineering degree courses are usually made of large groups with a low teacher-student ratio. Overcrowding in classrooms hinders continuous assessment much needed to promote independent learning. Therefore, there is a need to apply some kind of automatic evaluation to facilitate the correction of exercises outside the classroom. We introduce here a first experience using surveys in Moodle 2.0 in order to get an automatic evaluation of practices in our Database course. We report survey valuation of the autonomous learning tool and preliminary statistics assessing correlation to an improvement in the practice exam marks.

  4. Investigation of the current requirements engineering practices among software developers at the Universiti Utara Malaysia Information Technology (UUMIT) centre

    Science.gov (United States)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Abdullah, Inam

    2016-08-01

    Requirements Engineering (RE) is a systemic and integrated process of eliciting, elaborating, negotiating, validating and managing of the requirements of a system in a software development project. UUM has been supported by various systems developed and maintained by the UUM Information Technology (UUMIT) Centre. The aim of this study was to assess the current requirements engineering practices at UUMIT. The main problem that prompted this research is the lack of studies that support software development activities at the UUMIT. The study is geared at helping UUMIT produce quality but time and cost saving software products by implementing cutting edge and state of the art requirements engineering practices. Also, the study contributes to UUM by identifying the activities needed for software development so that the management will be able to allocate budget to provide adequate and precise training for the software developers. Three variables were investigated: Requirement Description, Requirements Development (comprising: Requirements Elicitation, Requirements Analysis and Negotiation, Requirements Validation), and Requirement Management. The results from the study showed that the current practice of requirement engineering in UUMIT is encouraging, but still need further development and improvement because a few RE practices were seldom practiced.

  5. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...... obtained by their own means and were competing on achieving the highest efficiency. We added an extra dimension to the project by making detailed measurements of the pressure variation to check simple thermodynamic models of the engine. The course had integrated lessons in sketching and technical drawing...

  6. Genetic engineering in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bedate, C.A.; Morales, J.C.; Lopez, E.H.

    1981-09-01

    The objective of this book is to encourage the use of genetic engineering for economic development. The report covers: (1) Precedents of genetic engineering; (2) a brief description of the technology, including the transfer of DNA in bacteria (vectors, E. coli and B. subtilis hosts, stages, and technical problems), practical examples of techniques used and their products (interferon; growth hormone; insulin; treatment of blood cells, Talasemia, and Lesch-Nyhan syndrome; and more nutritious soya), transfer to higher organisms, and cellular fusion; (3) biological risks and precautions; (4) possible applications (production of hydrogen, hydrocarbons, alcohol, chemicals, enzymes, peptides, viral antigens, monoclonal antibodies, genes, proteins, and insecticides; metal extraction; nitrogen fixation; biodegradation; and new varieties of plants and animals; and (5) international activities.

  7. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    Science.gov (United States)

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  8. Ground engineering principles and practices for underground coal mining

    CERN Document Server

    Galvin, J M

    2016-01-01

    This book teaches readers ground engineering principles and related mining and risk management practices associated with underground coal mining. It establishes the basic elements of risk management and the fundamental principles of ground behaviour and then applies these to the essential building blocks of any underground coal mining system, comprising excavations, pillars, and interactions between workings. Readers will also learn about types of ground support and reinforcement systems and their operating mechanisms. These elements provide the platform whereby the principles can be applied to mining practice and risk management, directed primarily to bord and pillar mining, pillar extraction, longwall mining, sub-surface and surface subsidence, and operational hazards. The text concludes by presenting the framework of risk-based ground control management systems for achieving safe workplaces and efficient mining operations. In addition, a comprehensive reference list provides additional sources of informati...

  9. Examining the Extent to Which Select Teacher Preparation Experiences Inform Technology and Engineering Educators’ Teaching of Science Content and Practices

    OpenAIRE

    Love, Tyler Scott

    2015-01-01

    With the recent release of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other disciplines since the release of the Standards for Technological Literacy (ITEA/ITEEA, 2000/2002/2007). Requisite to the preparation of globally competitive...

  10. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  11. Comparison of thermal, radical and chemical effects of EGR gases using availability analysis in dual-fuel engines at part loads

    International Nuclear Information System (INIS)

    Hosseinzadeh, A.; Khoshbakhti Saray, R.; Seyed Mahmoudi, S.M.

    2010-01-01

    Dual-fuel engines at part load inevitably suffer from lower thermal efficiency and higher emission of carbon monoxide and unburned fuel. A quasi-two-zone combustion model has been developed for studying the second-law analysis of a dual-fuel (diesel-gas) engine operating under part-load conditions. The model is composed of two divisions: a single-zone combustion model with chemical kinetics for combustion of natural gas fuel and a subsidiary zone for combustion of pilot fuel. In the latter zone, the pilot fuel is considered as a heat source derived from two superposed Wiebe's combustion functions to account for contribution of pilot fuel in ignition of gaseous fuel and the rest of the total released energy. This quasi-two-zone combustion model is able to establish the development of combustion process with time and associated important operating parameters, such as pressure, temperature, heat release rate (HRR) and species concentration. The present work is an attempt to investigate the combustion phenomenon from second-law point of view at part load and using exhaust gas recirculation (EGR) to improve the aforementioned problems. Therefore, the availability analysis is applied to the engine from inlet valve closing (IVC) until exhaust valve opening (EVO). Various availability components are identified and calculated separately with crank position. In this paper, the various availability components are identified and calculated separately with crank position. Then the different cases of EGR (chemical, radical and thermal cases) are applied to the availability analysis in dual-fuel engines at part loads. It is found that the chemical case of EGR has negative effect and in this case the unburned chemical availability is increased and the work availability decreases in comparison with baseline engine (without EGR). While the thermal and radical cases have positive effects on the availability terms especially on the unburned chemical availability and work availability

  12. Chemical engineering problems of radioactive waste fixation by vitrification

    International Nuclear Information System (INIS)

    Taylor, R.F.

