WorldWideScience

Sample records for chemical engineering chemistry

  1. Career Opportunities in Chemistry and Chemical Engineering.

    Science.gov (United States)

    Glover, Trienne

    This pamphlet discusses career and employment opportunities in chemical engineering. Necessary college preparation is described and median salaries by degree are tabulated. Nontraditional careers in chemistry are also described. Future demand for chemists and chemical engineers is projected to 1985 and the availability of jobs for women and…

  2. Discussion on the Development of Green Chemistry and Chemical Engineering

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  3. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  4. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  5. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  6. Chemistry of fossil fuels and biofuels (cambridge series in chemical engineering)

    CERN Document Server

    Schobert, Harold

    2013-01-01

    Focusing on today's major fuel resources - ethanol, biodiesel, wood, natural gas, petroleum products and coal - this book discusses the formation, composition and properties of the fuels, and the ways in which they are processed for commercial use. The book examines the origin of fuels through natural processes such as photosynthesis and the geological transformation of ancient plant material; the relationships between their composition, molecular structures, and physical properties; and the various processes by which they are converted or refined into the fuel products appearing on today's market. Fundamental chemical aspects such as catalysis and the behaviour of reactive intermediates are presented, and global warming and anthropogenic carbon dioxide emissions are also discussed. The book is suitable for graduate students in energy engineering, chemical engineering, mechanical engineering and chemistry, as well as professional scientists and engineers.

  7. Chemical Engineering in the "BIO" world

    DEFF Research Database (Denmark)

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical...... engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering...... baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy...

  8. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    Science.gov (United States)

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  9. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1997-01-01

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  10. Finding hidden chemistry in ancient egyptian artifacts: Pigment degradation taught in a chemical engineering course

    OpenAIRE

    Giménez Izquierdo, Francisco Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled

  11. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  12. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    Science.gov (United States)

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  13. Abstracts Book of 42. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1999-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important chemical forum of Polish chemists organised annually. The state of art of many fundamental and applied investigations have been presented and discussed. The following scientific sessions and microsymposia have been proposed: plenary session, analytical chemistry, inorganic chemistry, organic chemistry, chemistry and environment, chemistry and technology of polymers, chemistry didactics, electrochemistry, young scientists forum, chemical technology, chemical engineering, high energetics materials, computers in research and teaching of chemistry, structure modelling and polymer properties, silicon-organic compounds

  14. Chemical Engineering in the "BIO" World.

    Science.gov (United States)

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  16. Materials of 48. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical

    International Nuclear Information System (INIS)

    2005-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: chemistry of metalorganic and supramolecular compounds; organic and bioorganic chemistry; coordination and bioinorganic chemistry; chemistry of polymers and biopolymers; physical and theoretical chemistry; catalysis; structural chemistry; analytical chemistry and environmental protection chemistry of materials and nanomaterials; technology and chemical engineering; didactics of chemistry; young scientist forum; chemistry for economy

  17. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2001-01-01

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  18. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  19. Planejamento participativo no subprograma QEQ do PADCT Joint strategic planning in the chemistry and chemical engineering subprogram of PADCT

    Directory of Open Access Journals (Sweden)

    Eucler B. Paniago

    2007-12-01

    Full Text Available The development of the Brazilian chemistry sector, during the last 30 years, is nowadays being attributed to PADCT (Science and Technology Development Program. Since the seventies, the Government took notice of the importance of research in chemistry for the Brazilian economy, therefore creating PADCT to support chemistry and chemical engineering among other areas of science and technology. Planning and implementation of the second phase of this program represented a real joint strategic planning. Since then, academic research and human resources education have experienced significant improvements. However, in the chemical trade, the deficit continues to grow, in spite of an almost constant ratio between importation costs and export revenues. Continued investments for research in the area remain necessary.

  20. Materials of 47. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry. Volume 3

    International Nuclear Information System (INIS)

    2004-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum

  1. Abstracts Book of Jubilee Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2000-01-01

    Scientific Assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are most important chemical discussion forum organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as sections and symposia topics: organic chemistry, physical chemistry (chemical kinetics, catalysis, thermodynamics), membranes and membrane processes, biological chemistry, biotechnology, metalorganic compounds and complexes, polymer chemistry, crystallochemical study, spectroscopy in nowadays chemistry, supramolecular chemistry, chemistry and technology of coal, high-energetic materials, environment protection, didactics in chemistry, radiation chemistry, photochemistry, electrochemistry, chemistry and technology of carbohydrates, theoretical and computer chemistry, young scientists forum, history of chemistry

  2. Critical technologies: The role of chemistry and chemical engineering

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this report is to identify and illustrate key contributions of chemical and chemical engineering research to the development of technologies that have been deemed critical to the economy, security, and well-being of our nation. The report surveys a wide range of vital technologies that are heavily reliant or even critically dependent on chemical or chemical engineering research. Examples were taken from the fields of materials, manufacturing, energy, transportation, public health, information and communications, and the environment. While loosely following the structure of the critical technologies report of the NCTP, our committee decided on a different approach, that of using examples backed up by extensive illustrations

  3. Materials of 46. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical. Volume 1,2,3

    International Nuclear Information System (INIS)

    2003-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meetings organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects were proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum as well as the reports of results of works sponsored by Committee of Scientific Research

  4. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    Science.gov (United States)

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  5. Mystery Well: Chemical-Engineering Solution to the Internal Rain Problem.

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek

    2017-01-01

    Roč. 174, DEC 31 (2017), s. 396-402 ISSN 0009-2509 Institutional support: RVO:67985858 Keywords : precipitation * humidity-driven convection * buoyant instability Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.895, year: 2016

  6. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    Science.gov (United States)

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  7. An Alternative Route to Chemical Engineering for Minority and Other Students.

    Science.gov (United States)

    Cussler, E. L.

    The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…

  8. Progress in reforming chemical engineering education.

    Science.gov (United States)

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  9. Chemical engineering and chemistry : education in a changing world

    NARCIS (Netherlands)

    Reijenga, J.C.

    2006-01-01

    Current trends in science and engineering research are analyzed, together with an inventory of changes in the field of employment and practice in industry. The resulting demands on university education of chemists and chemical engineers have been translated into a more or less continuous updating of

  10. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  11. Second-Guessing Scientists and Engineers: Post Hoc Criticism and the Reform of Practice in Green Chemistry and Engineering.

    Science.gov (United States)

    Lynch, William T

    2015-10-01

    The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.

  12. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    Science.gov (United States)

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  13. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    Science.gov (United States)

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  14. Appropriate Programs for Foreign Students in U.S. Chemical Engineering Curricula.

    Science.gov (United States)

    Findley, M. E.

    Chemical engineers in developing countries may need abilities in a number of diverse areas including management, planning, chemistry, equipment, processes, politics, and improvisation. Chemical engineering programs for foreign students can be arranged by informed advisers with student input for inclusion of some of these areas in addition to…

  15. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  16. What Chemistry To Teach Engineers?

