WorldWideScience

Sample records for chemical engineering division

  1. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  2. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  3. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  4. Compilation of contract research for the Chemical Engineering Branch, Division of Engineering Technology. Annual report for FY 1985

    International Nuclear Information System (INIS)

    This compilation of annual research reports by the contractors to the Chemical Engineering Branch, DET, is published to disseminate information from ongoing programs and covers research conducted during fiscal year 1985. The programs covered in this document include research on: (1) engineered safety feature (ESF) system effectiveness in terms of fission product retention under severe accident conditions; (2) effectiveness and safety aspects of selected decontamination methods; (3) decontamination impacts on solidification and waste disposal; (4) evaluation of nuclear facility decommissioning projects and concepts, and (5) operational schemes to prevent or mitigate the effects of hydrogen combustion during LWR accidents

  5. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  6. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  7. Chemical Sciences Division: Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  8. Chemical Engineering Division reactor fuels and materials chemistry research: July 1976--September 1977. [LMFBR; GCFR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    Reactor safety studies were directed primarily toward obtaining high-temperature physical property data for use in reactor safety analyses. Spectroscopic data and an oxygen-potential model were used to calculate thermodynamic properties applicable to the equations of state of (U,Pu)O/sub 2/ and UO/sub 2/. Work was continued on the compilation of standard sets of property data on reactor fuels and materials. The viscosity of molten alumina and the thermal diffusivity of molten UO/sub 2/ were measured as functions of temperature. Modeling and chemical-interaction studies related to post-accident heat removal were conducted. The efforts in sodium technology supported the LMFBR program. Studies were conducted to explore the feasibility of upgrading the quality of commercial-grade sodium and sodium from decommissioned reactors to provide new sources of reactor-grade sodium. Work was started on the development of methods for disposal of contaminated alkali--metal wastes. In work related to tritium, a model was developed to describe the behavior of tritium in an LMFBR, tritium permeation through steam-generator materials was measured, and an in-sodium tritium meter was developed and tested in reactor environments. Work in the area of fuels and materials chemistry was conducted in support of the GCFR program. Portions of the cesium--uranium--oxygen phase diagram were investigated to aid in understanding the reaction of fission-product cesium with urania blanket material, particularly in relation to axial gas flow in vented GCFR fuel pins. Data on the oxidation of vanadium, niobium, and titanium were assessed to determine the suitability of these materials for use in controlling oxidative attack of stainless steel cladding.

  9. Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

  10. Chemical Engineering Division fuel cycle programs. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1979-04-01

    Fuel cycle studies reported for this period include studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. Miniature single-stage and eight-stage centrifugal contactors are being employed in studies of contactor performance and the kinetics of extraction. A 9-cm-ID centrifugal contactor has been completed, and fabrication drawings are being prepared for a plant-scale contactor. In other work, tricaprylmethyl-ammonium nitrate and di-n-amyl n-amylphosphonate are being evaluated as extractants in the Thorex process. Literature on the dispersion of liquids by explosions is being reviewed. A process was developed for extracting TBP degradation products from TBP-Na/sub 2/CO/sub 3/ scrub solutions while the actinides remain with the raffinate. In the program on pyrochemical and dry processing of nuclear fuel, the literature is being reviewed for acceptable materials for containment vessels, decladding methods are being evaluated, salt transport processes are being studied, a candidate flow sheet (based upon the Dow Aluminum Pyrometallurgical process) for reprocessing spent uranium metal fuel was prepared, work was begun on the use of molten salts for reprocessing actinide oxides, and the reprocessing of (Th,U)O/sub 2/ solid solution in a KCl-LiCl salt containing ThCl/sub 4/ and thorium chips was studied. Work on the encapsulation of solidified radioactive waste in a metal matrix includes study of (1) chemical interactions between simulated waste forms and matrix metals, (2) the leach rates of simulated encapsulated waste forms, and (3) the corrosion of candidate matrix metals and canister materials in brine solutions.Work to establish criteria for the handling of waste cladding hulls is continuing. The transport properties of nuclear waste in geologic media are being studied to estimate leaching of radionuclides from deep repositories by groundwater.

  11. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  12. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  13. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  14. Chemical Technology Division Annual Report 2000

    International Nuclear Information System (INIS)

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory (ANL), one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base through developing industrial technology and transferring that technology to industry. The Chemical Technology Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by ANL's mission. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to ANL and other organizations. The Division is multi-disciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia, urban planning, and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition

  15. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  16. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature super-conductors. The Division's wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by governmental and industrial

  17. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  18. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  19. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  20. Chemical Biodynamics Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  1. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  2. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  3. 78 FR 775 - Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA...

    Science.gov (United States)

    2013-01-04

    ... Employment and Training Administration Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering)...

  4. Analysis of Chemical Technology Division waste streams

    International Nuclear Information System (INIS)

    This document is a summary of the sources, quantities, and characteristics of the wastes generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory. The major contributors of hazardous, mixed, and radioactive wastes in the CTD as of the writing of this document were the Chemical Development Section, the Isotopes Section, and the Process Development Section. The objectives of this report are to identify the sources and the summarize the quantities and characteristics of hazardous, mixed, gaseous, and solid and liquid radioactive wastes that are generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory (ORNL). This study was performed in support of the CTD waste-reduction program -- the goals of which are to reduce both the volume and hazard level of the waste generated by the division. Prior to the initiation of any specific waste-reduction projects, an understanding of the overall waste-generation system of CTD must be developed. Therefore, the general approach taken in this study is that of an overall CTD waste-systems analysis, which is a detailed presentation of the generation points and general characteristics of each waste stream in CTD. The goal of this analysis is to identify the primary waste generators in the division and determine the most beneficial areas to initiate waste-reduction projects. 4 refs., 4 figs., 13 tabs

  5. Engineering Research Division publication report, calendar year 1980

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K.; Livingston, P.L.; Rae, D.C. (eds.)

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  6. Engineering Research Division publication report, calendar year 1980

    International Nuclear Information System (INIS)

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented

  7. Chemical and Laser Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions

  8. Chemical and Laser Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    Haines, N. (ed.)

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  9. Equilibrium Chemical Engines

    OpenAIRE

    Shibata, Tatsuo; Sasa, Shin-ichi

    1997-01-01

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  10. Chemical Processing Division monthly report, September 1966

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.

    1966-10-21

    This report, from the Chemical Processing Department at HAPO for September 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  11. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  12. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  13. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  14. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  15. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  16. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  17. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  18. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  19. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  20. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  1. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  2. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  3. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  4. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  5. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  6. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  7. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  8. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  9. Reactor Engineering Division Material for World Wide Web Pages

    International Nuclear Information System (INIS)

    This document presents the home page of the Reactor Engineering Division of Argonne National Laboratory. This WWW site describes the activities of the Division, an introduction to its wide variety of programs and samples of the results of research by people in the division

  10. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  11. Engineering Research Division report on reports: calendar year 1979

    International Nuclear Information System (INIS)

    A bibliography of publications of members of the Engineering Research Division of the Electronics Engineering Department is presented for 1979. Abstracts for 148 publications are included, along with author and keywork indexes

  12. Engineering Research Division report on reports: calendar year 1979. [LLL

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.L.; Johnston, S.J. (eds.)

    1980-03-01

    A bibliography of publications of members of the Engineering Research Division of the Electronics Engineering Department is presented for 1979. Abstracts for 148 publications are included, along with author and keywork indexes. (RWR)

  13. The Division of Chemical Education Revisited, 25 Years Later

    Science.gov (United States)

    Bodner, George M.; Towns, Marcy H.

    2010-01-01

    This paper examines what has happened over a period of 25 years since a separate Division of Chemical Education was created within the Department of Chemistry at Purdue University. It argues that the faith in the chemical education graduate program that was demonstrated when the division was created was well-placed, and that chemical education has…

  14. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  15. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  16. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  17. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  18. The ORNL Chemical Technology Division, 1950-1994

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.; Mrochek, J.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment that had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.

  19. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  20. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  1. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  2. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  3. Modeling in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    Jaap van Brakel

    2000-10-01

    Full Text Available Models underlying the use of similarity considerations, dimensionless numbers, and dimensional analysis in chemical engineering are discussed. Special attention is given to the many levels at which models and ceteris paribus conditions play a role and to the modeling of initial and boundary conditions. It is shown that both the laws or dimensionless number correlations and the systems to which they apply are models. More generally, no matter which model or description one picks out, what is being modeled is itself a model of something else. Instead of saying that the artifact S models the given B, it is therefore better to say that S and B jointly make up B and S.

  4. Annual report of the Division of High Temperature Engineering

    International Nuclear Information System (INIS)

    Research activities conducted in the Division of High Temperature Engineering during fiscal 1981 are described. R and D works of our division are mainly related to a multi-purpose very high-temperature gas-cooled reactor (VHTR) and a fusion reactor. This report deals with the main results obtained on material test, development of computer codes, heat transfer, fluid-dynamics, structural mechanics and the construction of an M + A (Mother and Adapter) section of a HENDEL (Helium Engineering Demonstration Loop) as well. (author)

  5. Fundamentals of chemical reaction engineering

    CERN Document Server

    Davis, Mark E

    2012-01-01

    Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. The authors take a chemical approach, helping students develop an intuitive feeling for concepts, rather than an engineering approach, which tends to overlook the inner workings of systems and objects.Each chapter contains numerous worked-out problems and real-world vignettes involving commercia

  6. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  7. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  8. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  9. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  10. Teaching Chemical Engineers about Teaching

    Science.gov (United States)

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  11. Job Prospects for Chemical Engineers.

    Science.gov (United States)

    Basta, Nicholas

    1985-01-01

    The job situation for new chemical engineers with bachelor's degrees is continuing to reflect the gradual improvement that began in 1983. However, companies are looking for graduates with technical expertise as well as marketing, sales, or communications skills. Smaller classes may lead to shortages of chemical engineering graduates in the future.…

  12. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  13. Chemical Sciences Division annual report, 1990

    International Nuclear Information System (INIS)

    This report contains sections on the following topics: photochemistry of materials in the stratosphere, energy transfer and structural studies of molecules on surfaces, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at the high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H2, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO2, potentially catalytic and conducting polyorganometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures

  14. Chemical Sciences Division annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report contains sections on the following topics: photochemistry of materials in the stratosphere, energy transfer and structural studies of molecules on surfaces, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at the high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting polyorganometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures.

  15. State of radiotracer application at the Division of Environmental Engineering, CDTN, NUCLEBRAS

    International Nuclear Information System (INIS)

    The history and working phylosophy of the NUCLEBRAS division of environmental engineering are reported. Some aspects of tracer applications and of the tasks performed by the division of environmental engineering are described. (M.A.C.)

  16. Engineering Research Division report on reports calendar year 1978

    International Nuclear Information System (INIS)

    Each year the Engineering Research Division of the Electronics Engineering Department has issued an internal report listing of all formal publications produced by the division during the calendar year. The report for 1978 is being issued in two sections (the second section has been expanded from the former format due to a change in collection of information implemented during the calendar year 1978). The first section (covering January 1978 through June 1978) lists the titles, report numbers, authors, dates, an author index, and, when applicable, conferences or journals to which the paper was submitted. The second section (covering July 1978 through December 1978) provides, in addition to the above information, abstracts for each paper, and an appendix with keywords. Future publication reports will include abstracts and a keyword appendix for all reports. It is expected that the new format will make the publication report a more useful document

  17. Chemical and Laser Sciences Division: Annual report, 1987

    International Nuclear Information System (INIS)

    As the Chemical and Laser Sciences Division concludes its first year, the Division personnel can be proud of their many scientific and technical accomplishments. Among the important milestones which the Division achieved were significant demonstrations of the process performance in the Special Isotope Separation program, of beam sensing techniques for the NPB program, and of optical angular multiplexing and energy extraction from the ICF KrF laser. In addition, the Los Alamos FTS was brought to operational status and the Bright Source attained intensities on the order of 1017 W/cm2. A few highlights of these and other research and development activities are presented in the following sections of this report

  18. Metrology for Chemical Engineers

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Hansen, Elo Harald

    2001-01-01

    The first full-semester course on Quality Assurance in Chemical Measurement was held at the Technical University of Denmark from September to December 1999. The course required sufficient knowledge of basic statistics to understand and apply the methods recommended in ISO 5725-1/6 Accuracy...... organizations in 1993. Chemists are notoriously reluctant to accept the BIPM philosophy, but the appearance of a new Draft Guide Quantifying Uncertainty in Analytical Measurement at the EURACHEM Workshop in Helsinki in June 1999 stimulated us to make an attempt to overcome such chemical prejudice. After...

  19. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-01-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  20. 1998 Chemical Technology Division Annual Technical Report. Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented

  1. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  2. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    International Nuclear Information System (INIS)

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division

  3. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R ampersand D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry

  4. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  5. Chemical Engineering Students: A Distinct Group among Engineers

    Science.gov (United States)

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  6. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  7. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    International Nuclear Information System (INIS)

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included

  8. The Nigerian Society of Engineers (Electrical Division). National Workshop on Energy Conservation in Buildings. Proceedings

    International Nuclear Information System (INIS)

    This is a combined proceedings of the two national workshops held in Abuja and Lagos, by the Electrical Division of the Nigerian Society of Engineers. We wish to thank the Nigerian Society of Engineers for making available this document

  9. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  10. A History of the Division of Inorganic Chemistry, American Chemical Society.

    Science.gov (United States)

    Bailar, John C., Jr.

    1989-01-01

    Describes the development of the Division of Inorganic Chemistry, from the founding of the American Chemical Society in 1876, the formation of the Division in 1957, and recent events. Includes tables listing officers of the Division and symposia titles at national meetings. (YP)

  11. Chemical Technology Division progress report, January 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This progress report presents a summary of the missions and activities of the various sections and administrative groups in this Division for this period. Specific projects in areas such as energy research, waste and environmental programs, and radiochemical processing are highlighted, and special programmatic activities conducted by the Division are identified and described. The administrative summary portion features information about publications and presentations of Chemical Technology Division staff, as well as a listing of patents awarded to Division personnel during this period.

  12. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  13. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    International Nuclear Information System (INIS)

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs

  14. 75 FR 453 - FLSMidth, Inc., Cement Division, Product Engineering, Including On-Site Leased Workers of Aerotek...

    Science.gov (United States)

    2010-01-05

    ... Employment and Training Administration FLSMidth, Inc., Cement Division, Product Engineering, Including On... Worker Adjustment Assistance on November 3, 2009, applicable to workers of FLSmidth, Inc., Cement... employed on-site at FLSmidth, Inc., Cement Division, Product Engineering, Bethlehem, Pennsylvania....

  15. 75 FR 9437 - Wacker Chemical Corporation Wacker Polymers Division a Subsidiary of Wacker Chemie AG Including...

    Science.gov (United States)

    2010-03-02

    ... September 2, 2009 (74 FR 45476). At the request of the Company, the Department reviewed the certification... Employment and Training Administration Wacker Chemical Corporation Wacker Polymers Division a Subsidiary of... Chemical Corporation Wacker Polymers Division a Subsidiary of Wacker Chemie AG Including On-Site...

  16. Communicating Reengineering at Naval Facilities Engineering Command, Southwest Division

    Science.gov (United States)

    Welch, David T.

    2002-09-01

    This research evaluates how effectively the reengineering process concept has been communicated within the Southwest Division in San Diego, California. It clearly defines reengineering, why reengineering has been embraced by Southwest Division, and what senior leadership's communication objectives and strategies have been since its inception. The research analyzes senior leadership's communication of organizational reengineering and some of the obstacles they have encountered. The research provides action recommendations, where warranted, for greater success in communicating the reengineering process transformation.

  17. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  18. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  19. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... the individual to become more assertive and understanding of personal assets. These teaching elements included in Chemical Product Engineering represent a series of general issues in Chemical Engineering Education, which must be discussed as the education is going to adapt to the changes of the surrounding world......Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...

  20. Ecological optimization of endoreversible chemical engines

    Directory of Open Access Journals (Sweden)

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-09-01

    Full Text Available Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological function versus the efficiency characteristic of the cycles. The results can provide some theoretical guidelines for the design of practical chemical engines.

  1. Ecological optimization of endoreversible chemical engines

    OpenAIRE

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-01-01

    Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological ...

  2. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  3. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.

  4. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    International Nuclear Information System (INIS)

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center

  5. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum. PMID:24702299

  6. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  7. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    International Nuclear Information System (INIS)

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center

  8. Mini-projects in Chemical Engineering Laboratory

    OpenAIRE

    Angeles Cancela; Angel Sanchez; Rocio Maceiras

    2013-01-01

    Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of ...

  9. A New Paradigm for Chemical Engineering?

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    material, energy usage and waste generation without compromising the economic value of the enterprise. Responding to these challenges requires a new insight into the characteristics of a sustainable system, for example, how to incorporate the product, the process and the related supply chain within...... the system boundary under investigation? A fundamental rethinking of how to identify the needed chemicals based products and how to design, build and operate the corresponding production units, is necessary. Indeed, the chemical industry today is changed from the chemical industry of forty years ago. Clear...... businesses has been observed. There is an increasing trend within the chemical industry to focus on products and the sustainable processes that can make them. Do these changes point to a paradigm shift in chemical engineering as a discipline? Historically, two previous paradigm shifts in chemical engineering...

  10. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    design, investigations, engineering practice and transferable skills) and a set guidelines (core curriculum, teaching and learning, industrial experience, review of the education process and student assessment) to achieve them, with special emphasis to the ability to solve problems. They also propose...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...... a diversity of individual, academic and labour-market needs. Within Europe, two types of higher education in chemical engineering can be found: more research-oriented or more application-oriented first cycle programmes. Both types of studies cover a period of 3-4 academic years and 60 credits per year. After...