    1985-01-01

    Basic features are reviewed of the chemical engineering problems faced in the vitrification of the high-level radioactive liquid wastes resulting from the reprocessing of nuclear fuel. After an outline of glass solution properties and formation kinetics the constituent elements of the vitrification route are examined in turn: waste feed evaporation and denitration, calcination, offgas treatment, and finally melting and product quality. Plant and experimental data for each stage are discussed with comparison between process routes and with reference to the underlying principles. Attention is drawn to the future need for higher trapping efficiencies and for dealing with a wider range of species in offgas treatments as higher burnup fuels are processed after shorter cooling times from reactor. Two areas of present study where deeper insight into underlying process mechanics is needed are, firstly, the association of waste material with glass formers in the wet or sinter stages and secondly their incorporation and mixing reaction in the melt. Fuller understanding here would bring direct benefit to process performance and handling. The problems discussed are not of a nature to jeopardize the vitrification routes but if product quality does come to rely heavily on process control then demonstrable confidence in the behaviour of the central physico-chemical interactions is indispensable. (author)

  13. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  14. Enhancing engineering practices for productivity and profits in agro-allied industries

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    The word productivity is a part of everyday vocabulary of industrial engineers and managers. Terms such as optimum utilization of resources, operational efficiency, product competitiveness, maintenance culture, etc., are mentioned with regular frequency. This is healthy, because productivity improvement does not happen by wishing for it or trying harder but by deliberately planning for it. The rewards of higher productivity are immense. At the firm level, such benefit include high production rates, higher profits, better quality products and services, customer satisfaction, higher take home pay for employees and high employee morale. Many of these benefits can be derived through the application of simple potential productivity improvement tools that are hinged on engineering practices

  15. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    Science.gov (United States)

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  16. Multivariate Analysis of Multiple Datasets: a Practical Guide for Chemical Ecology.

    Science.gov (United States)

    Hervé, Maxime R; Nicolè, Florence; Lê Cao, Kim-Anh

    2018-03-01

    Chemical ecology has strong links with metabolomics, the large-scale study of all metabolites detectable in a biological sample. Consequently, chemical ecologists are often challenged by the statistical analyses of such large datasets. This holds especially true when the purpose is to integrate multiple datasets to obtain a holistic view and a better understanding of a biological system under study. The present article provides a comprehensive resource to analyze such complex datasets using multivariate methods. It starts from the necessary pre-treatment of data including data transformations and distance calculations, to the application of both gold standard and novel multivariate methods for the integration of different omics data. We illustrate the process of analysis along with detailed results interpretations for six issues representative of the different types of biological questions encountered by chemical ecologists. We provide the necessary knowledge and tools with reproducible R codes and chemical-ecological datasets to practice and teach multivariate methods.

  17. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    Science.gov (United States)

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Education of Sustainability Engineers

    Science.gov (United States)

    Oleschko, K.; Perrier, E.; Tarquis, A. M.

    2010-05-01

    integrating TRIZ into eco-innovation. Advances in Engineering Software, 35: 553-566. 3. Cortes Robles, G., Negny, S. and Le Lann, J.M., 2008. Case-based reasoning and TRIZ: A coupling for innovative conception in Chemical Engineering. Chemical Engineering and Processing: Process Intensification, 48 (1): 239-249. 4. Gupta, P., 2007. Real Innovation Commentary. http://www. RealInnovation.com. 5. Kai Yang, 2010. Inventive principles of TRIZ with Chinás 36 strategies. TRIZ J., 1-20. 6. Moehrle, M. G., 2005. What is TRIZ? From conceptual basics to a framework for research. Social Science research Network, http://papers.ssrn.com/sol13/papers.cfm?abstract_id=674062. 7. Orlov, M., 2006. Inventive Thinking through TRIZ. A practical Guide, Springer, Berlin, 351. 8. Zhang, X., Mao, X. and AbouRizk, S.M, 2009. Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18 (6): 777-789. 9. Sokol, A., Oget, D., Sonntag, M. and Khomenko, N., 2008. The development of inventive thinking skills in the upper secondary language classroom. Thinking Skills and Creativity, 3 (1): 34-46.

  19. Practical sonochemistry power ultrasound uses and applications

    CERN Document Server

    Mason, T J

    2002-01-01

    This updated version of Practical Sonochemistry for advanced students and teachers in chemistry and chemical engineering conveys the increasing growth in applications and equipment to power ultrasound. Equipment now on the market offers a wider range of frequencies with more reproducible experimentation and a variety of scale-up systems. The book provides detailed descriptions of newer ultrasonic equipment and its applications, and practical laboratory uses of ultrasound technology for industrial scale performance.Modern exercises familiarise readers with recent sonochemical operations

  20. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    N.M. Márquez Luzardoa; Dr. ir. Jan Venselaar

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically

  1. Applying Augmented Reality in practical classes for engineering students

    Science.gov (United States)

    Bazarov, S. E.; Kholodilin, I. Yu; Nesterov, A. S.; Sokhina, A. V.

    2017-10-01

    In this article the Augmented Reality application for teaching engineering students of electrical and technological specialties is introduced. In order to increase the motivation for learning and the independence of students, new practical guidelines on Augmented Reality were developed in the application to practical classes. During the application development, the authors used software such as Unity 3D and Vuforia. The Augmented Reality content consists of 3D-models, images and animations, which are superimposed on real objects, helping students to study specific tasks. A user who has a smartphone, a tablet PC, or Augmented Reality glasses can visualize on-screen virtual objects added to a real environment. Having analyzed the current situation in higher education: the learner’s interest in studying, their satisfaction with the educational process, and the impact of the Augmented Reality application on students, a questionnaire was developed and offered to students; the study involved 24 learners.