    Science.gov (United States)

    Hawkes, Stephen J.

    2000-01-01

    Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)

  17. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  18. Using Simulation to Increase Yields in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    William C. Conley

    2003-06-01

    Full Text Available Trying to increase the yields or profit or efficiency (less pollution of chemical processes is a central goal of the chemical engineer in theory and practice. Certainly sound training in chemistry, business and pollution control help the engineer to set up optimal chemical processes. However, the ever changing demands of customers and business conditions, plus the multivariate complexity of the chemical business can make optimization challenging. Mathematical tools such as statistics and linear programming have certainly been useful to chemical engineers in their pursuit of optimal efficiency. However, some processes can be modeled linearly and some can not. Therefore, presented here will be an industrial chemical process with potentially five variables affecting the yield. Data from over one hundred runs of the process has been collected, but it is not known initially whether the yield relationship is linear or nonlinear. Therefore, the CTSP multivariate correlation coefficient will be calculated for the data to see if a relationship exists among the variables. Then once it is proven that there is a statistically significant relationship, an appropriate linear or nonlinear equation can be fitted to the data, and it can be optimized for use in the chemical plant.

  19. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Materials of All-Russian Symposium on chemistry and extraction engineering. Chemical-metallurgical processes of ore and secondary raw material processing. Analytical control of chemical industries, man-made and natural objects

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning polymer and composite materials technology as well as catalysis in chemical engineering. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  20. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...... such as applied chemistry and process engineering throughout Europe. The result has been a set of recommendations for the first (BS), second (MS) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  1. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  2. An Exemplary Program in Higher Education for Chemists, Engineers, and Chemistry Teachers.

    Science.gov (United States)

    Ayers, Jerry B.; And Others

    This paper presents the rationale, structure, and specifications for a model program for the preparation of chemists, chemical engineers, and high school chemistry teachers. The model (an application of systems technology to program development in higher education) is based on the structure provided by the Georgia Educational Model Specifications…

  3. Incorporating Sustainability into Engineering and Chemical Education Using E-Learning

    Directory of Open Access Journals (Sweden)

    Edmond Sanganyado

    2018-03-01

    Full Text Available The purpose of this study was to develop e-learning activities that could facilitate the integration of sustainability concepts and practices in engineering and chemical education. Using an online learning management system (LMS, undergraduate students in an applied chemistry program at a public university in Zimbabwe participated in an online discussion on the role of chemical reaction engineering in achieving environmental sustainability goals. In the second activity, the students were instructed to prepare a design report for a cost-effective and innovative wastewater treatment plant for a rural hospital. The design report was evaluated through peer review online. Quantitative and qualitative analyses were performed on the two online activities to evaluate student engagement, quality of responses and the incorporation of sustainability into their learning. In the online discussion, 97 comments were made averaging 120 words per comment. Furthermore, the students averaged 3.88 comments, with the majority of comments exhibiting simple and complex argumentation, a deep reflection and widespread use of terms associated with sustainability such as recycling, pollution, waste and the environment. Furthermore, the evaluation of peer reviews revealed that participants demonstrated they could identify the strengths and shortcomings in the design reports. Therefore, this study demonstrated that e-learning, particularly peer review and online discussion, could help chemistry and engineering students appreciate the need for chemical and engineering activities that encourage sustainable development.

  4. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Burris, L.; Webster, D.S.; Barney, D.L.; Cafasso, F.A.; Steindler, M.J.

    1981-06-01

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO 2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  5. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  6. Introducing Chemistry Students to the "Real World" of Chemistry

    Science.gov (United States)

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  7. Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures.

    Science.gov (United States)

    Beke, David; Károlyházy, Gyula; Czigány, Zsolt; Bortel, Gábor; Kamarás, Katalin; Gali, Adam

    2017-09-06

    Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.

  8. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-01-01

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  9. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  10. Applied chemistry and environmental engineering for engineers. Manual for students and practicians. 2. ed.; Angewandte Chemie und Umwelttechnik fuer Ingenieure. Handbuch fuer Studium und betriebliche Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Fessmann, J.; Orth, H.

    2002-07-01

    This is a practically oriented textbook for chemistry and environmental protection training of students of mechanical engineering, vehicle engineering, electrical engineering, space HVAc engineering etc. Students are also given useful information on the practical applications of chemistry and on environmental protection in industrial practice. The book also contains problem solutions for managing engineers in organizations of the metal and electrical branch who are confronted with chemical problems in chemical engineering, quality assurance, industrial safety and environmental protection. [German] Das Handbuch vermittelt in konzentrierter Form die Grundlagen der Chemie und Umwelttechnik und schlaegt rasch die Bruecke zur industriellen Anwendung bevorzugt in der Metall- und Elektroindustrie. Das Handbuch ist ein praxisorientiertes Lehrbuch fuer die Chemie- und Umweltschutzausbildung von Ingenieurstudenten der Fachrichtungen Maschinenbau, Fahrzeugtechnik, Elektrotechnik, Versorgungstechnik u.a. Darueberhinaus finden Schueler von Chemieleistungskursen an Gymnasien oder Chemiestudenten an Fachhochschulen oder Universitaeten viele nuetzliche Informationen ueber die Anwendungen von Chemie und Umweltschutz in der industriellen Praxis. Nicht zuletzt enthaelt das Buch Problemloesungen fuer Betriebsingenieure, insbesondere aus dem Bereich der Metall- und Elektrobranche, die mit chemischen Fragestellungen in der Verfahrenstechnik, Qualitaetssicherung oder Arbeits-/Umweltschutzueberwachung konfrontiert sind. (orig.)

  11. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Engineering of polymers and composite materials. Catalysis in chemical engineering

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning polymer and composite materials technology as well as catalysis in chemical engineering. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  12. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  13. Green chemistry for chemical synthesis

    OpenAIRE

    Li, Chao-Jun; Trost, Barry M.

    2008-01-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign.

  14. Green chemistry for chemical synthesis.

    Science.gov (United States)

    Li, Chao-Jun; Trost, Barry M

    2008-09-09

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign.

  15. An approach in building a chemical compound search engine in oracle database.

    Science.gov (United States)

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.

  16. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  17. An Introduction to the Fundamentals of Chemistry for the Marine Engineer - An Audio-Tutorial Correspondence Course (CH-1C).

    Science.gov (United States)

    Schlenker, Richard M.

    This document provides a study guide for a three-credit-hour fundamentals of chemistry course for marine engineer majors. The course is composed of 17 minicourses including: chemical reactions, atomic theory, solutions, corrosion, organic chemistry, water pollution, metric system, and remedial mathematics skills. Course grading, objectives,…

  18. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  19. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  20. Macedonian journal of chemistry and chemical engineering: open journal systems--editor's perspective.