  11. Semi-annual report of Chemical Division of CDTN - July to December 1988

    International Nuclear Information System (INIS)

    The main activities developed by the Chemical Division of CDTN are described, including 1) the characterization of rare earths and yttrium; 2) the specification of Cu++ selective electrode; 3) chemical characterization of UO2 sintering pellets; 4) determination of graphitic carbon in cement; 5) determination of lead in blood and urine; and 6) analytical determinations. (C.G.C.)

  12. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  13. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  14. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  15. The rise and realization of molecular chemical engineering

    OpenAIRE

    Davis, Mark E.

    2009-01-01

    Modern chemical engineering involves the integration of physical and chemical phenomena over length scales ranging from the atomic/molecular to the macroscopic. The ability to delve into the molecular world and to learn how to engineer it has opened broad sectors of new technology. How has chemical engineering reached this point? How is chemical engineering taking advantage of this position? How will chemical engineering move forward based on its ability to engineer at the molecular/atomic le...

  16. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  17. 77 FR 51459 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-08-24

    ..., PW4164C/B, PW4168, and PW4168A turbofan engines with certain high- pressure turbine (HPT) stage 1 front hubs installed. This AD was prompted by Pratt & Whitney's updated low-cycle-fatigue analysis that... cycles in service. We therefore, revised paragraphs (f)(1)(ii) and (f)(2)(ii) of the proposed AD (77...

  18. Compilation of contract research for the Materials Engineering Branch, Division of Engineering: Annual report for FY 1987

    International Nuclear Information System (INIS)

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, nondestructive examination of primary components, and in safety research for decommissioning and decontamination, on-site storage, and engineered safety features. This report, covering research conducted during Fiscal Year 1987 is the sixth volume of the series of NUREG-0975, ''Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering.''

  19. Materials and Chemical Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program

  20. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  1. Engineering microbes for efficient production of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  2. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  3. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  4. Milestones of Chemical Engineering Development in Croatia

    Directory of Open Access Journals (Sweden)

    Hraste, M.

    2007-10-01

    Full Text Available Solving important problems of chemical and process industries stimulated the creation of a new scientific discipline, chemical engineering, which apart from other disciplines includes firm theoretical foundations, core subjects taught to entering students, widely adopted textbooks and journals. The new discipline, at the beginning of the 20th century, provided a way of analyzing the wide variety of processes in terms of small "unit operations". Later, the largely empirical approach of the unit operations was broadened by molecular explanations of macroscopic phenomena. It was not long before chemical engineering extended the operation approach to chemical reaction engineering. At the same time, process optimization prompted the system approach. Instead of looking for details, higher levels of organization were recognized by synthesis. The use of computers has become the key element in process modeling and control. The methods of chemical engineering have extended to other fields, while the discipline keeps the same basis and characteristics.The changes on the global market stimulate new trends in research and education. Product development has become an important segment of the discipline, which presumes an integrated approach to the phenomena and processes at different time and length levels following the possible transfer from molecule to product at process level.This paper mainly deals with the development of this discipline in Croatia, with a preview of the persons that contributed to the acceptance and propagation of the new concepts.

  5. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  6. Milestones of Chemical Engineering Development in Croatia

    OpenAIRE

    Hraste, M.

    2007-01-01

    Solving important problems of chemical and process industries stimulated the creation of a new scientific discipline, chemical engineering, which apart from other disciplines includes firm theoretical foundations, core subjects taught to entering students, widely adopted textbooks and journals. The new discipline, at the beginning of the 20th century, provided a way of analyzing the wide variety of processes in terms of small "unit operations". Later, the largely empirical approach of the uni...

  7. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  8. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  9. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1984. Volume 3

    International Nuclear Information System (INIS)

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievments in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1984, is the third volume of the series of NUREG-0975, compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  10. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1985. Volume 4

    International Nuclear Information System (INIS)

    The compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1985, is the fourth volume of the series of NUREG-0975, Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  11. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  12. Conceptests for a Chemical Engineering Thermodynamics Course

    Science.gov (United States)

    Falconer, John L.

    2007-01-01

    Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…

  13. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  14. Chemical Engineering Division Fuel Cycle Programs: October--December 1976

    International Nuclear Information System (INIS)

    Fuel-cycle studies reported for this period include pyrochemical separation of plutonium and americium oxides from contaminated materials of construction such as steel. The actinides are partitioned to a high degree into slags that are contacted by the molten metal. Studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. A miniature contactor is to be used for performance studies applicable to larger units. Review of literature on the process chemistry of zirconium and ruthenium has been carried out to aid in improving the process when fast contactors are used. A review of information on the dispersion of reagents during accidents in reprocessing has been initiated to develop systematic data useful in identifying source terms. A review and evaluation of the encapsulation of high level waste in a metal matrix has been initiated. The data will be used to identify the state of the art and the importance of selected features of this process. Criteria for the handling of hulls are being developed on the basis of past work on the pyrophoricity of zirconium alloys and related criteria from several sources. These suggested criteria will be assembled together with the necessary technical rationalization, into a package for review by interested parties. A brief program to explore the disposal of noble gas fission products by deep-well injection has been started

  15. Bulletin of the Division of Electrical Engineering, 1987-1988, volume 3, number 2

    Science.gov (United States)

    1988-05-01

    A report is provided on the activities of the Division of Electrical Engineering of the National Research Council of Canada. The Division engages in the development of standards and test procedures, and undertakes applied research in support of Canadian industry, government departments, and universities. Technology transfer and collaborative research continue to grow in importance as focuses of Division activities. The Division is comprised of three sections: the Laboratory for Biomedical Engineering, the Laboratory for Electromagnetic and Power Engineering, and the Laboratory for Intelligent Systems. An agreement has been reached to commercially exploit the realtime multiprocessor operating system Harmony. The dielectrics group has made contract research agreements with industry from both Canada and the United States. The possibility of employing a new advanced laser vision camera, which can be mounted on a robot arm in a variety of industrial applications is being explored. Potential short-term spinoffs related to intelligent wheelchairs are being sought as part of the new interlaboratory program which has as its long-term objective the development of a mobile robot for health care applications. A program in applied artificial intelligence has been established. Initiatives in collaboration with outside groups include proposals for major institutes in areas ranging from police and security research to rehabilitation research, programs to enhance Canadian industrial competence working with the Canadian Manufacturers' Association and other government departments, and approaches to the utilization of existing facilities which will make them more valuable without significant financial expenditures.

  16. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  17. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy. PMID:20047295

  18. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  19. Compilation of contract research for the Materials Engineering Branch, Division of Engineering: Annual report for FY 1988

    International Nuclear Information System (INIS)

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, nondestructive examination of primary components, and in safety research for decommissioning and decontamination, on-site storage and engineered safety features. The Materials Engineering Branch assembles abbreviated reports from all the branch contractors and publishes them in a single annual report as soon after the end of the year as possible so that the information developed throughout the year can be promptly used in the safety-regulatory process. This report, covering research conducted during Fiscal Year 1988 is the seventh volume of the series of NUREG-0975, ''Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering.'' Individual projects are processed separately for the data bases

  20. Progress report [of] Technical Physics and Prototype Engineering Division, April 1982 - March 1984

    International Nuclear Information System (INIS)

    The work done by the Technical Physics and Prototype Engineering Division of the Bhabha Atomic Research Centre (BARC) at Bombay during the period from April 1982 to March 1984 is described in the form of summaries. The main thrust of the work of the Division is towards designing, developing, fabricating and if needed, producing on a large scale various instruments, equipment and components required for the programmes of the BARC and the Department of Atomic Energy. The summaries describing the work are grouped under the headings:(1) vacuum, (2) surface analysis, (3) mass spectrometry, (4) electronics, (5) cryogenics, (6) crystals and detectors, (7) glass technology and devices, and (8) optoelectronics. A list of publications of the staff-members of the Division during the report period is given. (M.G.B.)

  1. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  2. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  3. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    International Nuclear Information System (INIS)

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included

  4. 75 years of the Division of Analytical Chemistry of the American Chemical Society.

    Science.gov (United States)

    Hirsch, Roland F

    2013-04-01

    The Division of Analytical Chemistry is celebrating the 75th anniversary of its founding in 1938. We celebrate the continuing high importance of our discipline for all aspects of chemical science and for its applications in so many aspects of everyday life. We especially celebrate the accomplishments of our fellow analytical chemists through the years, and the impact we have had on the profession. This article is a short history of the Division within the context of the parallel development of our profession and our science.

  5. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    Science.gov (United States)

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  6. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for

  7. The hierarchical structure of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Mooson KWAUK

    2007-01-01

    Around the turn of the present century, scholars began to recognize chemical engineering as a complex system, and have been searching for a convenient point of entry for refreshing its knowledge base. From our study of the dynamic structures of dispersed particles in fluidization and the resulting multi-scale method, we have been attempting to extend our findings to structures prevailing in other multiphase systems as well as in the burgeoning industries producing functional materials. Chemical engineering itself is hierarchically structured. Besides structures based on space and time, such hierarchy could be built from ChE history scaled according to science content, or from ChE operation according to the expenditure of manpower and capital investment.

  8. Engineering electrical properties of graphene: chemical approaches

    Science.gov (United States)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  9. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  10. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    International Nuclear Information System (INIS)

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period

  11. Engineering Physics Division progress report for period ending November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

  12. Engineering Physics Division progress report for period ending November 30, 1980

    International Nuclear Information System (INIS)

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution

  13. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  15. Chemical Technology Division annual progress report for period ending March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    Separate abstracts were prepared for several of the sections reporting work on the fuel cycle, radioactive waste management, coal conversion, isotope separation, fusion energy, separation processes, reactor safety, biomedical studies, and chemical engineering.

  16. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  17. Engineering Physics Division progress report for period ending November 30, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included. (RWR)

  18. Engineering Physics Division progress report for period ending November 30, 1978

    International Nuclear Information System (INIS)

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included

  19. Progress report for 1978-87 of the Food Technology and Enzyme Engineering Division

    International Nuclear Information System (INIS)

    The salient features of the research and development (R and D) activities of the Food Technology and Enzyme Engineering Division of the Bhabha Atomic Research Centre, Bombay, during the decade 1978-1987 are summarized. The Division was a part of the erstwhile Biochemistry and Food Technology which was bifurcated in 1985. The main thrust of the Division's R and D work is directed towards the development of appropriate technologies for radiation preservation of agricultural produce in natural form for prolonged periods without any perceptible change in quality attributes. The suitable parameters have been evolved to apply radiation technology for: (1) arresting sprouting losses in turbers and bulbs, (2) controlling infestation of cereals, spices and ready to eat food items, by insects, microbial pests and pathogens and (3) controlling spoilage of sea foods, fruits and vegetables. It is remarkable to note that the data collected during wholesomeness and toxicological studies of various irradiated food products have been used by the Joint Expert Committee on Food Irradiation of WHO/IAEA/FAO to accord unconditional health and safety clearance to irradiation process using upto 10 KGy radiation doses. The products treated with gamma radiation within this limit do not require toxicological evaluation. The technique for poly-valent radio-vaccine infective diseases in farm animals have been standardized and a vaccine to prevent Salmonella infection in poultry is undergoing field trials in farms. The other activities of the Division are in the fields of enzyme technology, photosynthetic process, and toxicity and genotoxicity of food ingredients and additives. Lists of staff-members of the Division and their publications, their participation in various symposia, seminars, conferences etc. are appended. (M.G.B.)

  20. EXTENDING THE KNOWLEDGE BASE OF CHEMICAL ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Mooson Kwauk

    2005-01-01

    The obvious current reversion to micro-scale investigations in basic chemical engineering, combined with the need, of a quite different nature, in the rapid growth of high added-value and small-lot functional materials, have been pointing to an area not yet sufficiently covered by the unit operations, transport phenomena and chemical reaction engineering. Although it is difficult to define accurately this area, a cursory scan of the activities already in progress has revealed a few common attributes: multi-phased (structured), multi-scaled, multi-disciplined, nonlinear, needs for resolution to reductionism-solvable subsystems, and pervasive in the process industry. From these activities, the present paper drafts a tentative scheme for studying the related problems: first to dissect a problem into various scales - spatial, temporal or otherwise as best suits the case in hand- in order to identify pertinent parameters which are then organized into model formulations. Together with inter-scale model formulations, a zoom-in/zoom-out process is carried out between the scales, by trial-and-error and through reasoning, to arrive at a global formulation of a quantitative solution, in order to derive, eventually, the general from the particular.

  1. 2010 University Exemplary Department Award honors chemical engineering, entomology, and mechanical engineering

    OpenAIRE

    Owczarski, Mark

    2010-01-01

    Virginia Tech's Department of Entomology in the College of Agriculture and Life Sciences and the Department of Chemical Engineering and the Department of Mechanical Engineering in the College of Engineering have been recognized with the 2010 University Exemplary Department Award.

  2. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  3. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  4. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data.

  5. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data

  6. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  7. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  8. Program for the Division of Chemical Education: Chicago, March 25 29, 2007

    Science.gov (United States)

    Middlecamp, Catherine H.; Bodner, George M.; Jones, Wayne E., Jr.

    2007-03-01

    Program for the Division of Chemical Education March 2007 meeting in Chicago. All CHED technical sessions including the High School Program will be held in the McCormick Place Convention Complex North, 2301 South Lake Shore Drive. Exceptions are the Undergraduate Program (in the Westin Hotel Michigan Avenue), the Undergraduate Research Poster Sessions (in the Sheraton Chicago Hotel), and any evening programs. Unless otherwise noted, morning sessions begin at 8:30 a.m., afternoon sessions at 1:30 p.m.

  9. The hierarchical structure of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Mooson; KWAUK

    2007-01-01

    Around the turn of the present century,scholars began to recognize chemical engineering as a com-plex system,and have been searching for a convenient point of entry for refreshing its knowledge base.From our study of the dynamic structures of dispersed particles in fluidization and the resultingmulti-scale method,we have been attempting to extend our findings to structures prevailing in othermultiphase systems as well as in the burgeoning industries producing functional materials.Chemicalengineering itself is hierarchically structured.Besides structures based on space and time,such hier-archy could be built from ChE history scaled according to science content,or from ChE operation ac-cording to the expenditure of manpower and capital investment.

  10. Energy and environmental challenges to chemical engineers

    International Nuclear Information System (INIS)

    The National Research Council's report, Frontiers in Chemical Engineering, was written four years ago. Three high-priority research areas concerned with energy and the environment were identified in the report: in situ processing, liquid fuels for the future, and responsible management of hazardous wastes. As outlined in the recently released National Energy Strategy, in situ processing is viewed by the Department of Energy (DOE) primarily through its use in enhanced oil recovery, and some research is still funded. Industry, driven by the economics of low oil prices, is doing little research on in situ processing but much more on reservoir characterization, a prerequisite to processing. Research on liquid fuels for the future is driven more by environmental concerns now than by energy security concerns. It appears to be wise policy for the future to try to solve the alternative fuel problem as quickly and simply as possible. Otherwise, the nation will find itself with a costly and complex fuel and vehicle system that may have to be changed again in a generation. For the interim, we should look closely at reformulated gasoline followed by compressed natural gas, if necessary. In the long run, vehicle systems based on electricity seem most promising for the middle of the next century. To deliver this technology we need to capitalize on three new high-priority research areas: batteries, fuel cells, and nuclear power. For chemical engineers, future challenges of a different sort will be added to the technical challenges, among them are explaining to a skeptical public the wisdom of proceeding to design the interim system of alternative fuel(s) and to move expeditiously to a final solution

  11. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-06-01

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  12. Implementation of a Three-Semester Concurrent Engineering Design Sequence for Lower-Division Engineering Students

    Science.gov (United States)

    Bertozzi, N.; Hebert, C.; Rought, J.; Staniunas, C.

    2007-01-01

    Over the past decade the software products available for solid modeling, dynamic, stress, thermal, and flow analysis, and computer-aiding manufacturing (CAM) have become more powerful, affordable, and easier to use. At the same time it has become increasingly important for students to gain concurrent engineering design and systems integration…

  13. Ethical Standards for Publication in Chinese Journal of Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Chinese Journal of Chemical Engineering is a publication of the Chemical Industry and Engineering Society of China (CIESC) dedicated to present the original contributions of knowledge with permanent value from chemical engineering researcher and technical staff in processing industries in China and the world. The Editors-in-Chief, Associate Editors-in-Chief and Editorial Staff of the journal share the responsibility to maintain the CJChE ethical standards for paper reviewing and handling process.

  14. Chemical Technology Division progress report, April 1, 1983-March 31, 1985

    International Nuclear Information System (INIS)

    The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs

  15. Chemical Technology Division progress report, April 1, 1983-March 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs.

  16. Ethical Standards for Publication in Chinese Journal of Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Journal of Chemical Engineering (CJChE) is a publication of the Chemical Industry and Engineering Society of China (CIESC) dedicated to present the original contributions of knowledge with permanent value from chemical engineering researchers and technical staff of process industries in China and the world. The editors-in-chief, associate editors-in-chief and editorial staff of the journal share the responsibility to maintain the CJChE ethical standards for paper reviewing and handling process. The following ethical standards are thought important to the contributors from Chinese and international chemical engineering communities.