  2. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    Science.gov (United States)

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  3. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    Science.gov (United States)

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ) of the National University of Colombia, Bogotá

    OpenAIRE

    Javier Gama Chávez; Martha Lozano García; Paulo César Narváez Rincón; Óscar Javier Suárez Medina

    2004-01-01

    An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ). The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water cont...

  5. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    Science.gov (United States)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  6. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  7. Thermodynamics an advanced textbook for chemical engineers

    CERN Document Server

    Astarita, Gianni

    1989-01-01

    If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the ...

  8. Implementing a Systematic Process for Rapidly Embedding Sustainability within Chemical Engineering Education: A Case Study of James Cook University, Australia

    Science.gov (United States)

    Sheehan, Madoc; Schneider, Phil; Desha, Cheryl

    2012-01-01

    Sustainability has emerged as a primary context for engineering education in the 21st Century, particularly the sub-discipline of chemical engineering. However, there is confusion over how to go about integrating sustainability knowledge and skills systemically within bachelor degrees. This paper addresses this challenge, using a case study of an…

  9. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  10. Role of the chemical engineering technician in applied research related to tritium separation from aqueous effluents

    International Nuclear Information System (INIS)

    Nelson, S.D.

    1978-01-01

    Applied research and development activities related to the removal of tritium from aqueous effluent streams have presented broad opportunities to the chemical engineering technician for professional growth. Technician job activities involve operating complex analytical instrumentation and constructing, maintaining, and operating experimental electrolysis apparatus. The technician is a member of a professional team including scientific, engineering, and other technical personnel and as such is expected to exercise creative thought. Proximity of a large university and availability of formalized ''in house'' training courses provide incentives for technicians to broaden their academic base concurrent with their work involvement

  11. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  12. Perspective on Models in Theoretical and Practical Traditions of Knowledge: The Example of Otto Engine Animations

    Science.gov (United States)

    Haglund, Jesper; Stromdahl, Helge

    2012-01-01

    Nineteen informants (n = 19) were asked to study and comment two computer animations of the Otto combustion engine. One animation was non-interactive and realistic in the sense of depicting a physical engine. The other animation was more idealised, interactive and synchronised with a dynamic PV-graph. The informants represented practical and…

  13. Scaffold of chitosan/poly(vinyl alcohol) blend chemically crosslinked by glutaraldehyde for tissue engineering applications

    International Nuclear Information System (INIS)

    Costa Junior, Ezequiel de S.; Laguardia-Nascimento, Mateus; Barbosa-Stancioli, Edel F.; Mansur, Herman S.

    2009-01-01

    Chitosan/PVA based films were chemically crosslinked by glutaraldehyde (GA) in order to achieve scaffolds for potential tissue engineering application. Both precursors and developed films were characterized by FTIR and XRD in order to determine the presence of chemicals groups and nanostructural order, respectively. The results have showed that the GA crosslinking have altered the crystallinity of the chitosan and the increase on the C=N bands and decreasing of NH 2 bands suggest that Chitosan/GA crosslinking has preference to occur in the carbon 2 by Schiff's base. The mechanical properties, swelling behavior, degradation rate in vitro and cellular viability were compatible with the characteristic of an epithelial tissue. The material presented a toughness range from 1.4 to 34MJ/m3, swelling from 150% to 700% in 24h, degradation rate from 20% to 75% (wt%) in 24h and cellular viability in vitro above 60% compared to the cellular control. The developed scaffolds from the films have also showed swelling and degradation in vitro properties well-matched for biomedical applications in tissue engineering (author)

  14. The future of fish passage science, engineering, and practice

    Science.gov (United States)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.

    2018-01-01

    Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.

  15. Change, exchange, and rearrange: protein engineering for the biotechnological production of fuels, pharmaceuticals, and other chemicals.

    Science.gov (United States)

    Fisher, Michael A; Tullman-Ercek, Danielle

    2013-12-01

    Enzymes are indispensable in the effort to produce chemicals from fuels to pharmaceuticals in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and efficiency without the use of hazardous chemicals. Nature provides an extensive collection of enzymes, but often these must be altered to perform desired functions under required conditions. Advances in protein engineering permit the design and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the development of improved enzymes to assist in both the conversion of biomass into fuels and chemicals, and the creation of key intermediates in pharmaceutical production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A review of engineering aspects of intensification of chemical synthesis using ultrasound.

    Science.gov (United States)

    Sancheti, Sonam V; Gogate, Parag R

    2017-05-01

    Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Impacts of northern climate changes on Arctic engineering practice

    International Nuclear Information System (INIS)

    Esch, D.C.

    1993-01-01

    Potential impacts of climate changes on engineering design practices in the Arctic are discussed with reference to permafrost engineering aspects, hydrology, and coastal and sea ice processes. Permafrost generally remains thermally stable only when mean annual air temperature remains 2-4 degrees below zero and the original surface conditions remain unchanged. It has been demonstrated that a temperature rise of only 1-2 degrees is very critical. The many different climate change forecasts make it difficult to design structures in permafrost with definite levels of confidence over a project's lifetime (i.e. up to 50 years). Consequences of climate warming on transportation-related structures can be estimated to a certain degree by examining experience with natural permafrost surfaces affected by land clearing or with structures built in permafrost. Melting of permafrost will be accompanied by surface settlements, slumping of slopes and banks, and creation of thaw pits and ponds, with eventual distress to many surface structures such as pavements and foundations. Designing for a warmer climate is illustrated for the case of the Bethel Highway, the first in Alaska to be designed for a progressively warmer climate. Increased water flows both from ice melting and increased precipitation in a warmer climate will make forecasting of discharge levels in drainage basins a difficult task. Of great concern to engineers is the potential for increased erosion and sediment loadings in streams. In coastal engineering, the effects of rising sea levels, increased open-water areas, and more severe storms foreseen in a warmer climate will require heavier and more elevated shore protection. On the other hand, shipping and offshore operations will be made easier. 9 refs., 4 figs

  18. A Matter of Chemical Engineering (On Teaching an Intensive Course in Technical Communication for Undergraduates).

    Science.gov (United States)

    Sullivan, Ralda M.