    Science.gov (United States)

    Zdravkovski, Zoran

    2014-01-01

    The development and availability of personal computers and software as well as printing techniques in the last twenty years have made a profound change in the publication of scientific journals. Additionally, the Internet in the last decade has revolutionized the publication process to the point of changing the basic paradigm of printed journals. The Macedonian Journal of Chemistry and Chemical Engineering in its 40-year history has adopted and adapted to all these transformations. In order to keep up with the inevitable changes, as editor-in-chief I felt my responsibility was to introduce an electronic editorial managing of the journal. The choice was between commercial and open source platforms, and because of the limited funding of the journal we chose the latter. We decided on Open Journal Systems, which provided online submission and management of all content, had flexible configuration--requirements, sections, review process, etc., had options for comprehensive indexing, offered various reading tools, had email notification and commenting ability for readers, had an option for thesis abstracts and was installed locally. However, since there is limited support it requires a moderate computer knowledge/skills and effort in order to set up. Overall, it is an excellent editorial platform and a convenient solution for journals with a low budget or journals that do not want to spend their resources on commercial platforms or simply support the idea of open source software.

  1. Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.

    Science.gov (United States)

    Gladden, Lynn F; Sederman, Andrew J

    2017-06-07

    This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to chemical engineering research.

  2. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    Science.gov (United States)

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  4. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...

  5. A criação do curso de engenharia química na escola nacional de química da universidade do Brasil The creation of the chemical engineering course at the national school of chemistry of the university of Brazil

    Directory of Open Access Journals (Sweden)

    Alexandro Pereira da Silva

    2006-07-01

    Full Text Available The goal of this work was to establish the origins of the chemical engineering course at the National School of Chemistry of the University of Brazil (at present, the School of Chemistry of the Federal University of Rio de Janeiro. There was a previous Industrial Chemistry course at the Higher School of Agriculture and Veterinary, established in 1920, following the French model. This course was the basis of the creation of the National School of Chemistry in 1933. During the 1940s, teachers and students claimed for a new course in true connection with the needs of the country and to reach full valorization of their job. The structure of the new Chemical Engineering course was approved in 1946 and the first class begun in 1952. This course was of great importance during the Brazilian industrial development during the 1950s and 1960s.

  6. A Chemical Engineering Perspective on the Origins of Life

    Directory of Open Access Journals (Sweden)

    Martha A. Grover

    2015-05-01

    Full Text Available Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry.

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Chemical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada; School of Chemical Engineering- University College of Engineering-University of Tehran, Tehran, Iran; School of Chemistry- University ...

  8. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  9. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  10. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  11. Chemical Education Research: Improving Chemistry Learning

    Science.gov (United States)

    Dudley Herron, J.; Nurrenbern, Susan C.

    1999-10-01

    Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.

  12. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  13. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    Science.gov (United States)

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  14. From radiation chemistry to radiation engineering

    International Nuclear Information System (INIS)

    Ballantine, D.S.

    1976-01-01

    During the past 25 years there has been a steady recognition that radiation in the form of electrons or gamma rays can offer positive advantages as a processing technology. Underlying this process industry, and largely responsible for its success, are significant contributions from the field of basic and applied radiation chemistry. In this paper it is attempted to relate fundamental radiation chemistry studies directly to the practical engineering applications

  15. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Plenary reports. Engineering of inorganic substances and materials

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of inorganic substances and materials. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  16. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  17. Modelling of plume chemistry of high flying aircraft with H2 combustion engines

    International Nuclear Information System (INIS)

    Weibring, G.; Zellner, R.

    1993-01-01

    Emissions from hydrogen fueled aircraft engines include large concentrations of radicals such as NO, OH, O and H. We describe the result of modelling studies in which the evolution of the radical chemistry in an expanding and cooling plume for three different mixing velocities is evaluated. The simulations were made for hydrogen combustion engines at an altitude of 26 km. For the fastest mixing conditions, the radical concentrations decrease only because of dilution with the ambient air, since the time for chemical reaction is too short. With lower mixing velocities, however, larger chemical conversions were determined. For the slowest mixing conditions the unburned hydrogen is converted into water. As a consequence the radicals O and OH increase considerably around 1400 K. The only exception being NO, for which no chemical change during the expansion is found. The concentrations of the reservoir molecules like H 2 O 2 , N 2 O 5 or HNO 3 have been calculated to remain relatively small. (orig.)

  18. Special theory on chemical engineering

    International Nuclear Information System (INIS)

    1987-06-01

    This book give a special description about chemical engineering. The contents of this book are special technique for isolation on introduction and separation by membrane, biochemistry engineering, process system engineering, energy engineering, environment engineering, a high molecular new material, election material and research on surface property of catalyst. It has appendixes on history of transition on Korean chemical engineering text contents and history of the activity of Korea chemical engineering institute.

  19. Attitudes towards chemistry among engineering students

    Science.gov (United States)

    Olivo Delgado, Carlos J.

    The attitudes towards chemistry of the engineering students enrolled in an introductory course at the Polytechnic University of Puerto Rico were explored (n = 115). A mixed methodology was used in an exploratory-oriented research approach. The first stage consisted of the administration of a Likert scale attitudinal survey which was validated during the study's design process. The survey allowed collecting information about the participant's attitudes towards their personal opinion, their perspectives about peer's or relatives' opinion, relevant aspects of the discipline, and difficulty-increasing factors in the chemistry course. The scale internal reliability was measured in a pilot study with a convenience simple, obtaining an acceptable coefficient (Cronbach alpha = 0.731). Survey results evidenced a mainly neutral attitude towards the chemistry course, not highly negative or highly positive, in contrast with other studies in this field. On the other hand, the normality hypothesis was tested for the scores obtained by participants in the survey. Although the pilot study sample had an approximately normal distribution, the scores in obtained by the participants in the survey failed the normality test criteria. The second stage of the study was accomplished using a case study. Among the survey participants, some students were invited to in-depth interviews to elucidate the reasons why they have certain attitudes towards chemistry. Study time, instructor, motivation, term of study, and course schedule are the factors that interviewees agreed as contributors to success or failure in the chemistry course. Interview's participants emphasized that study time is determinant to pass the class. This methodological approach, quantitative followed by qualitative, was useful in describing the attitudes towards chemistry among university students of engineering.

  20. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...... and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... skills. Such skills are important in Chemical Product Engineering when dealing with open-ended problems, creative problem solutions, operating in a team working environment and exercising project management. In our course we emphasise team activites, formative feed back to the students as well as helping...

  1. A New Paradigm for Chemical Engineering?

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    evidence of this change comes from the jobs taken by graduating chemical engineering professionals in North America, Europe, and some of the Asian countries. In terms of where the graduating chemical engineers are going to work, a clear shift from the commodity chemical industry to the product oriented...... businesses has been observed. There is an increasing trend within the chemical industry to focus on products and the sustainable processes that can make them. Do these changes point to a paradigm shift in chemical engineering as a discipline? Historically, two previous paradigm shifts in chemical engineering...... corresponded to major shifts in chemical engineering as a discipline, which affected not only the education of chemical engineers, but also the development of chemical engineering as a discipline. Has the time come for a new paradigm shift that will prepare the current and future chemical engineering graduates...

  2. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  3. Chemical leasing in the context of sustainable chemistry.