  17. Compilation of contract research for the Materials Engineering Branch, Division of Engineering

    International Nuclear Information System (INIS)

    This compilation of annual reports for FY 1990 by contractors to the Materials Engineering Branch of the Nuclear Regulatory Commission Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, and nondestructive examination of primary system components. Separate abstracts have been prepared for each of the reports which are divided into the following categories: (1) vessel and piping fracture mechanics (including irradiation embrittlement); (2) pressure vessel surveillance dosimetry; (3) steam generators, aging, and environmental cracking; and (4) nondestructive examination techniques

  18. 75 FR 879 - National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers...

    Science.gov (United States)

    2010-01-06

    ..., applicable to workers of National Starch and Chemical Company, Specialty Starches Division, Island Falls, Maine. The notice was published in the Federal Register on December 31, 2007 (72 FR 74343). At the... Employment and Training Administration National Starch and Chemical Company Specialty Starches...

  19. A Case Study of Search Engine on World Wide Web for Chemical Fiber Engineering

    Institute of Scientific and Technical Information of China (English)

    张利; 邵世煌; 曾献辉; 尹美华

    2001-01-01

    Search engine is an effective approach to promote the service quality of the World Wide Web. On terms of the analysis of search engines at home and abroad, the developing principle of search engines is given according to the requirement of Web information for chemical fiber engineering. The implementation method for the communication and dynamic refreshment of information on home page of the search engines are elaborated by using programming technology of Active Server Page 3.0 (ASP3.0). The query of chemical fiber information and automatic linking of chemical fiber Web sites can be easily realized by the developed search engine under Internet environment according to users' requirement.

  20. Thermodynamics an advanced textbook for chemical engineers

    CERN Document Server

    Astarita, Gianni

    1989-01-01

    If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the ...

  1. Multiscale computation from a chemical engineering perspective

    Institute of Scientific and Technical Information of China (English)

    Li Jinghai

    2014-01-01

    This-paper-mainly-discusses-the-multiscale-computation-from-a-chemical-engineering-perspective.-From-the-application-designer’s-perspective,we-propose-a-new-approach-to-investigate-and-develop-both-flexi-ble-and-efficient-computer-architectures.-Based-on-the-requirements-of-applications-within-one-category,we-first-induce-and-extract-some-inherent-computing-patterns-or-core-computing-kernels-from-the-applications.-Some-computing-models-and-innovative-computing-architectures-will-then-be-developed-for-these-patterns-or-kernels,as-well-as-the-software-mapping-techniques.-Finally-those-applications-which-can-share-and-utilize-those-computing-patterns-or-kernels-can-be-executed-very-efficiently-on-those-novel-computing-architectures.-We-think-that-the-proposed-approach-may-not-be-achievable-within-the-existing-technology.-However,we-believe-that-it-will-be-available-in-the-near-future.-Hence,we-will-describe-this-approach-from-the-following-four-as-pects:multiscale-environment-in-the-world,-mesoscale-as-a-key-scale,-energy-minimization-multiscale-(EMMS)paradigm-and-our-perspective.

  2. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    Science.gov (United States)

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  3. THEORETICAL CHEMICAL ENGINEERING - Modeling and Simulation by Christo Boyadjiev

    Directory of Open Access Journals (Sweden)

    Simeon Oka

    2010-01-01

    Full Text Available Book Title: THEORETICAL CHEMICAL ENGINEERING - Modeling and Simulation Author(s: Christo Boyadjiev Institute of Chemical Engineering, Bulgarian Academy of Science, Sofia Publisher: Springer, 2010 ISBN: 978-3-642-10777-1 Review by: Prof. Simeon Oka, Ph. D., Scientific advisor - retired

  4. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    Science.gov (United States)

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  5. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  6. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  7. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    Science.gov (United States)

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  8. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1997-06-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October-December 1996. The report describes ten tasks conducted in four major areas of research and development within the section. The first major research area -- Chemical Processes for Waste Management -- includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Development and Testing of Inorganic Sorbents, and Sludge Treatment Studies. Within the second research area -- Reactor Fuel Chemistry -- the distribution of iodine in containment during an AP600 design-basis accident was evaluated using models in the TRENDS code. Within the third research area -- Thermodynamics -- efforts continued in the Thermodynamics and Kinetics of energy-Related Materials task. The fourth major research area -- Processes for Waste Management -- includes work on these tasks: Ion-Exchange Process for Heavy Metals Removal, Search for Technetium in Natural Metallurgical Residues, and Waste Form Development and Testing of a Glass- and Cement-Based Dedicated Hot-Cell Facility.

  9. Compilation of reports from research supported by the Materials Engineering Branch, Division of Engineering: 1965--1990

    International Nuclear Information System (INIS)

    Since 1965, the Materials Engineering Branch, Division of Engineering, of the Nuclear Regulatory Commission's Office of Nuclear Regulatory Research, and its predecessors dating back to the Atomic Energy Commission (AEC), has sponsored research programs concerning the integrity of the primary system pressure boundary of light water reactors. The components of concern in these research programs have included the reactor pressure vessel (RPV), steam generators, and the piping. These research programs have covered a broad range of topics, including fracture mechanics analysis and experimental work for RPV and piping applications, inspection method development and qualification, and evaluation of irradiation effects to RPV steels. This report provides as complete a listing as practical of formal technical reports submitted to the NRC by the investigators working on these research programs. This listing includes topical, final and progress reports, and is segmented by topic area. In many cases a report will cover several topics (such as in the case of progress reports of multi-faceted programs), but is listed under only one topic. Therefore, in searching for reports on a specific topic, other related topic areas should be checked also

  10. Compilation of reports from research supported by the Materials Engineering Branch, Division of Engineering: 1991--1993. Volume 2

    International Nuclear Information System (INIS)

    Since 1965, the Materials Engineering Branch, Division of Engineering, of the Nuclear Regulatory Commission's Office of Nuclear Regulatory Research, and its predecessors dating back to the Atomic Energy Commission (AEC), has sponsored research programs concerning the integrity of the primary system pressure boundary of light water reactors. The components of concern in these research programs have included the reactor pressure vessel (RPV), steam generators, and the piping. These research programs have covered a broad range of topics, including fracture mechanics analysis and experimental work for RPV and piping applications, inspection method development and qualification, and evaluation of irradiation effects to RPV steels. This report provides as complete a listing as practical of formal technical reports submitted to the NRC by the investigators working on these research programs. This listing includes topical, final and progress reports, and is segmented by topic area. In many cases a report will cover several topics (such as in the case of progress reports of multi-faceted programs), but is listed under only one topic. Therefore, in searching for reports on a specific topic, other related topic areas should be checked also. The separate volumes of this report cover the following periods: Volume 1: 1965--1990 and Volume 2: 1991--1993

  11. Chemical Technology Division annual progress report for period ending March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The status is reported for various research programs including waste management, transuranium-element processing, isotopic separations, preparation of /sup 233/UO/sub 2/, separations chemistry, biomedical technology, environmental studies, coal technology program, actinide oxides and nitrides and carbides, chemical engineering, controlled thermonuclear program, iodine studies, reactor safety, NRC programs, and diffusion of adsorbed species in porous media. Details of these programs are given in topical reports and journal articles. (JSR)

  12. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  13. Maximum work configurations of finite potential capacity reservoir chemical engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An isothermal endoreversible chemical engine operating between the finite potential capacity high-chemical-potential reservoir and the infinite potential capacity low-chemical-potential reservoir has been studied in this work.Optimal control theory was applied to determine the optimal cycle configurations corresponding to the maximum work output per cycle for the fixed total cycle time and a universal mass transfer law.Analyses of special examples showed that the optimal cycle configuration with the mass transfer law g∝△μ,where△μis the chemical potential difference,is an isothermal endoreversible chemical engine cycle,in which the chemical potential(or the concentration) of the key component in the working substance of low-chemical-potential side is a constant,while the chemical potentials(or the concentrations) of the key component in the finite potential capacity high-chemical-potential reservoir and the corresponding side working substance change nonlinearly with time,and the difference of the chemical potentials(or the ratio of the concentrations) of the key component between the high-chemical-potential reservoir and the working substance is a constant.While the optimal cycle configuration with the mass transfer law g∝△μc,where △μc is the concentration difference,is different from that with the mass transfer law g∝△μ significantly.When the high-chemical-potential reservoir is also an infinite potential capacity chemical potential reservoir,the optimal cycle configuration of the isothermal endoreversible chemical engine consists of two constant chemical potential branches and two instantaneous constant mass-flux branches,which is independent of the mass transfer law.The object studied in this paper is general,and the results can provide some guidelines for optimal design and operation of real chemical engines.

  14. Chemical Engineering Education - Current and Future Trends

    OpenAIRE

    Gani, Rafiqul

    2011-01-01

    The chemical industry today is changed from the chemical industry of twenty-five years ago. Clear evidence of this change comes from the jobs taken by graduating chemical professionals in North America, Europe, and some of the Asian countries. Twenty-five years ago, eighty percent of these graduating students went to the commodity chemical industry, exemplified by Dupont, Exxon, Shell, ICI, BASF and Dow, to name a few. Now, twenty percent do. Twenty-five years ago, around ten percent went to ...

  15. The history of Korean Institute Chemical Engineers for fifteen years

    International Nuclear Information System (INIS)

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  16. The history of Korean Institute Chemical Engineers for fifteen years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  17. MICROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING

    OpenAIRE

    Brandner, Juergen; Anurjew, E.; Henning, T.; Schygulla, U.; Schubert, K.

    2006-01-01

    In this publication, an overview of the work dealing with thermal and chemical micro process engineering performed at the Institute for Micro Process Engineering (IMVT) of Forschungszentrum Karlsruhe will be given. The focus will be set on manufacturing of metallic microstructure devices and on microstructure heat exchangers. A brief outlook will describe possible future application fields.

  18. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  19. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    Science.gov (United States)

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  20. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  1. Chemical Stimulation of Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter, E.

    2008-08-08

    The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

  2. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  3. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  4. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    Science.gov (United States)

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  5. Engineered nano materials and the U.S. Environmental Protection Agency: Research at the Western Ecology Division in Oregon, USA

    Science.gov (United States)

    Engineered nanoparticles represent a unique hazard to human health and the environment because their inherent characteristics differ significantly from commonly used chemicals and bulk forms of materials. The U.S. Environmental Protection Agency (EPA) is responsible for protecti...

  6. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    Science.gov (United States)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    systems and tissue engineering; nanotechnology for drug delivery and imaging; bionanotechnology in cancer and cardiovascular disease; nanostructured biomaterials; nanotechnology in bioengineering; nanofabrication of biosensing devices. We are pleased to present a selection of research papers in this special issue of Nanotechnology on behalf of the Nanoscale Science and Engineering Forum (NSEF). NSEF was established in 2001 as a new division of AIChE to promote nanotechnology efforts in chemical engineering. The chemical engineering discipline deals with the production and processing of chemicals and materials, and does so through a fundamental understanding of the core issues of transport, thermodynamics, and kinetics that exist at multiple length scales. Thus, it should come as no surprise that chemical engineers have been pursuing nanotechnology research for the last fifty years. For example, fuel production has benefited immensely from improved catalysts in which their pore structure is controlled with nanoscale precision, and polymer properties have been improved by controlling the polymer supramolecular structure at the nanometre scale. Chemical engineering will continue to make important contributions to nanotechnology, and will play a critical role in the transition from basic science and engineering research to commercial applications. We would like to thank all of the authors who contributed to this special issue; the three NSEF poster presentation award winners for their papers (Sureshkumar, Sunkara, and Rinaldi groups); Dr Nina Couzin, Publisher of Nanotechnology, for her support and enthusiasm for this project; Drs Sharon Glotzer and Dan Coy who chaired the topical conference; and Drs Meyya Meyyappan and Brett Cruden (NASA Ames Research Center) for their assistance in the initial planning stages. We also take this opportunity to thank the many people and organizations who have supported the 2004 topical conference along the way, which include all the session

  7. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    , engineering design, investigations, engineering practice and transferable skills) and a set guidelines (core curriculum, teaching and learning, industrial experience, review of the education process and student assessment) to achieve them. They also propose a minimum set of subjects required to define......For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...

  8. Methods in industrial biotechnology for chemical engineers

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of te...

  9. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2016-09-01

    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  10. My contribution to broadening the base of chemical engineering.

    Science.gov (United States)

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications. PMID:22432607

  11. Automotive fuels and internal combustion engines: a chemical perspective.

    Science.gov (United States)

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  12. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  13. The role of chemical engineering in medicinal research including Alzheimer's.

    Science.gov (United States)

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases. PMID:25416110

  14. Efficiency at maximum power of a chemical engine.

    Science.gov (United States)

    Hooyberghs, Hans; Cleuren, Bart; Salazar, Alberto; Indekeu, Joseph O; Van den Broeck, Christian

    2013-10-01

    A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power η(mp) [corrected] takes the form 1/2+cΔμ+O(Δμ(2)), with 1∕2 a universal constant and Δμ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in η(mp) [corrected] is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model, we obtain η(mp) = 1/(θ + 1) [corrected], with θ > 0 the power of Δμ in the transport equation.

  15. Challenges and opportunities in synthetic biology for chemical engineers

    OpenAIRE

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunitie...

  16. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  17. Exploring Simulator Use in the Preparation of Chemical Engineers

    Science.gov (United States)

    Yerrick, Randy; Lund, Carl; Lee, Yonghee

    2013-01-01

    In this manuscript, we report the impact of students' usage of a simulator in the preparation of chemical engineers. This case study was conducted using content pretest and posttests, survey questionnaires, interviews, classroom observations, and an analysis of students' written response to design problems. Results showed the use of simulator was…

  18. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    Science.gov (United States)

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  19. Microfluidics and Microfabrication in a Chemical Engineering Lab

    Science.gov (United States)

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  20. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    Science.gov (United States)

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  1. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  2. Sign control of magnetoresistance through chemically engineered interfaces.

    Science.gov (United States)

    Ciudad, David; Gobbi, Marco; Kinane, Christy J; Eich, Marius; Moodera, Jagadeesh S; Hueso, Luis E

    2014-12-01

    Chemically engineered interfaces are shown to produce inversions of the magnetoresistance in spintronic devices including lithium fluoride interlayers. This behavior is explained by the formation of anti-ferromagnetic difluoride layers. By changing the order of deposition of the different materials, the sign of the magnetoresistance can be deterministically controlled both in organic spin valves and in inorganic magnetic tunnel junctions.

  3. Incorporating Computational Chemistry into the Chemical Engineering Curriculum

    Science.gov (United States)

    Wilcox, Jennifer

    2006-01-01

    A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…

  4. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan;

    2012-01-01

    : basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators...... provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research....

  5. Metabolic engineering of yeast for production of fuels and chemicals.

    Science.gov (United States)

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. PMID:23611565

  6. A Chemical Engineering Perspective on the Origins of Life

    Directory of Open Access Journals (Sweden)

    Martha A. Grover

    2015-05-01

    Full Text Available Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry.

  7. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  8. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    Science.gov (United States)

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  9. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  10. Introduction to computational mass transfer with applications to chemical engineering

    CERN Document Server

    Yu, Kuo-Tsong

    2014-01-01

    This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds  mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...

  11. A paradigm-based evolution of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Alexandru Woinaroschy

    2016-01-01

    A short presentation of chemical engineering evolution, as guided by its paradigms, is exposed. The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applica-tions at the end of 19th century. The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep, scientific knowledge of the phenomena that explain what happens inside of unit operations. In the second part of 20th century, the importance of chemical product properties and qualities has become essential y in the market fights. Accordingly, it was required with additional and even new fundamen-tal approaches, and product engineering was recognized as the third paradigm. Nowadays chemical industry, as a huge materials and energy consumer, and with a strong ecological impact, couldn't remain outside of sustainability requirements. The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.

  12. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly;

    2016-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternat......The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes are needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment...

  13. Chemically induced electric field: flat band potential engineering

    Science.gov (United States)

    Bak, T.; Guo, Z.; Li, W.; Atanacio, A. J.; Nowotny, J.

    2012-10-01

    The present work considers engineering of the flat band potential, FBP, of metal oxides in a controlled manner. The aim is to minimise the energy losses related to recombination. The related experimental approaches include imposition of a chemically-induced electric field using the phenomena of segregation, diffusion and the formation of multilayer systems. This paper considers several basic phenomena that allow the modification of the surface charge and the space charge at the gas/solid and solid/liquid interfaces.

  14. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik;

    2010-01-01

    of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B.......Eng. education, one course is designated the “project” course, which should draw on material learned in parallel courses. In the 6th semester, Process Design is the project course. Process Control and Reaction Engineering are then incorporated into the final plant design project. Specifically, almost all......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...

  15. Continuous CS Analysis of Using the SIEM to Introduction to Computer Programming Education in the School of Engineering Evening Division at the Department of Electrical and Electronic Engineering

    Science.gov (United States)

    Dohi, Shinichi; Miyakawa, Osamu; Konno, Noriko

    In order to improve students’ motivation, the SIEM (School of Information Environment Method) which is the education method for the introduction of the computer programming education was developed. We focus on students’ motivation, and we have measured students’ motivation as the educational effects. After the SIEM was developed in the School of Information Environment, it applied to introduction to the computer programming education in the School of Engineering Evening Division at the Department of Electrical and Electronic Engineering. It is effective for the improvement of students’ motivation. By adding the Customer Satisfaction Analysis to the SIEM Analysis, it was able to clarify the priority level of the SIEM assessment item. In this paper, we describe results of the Customer Satisfaction Analysis.

  16. Transferring Knowledge: A Parallel between Teaching Chemical Engineering and Developing Expert Systems.

    Science.gov (United States)

    Roberge, P. R.