    Because the ability to write reports and make oral presentations is crucial to success, the Department of Chemical Engineering at the University of California (Berkeley) has set up an in-house, required course that is given every semester to about 60 students. Divided into three sections, one of which is for non-native speakers of English, the…

  19. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  20. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    Directory of Open Access Journals (Sweden)

    Emmanouil N. Barmpounakis

    2016-10-01

    Full Text Available Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportation research and practice with the aim to set the grounds from the proper understanding and implementation of UAS related surveillance systems in transportation and traffic engineering. The studies reviewed are categorized in different transportation engineering areas. Additional significant applications from other research fields are also referenced to identify other promising applications. Finally, issues and emerging challenges in both a conceptual and methodological level are revealed and discussed.

  2. The protsessno-focused re-structuring of the enterprise of mechanical engineering: from the theory to practice

    Directory of Open Access Journals (Sweden)

    A. Afanasev

    2015-01-01

    Full Text Available In the developed uneasy economic conditions, re-structuring - one of the most effective methods who can influence positive change of a machine building complex, its organizational-technical, administrative and legal orientation. Necessity of a theoretical and methodical readiness of investigated problems and their practical importance have caused an urgency and a choice of a theme of article. The purpose / problems. Enterprise re-structuring as a practical embodiment of the purposes of managers, is a difficult, multifactorial problem. Accordingly, the decision of this problem, namely construction of the protsessno-focused re-structuring of the enterprise demands the complex, system approach. Article purpose is – the description of methodology of one of possible approaches to transformation of re-structuring of the enterprise of mechanical engineering from the point of view of practical management.Methodology. In article the methodology is resulted, allowing to solve the questions connected with re-structuring at the enterprises of mechanical engineering owing to consistency .Results. The present article is short describes the practical scientifically-methodical approach in which frameworks was construction of the protsessno-focused re-structuring of the enterprise of mechanical engineering on an example of the largest enterprise of Privolzhsky federal district of Open Society "Кamaz" is offered.Conclusions / the importance. Undoubtedly, offered approach – is not unique. However it has essential advantages before others – the consistency and application in aggregate both the conventional tools of management, and the original workings out which have proved the practical suitability in the conditions of the Russian practice. This approach – not panacea from all troubles of the real enterprise. Nevertheless, as practice shows, he allows to reach notable successes at carrying out of transformations real, instead of the

  3. Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities.

    Science.gov (United States)

    Rowland, Benjamin; Jones, Jonathan A

    2012-10-13

    We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.

  4. Computational Quantum Mechanics for Materials Engineers The EMTO Method and Applications

    CERN Document Server

    Vitos, L

    2007-01-01

    Traditionally, new materials have been developed by empirically correlating their chemical composition, and the manufacturing processes used to form them, with their properties. Until recently, metallurgists have not used quantum theory for practical purposes. However, the development of modern density functional methods means that today, computational quantum mechanics can help engineers to identify and develop novel materials. Computational Quantum Mechanics for Materials Engineers describes new approaches to the modelling of disordered alloys that combine the most efficient quantum-level th

  5. Software Engineering and Knowledge Engineering Theory and Practice Volume 2

    CERN Document Server

    2012-01-01

    The volume includes a set of selected papers extended and revised from the I2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering (KESE 2009) was held on December 19~ 20, 2009, Shenzhen, China.   Volume 2 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of Knowledge Engineering and Communication Technology to disseminate their latest research results and exchange views on the future research directions of these fields. 135 high-quality papers are included in the volume. Each paper has been peer-reviewed by at least 2 program committee members and selected by the volume editor Prof.Yanwen Wu.   On behalf of the this volume, we would like to express our sincere appreciation to all of authors and referees for their efforts reviewing the papers. Hoping you can find lots of profound research ideas and results on the related fields of Knowledge Engineering and Communication Technology. 

  6. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    Science.gov (United States)

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  7. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    Science.gov (United States)

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…

  8. What does it mean to use a method? Towards a practice theory for software engineering

    DEFF Research Database (Denmark)

    Dittrich, Yvonne

    2016-01-01

    Context Methods and processes, along with the tools to support them, are at the heart of software engineering as a discipline. However, as we all know, that often the use of the same method neither impacts software projects in a comparable manner nor the software they result in. What is lacking...... software development and teaching are indicated. Conclusion The theoretical/philosophical concepts allow the explaining of heterogeneity in application of software engineering methods in line with empirical research results....... is an understanding of how methods affect software development. Objective The article develops a set of concepts based on the practice-concept in philosophy of sociology as a base to describe software development as social practice, and develop an understanding of methods and their application that explains...

  9. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  10. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices

  11. Incorrect results in software engineering experiments: How to improve research practices

    OpenAIRE

    Jørgensen, Magne; Dybå, Tore; Liestøl, Knut; Sjøberg, Dag

    2016-01-01

    Context The trustworthiness of research results is a growing concern in many empirical disciplines. Aim The goals of this paper are to assess how much the trustworthiness of results reported in software engineering experiments is affected by researcher and publication bias, given typical statistical power and significance levels, and to suggest improved research practices. Method First, we conducted a small-scale survey to document the presence of researcher and publication biases in software...