    Science.gov (United States)

    Moser, Frank; Karavezyris, Vassilios; Blum, Christopher

    2015-05-01

    Chemical leasing is a new and innovative approach of selling chemicals. It aims at reducing the risks emanating from hazardous substances and ensuring long-term economic success within a global system of producing and using chemicals. This paper explores how, through chemical leasing, the consumption of chemicals, energy, resources and the generation of related wastes can be reduced. It also analyses the substitution of hazardous chemicals as a tool to protect environmental, health and safety and hence ensure compliance with sustainability criteria. For this, we are proposing an evaluation methodology that seeks to provide an answer to the following research questions: (1) Does the application of chemical leasing promote sustainability in comparison to an existing chemicals production and management system? 2. If various chemical leasing project types are envisaged, which is the most promising in terms of sustainability? The proposed methodology includes a number of basic goals and sub-goals to assess the sustainability for eight different chemical leasing case studies that have been implemented both at the local and the national levels. The assessment is limited to the relative assessment of specific case studies and allows the comparisons of different projects in terms of their relative contribution to sustainable chemistry. The findings of our assessment demonstrate that chemical leasing can be regarded as promoting sustainable chemistry in five case studies with certainty. However, on the grounds of our assessment, we cannot conclude with certainty that chemical leasing has equivalent contribution to sustainable chemistry in respect of three further case studies.

  4. Chemical Engineering Students: A Distinct Group among Engineers

    Science.gov (United States)

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  5. Experimental research of the impact of the dosing of chemical reagents on the dynamic behavior of regulation system of cycle chemistry

    Science.gov (United States)

    Yegoshina, O. V.; Bolshakova, N. A.

    2017-11-01

    Organization of reliable chemical control for maintaining cycle chemistry is one of the most important problems to be solved at the present time the design and operation of thermal power plants. To maintain optimal parameters of cycle chemistry are used automated chemical control system and regulation system of dosing chemical reagents. Reliability and stability analyzer readings largely determine the reliability of the water cycle chemistry. Now the most common reagents are ammonia, alkali and film-forming amines. In this paper are presented the results of studies of the impact of concentration and composition of chemical reagents for readings stability of automatic analyzers and transients time of control systems for cycles chemistry. Research of the impact of chemical reagents on the dynamic behavior of regulation system for cycle chemistry was conducted at the experimental facility of the Department of thermal power stations of the Moscow Engineering Institute. This experimental facility is model of the work of regulation system for cycle chemistry close to the actual conditions on the energy facilities CHP. Analysis of results of the impact of chemical reagent on the dynamic behavior of ammonia and film forming amines dosing systems showed that the film-forming amines dosing system is more inertia. This emphasizes the transition process of the system, in which a half times longer dosing of ammonia. Results of the study can be used to improve the monitoring systems of water chemical treatment.

  6. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  7. OrChem - An open source chemistry search engine for Oracle®

    Science.gov (United States)

    2009-01-01

    Background Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Results Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. Availability OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net. PMID:20298521

  8. OrChem - An open source chemistry search engine for Oracle(R).

    Science.gov (United States)

    Rijnbeek, Mark; Steinbeck, Christoph

    2009-10-22

    Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net.

  9. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  10. Special Issue on Theoretical Chemistry/Chemical Dynamics

    Indian Academy of Sciences (India)

    2017-07-02

    Jul 2, 2017 ... This month's issue of the Journal of Chemical Sciences honours Professor Charusita Chakravarty, who has made immeasurable contributions to theoretical chemistry and chemical dynamics. The editors Biman Bagchi (FASc, FNA, FTWAS; Indian Institute of Science, Bangalore, India), David Clary (FRS; ...

  11. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  12. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    Kim, Yeong Geol

    1990-10-01

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  13. Modern Cast Irons in Chemical Engineering

    Science.gov (United States)

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  14. The large dictionary on chemical engineering

    International Nuclear Information System (INIS)

    1995-03-01

    This book mentions the large dictionary on chemical engineering. It starts the preface. It mentions introduction for publish committee. It also has signature of publish committee. It introduces explanatory notes. It gives descriptions of glossary on chemical engineering. This has appendixes and index. This book consists of seven part to explain chemical engineering glossary. It was written by chemical engineering dictionary publish committee.

  15. Chemistry for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2011-01-01

    Chemistry - radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role in the nuclear power development. Even at present, the offered technology is well developed, but still several improvements are needed and proposed. These developments concern all stages of the technology; front end, reactor operation (coolant chemistry and installation components decontamination, noble gas release control), back end of fuel cycle, etc. Chemistry for a partitioning and a transmutation is a new challenge for the chemists and chemical engineers. The IV th generation of nuclear reactors cannot be developed without chemical solutions for fuel fabrication, radiation-coolants interaction phenomena understanding and spent fuel/waste treatment technologies elaboration. Radiochemical analytical methods are fundamental for radioecological monitoring of radioisotopes of natural and anthropological origin. This paper addresses just a few subjects and is not a detailed overview of the field, however it illustrates a role of chemistry for a safe and economical nuclear power development. (author)

  16. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  17. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  18. The modern alchemy: The chemical industry

    International Nuclear Information System (INIS)

    Valencia Giraldo, Asdrubal

    2002-01-01

    A brief history is presented on the development of chemistry from the antiquity, through alchemy, iatrochemistry, electrochemistry, atomic theory and the XVII, XVIII, XIX and X X centuries discoveries up to modern chemistry, fine chemistry, chemical engineering and the modern chemical industry with all of its consequences

  19. Proceedings of the sixty-sixth annual session of Indian Institute of Chemical Engineers and joint Indo-North American symposium: oral and poster abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of the symposium was to to discuss the current trends and future developments in the field of chemical engineering technology. The main themes of the symposium were: Advanced Separation Techniques; Biochemical Engineering; Process Intensification; Fossil Fuel, Nuclear and Alternate Energy; Novel Reactors and operating strategies; Green Chemistry and Engineering; Food Security; Water Treatment, Reuse and Recycle; Healthcare Technology; Nanomaterials; Process Development; Process Engineering and Control; Borderless Chemical Engineering; Fluid Mechanics and CFD; Intellectual Property Rights; Sustainable Development etc. Papers relevant to INIS are indexed separately

  20. Preservice Science Teachers' Attitudes towards Chemistry and Misconceptions about Chemical Kinetics

    Science.gov (United States)

    Çam, Aylin; Topçu, Mustafa Sami; Sülün, Yusuf

    2015-01-01

    The present study investigates preservice science teachers' attitudes towards chemistry; their misconceptions about chemical kinetics; and relationships between pre-service science teachers' attitudes toward chemistry and misconceptions about chemical kinetics were examined. The sample of this study consisted of 81 freshman pre-service science…

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Uling Yang1 Gang Li1 Meifang Hu1 Lingbo Qu1 2. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455 002, People's Republic of China; Chemistry and Chemical Engineering School, Henan University of Technology, Zhengzhou 450 001, People's Republic of China ...