    1990-01-01

    Discussed are expert systems development and teaching, the representation and processing of knowledge, knowledge representation in chemical engineering, and expert systems in chemical engineering. The seven phases of expert system development are illustrated. (CW)

  17. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  18. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production. PMID:26883347

  19. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon. PMID:21666928

  20. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    Science.gov (United States)

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  1. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    Science.gov (United States)

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  2. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1982

    International Nuclear Information System (INIS)

    This report presents summaries of the research work performed during Fiscal Year 1982 by laboratories and organizations under contracts administered by the NRC's Materials Engineering Branch, Office of Nuclear Regulatory Research. The contractor reports are organized into the major areas of concern to Primary System Integrity: Vessel and Piping Fracture Mechanics; Pressure Vessel Surveillance Dosimetry; Steam Generators and Environmental Cracking; and Nondestructive Examination

  3. Undergraduate Experiences of Division I Athlete Science, Technology, Engineering, and Mathematics (STEM) Graduates

    Science.gov (United States)

    Comeaux, Eddie; Bachman, Tina; Burton, Rena M.; Aliyeva, Aida

    2016-08-01

    Employing the conceptual model developed by Comeaux and Harrison (Coll Stud Aff J 30(1):75-87, 2011), this study explored the undergraduate experience of Division I athlete STEM graduates. Data collection involved 17 in-depth interviews with former athletes at two research-intensive, public institutions. Results revealed that pre-college characteristics, involvement in purposeful STEM-related activities, and sport participation, as well as academic support and guidance within athletic departments, play important roles in shaping the experiences of athletes who earn STEM degrees. Implications for student affairs professionals, faculty, and others who frequently interact with college athletes and are committed to creating more equitable educational environments are discussed.

  4. Chemical engineering and chemistry: education in a changing world

    Directory of Open Access Journals (Sweden)

    Reijenga Jetse C.

    2006-01-01

    Full Text Available Current trends in science and engineering research are analyzed, together with an inventory of changes in the field of employment and practice in industry. The resulting demands on the university education of chemists and chemical engineers have been translated into a more or less continuous updating of the curriculum at the Department of Chemical Engineering and Chemistry of the Eindhoven University of Technology in the Netherlands. In general it can be said that the emphasis within education will have to shift from the knowledge of facts, towards the ability to apply this knowledge to the process of solving problems in a realistic setting. Two topics will be highlighted. Multidisciplinary project group work was successfully introduced to enable students to apply theoretical knowledge to real life situations in a professional (industrial context, resulting among others in a sharper focus on communication skills. On the other hand, knowledge of theory and experimental practice are combined and augmented by the increased use of experiment simulations for illustration, demonstration and experimentation purposes. Here, the increased use of information technology facilities and skills is essential.

  5. Advances in Chemical Engineering — A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals, synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches are also addressed.

  6. Holographic black hole engineering at finite baryon chemical potential

    CERN Document Server

    Rougemont, Romulo

    2016-01-01

    This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.

  7. Integrating chemical engineering fundamentals in the capstone process design project

    OpenAIRE

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik; Abildskov, Jens

    2010-01-01

    All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30 students. The B.Eng. education lasts for 3½ years (seven semesters), of which the 5th semester consists of practical training with a company and the final (7th) semester consists of a research proje...

  8. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  9. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  10. Chemical respiratory allergy: Reverse engineering an adverse outcome pathway

    International Nuclear Information System (INIS)

    Allergic sensitisation of the respiratory tract by chemicals is associated with rhinitis and asthma and remains an important occupational health issue. Although less than 80 chemicals have been confirmed as respiratory allergens the adverse health effects can be serious, and in rare instances can be fatal, and there are, in addition, related socioeconomic issues. The challenges that chemical respiratory allergy pose for toxicologists are substantial. No validated methods are available for hazard identification and characterisation, and this is due in large part to the fact that there remains considerable uncertainty and debate about the mechanisms through which sensitisation of the respiratory tract is acquired. Despite that uncertainty, there is a need to establish some common understanding of the key events and processes that are involved in respiratory sensitisation to chemicals and that might in turn provide the foundations for novel approaches to safety assessment. In recent years the concept of adverse outcome pathways (AOP) has gained some considerable interest among the toxicology community as a basis for outlining the key steps leading to an adverse health outcome, while also providing a framework for focusing future research, and for developing alternative paradigms for hazard characterisation. Here we explore application of the same general principles to an examination of the induction by chemicals of respiratory sensitisation. In this instance, however, we have chosen to adopt a reverse engineering approach and to model a possible AOP for chemical respiratory allergy working backwards from the elicitation of adverse health effects to the cellular and molecular mechanisms that are implicated in the acquisition of sensitisation

  11. Using vegetable oils and animal fats in Diesel Engines: chemical analyses and engine texts

    International Nuclear Information System (INIS)

    In this work, some vegetable oils (rapeseed oil, palm oil) and animal fat were tested in a Diesel engine at a range of engine spreads and torque settings, after preheating at 700C. Engine performance, fuel consumption and NOx, unburnt hydrocarbons and soot emissions have been recorded. The results have been compared to those obtained with diesel fuel in the same test conditions. The oils and fats were also analyzed for their physical and chemical properties (viscosity, composition, unsaturation, heating value). NOx emissions were found to be lower for the oils than for the diesel fuel. This, combined with higher HC emissions, can probably be explained through less effective atomization due to the higher viscosity of the oils and fat. On the other hand, soot emissions were found to decrease.

  12. Engineering Microbial Chemical Factories to Produce Renewable ‘Biomonomers’

    Directory of Open Access Journals (Sweden)

    Jake eAdkins

    2012-08-01

    Full Text Available By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called ‘biomonomers’. Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way towards new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible.

  13. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  14. Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.

  15. Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy

  16. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1983. Vol.2

    International Nuclear Information System (INIS)

    This report presents summaries of the research work performed during Fiscal Year 1983 by laboratories and organizations under contracts administered by the NRC's Materials Engineering Branch, Office of Nuclear Regulatory Research. Each contractor has written a more complete and detailed annual report of their work which can be obtained by writing to NRC. The contractor reports are organized into the major areas of concern to Primary System Integrity, which is the main focus for the branch's research. These areas are: Vessel and Piping Fracture Mechanics; Pressure Vesel Surveillance Dosimetry; Steam Generators, Aging, and Environmental Cracking; and Non-Destructive Examination. The research programs reported provide information on the overall program objectives, a more limited scope of work for FY 1983, a technical description of the year's work, and a brief forecast of the plans for continuing work

  17. A view on chemical and biochemical engineering: Where are they going?

    OpenAIRE

    Veljković Vlada B.

    2002-01-01

    A short history of chemical and biochemical engineering is presented, both industrial and educational aspects being considered. The most important trend in the future development of bio/chemical engineering - biological engineering - is pointed out. The current state and near future of biotechnology are described.

  18. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    Science.gov (United States)

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The…

  19. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    Science.gov (United States)

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  20. Chemical Biodynamics Division: Annual report, October 1, 1986-September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    Investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy. Individual projects are processed separately for the data base.

  1. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  2. Development of Natural Gas Chemical Engineering in China

    Institute of Scientific and Technical Information of China (English)

    Yuan Qingmin

    1996-01-01

    @@ The equivalent ratio of natural gas to oil has reached 0.73:1 worldwide by 1994. The Chinese output of natural gas and oil ranks the 22nd and 5th respectively in the world's oil and gas production. The quantity equivalent ratio of gas to oil in China is only 0.11:1, which can not meet the needs of future economic development. Since the beginning of the 1990s, the discovery and expansion of natural gas reserves in Sichuan, Shaanxi, Xinjiang and Hainan Provinces and offshore area have brought about a solid foundation for the rapid development of the country's natural gas industry. It is sure that a new era of the development of China's natural gas chemical engineering is coming.

  3. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  4. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ader, M.; Barletta, R. E.

    1978-01-01

    Fuel cycle studies reported for this period include studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. Miniature single-stage and eight-stage centrifugal contactors are being employed in performance studies applicable to larger units. In other work, literature on the dispersion of reagents as a result of explosions is being reviewed to develop systematic data applicable to fuel reprocessing and useful in identifying source terms. In yet other work, scouting studies were performed to obtain criteria for identifying organic solutions suitable for the separation of actinides from fission products. A program has been initiated on pyrochemical and dry processing of nuclear fuel. Literature reviews have been initiated on material development, carbide fuel reprocessing, and thorium-uranium reprocessing in fused salts. A review and evaluation of the encapsulation of high-level waste in a metal matrix is under way. Corrosion and leach rates of simulated waste forms are being measured and a model has been proposed to describe the reaction between solidified high-level waste and metals. In other work, criteria for the handling of fuel assembly hulls are being developed on the basis of past work on the pyrophoricity of zirconium alloys and related criteria from several sources. Experimental work is underway to determine whether nuclear wastes can be safely confined in geologic formations. Information is being obtained on the migration of radionuclides in aqueous solution-rock systems. 17 figures, 27 tables.

  5. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  6. Chemical Engineering Division thermochemical studies. Annual report, July 1974--June 1975

    International Nuclear Information System (INIS)

    Standard enthalpies of formation were determined for the following compounds: Cs2U2O7(c), β-Na2UO4(c), BaUO4(c), HI(aq), CsNO3(c), Cs2CO3(c), CsCl(c), RbCl(c), Cs2CrO4(c), and Cs2Cr2O7(c).Preliminary reaction calorimetric studies of WS2 and Li--Al alloys are described. High-temperature enthalpies and other thermodynamic properties are reported for α- and β-Na2UO4(c), Cs2UO4(c), and Al2O3(c)

  7. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, October-December 1981

    International Nuclear Information System (INIS)

    Methods of measuring rates of leaching from simulated waste glasses using neutron activation analysis and radiotracers have been developed. Laboratory-scale impact tests of solid alternative waste forms are being performed to obtain a size analysis of the fragments. Logging techniques are being developed to measure the relative amount of residual oil in a depleted oil reservoir by injecting gamma-active solution into it. Work to test the behavior of radionuclides leached from proposed nuclear-waste repositories using laboratory-analog experiments is in progress. High potassium levels in crushed granite from a Northern Illinois drill hole are probably derived by the leaching of potassium feldspar. Testing and development of equipment for the destructive analysis of full-length irradiated fuel rods from the LWBR are in progress. 19 figures, 13 tables

  8. Chemical Engineering Division Fuel Cycle Programs: October--December 1976. [Encapaulation in a metal matrix

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M J; Ader, M; Bernstein, G; Flynn, K; Gerding, T; Jardine, L; Kullen, B; Mecham, W; Saunders, B; Seefeldt, W; Seitz, M; Siczek, A; Trevorrow, L

    1977-01-01

    Fuel-cycle studies reported for this period include pyrochemical separation of plutonium and americium oxides from contaminated materials of construction such as steel. The actinides are partitioned to a high degree into slags that are contacted by the molten metal. Studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. A miniature contactor is to be used for performance studies applicable to larger units. Review of literature on the process chemistry of zirconium and ruthenium has been carried out to aid in improving the process when fast contactors are used. A review of information on the dispersion of reagents during accidents in reprocessing has been initiated to develop systematic data useful in identifying source terms. A review and evaluation of the encapsulation of high level waste in a metal matrix has been initiated. The data will be used to identify the state of the art and the importance of selected features of this process. Criteria for the handling of hulls are being developed on the basis of past work on the pyrophoricity of zirconium alloys and related criteria from several sources. These suggested criteria will be assembled together with the necessary technical rationalization, into a package for review by interested parties. A brief program to explore the disposal of noble gas fission products by deep-well injection has been started.

  9. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei;

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and prod...

  10. Phase Diagrams in Chemical Engineering: Application to Distillation and Solvent Extraction

    OpenAIRE

    Coquelet, Christophe; Ramjugernath, Deresh

    2012-01-01

    Chapter 19Published under CC BY 3.0 licenseAvailable from: http://www.intechopen.com/books/advances-in-chemical-engineering/phase-diagrams-in-chemical-engineering-example-of-distillation International audience A phase diagram in physical chemistry and chemical engineering is a graphical representation showing distinct phases which are in thermodynamic equilibrium. Since these equilibrium relationships are dependent on the pressure, temperature, and composition of the system, a phase dia...

  11. Chemical mixing study for the Hanford TWRS Supporting facilities (U)

    Energy Technology Data Exchange (ETDEWEB)

    Heal, D.W.; Brantley, W.M.

    1996-09-03

    This Engineering Calculation addresses consequences of mixing any two hazardous chemicals contained in the same section of TWRS supporting facilities, as screened in accordance with `Westinghouse Savannah River Company Engineering and Construction Services Division Guidelines and Methods.`

  12. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  13. Advances in Chemical Engineering A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    洪定一

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals,synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches axe also addressed.

  14. An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores

    Science.gov (United States)

    O'Connor, Kim C.

    2007-01-01

    Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…

  15. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  16. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  17. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    Science.gov (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  18. Teaching chemical product design to engineering students: course contents and challenges

    OpenAIRE

    Skov, Anne Ladegaard; Kiil, Søren

    2011-01-01

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course contents and relevant teaching methods are discussed.

  19. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  20. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    Science.gov (United States)

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  1. Involvement of the ORNL Chemical Technology Division in contaminated air and water handling at the Three Mile Island Nuclear Power Station

    International Nuclear Information System (INIS)

    The President's Commission on the Accident at Three Mile Island requested that Oak Ridge National Laboratory (ORNL) generate documents concerning two areas in which ORNL personnel provided on-site assistance following the accident on March 28, 1979. These are: instrumentation diagnostics, and the treatment of radioactive wastes and liquid effluents stemming from the accident. This report describes the involvement of the ORNL Chemical Technology Division (CTD) in contaminated air and water handling at Three Mile Island

  2. The Balance Calculating System of Chemical Engineering Counting and Its Selection Methods%化工计算衡算体系及其选择技巧

    Institute of Scientific and Technical Information of China (English)

    张南哲

    2015-01-01

    化工计算是化学工程学的基础,在化工计算中衡算体系的划定是一项重要环节。以物料衡算为例,说明了化工计算衡算体系划分的多样化和重要性,指出了选择衡算体系的基本原则和一些具体的方法和技巧。恰当选择化工衡算体系不仅可以简化计算、提高衡算效率,而且可以避免错误的出现。%Chemical calculations are the basis of chemical engineering. In chemical engineering calculation, division of balance calculating system is an important part. Took the material balance as an example, the diversification and the importance of balance chemical calculation division were explained, the basic principles to choose the balance calculating and some specific methods and skills were pointed out. Proper selection of the balance calculating system can not only simplify the calculation and improve the efficiency, but also avoid the errors.

  3. 100 years of refrigeration engineering in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, K.

    1987-11-01

    The report reviews the many uses of cold in the chemical industry. As an example, the development of the refrigeration system of a large chemical plant is described which distributes cold nearly without losses from a central refrigeration unit and can be controlled for optimum adaptation to the various chemical production processes. The contribution of refrigeration to higher product quality, higher product yield, materials recycling to save feedstocks, energy conservation by means of heat pumps, and environmental protection is pointed out.

  4. A 15-Month MS Chemical Engineering Degree Program for BS Chemists.

    Science.gov (United States)

    Hanks, Richard W.; Oscarson, John L.

    1979-01-01

    The key to shortening the time-frame for this program is a special summer course in unit operations, and the replacement of the usual nine credits of minor courses with undergraduate chemical engineering courses. (BB)

  5. Effects of different chemical additives on biodiesel fuel properties and engine performance. A comparison review

    Directory of Open Access Journals (Sweden)

    Ali Obed Majeed

    2016-01-01

    Full Text Available Biodiesel fuel can be used as an alternative to mineral diesel, its blend up to 20% used as a commercial fuel for the existing diesel engine in many countries. However, at high blending ratio, the fuel properties are worsening. The feasibility of pure biodiesel and blended fuel at high blending ratio using different chemical additives has been reviewed in this study. The results obtained by different researchers were analysed to evaluate the fuel properties trend and engine performance and emissions with different chemical additives. It found that, variety of chemical additives can be utilised with biodiesel fuel to improve the fuel properties. Furthermore, the chemical additives usage in biodiesel is inseparable both for improving the cold flow properties and for better engine performance and emission control. Therefore, research is needed to develop biodiesel specific additives that can be adopted to improve the fuel properties and achieve best engine performance at lower exhaust emission effects.

  6. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  7. Process-oriented knowledge-sharing platform for chemical engineering design projects

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge...

  8. The role of chemical engineering in medicinal research including Alzheimer’s

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.

    2015-01-01

    ” disease), and Alzheimer’s which are connected to “protein aggregation.” Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics...... (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer’s and similar diseases....

  9. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    Science.gov (United States)

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  10. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    Science.gov (United States)

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  11. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  12. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  13. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  14. Flow sheeting software as a tool when teaching Chemical Engineering

    OpenAIRE

    Abbas, Asad

    2011-01-01

    The aim of this thesis is to design different chemical processes by using flow sheeting software and to show the usefulness of flow sheeting software as an educational tool. The industries studied are hydrogen, sulfur, nitric acid and ethylene glycol production and a model of drying technique is also included. Firstly, there is an introduction of chemcad as a tool when teaching chemical processes and explanation of each industry which is selected to design. Various production methods for each...