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  13. Practicing chemical process safety: a look at the layers of protection

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2004-01-01

    This presentation will review a few public perceptions of safety in chemical plants and refineries, and will compare these plant workplace risks to some of the more traditional occupations. The central theme of this paper is to provide a 'within-the-fence' view of many of the process safety practices that world class plants perform to pro-actively protect people, property, profits as well as the environment. It behooves each chemical plant and refinery to have their story on an image-rich presentation to stress stewardship and process safety. Such a program can assure the company's employees and help convince the community that many layers of safety protection within our plants are effective, and protect all from harm

  14. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  15. Co-Optimization of Fuels & Engines: Fuel Blendstocks with the Potential to Optimize Future Gasoline Engine Performance; Identification of Five Chemical Families for Detailed Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holladay, John [Pacific Northwest National Laboratory; Wagner, Robert [Oak Ridge National Laboratory

    2018-04-18

    The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.

  16. Model-driven engineering of information systems principles, techniques, and practice

    CERN Document Server

    Cretu, Liviu Gabriel

    2015-01-01

    Model-driven engineering (MDE) is the automatic production of software from simplified models of structure and functionality. It mainly involves the automation of the routine and technologically complex programming tasks, thus allowing developers to focus on the true value-adding functionality that the system needs to deliver. This book serves an overview of some of the core topics in MDE. The volume is broken into two sections offering a selection of papers that helps the reader not only understand the MDE principles and techniques, but also learn from practical examples. Also covered are the

  17. Practical framework for Bloom's based teaching and assessment of engineering outcomes

    Science.gov (United States)

    Mead, Patricia F.; Bennett, Mary M.

    2009-06-01

    ABET's outcomes-based assessment and evaluation requirements for engineering school accreditation has been a catalyst for curricular reform for engineering programs across the U.S. and around the world. Norfolk State University launched programs in Electronics and Optical Engineering in 2003. In 2007, Norfolk State became one of only six accredited Optical Engineering programs in the United States. In preparation for their first ABET evaluation in fall 2007, the faculty initiated an embedded-assessment program to insure continuous improvement toward the desired learning outcomes. The initial program design includes embedded assessments that have been generated using a practical framework for the creation of course activities based on Bloom's Learning Taxonomy. The framework includes specific performance criteria for each ABET-defined learning outcome. The embedded assessments are generated by individual faculty for courses that they are assigned to teach, and the performance criteria provide sufficient information to guide the faculty as they generate the embedded assignments. The assignments are typically administered through course exams, projects, electronic portfolio assignments, and other structured educational activities. The effectiveness of the assessment design is being evaluated through faculty surveys, faculty group discussions, and student performance. This paper outlines the assessment and evaluation plan, and the integrated processes that have been used to support the evaluation of learning outcomes using embedded assessment instruments.

  18. Ideas to Consider for New Chemical Engineering Educators: Part 1 (Courses Offered Earlier in the Curriculum)

    Science.gov (United States)

    Keith, Jason M.; Silverstein, David L.; Visco, Donald P., Jr.

    2009-01-01

    Chemical engineering faculty members are often asked to teach a core course that they have not taught before. The immediate thought is to come up with some new ideas to revolutionize that core course in ways that will engage students and maximize learning. This paper summarizes the authors' selection of the most effective, innovative approaches…

  19. Fostering Creative Engineers

    DEFF Research Database (Denmark)

    Zhou, Chunfang

    2012-01-01

    . As the literature demonstrates, this paper reveals the understanding of complexity in engineering practice and the roles of creativity in engineering practice. In addition, the barriers to creativity in current engineering education and some implications of pedagogic strategies will be discussed. So this paper...

  20. Real-time Kernel Implementation Practice Program for Embedded Software Engineers' Education and its Evaluation

    Science.gov (United States)

    Yoshida, Toshio; Matsumoto, Masahide; Seo, Katsuhiko; Chino, Shinichiro; Sugino, Eiji; Sawamoto, Jun; Koizumi, Hisao

    A real-time kernel (henceforth RTK) is in the center place of embedded software technology, and the understanding of RTK is indispensable for the embedded system design. To implement RTK, it is necessary to understand languages that describe RTK software program code, system programming manners, software development tools, CPU on that RTK runs and the interface between software and hardware, etc. in addition to understanding of RTK itself. This means RTK implementation process largely covers embedded software implementation process. Therefore, it is thought that RTK implementation practice program is very effective as a means of the acquisition of common embedded software skill in addition to deeper acquisition of RTK itself. In this paper, we propose to apply RTK implementing practice program to embedded software engineers educational program. We newly developed very small and step-up type RTK named μK for educational use, and held a seminar that used μK as a teaching material for the students of information science and engineers of the software house. As a result, we confirmed that RTK implementation practice program is very effective for the acquisition of embedded software common skill.

  1. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  2. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  3. The Evaluation of Industry Practical of Mechanical Engineering in Vocational Education: A CIPP Model Approach

    Science.gov (United States)

    Kamaludin, M.; Munawar, W.; Mahdan, D.; Simanjuntak, M. V.; Wendi, H. F.

    2018-02-01

    The learning system is not only studied on campus but also practicing in the world of work. Industry Practical aims to enable students to develop their skills in accordance with the real world of work. To know the success of the implementation of industry practical program then held evaluation. The evaluation of the program in this study used the CIPP evaluation approach (Context, Input, Process, Product). The purpose of this research is to know the extent of achievement and success of industry practical program at vocational school in Bandung with descriptive research method using mix method approach. The sample in this research is students majoring in mechanical engineering in the city of Bandung who have done industry practical.