  2. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  3. Curriculum Outline for Introduction to Engineering Chemistry. First Edition. Review Cycle-Annual.

    Science.gov (United States)

    Schlenker, Richard M.

    This curriculum outline consists of behavioral objectives (called terminal and enabling objectives) for Introduction to Engineering Chemistry, a one-semester, post-secondary course consisting of four 1-hour lectures each week. Course goal is to introduce marine engineering students to the rudiments of basic/introductory inorganic chemistry. The…

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Chemical vapour deposition (CVD); boron carbide nitride nanotubes (BCNTs); BCNT-modified electrode; NO electrooxidation. ... Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Material Chemistry, School of Chemistry and Chemical Engineering, Heilongjiang University, ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    CHEN AI-HUA1 MENG SU-CI2 ZHOU KAI1 WANG CONG-CONG1 ZHAO WEI2 WANG AI-JIAN2 QIAN JUN2. School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang ...

  6. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    topics (transport phenomena, separations, reaction engineering, etc.) must remain strong, should the applications that currently emphasize commodity chemicals also include new topics such as sustainability, and product design? In Europe, the European Federation of Chemical Engineering (EFCE) has taken...... has a product focus. With this shift of the chemical industry, what should be the curriculum of the chemical engineering degrees at the BSc- and MSc-levels, and, are the skill set of chemical engineers appropriate for this altered chemical industry? While the basic skill set, defined by the core...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  7. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1991-01-01

    The Board on Chemical Sciences and Technology organizes and provides direction for standing and ad hoc committees charged with addressing specific issues relevant to the continued health of the chemical sciences and technology community. Studies currently under the oversight of the BCST include a major survey of chemical engineering, an examination of the problems of biohazards in the laboratory, and an analysis of the roots and magnitude of the problem of obsolescent facilities for research and teaching in departments in the chemical sciences and engineering. The Board continues to respond to specific agency requests for program assessments and advice. BCST members are designated to serve as liaison with major federal agencies or departments that support research in order to help identify ways for the board to assist the these organizations. The BCST also maintains close contact with professional societies and nongovernmental organizations that share the Board's concern for the health of chemical sciences and technology. Individual Board members are assigned responsibility for liaison with the American Chemical Society, the American Institute of Chemical Engineers, the American Society of Biological Chemists, the Council for Chemical Research, the Chemistry and Biochemistry Sections of the National Academy of Sciences (NAS), and the National Academy of Engineering (NAE). In the past few years, the Board has served as a focus and a forum for a variety of issues that relate specifically to the health of chemistry. A sampling of these concerns include: industry-university cooperation; basic research funding in DOD, DOE, NIH, and NSF; basic research in the chemistry of life processes; basic research in biochemical engineering; basic research in the science and technology of new materials; and undergraduate education in chemistry and chemical engineering

  8. GREEN CHEMISTRY: NEW CHEMICAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    F. A. Tykhomirova

    2015-11-01

    Full Text Available The review deals with the principles and guidelines of “Green chemistry” in comparison with the philosophy of nanotechnology. Modern philosophy and methodology of science research focus is on the process of the growth of scientific knowledge. Modern chemistry is complex, hierarchical, multilevel and multidimensional system. Philosophy of nanotechnology relies heavily on the value of scientism and the idea of domination of man over nature , there is an apology of human intervention in nature. “Green chemistry” is called “new thinking”of chemistry, philosophy of modern chemical research. The chemicals and processes in accordance with the principles of “Green chemistry” are considered not only in terms of production of substances and materials with desired properties, but also taking into account the consequences for the environment. In the “Green chemistry” created image of the “ideal customer” – he uses a minimum number of products understands the need to preserve the environment. Ideological landmark “Green chemistry” – co-evolution of man and nature, preservation of the biosphere. It emphasized the need to implement the ideology of “Green chemistry” in the training of future specialists.

  9. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    Science.gov (United States)

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  10. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineeredLactococcus lactisfor fermentative production of (3S)-acetoin

    DEFF Research Database (Denmark)

    Liu, Jianming; Solem, Christian; Jensen, Peter Ruhdal

    2016-01-01

    Biocompatible chemistry (BC), i.e. non-enzymatic chemical reactions compatible with living organisms, is increasingly used in conjunction with metabolically engineered microorganisms for producing compounds that do not usually occur naturally. Here we report production of one such compound, (3S......)-acetoin, a valuable precursor for chiral synthesis, using a metabolically engineered Lactococcus lactis strain growing under respiratory conditions with ferric iron serving as a BC component. The strain used has all competing product pathways inactivated, and an appropriate cofactor balance is achieved by fine...

  11. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  12. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Tan, Huaping, E-mail: hptan@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Hu, Xiaohong [School of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion.

  13. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    International Nuclear Information System (INIS)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-01-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion

  14. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov (United States)

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  15. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  16. Forefront of PUREX system engineering. Chemistry and engineering of ruthenium, technetium and neptunium

    International Nuclear Information System (INIS)

    2004-07-01

    The paper reports the activity of the research committee organized by the Atomic Energy Society of Japan on 'Ruthenium and Technetium Chemistry in the PUREX System', with focusing on basic behaviors of ruthenium, technetium and neptunium in the PUREX process, the principles of plant design, and behaviors during the final waste treatment. The scope of the work includes the following major topics: (1) basic solution and solid-state chemistry; (2) basic solution and solid-state chemistry of minor actinides in particular, Np; (3) partitioning chemistry in the PUREX system and environmental behavior of the components; (4) processes of recovery, purification, and utilization of rare metal fission products; (5) field data on plant design, operation, decontamination, and decommissioning; (6) numerical process simulations and process control technologies; (7) compilation of a data base for process chemistry and plant engineering. (S. Ohno)

  17. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  18. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  19. Materials of 45. Scientific Assembly of Polish Chemical Society. Volumes 1-3

    International Nuclear Information System (INIS)

    2002-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum, flow analysis, and high-energy materials

  20. Using Green Chemistry and Engineering Principles to Design ...

    Science.gov (United States)

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. In addition, there are several approaches and frameworks focused on demonstrating that improvements were achieved through GC&E technologies. However, the application of these principles is not always straightforward. We propose using systematic frameworks and tools that help practitioners when deciding which principles can be applied, the levels of implementation, prospective of obtaining simultaneous improvements in all sustainability aspects, and ways to deal with multiobjective problems. Therefore, this contribution aims to provide a systematic combination of three different and complementary design tools for assisting designers in evaluating, developing, and improving chemical manufacturing and material management systems under GC&E perspectives. The WAR Algorithm, GREENSCOPE, and SustainPro were employed for this synergistic approach of incorporating sustainability at early stages of process development. In this demonstration, simulated ammonia production is used as a case study to illustrate this advancement. Results show how to identify process design areas for improvements, key factors, multi-criteria decision-making solutions, and optimal tradeoffs. Finally, conclusions were pre

  1. Engineering chemical interactions in microbial communities.

    Science.gov (United States)

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  2. Radiochemistry in chemistry and chemistry related undergraduate programmes in Argentina

    International Nuclear Information System (INIS)

    Fornaciari Iljadica, M.C.; Furnari, J.C.; Cohen, I.M.