  15. Recent advances in chemical engineering. Tracers and tracing methods

    International Nuclear Information System (INIS)

    The first congress on 'tracers and tracing methods' has taken place in Nancy in November 1998. It has been a successful national event with more than 100 participants and 65 presentations. The applications of radiotracers in different industries have been studied. The target participants were the researchers, engineers and technologists of various industrial and research sectors

  16. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  17. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  18. From multiscale modeling to meso-science a chemical engineering perspective

    CERN Document Server

    Li, Jinghai; Wang, Wei; Yang, Ning; Liu, Xinhua; Wang, Limin; He, Xianfeng; Wang, Xiaowei; Wang, Junwu; Kwauk, Mooson

    2013-01-01

    Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimization multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of th...

  19. An Extended Algorithm of Flexibility Analysis in Chemical Engineering Processes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.

  20. Virtual laboratories in (bio)chemical engineering education

    OpenAIRE

    Domingues, Lucília; Rocha, I.; Dourado, Fernando; Alves, M.M.; Ferreira, E. C.

    2010-01-01

    In the last decades, Information and Communications Technologies (ICT) have been promoting the creation and adoption of new learning and teaching styles. Virtual laboratories, by overcoming some limitations of conventional hands-on experiments, have been adopted as a complement or in substitution of laboratory sessions. This paper describes the design and implementation of two virtual labs for biochemical engineering education intended for students at the BSc degree. One of the virtua...

  1. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  2. CAS Academic Divisions in 2001

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ 1.Election of New Members In 2001, 56 scientists were elected new CAS members, including l0 in the Division of Mathematics & Physics, 10 in the Division of Chemistry, 12 in the Division of Biology, nine in the Division of Earth Sciences and 15 in the Division of Engineering Sciences.The average age of the new members is 60.4, and the youngest one is 38 years old. They are now working in nine provinces or municipalities, or governmental departments under the State Council, including 23 outstanding experts working for the CAS.

  3. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  4. Molecular and chemical engineering of bacteriophages for potential medical applications.

    Science.gov (United States)

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  5. Green strength sustainability: a case study of chemical engineering students

    OpenAIRE

    Avsec, Stanislav; Kaučič, Branko

    2015-01-01

    Green chemistry is a relatively new area of science and technology aimed at improving chemical processes and thereby avoiding negative impacts on human health, safety, and the environment (EHS). It is based on careful selection of raw materials for the production of various products, excluding the use of hazardous substances. The field of green chemistry has received much attention from the scientific and industrial communities in almost every highly industrialized nation. It i...

  6. CHEMCAD as a tool when teaching Chemical Engineering.

    OpenAIRE

    Khan, Imran Ullah

    2011-01-01

    The aim of this project was to design different chemical processes using Chemcad software. Following five Chemcad models that had industrial relevance were designed and discussed, production of nitric acid by ammonia oxidation process, Production of sodium carbonate by Solvay process, production of hydrogen by steam reforming of natural gas, production of sulphuric acid by Contact process and production of sulphur by Claus process. Equilibrium reactor, Gibbs reactor, absorption tower, heat ex...

  7. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  8. Solar photochemical process engineering for production of fuels and chemicals

    Science.gov (United States)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  9. Paper-based chemical and biological sensors: Engineering aspects.

    Science.gov (United States)

    Ahmed, Snober; Bui, Minh-Phuong Ngoc; Abbas, Abdennour

    2016-03-15

    Remarkable efforts have been dedicated to paper-based chemosensors and biosensors over the last few years, mainly driven by the promise of reaching the best trade-off between performance, affordability and simplicity. Because of the low-cost and rapid prototyping of these sensors, recent research has been focused on providing affordable diagnostic devices to the developing world. The recent progress in sensitivity, multi-functionality and integration of microfluidic paper-based analytical devices (µPADs), increasingly suggests that this technology is not only attractive in resource-limited environments but it also represents a serious challenger to silicon, glass and polymer-based biosensors. This review discusses the design, chemistry and engineering aspects of these developments, with a focus on the past few years.

  10. An approach in building a chemical compound search engine in oracle database.

    Science.gov (United States)

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework. PMID:17282834

  11. Effectiveness of an Applied Microbiology Course Specifically Designed for Chemical Engineering Majors

    Directory of Open Access Journals (Sweden)

    Gregory B. Hecht

    2009-12-01

    Full Text Available In recent years, the disciplines of microbiology and chemical engineering have developed an increasing convergence. To meet the needs of their future employers, today’s chemical engineering students must receive some background in microbiology. This report describes the development and content of “Biological Systems and Applications,” a novel course specifically designed to provide basic biology and applied microbiology knowledge, skills, and experience to sophomore chemical engineering majors. Data collected from entrance and exit surveys of the students demonstrated that the course is successful. The importance of the “project-base” learning technique and of interdisciplinary faculty-student and faculty-faculty collaborations are proposed as elements essential to the success of this particular course.

  12. Chemistry of fossil fuels and biofuels (cambridge series in chemical engineering)

    CERN Document Server

    Schobert, Harold

    2013-01-01

    Focusing on today's major fuel resources - ethanol, biodiesel, wood, natural gas, petroleum products and coal - this book discusses the formation, composition and properties of the fuels, and the ways in which they are processed for commercial use. The book examines the origin of fuels through natural processes such as photosynthesis and the geological transformation of ancient plant material; the relationships between their composition, molecular structures, and physical properties; and the various processes by which they are converted or refined into the fuel products appearing on today's market. Fundamental chemical aspects such as catalysis and the behaviour of reactive intermediates are presented, and global warming and anthropogenic carbon dioxide emissions are also discussed. The book is suitable for graduate students in energy engineering, chemical engineering, mechanical engineering and chemistry, as well as professional scientists and engineers.

  13. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  14. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework......T) for model translation, analysis and solution. The integration of ModDev, MoT and ICAS or any other external software or process simulator (using COM-Objects) permits the generation of different models and/or process configurations for purposes of simulation, design and analysis. Consequently, it is possible...... for model generation, analysis, solution and implementation is necessary for the development and application of the desired model-based approach for product-centric process design/analysis. This goal is achieved through the combination of a system for model development (ModDev), and a modelling tool (Mo...

  15. Design Hybrid Methods for Encoding Prior Knowledge in Feedforward Network with Application in Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    CHENChongwei; CHENDezhao

    2002-01-01

    Three-layer feedforward networks have been widely used in modeling chemical engineering processes and prior-knowledge-based methods have been introduced to improve their performances.In this paper,we propose the methodology of designing better prior-knowledge-based hybrid methods by combining the existing ones. Then according to this methodology,two hybrid methods,interpolation-optimization (IO) method and interpolation penalty-function (IPF) method,are designed as examples.Finally,both methods are applied to modeling two cases in chemical engineering to investigate their effectiveness.Simulation results show that the performances of the hybrid methods are better than those of their parents.

  16. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    Science.gov (United States)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  17. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  18. Research and Engineering Division semiannual report, KK process development and technology, May 1, 1975--October 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.D.; Manry, C.W. (eds.)

    1976-04-01

    This document represents the second of a series reporting on a semiannual basis the activities supported by KK funds in the areas of process development. These research and engineering activities have the goal of improving the performance of the plutonium processing and waste management programs being operated by the Atlantic Richfield Hanford Company.

  19. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources.

  20. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    Science.gov (United States)

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint.

  1. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jun-hyung [Department of Nuclear and Energy System, Dongguk University, Gyeongju Campus, Gyeongju, 780-714 (Korea, Republic of)

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  2. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  3. State estimation of chemical engineering systems tending to multiple solutions

    Directory of Open Access Journals (Sweden)

    N. P. G. Salau

    2014-09-01

    Full Text Available A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF formulations and one constrained EKF formulation (CEKF. As benchmark case studies we have chosen: a a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.

  4. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    Science.gov (United States)

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  5. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition

    Science.gov (United States)

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  6. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  7. Model Reduction in Chemical Engineering: Case studies applied to process analysis, design and operation

    NARCIS (Netherlands)

    Dorneanu, B.

    2011-01-01

    During the last decades, models have become widely used for supporting a broad range of chemical engineering activities, such as product and process design and development, process monitoring and control, real time optimization of plant operation or supply chain management. Although tremendous advan

  8. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    Science.gov (United States)

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  9. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    Science.gov (United States)

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  10. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    Science.gov (United States)

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  11. Finding hidden chemistry in ancient egyptian artifacts: Pigment degradation taught in a chemical engineering course

    OpenAIRE

    Giménez Izquierdo, Francisco Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled

  12. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    Science.gov (United States)

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  13. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    Science.gov (United States)

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  14. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    Science.gov (United States)

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  15. Design and analysis of questionnaires for survey skills in chemical engineering

    Directory of Open Access Journals (Sweden)

    Susana Lucas

    2011-09-01

    Full Text Available 800x600 Normal 0 21 false false false CA X-NONE X-NONE The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the identification of the main general and transferable skills, the implementation of the new teaching and learning strategies necessary to achieve them and, in addition, an evaluation procedure for determining the importance and the degree of development of a student´s skills and competences. In this exercise, two obligatory chemical reactor engineering subjects of the still in effect Chemical Engineering degree were chosen as examples of competence-based learning disciplines. For each one, a significant group of transferable and specific skills were selected to be developed. The identification and selection of skills was made according to the recommendations of the European Federation of Chemical Engineering (EFCE together with the established requirements in the ministerial order for the new Chemical Engineering Degree (Ministerial order CIN/351/2009. In order to check the effectiveness of teaching strategies in helping students to acquire these abilities, specific questionnaires were designed. These tests allowed for the utility of the competences in question to be evaluated in terms of the students´ professional work as future chemical engineering graduates and also facilitated the perception of skill development acquired through the methodology implemented in these subjects. The results of the skill evaluation questionnaires revealed the importance that both university collectives (students and professors give to the development of transferable skills. These skills included the ability to communicate effectively (including in English, to work in

  16. Progressively Fostering Students' Chemical Information Skills in a Three-Year Chemical Engineering Program in France

    Science.gov (United States)

    Gozzi, Christel; Arnoux, Marie-Jose´; Breuzard, Jere´my; Marchal, Claire; Nikitine, Clémence; Renaudat, Alice; Toulgoat, Fabien

    2016-01-01

    Literature searches are essential for scientists. Thus, courses on how to do a good literature search have been integrated in studies at CPE Lyon for many years. Recently, we modified our pedagogical approach in order to initiate students progressively in the search for chemical information. In addition, this new teaching organization is now based…

  17. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...... and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production....

  18. Optimization of a Reduced Chemical Kinetic Model for HCCI Engine Simulations by Micro-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310-375 K and initial pressure 0.1-0.3 MPa. The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.

  19. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  20. Origin of coral reef stratum and engineering geological division of coral reef site in Sanya%三亚海岸珊瑚礁地层成因演化与工程地质分区

    Institute of Scientific and Technical Information of China (English)

    刘景儒; 王其涵; 王建平; 王新志

    2014-01-01

    Coral reef is a special engineering construction site, which is influenced by geological origin, biological effects, marine hydrodynamic and geological environment, etc. The research on engineering geological division is not only important in understanding and evaluating the engineering properties of coral reef deposits, but also has important guidance on coral reef engineering design and construction. Based on field geological survey, in-situ tests, drilling and a large number of laboratory experiments, analyses are conducted for geological origin of coral reef stratum, landform, stratigraphic configuration, mineral and chemical composition, and physico-mechanical properties of coral reef sediments. It is concluded that coral reef in the coast of Sanya can be divided into lagoon depositional area, sandbar area and underwater live corals accumulation area. Finally, evaluation is carried out for the engineering characteristics of each division, and suitability of construction is analyzed. The results have important guidance for geological survey of coral reef and engineering planning & design.%珊瑚礁是一类特殊的工程建设场地,受地质成因、生物作用、海洋水动力环境和地质环境演化等多方面影响。开展珊瑚礁场地工程地质分区研究,不仅对认识珊瑚礁岩土层的成因和变化规律、分析评价珊瑚礁场地的工程地质条件等具有重要的理论意义,而且对未来南海岛礁工程建设具有重要指导作用。在现场地质调查的基础上,采用现场原位测试、室内试验和钻探岩芯分析等综合技术手段,分析了三亚珊瑚礁地层的演化历史,对地层结构特征、矿物成分、化学成分和土层物理力学性质进行了深入分析,将三亚海岸珊瑚礁场地划分为泻湖沉积区、砂坝堆积区和水下珊瑚生长堆积区;对各工程地质分区的工程特性和建设适宜性进行了分析评价。研究成果可以对珊瑚礁场

  1. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    Science.gov (United States)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  2. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    Science.gov (United States)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  3. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  4. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    Science.gov (United States)

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  5. Reports from the award symposia hosted by the American Chemical Society, Division of Carbohydrate Chemistry at the 245th American Chemical Society National Meeting.

    Science.gov (United States)

    Huang, Xuefei; Vocadlo, David J

    2013-07-19

    We would like to congratulate all of the award winners for the well deserved honor. The award symposia provided a snapshot of some of the state-of-the-art research at the interface between chemistry and biology in the glycoscience field. The presentations serve as prime examples of the increasing integration of chemical and biological research in the area of glycoscience and how tools of chemistry can be applied to answer interesting, important, and fundamental biological questions. We look forward to many more years of exciting developments in the chemistry and chemical biology of glycoscience and anticipate improved tools and approaches will drive major advances while also spurring interests in the wider field.

  6. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  7. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  8. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors

    Science.gov (United States)

    Cho, Seunghee H.; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-07-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  9. Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Maliaritsi, E. [Laboratory of Physical Metallurgy, School of Mining and Metallurgy Engineering, National Technical University of Athens, Zografou Campus, Athens 15780 (Greece); Zoumpoulakis, L. [Laboratory of Materials Science and Technology, Inter-disciplinary Postgraduate Programme of NTUA, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 157 73 Athens (Greece); Simitzis, J. [Laboratory of Materials Science and Technology, Inter-disciplinary Postgraduate Programme of NTUA, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 157 73 Athens (Greece); Vassiliou, P. [Iaso General Hospital, Athens (Greece); Hristoforou, E. [Laboratory of Physical Metallurgy, School of Mining and Metallurgy Engineering, National Technical University of Athens, Zografou Campus, Athens 15780 (Greece)]. E-mail: eh@metal.ntua.gr

    2006-04-15

    Coagulation sensors based on the magnetostrictive delay line technique are presented in this paper. They are based on magnetostrictive ribbons and are used for measuring the coagulation, curing or solidification time of different liquids. Experimental results indicate that the presented sensing elements can determine the blood coagulation with remarkable repeatability, thus allowing their use as blood coagulation sensors. Additionally, results indicate that they can also measure curing time of resins, solidification of fluids and coagulation of chemical substances, therefore allowing their implementation in chemical engineering applications.

  10. Top-cited Articles in Chemical Engineering in Science Citation Index Expanded: A Bibliometric Analysis

    Institute of Scientific and Technical Information of China (English)

    Yuh-Shan Ho

    2012-01-01

    This study aimed to identify and to analyze characteristics of top-cited articles published in the Web of Science chemical engineering subject category from 1899 to 2011. Articles that have been cited more than 100 times were assessed regarding publication outputs, and distribution of outputs in journals. Five bibliometric indica- tors were used to evaluate source countries, institution and authors. A new indicator, Y-index, was created to assess quantity and quality of contribution to articles. Results showed that 3828 articles, published between 1931 and 2010, had been cited at least 100 times. Among them 54% published before 1991, and 49% top-cited articles originated from US. The top eight productive institutions were all located in US. The top journals were Journal of Catalysis, AIChE Journal, Chemical Engineering Science and Journal of Membrane Science. Y-index was successfully ap- plied to evaluate publication character of authors, institutions, and countries/regions.

  11. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  12. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  13. The design of licensing contracts: Chemicals, Pharmaceuticals, and Electrical Engineering in Imperial Germany

    OpenAIRE

    Burhop, Carsten; Lübbers, Thorsten

    2011-01-01

    We investigate a sample of 180 technology licensing contracts closed by German chemical, pharmaceutical, and electrical engineering companies between 1880 and 1913. Our empirical results suggest that strategic behaviour seems to be relevant for the design of licensing contracts, whereas inventor moral hazard and risk aversion of licensor or licensee seem to be irrelevant. Moreover, our results suggest that uncertainty regarding the profitability of licensed technology influenced the design of...

  14. Editorial : special Issue contributed by the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008

    OpenAIRE

    Ferreira, E. C.; Mota, M.

    2009-01-01

    The 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, was held in Braga, Portugal, from the 4th to the 6th of September, 2008. The conference was jointly organized by the University of Minho, the “Ordem dos Engenheiros,” and the Institute for Biotechnology and Bioengineeing, with the support of “Sociedade Portuguesa de Qu´ımica” and “Sociedade Portuguesa de Biotecnologia”. The CHEMPOR series traditionally brings together both young and establishe...

  15. Introducing Statistical Experimental Designs to Chemical and Industrial Engineering Using Collaborative and Problem Based Learning Approach

    OpenAIRE

    González Fernández, Camino

    2010-01-01

    This work describes the use of the Collaborative and Problem Based- Project Based Learning (PBL) methodology in a Statistical Experimental Design course for Chemical and Industrial Engineering students at the Universidad Politécnica de Madrid (UPM). The objetives, motivation, and the roles of the teacher and the students in the classroom to get a better understanding of the concepts and examples are explained in detail. Since 2000, there exists in our univesity (UPM) the aim to adapt the c...

  16. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    Science.gov (United States)

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems. PMID:26857072

  17. Earth Sciences Division annual report 1990

    International Nuclear Information System (INIS)

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required

  18. Introduction to JPL's Mechanical Systems Division

    Science.gov (United States)

    Short, Kendra

    2007-01-01

    This slide presentation reviews the work of the Mechanical Systems Division. It reviews the projects, both past and current that the engineers of this division have worked on. It also reviews the work environment as an exciting place for the entry level engineer.