  4. Good Manufacturing Practices (GMP) / Good Laboratory Practices (GLP) Review and Applicability for Chemical Security Enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Iveson, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Chemical Security Threat Reduction

    2014-11-01

    Global chemical security has been enhanced through the determined use and integration of both voluntary and legislated standards. Many popular standards contain components that specifically detail requirements for the security of materials, facilities and other vital assets. In this document we examine the roll of quality management standards and how they affect the security culture within the institutions that adopt these standards in order to conduct business within the international market place. Good manufacturing practices and good laboratory practices are two of a number of quality management systems that have been adopted as law in many nations. These standards are designed to protect the quality of drugs, medicines, foods and analytical test results in order to provide the world-wide consumer with safe and affective products for consumption. These standards provide no established security protocols and yet manage to increase the security of chemicals, materials, facilities and the supply chain via the effective and complete control over the manufacturing, the global supply chains and testing processes. We discuss the means through which these systems enhance security and how nations can further improve these systems with additional regulations that deal specifically with security in the realm of these management systems. We conclude with a discussion of new technologies that may cause disruption within the industries covered by these standards and how these issues might be addressed in order to maintain or increase the level of security within the industries and nations that have adopted these standards.

  5. Argumentation Practices in Classroom: Pre-Service Teachers' Conceptual Understanding of Chemical Equilibrium

    Science.gov (United States)

    Kaya, Ebru

    2013-01-01

    This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of…

  6. THE RESEARCH PROJECTS THROUGH UNIVERSITY-BUSINESS RELATIONSHIP IN THE CONTINUOUS FORMATION OF CHEMICAL ENGINEERS

    Directory of Open Access Journals (Sweden)

    Diana Niurka Concepción Toledo

    2015-07-01

    Full Text Available Economic and social development requires the establishment of strategic alliances of society to higher education. The university, based on the benefits of deep multiplier effect, has the ability and the duty to manage knowledge and transferring scientific results obtained in its substantive processes: teaching, scientific research and university extension to the productive context. In this paper the experience developed by Chemical Engineering Department of Central University “Marta Abreu” of Las Villas in which the scientific community in the industry of sugar cane is prepared to manage knowledge through university- business relationship is exposed. For this effort, an innovative process focused on the execution of research projects from scientific and technological demands set by the sugar factory "Antonio Sanchez" Aguada de Pasajeros develops. In the development of the planned actions it will be attended teacher-researchers, specialists and managers of the company and the incorporation of students in the race for the exercise of labor practice, innovative aspect of its formation, which consolidates professional preparation. The experience showed the potential offered by the connection of university science with industry through the establishment of innovative processes in knowledge management to ensure greater relevance of university substantive processes and the immediate incorporation of scientific results to the productive sector as the supreme goal of this activity.

  7. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds

    Science.gov (United States)

    Yoganarasimha, Suyog; Trahan, William R.; Best, Al M.; Bowlin, Gary L.; Kitten, Todd O.; Moon, Peter C.

    2014-01-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  8. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    Science.gov (United States)

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  9. Chemical Stimulation of Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter, E.

    2008-08-08

    The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

  10. The European Engineer: A British Civil Engineering Viewpoint.

    Science.gov (United States)

    Fleming, George

    1988-01-01

    Confronts the problems of defining the European Engineer in terms of educational and practical training. Analyzes the supply and demand requirements of engineering management and practice. Compares these analyses with conditions in the United States. Gives details of the educational process in a number of European countries. (CW)

  11. A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  12. Specific and Optional Curriculum: An Experience in the Undergraduate Program of Chemical Engineering in Cienfuegos University, Cuba

    Science.gov (United States)

    Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado

    2016-01-01

    This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…

  13. Software engineering the current practice

    CERN Document Server

    Rajlich, Vaclav

    2011-01-01

    INTRODUCTION History of Software EngineeringSoftware PropertiesOrigins of SoftwareBirth of Software EngineeringThird Paradigm: Iterative ApproachSoftware Life Span ModelsStaged ModelVariants of Staged ModelSoftware Technologies Programming Languages and CompilersObject-Oriented TechnologyVersion Control SystemSoftware ModelsClass DiagramsUML Activity DiagramsClass Dependency Graphs and ContractsSOFTWARE CHANGEIntroduction to Software ChangeCharacteristics of Software ChangePhases of Software ChangeRequirements and Their ElicitationRequirements Analysis and Change InitiationConcepts and Concept

  14. Organizational Learning, Knowledge Management Practices and Firm's Performance: An Empirical Study of a Heavy Engineering Firm in India

    Science.gov (United States)

    Jain, Ajay K.; Moreno, Ana

    2015-01-01

    Purpose: The study aims at investigating the impact of organizational learning (OL) on the firm's performance and knowledge management (KM) practices in a heavy engineering organization in India. Design/Methodology/Approach: The data were collected from 205 middle and senior executives working in the project engineering management division of a…

  15. Chemical Product Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2004-01-01

    This paper highlights for a class of chemical products, the design process, their design with respect to the important issues, the need for appropriate tools and finally, lists some of the challenges and opportunities for the process systems engineering (PSE)/computer-aided process engineering...... (CAPE) community. The chemical products considered belong to the following types: chemical/biochemical/agrochemical products, coatings and solvents, food (nutraceuticals), HIM (household, industrial and institutional), personal care, pharmaceuticals and drugs. The challenges and opportunities...... are highlighted in terms of the needs for multi-level modeling with emphasis on property models that are suitable for computer-aided applications, flexible solution strategies that are able to solve a large range of chemical product design problems and finally, a systems chemical product design framework...

  16. Another Look at the Practical and Theoretical Limits of an Expander Cycle, LOX/H2 Engine

    National Research Council Canada - National Science Library

    Krach, A

    1999-01-01

    Advances in materials and increases in turbopump efficiencies necessitate another look at the theoretical and practical limits for growth in chamber pressure and thrust in a liquid rocket expander cycle engine...

  17. An engineering context for software engineering

    OpenAIRE

    Riehle, Richard D.

    2008-01-01

    New engineering disciplines are emerging in the late Twentieth and early Twenty-first Century. One such emerging discipline is software engineering. The engineering community at large has long harbored a sense of skepticism about the validity of the term software engineering. During most of the fifty-plus years of software practice, that skepticism was probably justified. Professional education of software developers often fell short of the standard expected for conventional engineers; so...