    2006-01-01

    The evolution of education in Argentina at the university level is described. The detailed search of the educational offer shows that less than half of the universities (35 out of 92) include chemistry and chemistry related undergraduate programmes in their curriculum. The revision of the position of radiochemistry in these programmes reveals that only seven courses on radiochemistry are currently offered. Radiochemistry is included only in few programmes in chemistry and biochemistry. With respect to the programmes in chemical engineering the situation is worse. This offer is strongly concentrated in Buenos Aires and its surroundings. (author)

  3. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    Science.gov (United States)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  4. Teaching Chemical Engineers about Teaching

    Science.gov (United States)

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  5. Chemistry teaching in the new degrees of Agricultural Engineering

    Science.gov (United States)

    Arce, Augusto; Tarquis, Ana Maria; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2013-04-01

    The academic year 2011-12 is the second one implementing Bologna process in ETSI at the subjects of Agricultural Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate Environmental and engineering Graduate in Biotechnology, for it has been necessary to design and implement new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, implement new evaluation systems that promote continued participation active student and the development of educational materials to support the subjects of chemistry designed new degrees within the EEES. In addition to the above actions, an assessment test prior chemistry knowledge has been made to all students who enter into Agricultural Grades, improving laboratory practices and the comparative study of academic obtained by the students of the new grades in the subjects of chemistry during the year 2011-12 compared to the 2010-11 academic year. More than 15,000 data have showed a good correlation between the student's prior knowledge, the level test performed, test scores, the overall success rate of the course and the abandonment of the different degrees. Academic results show a higher percentage of students enrolled and presented on a greater number of passes on students enrolled in the 2011-12 academic year for students enrolled in the previous academic year. The improved results have influenced the actions taken and the level of knowledge with students entering. Finally, we propose possible solutions to fix these results in future courses, aiming to improve the degree of efficiency, success and significant absenteeism in the first year as it will condition the dropout rate of these new degrees. Acknowledgements: Proyecto de Innovación Educativa N° IE02054-11/12 UPM. 2012.

  6. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. Copyright © 2015. Published by Elsevier B.V.

  7. Opportunities for Merging Chemical and Biological Synthesis

    Science.gov (United States)

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284

  8. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop

  9. Progress of radiation chemistry engineering in the USSR

    International Nuclear Information System (INIS)

    Breger, A.Kh.

    1988-01-01

    A brief review of works in the field of radiation chemistry engineering (RCE) in the recent 20 years is given. Main results of development of theoretic, engineering and economic bases for creating plants for realization of RCE processes using radionuclide (long- and short-living) γ radiation sources and electron accelerators, are considered. The current state in this field meets the requirements placed in connection with forthcoming wide introduction of radiation technology to the soviet industry

  10. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  11. American Chemical Society Student Affiliates Chapters: More Than Just Chemistry Clubs

    Science.gov (United States)

    Montes, Ingrid; Collazo, Carmen

    2003-10-01

    Chemistry educators often examine and implement various instructional techniques, such as mentoring programs, to advance learning objectives and to equip students with analytical and technical skills, as well as the skills required of chemical science professionals. Student organizations, such as an American Chemical Society Student Affiliates (SA) chapter, can create a learning environment for undergraduates by engaging them in activities that develop communication, teamwork and inquiry, analysis, and problem-solving skills within a real-world setting. The environment is student-based, has personal meaning for the learner, emphasizes a process-and-product orientation, and emphasizes evaluation. Participation in SAs enhance the traditional chemistry curriculum, complementing the learning goals and meeting learning objectives that might not otherwise be addressed in the curriculum. In this article we discuss how SA chapters enhance the educational experience of undergraduate chemical science students, help develop new chemistry professionals, and shape enthusiastic and committed future chemical science leaders.

  12. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  13. Smart Cities Will Need Chemistry

    Directory of Open Access Journals (Sweden)

    Alexandru WOINAROSCHY

    2016-06-01

    Full Text Available A smart city is a sustainable and efficient urban centre that provides a high quality of life to its inhabitants through optimal management of its resources. Chemical industry has a key role to play in the sustainable evolution of the smart cities. Additionally, chemistry is at the heart of all modern industries, including electronics, information technology, biotechnology and nano-technology. Chemistry can make the smart cities project more sustainable, more energy efficient and more cost effective. There are six broad critical elements of any smart city: water management systems; infrastructure; transportation; energy; waste management and raw materials consumption. In all these elements chemistry and chemical engineering are deeply involved.

  14. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  15. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  16. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  17. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  18. Materials of the yearly scientific assembly of the Polish Chemical Society - Torun'93: chemistry of new materials

    International Nuclear Information System (INIS)

    1993-01-01

    Scientific conference accompanied the assembly of Polish Chemical Society has been held in 1993 in Torun. The conference has been divided into 12 sections and 4 symposia covering the most important research fields in chemistry. The general view on scientific progress has been presented during the plenary session. Then proceedings have performed in specialist sessions on: contemporary methods in organic chemistry chemistry, chemistry and physico-chemistry of polymers, coordination chemistry state-of-the-art prospects, absorption and absorbents, new chemical technologies of organic compounds, new chemical technologies of inorganic compounds, environment protection, new methods in analytical chemistry, photochemistry and chemical kinetics, crystallochemistry, history of chemistry and didactics, new substances in health protection, membranes and membrane techniques, electroactive organic compounds, zeolites - material properties

  19. Proceedings of the national conference on recent trends in materials chemistry and engineering

    International Nuclear Information System (INIS)

    2011-01-01

    This national conference focuses on the latest trends in materials chemistry and engineering. Materials chemistry unites the diverse disciplines of science seamlessly and underlines the need for a collaborative research. In today's technologically advanced society, the need to extend the wealth of basic knowledge on materials to the solutions of engineering problems is great. Papers relevant to INIS are indexed separately

  20. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  1. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications.

    Science.gov (United States)

    Tsukiji, Shinya; Hamachi, Itaru

    2014-08-01

    The ability to introduce any chemical probe to any endogenous target protein in its native environment, that is in cells and in vivo, is anticipated to provide various new exciting tools for biological and biomedical research. Although still at the prototype stage, the ligand-directed tosyl (LDT) chemistry is a novel type of affinity labeling technique that we developed for such a dream. This chemistry allows for modifying native proteins by various chemical probes with high specificity in various biological settings ranging from in vitro (in test tubes) to in living cells and in vivo. Since the first report, the list of proteins that are successfully labeled by the LDT chemistry has been increasing. A growing number of studies have demonstrated its utility to create semisynthetic proteins directly in cellular contexts. The in situ generated semisynthetic proteins are applicable for various types of analysis and imaging of intracellular biological processes. In this review, we summarize the basic properties of the LDT chemistry and its applications toward in situ engineering and analysis of native proteins in living systems. Current limitations and future challenges of this area are also described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. NREL Engineer Robert McCormick Named SAE Fellow | News | NREL

    Science.gov (United States)

    chemistry principles to the understanding of fuel-engine interactions and setting of ASTM fuel quality standards. His research has included studies on biodiesel chemistry effects that led to the development of expertise in fuel chemistry and standards, and discoveries in fuel-engine chemical interactions have led to

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2. Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, P R China; Department of Chemistry, Science College, Yanbian University, ...