  19. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G;

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL...... on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering...

  20. World War I chemical weapons bunker engineering evaluation and cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Craig, C.A.; Crotteau, A.

    1995-12-31

    This paper provides a review of the US Army Corps of Engineers development and execution of a CERCLA chemical weapons and soil removal from two World War 1 underground test bunkers. The non-time critical removal action was completed from October 1994 to January 1995 in conjunction with Operation Safe Removal, Spring Valley, Washington, D.C. On January 5, 1993, a startled backhoe operator unearthed three 75mm artillery shells, exposing the legacy of a World War 1 (WWI) chemical weapons test facility in the midst of the nation`s capitol. That discovery, made in an exclusive residential neighborhood, prompted an intensive two year environmental cleanup. The Army immediately responded to the chemical ordnance threat, initiating Operation Safe Removal, a $20 million emergency response action and remedial investigation.

  1. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective pr...... developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid....

  2. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  3. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  4. Effect of Chemical Admixtures on the Engineering Properties of Tropical Peat Soils

    Directory of Open Access Journals (Sweden)

    Bujang B.K. Huat

    2005-01-01

    Full Text Available This research describes a study on the effect of chemical (cement and lime admixtures on the index and engineering properties (compaction and unconfined strength of tropical peat soils. The ordinary Portland cement and hydrated lime were used. The amounts cement and lime added to the peat soil sample, as a percentage of the dry soil mass was in the range of 5-15% and 5-25%, respectively. The results of the study show that the addition of the chemical admixture, cement and lime, can improve the engineering properties of tropical peat soils. The soil liquid limit is found to decrease with an increase in the cement and lime content. The soil maximum dry density is found to increase while the optimum water content is found to decrease with an increase in the cement and lime content. The unconfined compressive strength of the soil is found to increase significantly with increase in cement and lime content, especially after a long curing period. However it is also found that higher organic content of the soil negate the positive effect of the cement and lime in altering (improving the mechanical properties of the soil. When comparing the performance of the cement and lime as a chemical admixture for the tropical peat soil, the ordinary Portland cement appears to perform better than the hydrated lime.

  5. Chemical Reaction Route Selection Based on Green Chemical Engineering%基于绿色化工的化学反应路径选择

    Institute of Scientific and Technical Information of China (English)

    何潮洪; 葛挺峰; S.H.Yang; D.W.Edwards

    2004-01-01

    In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of "extended atom economy", material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.

  6. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  7. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    Science.gov (United States)

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable. PMID:24364352

  8. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    Science.gov (United States)

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  9. Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory

    Science.gov (United States)

    Zhang, Lei; Chen, Lingen; Sun, Fengrui

    2016-03-01

    The finite-time thermodynamic method based on probability analysis can more accurately describe various performance parameters of thermodynamic systems. Based on the relation between optimal efficiency and power output of a generalized Carnot heat engine with a finite high-temperature heat reservoir (heat source) and an infinite low-temperature heat reservoir (heat sink) and with the only irreversibility of heat transfer, this paper studies the problem of power optimization of chemically driven heat engine based on first and second order reaction kinetic theory, puts forward a model of the coupling heat engine which can be run periodically and obtains the effects of the finite-time thermodynamic characteristics of the coupling relation between chemical reaction and heat engine on the power optimization. The results show that the first order reaction kinetics model can use fuel more effectively, and can provide heat engine with higher temperature heat source to increase the power output of the heat engine. Moreover, the power fluctuation bounds of the chemically driven heat engine are obtained by using the probability analysis method. The results may provide some guidelines for the character analysis and power optimization of the chemically driven heat engines.

  10. Mechanical Engineering Department technical abstracts

    International Nuclear Information System (INIS)

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division

  11. Mechanical Engineering Department technical abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  12. Complementary use of life cycle assessment and risk assessment for engineered nanomaterials: Lessons learned from chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko;

    2013-01-01

    Successful strategies to handle the potential health and environmental risks of engineered nanomaterials (ENM) often rely upon the well-established frameworks of life cycle assessment (LCA) and risk assessment (RA). However, current research and specific guidance on how to actually apply these two...... scientific research efforts have taken into account some key lessons learned from past experiences with chemicals at the same time that many key challenges remain to applying these frameworks to ENM. In that setting, two main proposed approaches to use LCA and RA together for ENM are identified: i) LC...

  13. Effect of continuous assessment on learning outcomes on two chemical engineering courses: case study

    Science.gov (United States)

    Tuunila, R.; Pulkkinen, M.

    2015-11-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning results after the adoption of continuous assessment in the courses. Also student feedback suggests higher quality in teaching after the adoption of more activating teaching methods which compel students to study effectively throughout the course.

  14. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  15. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  16. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)

    2011-01-15

    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

  17. Massachusetts Institute of Technology School of Chemical Engineering Practice, Brookhaven station: Summary of projects, 1983-1986

    International Nuclear Information System (INIS)

    The MIT Graduate School of Chemical Engineering Practice stresses engineering problem solving. The Practice School program, as it is commonly called, develops in a unique and particularly effective way the student's ability to apply fundamentals to problems in the chemical industry and thus accelerates one's professional development. The themes of atomization, emthanol production and utilization, hydrogen production and compression, localized electrochemical corrosion and biochemical engineering reflect some of the major programs at the Laboratory. The titles of all the projects are listed in chronological order in the index at the end of this document. Brief summaries are presented for each project with related projects grouped together

  18. Environmentally-engineered concrete system - concrete for oil and chemical plant environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Beer, K; Early, C.; Gillen, M. [Dupont Civil Engineering Systems (United States)

    2000-07-01

    Properties expected of concrete used in oil production and refining facilities and chemical plants are discussed. Concrete in these types of applications must be capable of resisting a wide range of deleterious chemical and thermal exposure conditions, therefore, compressive strength is of lesser importance than the ability to resist chemical attack, maximum resistance to cracking, and other properties relating to durability. Environmental requirements are also an important factor in concrete used in containment structures where potentially hazardous materials are stored or used in plant operations. This paper describes the development, performance characteristics and field experience with what is known as an 'environmentally engineered concrete system' (EECS), which consists of mixture proportions, design details and construction methods which was developed and used for production and environmental containment concrete structures in Dupont plants and plants of its former subsidiary, Conoco. The EECS technology, with its emphasis on the special demands on concrete performance under severe exposure conditions, is considered to have significant potential for application within the oil and chemical industries, including remote overseas locations. 5 refs., 2 tabs., 3 figs.

  19. Non-Natural Sugar Analogues: Chemical Probes for Metabolic Oligosaccharide Engineering

    Science.gov (United States)

    Aich, Udayanath; Yarema, Kevin J.

    Metabolic oligosaccharide engineering (MOE) is a rapidly growing technology emerging from the field of chemical biology that allows novel chemical functionalities to be biosynthetically installed into the carbohydrates of living cells and animals. Since pioneering efforts to modulate sialic acid display through the use of non-natural N-acetyl-D-mannosamine (ManNAc) analogues were reported 15 years ago, monosaccharide probes have been developed to manipulate N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc), and fucose-containing glycans. The 'first generation' of analogues, comprised of a series of ManNAc derivatives with elongated N-acyl chains, demonstrated pathway permissivity and the ability of this methodology to impinge on biological processes ranging from pathogen binding to gene expression and cell adhesion. Later analogues have incorporated chemical function groups including ketones, azides, thiols, and alkyne not normally found in carbohydrates. These groups serve as 'tags' for the subsequent use of chemoselective ligation reactions to further elaborate the chemical properties of the cell surface and thereby greatly expand the potential of MOE technology to offer control over biological processes.

  20. Aplication of the Simulation Process During the Working Practice of Chemical Engineering Students

    Directory of Open Access Journals (Sweden)

    Mario Jesús Muñoz Batista

    2011-10-01

    Full Text Available The success of chemical engineering graduates depends on their aptitude and the skills received during the academic formation. Employers not only require that graduates have the knowledge of basic chemical engineering principles but knowing how to apply this knowledge in solving practical problems. In this paper, one form to obtain important skills is presented. The working practice is one of the most important subjects in the curriculum. HYSYS simulator which can realize the energetic evaluation was introduced. A simulation model of the preheat train of Fluid Catalytic Cracking Unit was obtained. The model was built using prebuilt models in HYSYS, however a fired heater to steady state doesn’t exist. In this case, a spreadsheet was utilized in programming the energetic evaluation. Sometimes it is useful because it is necessary to use our models for specific equipment. Finally, the model was utilized to predict the system efficiency when changes on the operation variables occur. The use of simulation inside of core subjects helps to improve the level and quality of students’ formation.

  1. Automatic differentiation tools in the dynamic simulation of chemical engineering processes

    Directory of Open Access Journals (Sweden)

    Castro M.C.

    2000-01-01

    Full Text Available Automatic Differentiation is a relatively recent technique developed for the differentiation of functions applicable directly to the source code to compute the function written in standard programming languages. That technique permits the automatization of the differentiation step, crucial for dynamic simulation and optimization of processes. The values for the derivatives obtained with AD are exact (to roundoff. The theoretical exactness of the AD comes from the fact that it uses the same rules of differentiation as in differential calculus, but these rules are applied to an algorithmic specification of the function rather than to a formula. The main purpose of this contribution is to discuss the impact of Automatic Differentiation in the field of dynamic simulation of chemical engineering processes. The influence of the differentiation technique on the behavior of the integration code, the performance of the generated code and the incorporation of AD tools in consistent initialization tools are discussed from the viewpoint of dynamic simulation of typical models in chemical engineering.

  2. Stirling engine based solar-thermal power plant with a thermo-chemical storage system

    International Nuclear Information System (INIS)

    Highlights: • The system is unaffected by climatic and seasonal variation. • Drawbacks of solar power generation are eliminated. • A constant uninterrupted output power is obtained. - Abstract: This paper describes a solar-thermal run Stirling engine based uninterrupted power generating system employing magnesium sulphate impregnated Zeolite pellets for thermal energy storage. In the proposed system, Stirling engine design is based on the average temperature difference of 480 °C, assuming the heat sink temperature equal to the ambient temperature of that place. In presence of sun, Fresnel lenses of a specially designed hybrid capsule capture solar energy and concentrate them to provide necessary heat for the operation of the engine. In absence of the sun, required heat is provided by the thermo-chemical energy stored in Zeolite pellets. Working methodologies, modelling and simulation of the proposed system along with analyses of the obtained simulated results are presented in this paper. Possible performance of the scheme at different global positions for different period of a year has also been investigated

  3. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    Science.gov (United States)

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  4. Using an operator training simulator in the undergraduate chemical engineering curriculim

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the last four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined

  5. Ontario Hydro Research Division annual report 1988

    International Nuclear Information System (INIS)

    The Research Division of Ontario Hydro conducts research in the fields of chemistry, civil engineering, electrical engineering, mechanical engineering, metallurgy, and operations. Much of the research has a bearing on the safe, environmentally benign operation of Ontario Hydro's nuclear power plants. Particular emphasis has been placed on nuclear plant component aging and plant life assurance

  6. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    Science.gov (United States)

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid.

  7. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  8. Innovating in a 4th course of Chemical Engineering: A Bolognese Recipe

    Directory of Open Access Journals (Sweden)

    Sara García Sastre

    2010-10-01

    Full Text Available In this article we analyze a case study conducted within a pilot innovation experience in an undergraduate course on Chemical Engineering. The study was developed during three years, 2005/06, 2006/07 y 2007/08, at the University of Valladolid (Spain. The main goal of this work is to show evidence to better understand the methodological changes promoted by the aforementioned pilot experience, as well as to reflect on whether or not this sort of innovations help to reach EHEA thorny demands. The methodological innovation carried out in the course was based on active learning methods, such as Project-based Learning, and the study of real cases from multiple perspectives and subjects.

  9. Band gap engineering in polymers through chemical doping and applied mechanical strain.

    Science.gov (United States)

    Lanzillo, Nicholas A; Breneman, Curt M

    2016-08-17

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage. PMID:27324304

  10. Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality

    Science.gov (United States)

    Lucia, Umberto

    2016-11-01

    Exergy is a fundamental quantity because it allows us to obtain information on the useful work obtainable in a process. The analyses of irreversibility are important not only in the design and development of the industrial devices, but also in fundamental thermodynamics and in the socio-economic analysis of municipality. Consequently, the link between entropy and exergy is discussed in order to link econophysics to the bio-chemical engineering thermodynamics. Last, this link holds to the fundamental role of fluxes and to the exergy exchanged in the interaction between the system and its environment. The result consists in a thermodynamic approach to the analysis of the unavailability of the economic, productive or social systems. The unavailability is what the system cannot use in relation to its internal processes. This quantity result is interesting also as a support to public manager for economic decisions. Here, the Alessandria Municipality is analyzed in order to highlight the application of the theoretical results.

  11. Implementation and student perceptions of e-assessment in a Chemical Engineering module

    Science.gov (United States)

    Sorensen, Eva

    2013-05-01

    This paper describes work carried out at the Department of Chemical Engineering at UCL into the use of e-assessment in a second year module and, in particular, the student perceptions of this mode of assessment. Three quizzes were implemented in Moodle, the first two as formative assessment and the final quiz as summative assessment. The results were very encouraging and practically all students engaged with the process. An online survey was delivered to all students after the module, which showed that the students felt that e-assessment added value to their learning and they would like to see it implemented in other modules. The quizzes were intended to be mainly beneficial to the weaker students as it gave them an opportunity to go over key aspects of the material in their own time. Interestingly, the stronger students were even more in favour of e-learning than the weaker students, for whom the quizzes were originally designed.

  12. Band gap engineering in polymers through chemical doping and applied mechanical strain

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-08-01

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  13. Production and Characterization of Chemically Inactivated Genetically Engineered Clostridium difficile Toxoids.

    Science.gov (United States)

    Vidunas, Eugene; Mathews, Antony; Weaver, Michele; Cai, Ping; Koh, Eun Hee; Patel-Brown, Sujata; Yuan, Hailey; Zheng, Zi-Rong; Carriere, Marjolaine; Johnson, J Erik; Lotvin, Jason; Moran, Justin

    2016-07-01

    A recombinant Clostridium difficile expression system was used to produce genetically engineered toxoids A and B as immunogens for a prophylactic vaccine against C. difficile-associated disease. Although all known enzymatic activities responsible for cytotoxicity were genetically abrogated, the toxoids exhibited residual cytotoxic activity as measured in an in vitro cell-based cytotoxicity assay. The residual cytotoxicity was eliminated by treating the toxoids with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. Mass spectrometry and amino acid analysis of the EDC-inactivated toxoids identified crosslinks, glycine adducts, and β-alanine adducts. Surface plasmon resonance analysis demonstrated that modifications resulting from the chemical treatment did not appreciably affect recognition of epitopes by both toxin A- and B-specific neutralizing monoclonal antibodies. Compared to formaldehyde-inactivated toxoids, the EDC/N-hydroxysuccinimide-inactivated toxoids exhibited superior stability in solution with respect to reversion of cytotoxic activity. PMID:27233688

  14. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    Science.gov (United States)

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  15. Space environment utilization and chemical engineering; Uchu kankyo riyo to kagaku kogaku

    Energy Technology Data Exchange (ETDEWEB)

    Imaishi, N.; Shiraishi, F. [Kyushu Univ., Fukuoka (Japan)] Suzuki, M. [Tohoku Univ., Sendai (Japan)

    1997-10-05

    Construction of a giant international space station on an orbit of 460 km distant from the earth will be begun since 1998, JEM (Japanese Experimental Module) will also be launched on 2001, and various experiments using the space environment under a condition of staying 2 to 4 members in the JEM will be planned after the end of that year. Characteristics of the space environment are microgravity, super high vacuum at surrounding apace, superior vision and so forth. In order to utilize the space environment different from the earth environment, it is necessary to consider extremely many things. The chemical engineers who have conducted a lot of complex systems on the earth hitherto shares some large roles in the fields of planning and executing scientific and engineering researches conducted in JEM, utilization of lunar surface and space for materials and energy production base in future, and so forth. In this paper, the Closed Ecological Life Support system (CELSS) essential to specific phenomena and long-term manned space flight under microgravity environment were introduced. 29 refs., 7 figs.

  16. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    Science.gov (United States)

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  17. Earth Sciences Division annual report 1981

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences

  18. Summaries of FY 1993 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  19. PERSONNEL DIVISION BECOMES HUMAN RESOURCES DIVISION

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    In the years to come, CERN faces big challenges in the planning and use of human resources. At this moment, Personnel (PE) Division is being reorganised to prepare for new tasks and priorities. In order to accentuate the purposes of the operation, the name of the division has been changed into Human Resources (HR) Division, with effect from 1st January 2000. Human Resources DivisionTel.73222

  20. Strain engineering of selective chemical adsorption on monolayer MoS2

    Science.gov (United States)

    Kou, Liangzhi; Du, Aijun; Chen, Changfeng; Frauenheim, Thomas

    2014-04-01

    Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the properties of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB strain also induces an electronic phase transition between the half-metal and the metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain conditions in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the properties of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the

  1. The role of the chemist/chemical engineer for the trouble-free operation of thermal plants with heat recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Addison, David; Weir, Judy [Thermal Chemistry Limited, Horsham Downs, Hamilton (New Zealand)

    2012-06-15

    The importance of a chemist/chemical engineer for the reliable and efficient operation of combined cycle gas turbine (CCGT) plants is discussed along with the key differences between routine and strategic chemistry and how these potentially impact on CCGT plant operation. Potential risks and issues with the full outsourcing of cycle chemistry services for a CCGT plant to chemical service providers are outlined. Also discussed are the interactions between a chemist/chemical engineer and plant management, operations, engineering and maintenance personnel. Proposed chemist/chemical engineer staffing levels for a number of hypothetical CCGT plants are also discussed. (orig.)