  18. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Chemical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada; School of Chemical Engineering- University College of Engineering-University of Tehran, Tehran, Iran; School of Chemistry- University ...

  20. Thermodynamics for Chemists, Physicists and Engineers

    CERN Document Server

    Hołyst, Robert

    2012-01-01

    Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...

  1. 8. Forum on solar engineering in practice - solar engineering - politics, market and finances, marketing and sales. Proceedings 2007; 8. Forum Solarpraxis. Solartechnik - Politik, Markt and Finanzen, Marketing and Verkauf. Tagungsband 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The 8th forum on solar engineering in practice includes based upon a proven concept talks, impulse briefings and discussions in larger and smaller groups in many different ways about the subjects politics, market, finances, marketing and sales. In terms of contents the forum incorporates all subjects, which are of importance for the growth of solar engineering: New European Energy Law and Thermal Energy Law, supporting industry, mechanical engineering, training and finances. Latest subjects like Start-Up, finances, energy efficiency and market conditions and applications like solar cooling and solar thermal power plants are presented and discussed. In the frame of the forum on solar engineering in practice analyst conferences are held this year as well. Many companies, which are quoted at the stock exchange present their numbers to the analysts and financial groups. Furthermore companies in the field of the supporting industry present themselves to the fields of finance and solar engineering. (orig.)

  2. Expediting the transition from replacement medicine to tissue engineering.

    Science.gov (United States)

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  3. Metrology for Chemical Engineers

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Hansen, Elo Harald

    2001-01-01

    The first full-semester course on Quality Assurance in Chemical Measurement was held at the Technical University of Denmark from September to December 1999. The course required sufficient knowledge of basic statistics to understand and apply the methods recommended in ISO 5725-1/6 Accuracy of Mea...

  4. Incidence of the biotechnology in the academic development of the chemical engineering in Colombia

    International Nuclear Information System (INIS)

    Castellanos, Oscar Fernando; Rueda Maria Angelica; Ramirez, Julio Cesar

    1998-01-01

    In Colombia, the biotechnology, during the last years, it has been developed in a quick way, particularly in their fundamental and theoretical aspect. In the national market consumption there are products obtained with the help of the advances of the industrial biotechnology, which, for their implementation, it has had to appeal to import technologies and of transfer. This way, among the theoretical investigations in biotechnology and the applicability of their results in production processes in our country a direct relationship has not existed generally. At the moment, the necessities of scientific and technological progress demand the harmonic interaction of the different aspects of the biotechnology. For it, it is indispensable the formation of professionals, able to apply engineering concepts in the processes developed in biotechnical laboratories, like they have already made it other countries, with more scientific and economic advance. In the Colombian universities it is hour of reinforcing the line considerably in biochemical engineering of chemical engineering programs in the different pre and graduate levels; this profundity will allow significantly shortening distances between the different areas of the biotechnology and its industrial application

  5. Process engineering of fluids. Vol. 1. Fundamentals, methodology, technology, practice; Fluidverfahrenstechnik. Bd. 1. Grundlagen, Methodik, Technik, Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Goedecke, Ralf (ed.) [Degussa AG, Hanau (Germany)

    2006-07-01

    The book was written by practicians for practicians; it explains the process engineering of liquid and gas mixtures for purification, separation and concentration of the fluid components by means of selective separating techniques, i.e. absorption, rectification, evaporation, condensation, extraction, adsorption, chromatography, membrane techique, melt crystallisation, and separation with supercritical fluids. All the necessary fundamentals of thermodynamics, heat and mass transfer, fluid mechanics and boundary layer processes are considered. There is a new and comprehensive chapter on the synthesis of fluid process engineering, from the first conception to its practical application. In this context, also aspects like miniplant technology, process synthesis and simulation are discussed as well as important problems concerning internals, scale-up and fouling. In order to provide accurate in-depth knowledge, renowned experts of industry and science cooperated to write this book. With its wide range of subjects, it addresses projecting and operating engineers, newcomers and university students who intend to put their knowledge into practice after their exams. (orig.)

  6. Process engineering of fluids. Vol. 2. Fundamentals, methodology, technology, practice; Fluidverfahrenstechnik. Bd. 2. Grundlagen, Methodik, Technik, Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Goedecke, Ralf [Degussa AG, Hanau (Germany)

    2006-07-01

    The book was written by practicians for practicians; it explains the process engineering of liquid and gas mixtures for purification, separation and concentration of the fluid components by means of selective separating techniques, i.e. absorption, rectification, evaporation, condensation, extraction, adsorption, chromatography, membrane techique, melt crystallisation, and separation with supercritical fluids. All the necessary fundamentals of thermodynamics, heat and mass transfer, fluid mechanics and boundary layer processes are considered. There is a new and comprehensive chapter on the synthesis of fluid process engineering, from the first conception to its practical application. In this context, also aspects like miniplant technology, process synthesis and simulation are discussed as well as important problems concerning internals, scale-up and fouling. In order to provide accurate in-depth knowledge, renowned experts of industry and science cooperated to write this book. With its wide range of subjects, it addresses projecting and operating engineers, newcomers and university students who intend to put their knowledge into practice after their exams. (orig.)

  7. Teaching and training for global engineering perspectives on culture and professional communication practices

    CERN Document Server

    Flammia, Madelyn

    2016-01-01

    Provides a foundation for understanding a range of linguistic, cultural, and technological factors to effectively practice international communication in a variety of professional communication arenas This book presents a range of perspectives, examples, and concepts for teaching international professional communication in different settings. Industry professionals and academic researchers alike have written entries for Teaching and Training for Global Engineering: Perspectives on Culture and Professional Communication Practices, which have been organized into four cohesive, context-based sections that examine central issues associated with offering effective instruction on communication in global settings. The first section presents approaches for teaching issues of language and visual design related to international communication. The second section reviews aspects of software use and ethical practices associated with communicating globally. The third ection discusses how educators can use information a...