  4. On Study of Application of Micro-reactor in Chemistry and Chemical Field

    Science.gov (United States)

    Zhang, Yunshen

    2018-02-01

    Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.

  5. The Cosmic-Chemical Bond: Chemistry from the Big Bang to Planet Formation

    Science.gov (United States)

    Williams, D. A.; Hartquist, T. W.

    2013-01-01

    Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be "driven", it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.

  6. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology. 2010 Elsevier Ltd. All rights reserved.

  7. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  8. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.; Vandegrift, G.

    2004-01-01

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  9. Collection Development: Celebrating Chemistry, February 1, 2011

    Science.gov (United States)

    Hamm, Susannah

    2011-01-01

    A hundred years after Marie Curie received her Nobel Prize in Chemistry, this arm of science is pointing the way to a more sustainable future. Growing movements like green chemistry, which strives to create alternative and new chemical reactions that produce no harmful waste products, and molecular engineering hold great potential for industry,…

  10. 18th Middle Atlantic Regional Meeting, American Chemical Society

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Proceedings of the 18th Middle Atlantic Regional Meeting of the American Chemical Society held May 21-23, 1984, include information about the meeting, e.g. area map and list of exhibitors, and abstracts for most of the 397 papers. A few papers are only title listed. The papers are arranged into sections dealing with analytical chemistry, biochemistry, chemical education, environmental chemistry, fuel chemistry, history of chemistry, industrial and engineering chemistry, inorganic chemistry, photochemistry, physical chemistry, polymer chemistry, and polymeric materials. Sections are also included to highlight undergraduate research and papers by chemical technicians and younger chemists. Separate abstracts have been prepared for 36 papers

  11. Presidential Green Chemistry Challenge: 2002 Designing Greener Chemicals Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2002 award winner, Chemical Specialties, developed an alkaline copper quaternary wood preservative to replace chromated copper arsenate preservative phased out due to risk to children.

  12. Development of tight-binding, chemical-reaction-dynamics simulator for combinatorial computational chemistry

    International Nuclear Information System (INIS)

    Kubo, Momoji; Ando, Minako; Sakahara, Satoshi; Jung, Changho; Seki, Kotaro; Kusagaya, Tomonori; Endou, Akira; Takami, Seiichi; Imamura, Akira; Miyamoto, Akira

    2004-01-01

    Recently, we have proposed a new concept called 'combinatorial computational chemistry' to realize a theoretical, high-throughput screening of catalysts and materials. We have already applied our combinatorial, computational-chemistry approach, mainly based on static first-principles calculations, to various catalysts and materials systems and its applicability to the catalysts and materials design was strongly confirmed. In order to realize more effective and efficient combinatorial, computational-chemistry screening, a high-speed, chemical-reaction-dynamics simulator based on quantum-chemical, molecular-dynamics method is essential. However, to the best of our knowledge, there is no chemical-reaction-dynamics simulator, which has an enough high-speed ability to perform a high-throughput screening. In the present study, we have succeeded in the development of a chemical-reaction-dynamics simulator based on our original, tight-binding, quantum-chemical, molecular-dynamics method, which is more than 5000 times faster than the regular first-principles, molecular-dynamics method. Moreover, its applicability and effectiveness to the atomistic clarification of the methanol-synthesis dynamics at reaction temperature were demonstrated

  13. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  14. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  15. Creating a Context for Chemistry

    Science.gov (United States)

    Truman Schwartz, A.

    Until relatively recently, the teaching of chemistry at the college and university level in the United States has been quite traditional and oriented primarily toward the preparation of chemists. Students not concentrating in the sciences have often been poorly served by existing courses. Chemistry in Context: Applying Chemistry to Society, a textbook for nonscience majors developed under the sponsorship of the American Chemical Society, is an effort to address the needs and interests of this audience. The book introduces the phenomena and principles of chemistry within the context of socially significant issues such as global warming, ozone depletion, alternate energy sources, nutrition, and genetic engineering. The chemistry is presented as needed to inform an understanding of the central topics, and the text features student-centered activities designed to promote critical thinking and risk-benefit analysis as well as an understanding of chemical principles. This paper summarizes the origin, development, content, pedagogy, evaluation, and influence of Chemistry in Context and considers its potential implications for other disciplines and the instruction of science majors.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xing Hui Zhang1 Fu Long Zhang1 Zhi Yuan Geng2. College of Chemical Engineering, Gansu Lianhe University, Lanzhou 730010, P.R. China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730010, People's Republic of China; Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, People's Republic of China; Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials; Ministry of Education, Northwest ...

  19. Halogenase engineering and its utility in medicinal chemistry.

    Science.gov (United States)

    Fraley, Amy E; Sherman, David H

    2018-06-15

    Halogenation is commonly used in medicinal chemistry to improve the potency of pharmaceutical leads. While synthetic methods for halogenation present selectivity and reactivity challenges, halogenases have evolved over time to perform selective reactions under benign conditions. The optimization of halogenation biocatalysts has utilized enzyme evolution and structure-based engineering alongside biotransformation in a variety of systems to generate stable site-selective variants. The recent improvements in halogenase-catalyzed reactions has demonstrated the utility of these biocatalysts for industrial purposes, and their ability to achieve a broad substrate scope implies a synthetic tractability with increasing relevance in medicinal chemistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  1. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2013-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The

  2. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    Science.gov (United States)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  3. Indian Chemical Engineering Congress 1995: 48th annual session of Indian Institute of Chemical Engineers: abstracts and invited lectures

    International Nuclear Information System (INIS)

    1995-01-01

    The 48th Annual Session of Indian Institute of Chemical Engineers was held in Kalpakkam during December 27-30, 1995. The book contains the proceeding of the conference, both abstracts and invited lectures. The topics covered included various aspects pertaining to chemical engineering and technology along with the chemical and engineering processes relevant to nuclear fuel cycle like uranium ore processing, fuel fabrication, reactor operation, fuel reprocessing and radioactive waste management. Papers relevant to INIS are indexed separately

  4. Applications of Azide-Based Bioorthogonal Click Chemistry in Glycobiology

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2013-06-01

    Full Text Available Click chemistry is a powerful chemical reaction with excellent bioorthogonality features: biocompatible, rapid and highly specific in biological environments. For glycobiology, bioorthogonal click chemistry has created a new method for glycan non-invasive imaging in living systems, selective metabolic engineering, and offered an elite chemical handle for biological manipulation and glycomics studies. Especially the [3 + 2] dipolar cycloadditions of azides with strained alkynes and the Staudinger ligation of azides and triarylphosphines have been widely used among the extant click reactions. This review focuses on the azide-based bioorthogonal click chemistry, describing the characteristics and development of these reactions, introducing some recent applications in glycobiology research, especially in glycan metabolic engineering, including glycan non-invasive imaging, glycomics studies and viral surface manipulation for drug discovery as well as other applications like activity-based protein profiling and carbohydrate microarrays.