  2. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  3. Chemical Engineering of China Three Gorges University Materials and Chemical Engineering College%三峡大学材料与化工学院化工专业谈

    Institute of Scientific and Technical Information of China (English)

    张争光; 李德莹

    2014-01-01

    本文从三峡大学材料与化工学院的化工专业的培养目标、课程设置及简介以及该专业毕业生的就业出路三个方面进行了阐述,为化工专业的入学新生尽快适应学校新环境、明确学习目的等起到一定的作用。%This paper discussed from three aspects of training target, material and Chemical Engineering College of China Three Gorges University chemical professional courses and introduction and the graduates employment, clear learning ob-jective to play a certain role for Chemical Engineering Freshmen to adapt to the new school environment.

  4. Chemical Engineering of China Three Gorges University Materials and Chemical Engineering College%浅谈三峡大学材料与化工学院化工专业

    Institute of Scientific and Technical Information of China (English)

    张争光; 李德莹

    2014-01-01

    本文从三峡大学材料与化工学院的化工专业的培养目标、课程设置及简介以及该专业毕业生的就业出路三个方面进行了阐述,为化工专业的入学新生尽快适应学校新环境、明确学习目的等起到一定的作用。%This paper discussed from three aspects of training target, material and Chemical Engineering College of China Three Gorges University chemical professional courses and introduction and the graduates employment, clear learning ob-jective to play a certain role for Chemical Engineering Freshmen to adapt to the new school environment.

  5. Specific and Optional Curriculum: An Experience in the Undergraduate Program of Chemical Engineering in Cienfuegos University, Cuba

    Science.gov (United States)

    Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado

    2016-01-01

    This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…

  6. A Survey of the Role of Thermodynamics and Transport Properties in Chemical Engineering University Education in Europe and the USA

    Science.gov (United States)

    Ahlstrom, Peter; Aim, Karel; Dohrn, Ralf; Elliott, J. Richard; Jackson, George; Jaubert, Jean-Noel; Macedo, Eugenia A.; Pokki, Juha-Pekka; Reczey, Kati; Victorov, Alexey; Zilnik, Ljudmila Fele; Economou, Ioannis G.

    2010-01-01

    A survey on the teaching of thermodynamics and transport phenomena in chemical engineering curricula in European and US Universities was performed and results are presented here. Overall, 136 universities and colleges responded to the survey, out of which 81 from Europe and 55 from the USA. In most of the institutions responding at least two…

  7. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    Science.gov (United States)

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  8. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    Science.gov (United States)

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  9. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    Márquez Luzardoa, N.M.; Venselaar, Jan

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically i

  10. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    Science.gov (United States)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  11. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry; Streszczenia 40. Zjazdu Naukowego Polskiego Towarzystwa Chemicznego i Stowarzyszenia Inzynierow i Technikow Przemyslu Chemicznego

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods.

  12. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  13. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  14. Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering.

    Science.gov (United States)

    Ekenseair, Adam K; Boere, Kristel W M; Tzouanas, Stephanie N; Vo, Tiffany N; Kasper, F Kurtis; Mikos, Antonios G

    2012-09-10

    The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.

  15. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  16. A critical Action Research approach to curriculum development in a laboratory-based chemical engineering course

    Science.gov (United States)

    White, Scott R.

    This dissertation is a report of an attempt to critically evaluate a novel laboratory course from within the context of a chemical engineering curriculum. The research was done in a college classroom-laboratory setting, entrenched in the everydayness of classroom activities. All of the students, instructors, and educational researchers were knowing participants in this Action Research study. The students, a mixture of juniors, seniors, & graduate students, worked together on semester-long projects in groups that were mixed by age, gender and academic level. Qualitative techniques were used to gather different forms of representations of the students and instructors' experiences. Emergent patterns from the data gave strength to emergent knowledge claims that informed the instructors and the researcher about what the students were learning about performing experimental work and communicating results with their peers and instructor. The course challenged and in some cases changed the conceptions of instruction previously held by the students and the instructors. The course did not proceed without problems, yet the majority of these problems were overcome by the design of the course. Assertions and recommendations for improvement and application to other educational contexts are suggested.

  17. Engineer named Loring Professor

    OpenAIRE

    Nystrom, Lynn A.

    2005-01-01

    Saifur Rahman, Virginia Tech professor of electrical and computer engineering (ECE) and the founding director of Virginia Tech's Northern Virginia Division of the College of Engineering, is the recipient of the Joseph R. Loring Professorship of Electrical and Computer Engineering.

  18. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    Science.gov (United States)

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies. PMID:26461982

  19. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    Science.gov (United States)

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  20. Analysis of the Engineering Restoration Effect of Abandoned Yongledian Quarry in Beijing City Based on Soil Physical and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    Liwei; CAI

    2014-01-01

    The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yongledian Quarry in Beijing.Through determination and analysis of soil physical and chemical properties,it shows that there are significant differences in the composite effects of soil physical and chemical properties between restored area,and undisturbed area,damaged area,and engineering restoration effectively improves the composite effects of soil physical and chemical properties in the restored area.The single factor hypothesis test shows that soil pH value,organic matter,alkali-hydrolyzable nitrogen,and total nitrogen traits are the key targets to be restored in this mining area.

  1. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    Science.gov (United States)

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  2. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals. PMID:25431012

  3. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    Science.gov (United States)

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions. PMID:20402501

  4. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    Science.gov (United States)

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  5. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  6. Biology and Medicine Division: Annual report 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  7. Biology and Medicine Division: Annual report 1986

    International Nuclear Information System (INIS)

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future

  8. Carbon Dioxide Extraction from the Atmosphere Through Engineered Chemical Sinkage: Enabling Energy and Environmental Security

    Science.gov (United States)

    Dubey, M. K.; Ziock, H.; Rueff, G.; Smith, W. S.; Colman, J.; Elliott, S.; Lackner, K.; Johnston, N. A.

    2002-05-01

    We present the case for carbon dioxide (CO2) extraction from air using engineered chemical sinks as a means of sustaining fossil energy use by avoiding climate change. Existing carbon sequestration strategies such as CO2 injection into geologic formations or the deep ocean and mineral carbonation, require a pure stream of concentrated CO2 to be viable. Furthermore, current emphasis on reducing the global CO2 emissions is on large centralized power plants. However, more than half of all emissions are from the transportation sector and small, distributed sources such as home heating, etc. Most solutions for dealing with these sources explicitly or implicitly entail completely overhauling the existing infrastructure. To solve these problems, Los Alamos National Laboratory has conceived a novel approach for directly extracting CO2 from the atmosphere. Direct extraction converts the dilute CO2 (370 parts per million) in the atmosphere into a pure CO2 stream ready for permanent sequestration. It provides the following advantages: (1) Preserves our existing energy use and fuel distribution systems, which represent a large investment, (2) Indirectly captures CO2 from the myriad of small, distributed, and mobile sources that otherwise are not accessible to sequestration, (3) Allows atmospheric CO2 levels to be restored to their pre-industrial age value, (4) Provides free transport of CO2 to suitable sequestration sites by using natural atmospheric circulation, and (5) Is relatively compact and therefore inexpensive when compared to renewable concepts. Our concept harnesses atmospheric circulation to transport CO2 to sites where the CO2 is extracted by binding it to an adsorbent. The bound CO2 is then recovered as pure gas by heating together with the solid adsorbent that is recycled. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts CO2 to a CaCO3 solid that can be heated to obtain pure CO2 and recover the CaO. Even with recycling costs

  9. Ground-water resources of the Middle Loup division of the lower Platte River basin, Nebraska, with a section on Chemical quality of the ground water

    Science.gov (United States)

    Brown, Delbert Wayne; Rainwater, Frank Hays

    1955-01-01

    The Middle Loup division of the lower Platte River basin is an area of 650 square miles which includes the Middle Loup River valley from the confluence of the Middle and North Loup Rivers in Howard County, Nebr., to the site of the diversion dam that the U. S. Bureau of Reclamation proposes to construct in Blaine County near Milburn, Nebr. It also includes land in Howard and Sherman Counties designated by the Bureau of Reclamation as the Farwell unit. Irrigable land in this division is present on both sides of the Middle Loup River and along its tributaries. Most of the Middle Loup River valley is already irrigated by the Middle Loup Public Power and Irrigation District, which is strictly an irrigation enterprise. The uplands are not irrigated. Loess, dune sand, gravel, silt, and clay of Pleistocene or Recent age are exposed in the report area. These unconsolidated sediments rest on bedrock consisting of alternating layers of shale, mudstone, sandstone, and limestone, which are essentially fiat lying or slightly warped. The Ogallala formation, of Tertiary (Pliocene) age, immediately underlies the Pleistocene sediments and rests on the Pierre shale of Cretaceous age. Belts of alluvium occupy the Middle Loup River valley and the valleys of the principal streams in the area. The soils, dune sand, and terrace deposits are the most recent deposits. The Ogallala formation is water bearing and is the source of supply for some domestic and livestock wells. The saturated part of the sand and gravel formations of Pleistocene age, which yields water freely to wells, is the most important aquifer in the Middle Loup division. The water generally is under water-table conditions. The yields of properly constructed wells range from a few gallons per minute (gpm) to as much as 1,800 gpm. Some wells tap water in both the sand and gravel of Pleistocene age and in the underlying Ogallala formation. No wells are known to penetrate into formations older than the Ogallala. Fluctuations

  10. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  11. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    Science.gov (United States)

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  12. Food engineering --chemical engineering elite should pay attention to the field%食品工程--化工精英应该关注的领域

    Institute of Scientific and Technical Information of China (English)

    陈晓东

    2016-01-01

    Food production and its market economy are the most important sector in national economy and security. Here the characteristics are introduced:food engineering is not a simple application of the chemical engineering principles. Food is a unique material consisting of mostly protein,fat and carbohydrate,which are all large polymeric molecules yet possessing characteristics that are more complex than those usually encountered. Most importantly,all food related phenomena are time-dependent,which are influenced significantly by their water contents. Here,the author has through some examples,e.g. food microstructure characteristics,water activity and its importance, separation and purification technologies in food industry,new emerging food processing technologies, food nutrition engineering,and nano technology applied to food industry,described the nature of food engineering as a multidisciplinary subject linked with biological engineering,chemical engineering, mechanical engineering and electrical and electronic engineering. A typical example,spray drying to make milk powder,is given with a futurd prospect suggested. There is no doubt that the current article reflects only a small part of area of food engineering. Nevertheless,it would make a good read for someone who is interested in food processing.%食品生产与市场是现代经济与国家安全中的重要一环。本文介绍了食品工程的特殊性:食品工程并非是化工原理的简单应用,因为食品是种特殊的物质,其主要组分(包括蛋白质、脂肪及碳水化合物)都是大分子,但拥有普通高分子材料不具备的各种特性。并且,食品中发生的物理化学现象是随时间变化的并且在很大程度上受其水分的影响。本文从食品的微结构特性、水活度及其重要性、食品的分离与纯化、“新兴”的食品加工技术、食品的营养过程工程、纳米技术在食品加工中的应用等方面全面阐述了食品

  13. Health, Safety, and Environment Division

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C [comp.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  14. Development of test stand for experimental investigation of chemical and physical phenomena in Liquid Rocket Engine

    OpenAIRE

    Emerson Andrade Santos; Wilton Fernandes Alves; André Neves Almeida Prado; Cristiane Aparecida Martins

    2011-01-01

    The main objective of this work was to present the specification of an experimental firing test stand for liquid rocket engines (LRE) and develop a program for control and acquisition of data. It provides conditions to test rocket engines with thrust from 50 to 100 kgf. A methodology for laboratory work implementation using information technology, which will allow the automatic and remote functioning of the test stand, permits users to input the necessary data to conduct tests safely, achieve...

  15. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2007-01-01

    SAVO BRATOS, Laboratoire de Physique The´orique des Liquides Universite´ Pierre et Marie Curie, 75252 Paris Cedex, France MARK S. CHILD, Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, 0X1 3QZ, United Kingdom EVELYN M. GOLDFIELD, Department of Chemistry, Wayne State University of Michigan, 48202 USA STEPHEN K. GRAY, Chemistry Division, Argonne National Laboratory, Illinois 60439 USA VASSILIY LUBCHENKO, Department of Chemistry, University of Houston, Houston, Texas 77204-5003 USA G. ALI MANSOORI, Departments of Biology and Chemical Engineering, University of

  16. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  17. PARTICLE METHODS FOR COMPLEX FLOWS IN CHEMICAL ENGINEERING--THE PSEUDO-PARTICLE APPROACH

    Institute of Scientific and Technical Information of China (English)

    Wei; GE; Jinghai; LI

    2005-01-01

    The multi-scale structures of complex flows in chemical engineering have been great challenges to the design and scaling of such systems, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constituents and powerful tools of multi-scale models, owing to their physical fidelity and computational simplicity. Especially,pseudo-particle modeling (PPM, Ge & Li, 1996; Ge & Li, 2003) is most suitable for molecular scale flow prediction and exploration of the origin of multi-scale structures; macro-scale PPM (MaPPM, Ge & Li, 2001) and similar models are advantageous for meso-scale simulations of flows with complex and dynamic discontinuity, while the lattice Boltzmann model is more competent for homogeneous media in complex geometries; and meso-scale methods such as dissipative particle dynamics are unique tools for complex fluids of uncertain properties or flows with strong thermal fluctuations. All these methods are favorable for seamless interconnection of models for different scales.However, as PMs are not originally designed as either tools for complexity or constituents of multi-scale models, further improvements are expected. PPM is proposed for microscopic simulation of particle-fluid systems as a combination of molecular dynamics (MD) and direct simulation Monte-Carlo (DSMC). The collision dynamics in PPM is identical to that of hard-sphere MD, so that mass, momentum and energy are conserved to machine accuracy. However, the collision detection procedure, which is most time-consuming and difficult to be parallelized for hard-sphere MD, has been greatly simplified to a procedure identical to that of soft-sphere MD. Actually, the physical model behind such a treatment is essentially different from MD and is more similar to DSMC, but an intrinsic difference is that in DSMC the collisions follow designed statistical rules that are reflection of the real physical processes only in very limited cases such as dilute gas.PPM is ideal

  18. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  19. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts...... study alternative and richer models, such as externalities in cake cutting, simultaneous cake cutting, and envy-free cake cutting. The second part of the thesis tackles the fair allocation of multiple goods, divisible and indivisible. In the realm of divisible goods, we investigate the well known...

  20. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    such as random mutagenesis to a systems level which decreases the time and efforts on design and implementation. Here, the authors review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of developments for systems metabolic engineering of these organisms......Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has...... of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent...

  1. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian [UC; (USF)

    2015-02-20

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  2. Four Engineers...

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are four engineers traveling in a car;a mechanical engineer,a chemical engi-neer,an electrical engineer and a comput-er engineer.The car breaks down.“Sounds to me as if the pistons have seized.We ll have to strip down the engine before we canget the car working again,”says the mechanical

  3. Differential and differential-algebraic systems for the chemical engineer solving numerical problems

    CERN Document Server

    Buzzi-Ferraris, Guido

    2014-01-01

    This fourth in a suite of four practical guides is an engineer''s companion to using numerical methods for the solution of complex mathematical problems. It explains the theory behind current numerical methods and shows in a step-by-step fashion how to use them.The volume focuses on differential and differential-algebraic systems, providing numerous real-life industrial case studies to illustrate this complex topic. It describes the methods, innovative techniques and strategies that are all implemented in a freely available toolbox called BzzMath, which is developed and maintained by the autho

  4. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    Science.gov (United States)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  5. Summaries of FY 1981 research in the chemical sciences

    International Nuclear Information System (INIS)

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division will find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The contents are as follows: DOE laboratires; chemical physics; atomic physics; chemical energy; separations; analysis; chemical engineering sciences; offsite contracts; equipment funds; topical index; institutional index for offsite contracts; and investigator index

  6. Summaries of FY 1979 research in the chemical sciences

    International Nuclear Information System (INIS)

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas

  7. Summaries of FY 1979 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  8. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification

  9. Engineering evaluation/cost analysis for the proposed management of contaminated water impounded at the Weldon Spring chemical plant area

    International Nuclear Information System (INIS)

    This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the proposed removal action for managing contaminated surface waters impounded at the chemical plant area of the Weldon Spring site, located near Weldon Spring, Missouri. The US Department of Energy is responsible for cleanup activities at the site under its Surplus Facilities Management Program (SFMP). The major goals of SFMP are to eliminate potential hazards to human health and the environment that are associated with contamination at SFMP sites and to make surplus real property available for other uses, to the extent possible. The objectives of this EE/CA report are to identify the cleanup as a removal action, document the selection of a response that will mitigate the potential release of radioactive or chemical contaminants from the impounded waters into the nearby environment, and address environmental impacts associated with the proposed action. 41 refs., 8 figs., 8 tabs

  10. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ of the National University of Colombia, Bogotá

    Directory of Open Access Journals (Sweden)

    Javier Gama Chávez

    2010-04-01

    Full Text Available An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ. The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water contamination by effusions generation and air contamination. These impacts were the base for formulating following and control programs, furthermire, a training an communication program was done. All the programs, including the requiered documents and procedures, were published in the Environmental Management Plan and the Environmental Procedures Manual.