  8. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  9. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  10. What Chemistry To Teach Engineers?

    Science.gov (United States)

    Hawkes, Stephen J.

    2000-01-01

    Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)

  11. Chemical Safety Vulnerability Working Group report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  12. Chemical Safety Vulnerability Working Group report. Volume 3

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports

  13. Software engineering turning theory into practice

    CERN Document Server

    Jones, Robert

    1996-01-01

    The term 'Software Engineering' was coined in the mid 1960s, it is said, as a challenge to the software community to start rationalising the software production process. Software engineering is a very young discipline and this challenge still eludes LHC demands software production on a scale far beyond that previously addressed in HEP and we are relying on software engineering to allow a significant number of people address this problem collectively. This series of lectures presents the basics of software engineering from the developer's point of view. The aim is to show how individual developers can improve the quality of the software they produce while avoiding the conflict between the creative process of designing software and the organisational needs of large projects.The Laser Interferometer Gravitanional Wave Observatory (LIGO) is being constructed with a goal to detect these waves and then to use them as a new tool to explore and study The sources of gravitanional waves and techniques for detection wil...

  14. Modelling of Combustion and Pollutant Formation in a Large, Two-Stroke Marine Diesel Engine using Integrated CFD-Skeletal Chemical Mechanism

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper

    In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order...... to minimize the computational runtime, an in-house skeletal n-heptane chemical mechanism is coupled with the CFD model. This surrogate fuel model comprises 89 reactions with 32 species essential to diesel ignition/combustion processes as well as the formation of soot precursors and nitrogen monoxide (NO......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...

  15. Operationalising UN security council resolution 1540: an overview of select practical activities in the chemical and biological weapon-related areas

    International Nuclear Information System (INIS)

    Hart, J.

    2009-01-01

    The UN member states are continuing to take measures to inter alia establish and effectively implement controls to prevent the proliferation of nuclear, biological and chemical weapons and their means of delivery in accordance with United Nations Security Council Resolution 1540 (2004). The resolution also encourages enhanced international cooperation on such efforts, including by working through the 1540 Committee. Most analyses on the implementation of the resolution have focused on nuclear issues. This presentation provides an overview of select practical activities in the chemical and biological weapon-related areas, including chemical product classification and identification, biosafety and biosecurity practices and criminal prosecutions for unauthorised chemical transfers.(author)

  16. Statistical physics a prelude and fugue for engineers

    CERN Document Server

    Piazza, Roberto

    2017-01-01

    This book, provides a general introduction to the ideas and methods of statistical mechanics with the principal aim of meeting the needs of Master’s students in chemical, mechanical, and materials science engineering. Extensive introductory information is presented on many general physics topics in which students in engineering are inadequately trained, ranging from the Hamiltonian formulation of classical mechanics to basic quantum mechanics, electromagnetic fields in matter, intermolecular forces, and transport phenomena. Since engineers should be able to apply physical concepts, the book also focuses on the practical applications of statistical physics to material science and to cutting-edge technologies, with brief but informative sections on, for example, interfacial properties, disperse systems, nucleation, magnetic materials, superfluidity, and ultralow temperature technologies. The book adopts a graded approach to learning, the opening four basic-level chapters being followed by advanced “starred�...

  17. The Power of Peer Mentoring in Enabling a Diverse and Inclusive Environment in a Chemical Engineering Graduate Program

    Science.gov (United States)

    Bôas Fávero, Cláudio Vilas; Moran, Shannon; Eniola-Adefeso, Omolola

    2018-01-01

    The Chemical Engineering graduate program at the University of Michigan implemented a peer mentoring program for PhD students, with the goal of fostering department inclusivity and improved academic outcomes through facilitated social and academic activities in diverse, small groups. In this article, we detail the peer mentoring program…

  18. Managing the IE (Industrial Engineering Mindset: A quantitative investigation of Toyota’s practical thinking shared among employees

    Directory of Open Access Journals (Sweden)

    Phillip Marksberry

    2011-12-01

    Full Text Available Purpose: The goal of this work was to investigate the managerial practices of today to understand if Toyota is sheltering themselves from these newer practices or embracing them like most believe.Design/methodology/approach: This work utilizes a new form of data mining named Latent Semantic Analysis (LSA to analyze an organizations ideal management practices.Findings: This work shows quantitatively that TPS favors earlier versions of industrial engineering compared to the optimization techniques available today.Originality/value: The use of data mining to analyze organizational management practices.

  19. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    Science.gov (United States)

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  20. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Hafiz M N; Guo, Shuqi; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-03-01

    Over the past years, technological and scientific advances have proven biocatalysis as a sustainable alternative than traditional chemical catalysis including organo- or metallocatalysis. In this context, immobilization based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type derivatives. Many enzymes including oxidoreductases have been engineered by rational and directed evolution, to realize the catalytic activity, enantioselectivity, and stability attributes which are essential for their biotechnological exploitation. Induce yet stable activity in enzyme catalysis offer new insights and motivation to engineer efficient catalysts for practical and commercial purposes. It has now become possible to envisage substrate accessibility to the catalytic site of the enzyme by current computational capabilities that reduce the experimental work related to the enzyme selection, screening, and engineering. Herein, state-of-the-art protein engineering approaches for improving enzymatic activities including chemical modification, directed evolution, and rational design or their combination methods are discussed. The emphasis is also given to the applications of the resulting tailored catalysts ranging from fine chemicals to novel pharmaceutical compounds that use biocatalysts as a vital step. Copyright © 2017 Elsevier B.V. All rights reserved.