  11. Planejamento participativo no subprograma QEQ do PADCT Joint strategic planning in the chemistry and chemical engineering subprogram of PADCT

    Directory of Open Access Journals (Sweden)

    Eucler B. Paniago

    2007-12-01

    Full Text Available The development of the Brazilian chemistry sector, during the last 30 years, is nowadays being attributed to PADCT (Science and Technology Development Program. Since the seventies, the Government took notice of the importance of research in chemistry for the Brazilian economy, therefore creating PADCT to support chemistry and chemical engineering among other areas of science and technology. Planning and implementation of the second phase of this program represented a real joint strategic planning. Since then, academic research and human resources education have experienced significant improvements. However, in the chemical trade, the deficit continues to grow, in spite of an almost constant ratio between importation costs and export revenues. Continued investments for research in the area remain necessary.

  12. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  13. Design and development of visual learning techniques to construct chemical engineering safety knowledge

    OpenAIRE

    Nishaben Santibhai, Dholakiya

    2009-01-01

    People working in the chemical industry require specific skills to deal with hazardous environments and to operate complicated machinery which often requires on site training. The importance of designing systems and environments with safe possible ways to train operators is essential for the chemical industries. Virtual reality offers the potential to train personnel in a safe highly visual and interactive manner. Virtual Learning Environments(VLE) represent an entirely new form of educat...

  14. Division of atomic physics

    International Nuclear Information System (INIS)

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  15. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  16. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, David [Alstom Power Inc., Windsor, CT (United States)

    2013-03-01

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design.

  17. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    Science.gov (United States)

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  18. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    Science.gov (United States)

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  19. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  20. Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses

    Science.gov (United States)

    Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.

    2010-01-01

    Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…

  1. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    Science.gov (United States)

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  2. A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bireswar; Datta, Amitava, E-mail: amdatta_ju@yahoo.com [Jadavpur University, Department of Power Engineering (India); Datta, Aparna; Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre (India)

    2013-04-15

    A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm{sup -1} has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

  3. The 5th World Congress of chemical engineering: Technologies critical to a changing World. Volume II: Agriculture, food biotechnology biomedical electric power process safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Volume 2 of the proceedings from the 5th World Congress of Chemical Engineering covers four major topic areas from which papers were selected for the database: Agriculture, Food; Biotechnology; Electric Power, and Process Safety. Pertinent subtopics include: Renewable Resource Engineering; Special Processes in the Food Industry; Advances in Metabolite Production; Advances in Fermentation and Cell Culture Engineering; Coal and Nuclear Central Station Power Plants; Large Natural Gas Fired Power Stations; Distributed Generation; Potential Impact of Biomass Energy; and Chemical Hazards in Plant Design. 29 papers were selected from Volume 1 for the database.

  4. Projects elaboration, a didactics approach for the chemical engineering final course students; Elaboracao de projetos, uma abordagem didatica para alunos de final de curso de engenharia quimica

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Marco Antonio Gaya de; Ricardo Izidoro [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Operacoes e Projetos Industriais]. E-mail: mgaya@uerj.br; Costa, Joao Manuel da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello

    2003-07-01

    This paper presents the adopted approach by the Department of Industrial Operations and Projects of the Institute of Chemistry in the graduation course Design II, where a group of chemical engineering students elaborates a project to finish their graduation. The differential of our proposal consists in the integration of the previous chemical engineering courses (e.g. heat transfer, unit operations, etc.) and to take the student to an activity with a structure similar to those found in the engineering companies, with large application in the oil and gas industries, especially in the petroleum processing and refining. (author)

  5. Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH2 Template

    Directory of Open Access Journals (Sweden)

    Wu Junshu

    2010-01-01

    Full Text Available Abstract A size-controlled Zn(OH2 template is used as a case study to explain the chemical strategy that can be executed to chemically engineering various nanoscale cavities. Zn(OH2 octahedron with 8 vertices and 14 edges is fabricated via a low temperature solution route. The size can be tuned from 1 to 30 μm by changing the reaction conditions. Two methods can be selected for the hollow process without loss of the original shape of Zn(OH2 template. Ion-replacement reaction is suitable for fabrication of hollow sulfides based on the solubility difference between Zn(OH2 and products. Controlled chemical deposition is utilized to coat an oxide layer on the surface of Zn(OH2 template. The abundant hydroxyl groups on Zn(OH2 afford strong coordination ability with cations and help to the coating of a shell layer. The rudimental Zn(OH2 core is eliminated with ammonia solution. In addition, ZnO-based heterostructures possessing better chemical or physical properties can also be prepared via this unique templating process. Room-temperature photoluminescence spectra of the heterostructures and hollow structures are also shown to study their optical properties.

  6. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  7. Summaries of FY 1991 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the BES Engineering Research Program for fiscal year 1991; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1991. Major topics covered include fluid mechanics, fracture mechanics, chemical engineering and mechanical engineering.

  8. Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering.

    Science.gov (United States)

    Whitener, Keith E; Lee, Woo-Kyung; Bassim, Nabil D; Stroud, Rhonda M; Robinson, Jeremy T; Sheehan, Paul E

    2016-02-10

    Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate. PMID:26784372

  9. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design......This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  10. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    Science.gov (United States)

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.

  11. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms...

  12. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  13. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    OpenAIRE

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was tak...

  14. Phonon Engineering of ZnO nanowires with controlled chemical doping

    Science.gov (United States)

    Bohorquez-Ballen, Jaime; Jayasekera, Thushari

    2013-03-01

    Using the first principles density functional theory (DFT) calculations, we have investigated electronic and dynamical properties of ZnO nanowires in [001] direction with different diameters in the presence of impurities such as Mg, Al, and Ga. As the impurity concentration is varied, electrical and thermal conductivities of nanowires change. In this way, nanowires can be engineered to reduce the thermal transport, such that their thermoelectric properties can be enhanced.

  15. Scientific Equipment Division - Overview

    International Nuclear Information System (INIS)

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: - designing of devices and equipment for experiments in physics, their mechanical construction and assembly. In particular, there are vacuum chambers and installations for HV and UHV; - maintenance and upgrading of the existing installations and equipment in our Institute; - participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and a AO plotter, what allows us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop can offer a wide range of machining and treatment methods with satisfactory tolerances and surface quality. It offers the following possibilities: - turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc-type elements of a diameter up to 600 mm and a length not exceeding 300 mm; - milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm; - grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm; - drilling - holes of a diameter up to 50 mm; - welding - electrical and gas welding, including TIG vacuum-tight welding; - soft and hard soldering; - mechanical works including precision engineering; - plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides; - painting - paint spraying with possibility of using furnace-fred drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg

  16. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    Science.gov (United States)

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  17. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    Science.gov (United States)

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  18. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, April-June 1978. [Advanced solvent extraction; accidents; pyrochemical; radwaste in metal matrix; waste migration

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ader, M.; Barletta, R. E.

    1979-12-01

    Fuel cycle studies reported include development of centrifugal contactors for Purex processes. Tricaprylmethyl-ammonium nitrate and di-n-amyl-n-amylphosphonate are being evaluated as Thorex extractants. Dispersion of uranium and plutonium by fires, and mechanisms for subdividing and dispersing liquids and solids were reviewed. In the pyrochemical and dry processing program, a facility for testing containment materials is under construction; a flowsheet for carbide fuel processing has been designed and studies of carbide reactions in bismuth are underway; salt transport processes are being studied; process-size refractory metal vessels are being fabricated; the feasibility of AIROX reprocessing is being determined; the solubility of UO/sub 2/, UO/sub 2/ + fission products, and PuO/sub 2/ in molten alkali metal nitrates, has been investigated; a flowsheet was developed for reprocessing actinide oxides in molten salts; preparation of Th-U carbide from the oxide is being studied; new flowsheets based on the Dow Aluminum Pyrometallurgical process for reprocessing of spent uranium metal fuel have been prepared; the chloride volitility processing of thorium-based fuels is being studied; the reprocessing of (Th,U)O/sub 2/ solid solution in KCl-LiCl-ThCl/sub 4/-Th is being studied; and a flowsheet for processing spent nuclear fuel in molten tin has been constructed. Leach rates of simulated encapsulated waste forms in a metal matrix were studied. Nine criteria for handling waste cladding hulls were established. Strontium and tin migration in glauconite columns was measured. Radioactive Sr in a stream of water moved through oolitic limestone as rapidly as water, but in a stream of water equilibrated with the limestone, Sr moved through the limestone one-tenth as fast. Migration of trace quantities of Cs and I through kaolinite was studied. 88 figures, 53 tables.

  19. Single and two-phase flows on chemical and biomedical engineering

    CERN Document Server

    Antonio, Martins; Rui, Lima

    2012-01-01

    ""Single or two-phase flows are ubiquitous in most natural process and engineering systems. Examples of systems or process include, packed bed reactors, either single phase or multiphase, absorber and adsorber separation columns, filter beds, plate heat exchangers, flow of viscoelastic fluids in polymer systems, or the enhanced recovery of oil, among others. In each case the flow plays a central role in determining the system or process behaviour and performance. A better understanding of the underlying physical phenomena and the ability to describe the phenomena properly are both crucial to

  20. Nonlinear systems and optimization for the chemical engineer solving numerical problems

    CERN Document Server

    Buzzi-Ferraris, Guido

    2013-01-01

    This third in a suite of four practical guides is an engineer's companion to using numerical methods for the solution of complex mathematical problems. It explains the theory behind current numerical methods and shows in a step-by-step fashion how to use them.The volume focuses on optimization from experimental to large-scale processes, detailing the algorithms needed to solve real-life problems. It describes the methods, innovative techniques and strategies that are all implemented in a well-established, freeware mathematical toolbox called BzzMath, which is developed and maintained by the au

  1. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  2. Surface morphology engineering of metal-oxide films by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Solis, J.L.; Estrada, W. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru); Facultad de Ciencias, Universidad Nacional de Ingenieria, P.O. Box 31-139, Lima (Peru); Gomez, M. [Facultad de Ciencias, Universidad Nacional de Ingenieria, P.O. Box 31-139, Lima (Peru)

    2007-07-01

    The Chemical Spray Pyrolysis technique and a combination of sol-gel and spray pyrolysis techniques have been used in order to monitor the morphology of metal-oxide-based thin films to be used as functional materials. We can obtain surfaces from specular to rough-porous according to the physico-chemical conditions of the precursor/spraying solution. We have produced coatings of ZnO-based and NiO{sub x}-based coatings from alcoholic and aqueous solutions. A single glass, ITO-precoated glass or alumina was used as the substrate. Porous materials of WO{sub 3}, WO{sub 3}-SnO{sub 2} and SnO{sub 2} have been produced by spraying either inorganic or metal alkoxide gels over a hot substrate. The morphologies of coatings were evaluated by either SEM or optical measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Surface morphology engineering of metal-oxide films by chemical spray pyrolysis

    International Nuclear Information System (INIS)

    Chemical spray pyrolysis technique and a combination of sol-gel and spray pyrolysis techniques have been used in order to monitor the morphology of metal-oxide-based thin films to be used as functional materials. We can get from specular to rough-porous surfaces according to the physical-chemical conditions of the precursor / spraying solution. We have produced coatings of ZnO-based and NiOx-based coatings from alcoholic and water solution. A single glass, ITO-precoated glass or alumina was used as the substrate. Porous materials of WO3, CuWO4-x and SnO2 have been produced spraying either inorganic or metal alkoxide gels over a hot substrate. Morphology of coatings were evaluated by either SEM or optical measurements. (author)

  4. Spreadsheets in chemical engineering education : a tool in process design and process integration

    OpenAIRE

    Ferreira, E. C.; Lima, Ricardo; Salcedo, Romualdo

    2004-01-01

    Recent developments in embedding numerical optimization procedures with linear and nonlinear solvers within a spreadsheet environment have greatly enhanced the use of these tools for teaching chemical process design and process integration. Student skills with respect to these topics are usually gained by complex and expensive modular simulators, e.g. ASPEN Plus® or algebraic tools such as GAMS® or AMPL®. However, modular simulators have a significant learning curve, and algebraic modeling la...

  5. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  6. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Sei Jin; Zhao, Hangbo; Kim, Sanha; De Volder, Michael; John Hart, A

    2016-08-01

    High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

  7. Mechanical Engineering Department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.)

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  8. Organization structure. Main activities of the Division

    International Nuclear Information System (INIS)

    In this chapter the organization structure as well as main activities of the Division for radiation safety, NPP decommissioning and radioactive waste management are presented. This Division of the VUJE, a.s. consists of the following sections and departments: Section for economic and technical services; Section for radiation protection of employees; Department for management of emergency situations and risk assessment; Department for implementation of nuclear power facilities decommissioning and RAW management; Department for personnel and environmental dosimetry; Department for preparation of NPP decommissioning; Department for RAW treatment technologies; Department for chemical regimes and physico-chemical analyses; Department for management of nuclear power facilities decommissioning and RAW management. Main activities of this Division are presented.

  9. Application of Nanocomposite Coatings with Different Structural Physical and Chemical Characteristics in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    A.N. Goltsev

    2013-03-01

    Full Text Available The research covers the results of experimental studies of the effect character of nanocomposite coatings with different physical and chemical parameters (type, roughness, hydrophilic-hydrophobic characteristics on structural and functional properties (adhesive potential, phenotype, gene expression of mesenchymal stem cells (MSCs. On the tested nanocoatings (Al2O3, ZrO2, Ta2O5 the capability of oxide coating Al2O3 to enrich the in vitro cultured bone marrow (BM with the cells of MSCs phenotype markers as well as to increase the expression rate of ido gene in them, which may extend the spectrum of their therapeutic application in clinics, has been found.

  10. MSE-THERMO: Integrated computer system for application of chemical thermodynamics in materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, J.; Chuchvalec, P.; Vonka, P. [Inst. of Chemical Technology, Prague (Czech Republic)

    1995-08-01

    MSE-THERMO is an integrated computer system embodying thermochemical databases with sophisticated computational software for diverse thermodynamic calculations. It consists of a database MSE-DATA, where thermodynamic data for pure substances are stored, as well as programs for the calculation of thermodynamic functions of pure substances, changes of thermodynamic functions for chemical reactions, ternary phase diagrams in a subsolidus region, phase stability diagrams, and equilibrium composition of multicomponents and multiphases systems. Datafiles as well as computational software tools are at present intensively extended.

  11. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  12. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    Science.gov (United States)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  13. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  14. Theoretical physics division

    International Nuclear Information System (INIS)

    Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles

  15. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  16. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  17. Report of the work of the Biological and Medical Research, Radiological Physics, and Health Services Divisions for the quarterly period ending September 30, 1953.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1953-10-01

    The monthly progress report from the Argonne National Laboratory includes material from one-third of the Laboratory. The three divisions into which the work has been divided are: (l) Reactor Engineering, Physics, Instrument Research and Development, and Electronics, (2) Biological and Medical Research, Radiological Physics, and Health Services, and (3) Chemistry and Chemical Engineering, Metallurgy, and Remote Control Engineering. The present monthly progress report covers the work in Biological and Medical Research, Radiological Physics, and Health Services for the quarterly period ending September 30, 1953.

  18. Superior Mobility in Chemical Vapor Deposition Synthesized Graphene by Grain Size Engineering

    Science.gov (United States)

    Petrone, Nicholas; Dean, Cory; Meric, Inanc; van der Zande, Arend; Huang, Pinshane; Wang, Lei; Muller, David; Shepard, Kenneth; Hone, James

    2012-02-01

    Chemical vapor deposition (CVD) offers a promising method to produce large-area films of graphene, crucial for commercial realization of graphene-based applications. However, electron transport in CVD grown graphene has continued to fall short of the performance demonstrated by graphene derived from mechanical exfoliation. Lattice defects and grain boundaries developed during growth, structural defects and chemical contamination introduced during transfer, and charged scatterers present in sub-optimal dielectric substrates have all been identified as sources of disorder in CVD grown graphene devices. We grow CVD graphene and fabricate field-effect transistors, attempting to minimize potential sources of disorder. We reduce density of grain boundaries in CVD graphene by controlling domain sizes up to 250 microns. By transferring CVD graphene onto h-BN utilizing a dry-transfer method, we minimize trapped charges at the interface between graphene and in the underlying substrate. We report field-effect mobilities up to 110,000 cm2V-1s-1 and oscillations in magnetotransport measurements below 1 T, confirming the high quality and low disorder in our CVD graphene devices.

  19. Proceedings of the sixty third annual session of Indian Institute of Chemical Engineers: souvenir

    International Nuclear Information System (INIS)

    Biotechnology is on a wide range of industrial agenda covering fine chemicals, bulk chemicals, pharmaceuticals food, textiles, pulps, paper, mineral and energy areas paving the way of an industrial revolution in the 21st century. Broadly, industrial applications face different economic pressures as 'green', 'red' and 'white'. While 'green' biotechnology's agricultural applications emerge from millennia of human selective breeding of animals and plants, 'red' applications draw their lineage back to the healing arts 'white' include new and emerging non-medical and non-agricultural applications. Fuels produced using bio-technology such as bioethanol and bio-diesel are all potential oil replacement. Thus bio-technology is proving its worth as a technology that can contribute to sustainable industrial development. Many bio-catalytic tools are rapidly becoming available for industrial applications because of the recent advances in this technique. The present conference will enable the researchers and industrialists to exchange their ideas and rejuvenate their bio-technological skills aiming towards industrial sustainability. Papers relevant to INIS are indexed separately

  20. Research in the chemical sciences: Summaries of FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).