  5. Put Some Movie Wow! in Your Chemistry Teaching

    Science.gov (United States)

    Frey, Christopher A.; Mikasen, Marjorie L.; Griep, Mark A.

    2012-01-01

    Movies and movie clips have been used by many instructors to teach chemistry. Entire movies based on true chemical stories are used because they provide students with a common experience after which instructors can launch writing lessons about the chemistry, the scientists, or engineers, or even postscripts to the story presented in the film. In…

  6. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Go Chemistry: A Card Game to Help Students Learn Chemical Formulas

    Science.gov (United States)

    Morris, Todd A.

    2011-01-01

    For beginning chemistry students, the basic tasks of writing chemical formulas and naming covalent and ionic compounds often pose difficulties and are only sufficiently grasped after extensive practice with homework sets. An enjoyable card game that can replace or, at least, complement nomenclature homework sets is described. "Go Chemistry" is…

  9. Dictionary of chemistry. English/German

    International Nuclear Information System (INIS)

    Wenske, G.

    1992-01-01

    This English/German dictionary covers more than 100.000 terms from chemistry, chemical engineering and related fields. It also contains molecular formulas, as well as numerous synonyms and areas of application. IUPAC terminology is emphasized, and outdated or rare terminology is indicated. (MM) [de

  10. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  11. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    Science.gov (United States)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    Science.gov (United States)

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  13. Seeking the chemical roots of darwinism: bridging between chemistry and biology.

    Science.gov (United States)

    Pross, Addy

    2009-08-24

    Chemistry and biology are intimately connected sciences yet the chemistry-biology interface remains problematic and central issues regarding the very essence of living systems remain unresolved. In this essay we build on a kinetic theory of replicating systems that encompasses the idea that there are two distinct kinds of stability in nature-thermodynamic stability, associated with "regular" chemical systems, and dynamic kinetic stability, associated with replicating systems. That fundamental distinction is utilized to bridge between chemistry and biology by demonstrating that within the parallel world of replicating systems there is a second law analogue to the second law of thermodynamics, and that Darwinian theory may, through scientific reductionism, be related to that second law analogue. Possible implications of these ideas to the origin of life problem and the relationship between chemical emergence and biological evolution are discussed.

  14. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  15. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1991-01-01

    The Board on Chemical Sciences and Technology organizes and provides direction for standing and ad-hoc committees charged with addressing specific issues relevant to the continued health of the chemical sciences and technology community. Studies currently under the oversight of the BCST include a major survey of the chemical sciences, a complementary survey of chemical engineering, an examination of the problems of biohazards in the laboratory, and an analysis of the roots and magnitude of the problem of obsolescent facilities for research and teaching in departments in the chemical sciences and engineering. The Board continues to respond to specific agency requests for program assessments and advice. BCST members are designated to serve as liaison with major federal agencies or departments that support research in order to help identify ways for the Board to assist these organizations. The BCST maintains close contact with professional societies and non-governmental organizations that share the Board's concern for the health of chemical sciences and technology. Individual Board members are assigned responsibility for liaison with the American Chemical Society, the American Institute of Chemical Engineers, the American Society of Biological Chemists, the Council for Chemical Research, the NAS Chemistry and Biochemistry Sections, and the National Academy of Engineering. In the past few years, the Board has served as a focus and a forum for a variety of issues that relate specifically to the health of chemistry

  16. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    Science.gov (United States)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  17. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  18. Chemistry with spatial control using particles and streams†

    Science.gov (United States)

    Kalinin, Yevgeniy V.; Murali, Adithya

    2012-01-01

    Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348

  19. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  20. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  1. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  2. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Hong Wang1 Bin Lu2 Jingxiang Zhao2 Qinghai Cai2. School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China; School of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Shida Road Limin development Zone, ...

  4. Engineering for Life Sciences: A Fruitful Collaboration Enabled by Chemistry.

    Science.gov (United States)

    Niemeyer, Christof M

    2017-02-13

    "… The interaction of engineering and life sciences has a long history that is characterized by a mutual dependency. The role of chemistry in these developments is to connect the engineers' instrumentation with the life scientists' specimens. This very successful partnership will further continue to produce essential and innovative solutions for future challenges …" Read more in the Guest Editorial by Christof M. Niemeyer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2012-01-01

    A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…

  6. Proceedings of 26. annual academic conference of China Chemical Society--modern nuclear chemistry and radiochemistry

    International Nuclear Information System (INIS)

    2008-08-01

    26. annual academic conference of China Chemical Society was held in Tianjing, 13-16 July, 2008. This proceedings is about modern nuclear chemistry and radiochemistry, the contents include: new elements and new nuclides; advanced nuclear chemistry; radiochemistry and national security; new radiopharmaceutical chemistry; modern radiological analytical chemistry and large scientific facilities; radiological environmental chemistry and nuclear radioactive waste; actinide chemistry and transactinide chemistry; radiochemistry and cross discipline, etc.

  7. Chemistry for engineering students: A key factor for social and technological development

    Directory of Open Access Journals (Sweden)

    Juan Antonio Llorens Molina

    2014-12-01

    Full Text Available The peculiarity of Chemistry as a basic subject in Engineering Studies and its embedded potential difficulties are matters which are now common to universities worldwide. In particular, the learning of Chemistry in the new (post Bologna degrees of Engineering in Spain and other countries is facing several challenges. In other words, there is a need to deepen into research and innovation tasks aiming at improving such studies within this new educational paradigm. Not to mention, two crucial aspects which are very often neglected, namely, reaching maximum efficiency of all types of available resources and obtaining a “knock on effect” from students and teachers at Secondary school level. The latter playing a crucial role so as to increase students’ awareness of the importance that Chemistry has at this particular educational level. Not to mention, how this increases their motivation towards this subject in the Higher Education scenario.

  8. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  9. Presidential Green Chemistry Challenge: 2014 Small Business Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2014 award winner, Amyris, engineered yeast to make a chemical called farnesene, which is a building block hydrocarbon that can be converted into a renewable, drop-in replacement for petroleum diesel.

  10. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  11. Hafnium - material for chemical apparatus engineering

    International Nuclear Information System (INIS)

    Jennert, D.

    1981-01-01

    This work describes - on the background of available literature - the properties of hafnium in technical quality (DIN-material No. 2.6400) as material for chemical apparatus engineering. The occurence, refining, physical and chemical properties will be described as well as the material behavior. In conclusion, it has been found that there is, at present, sufficient information for the engineering of hafnium which has to be completed by additional investigations for special applications. (orig.) [de

  12. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  13. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    Science.gov (United States)

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  14. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  15. Materials of yearly scientific assembly of Polish Chemical Society, Poznan 23-26 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The Scientific Assembly of Polish Chemical Society has been held in 1996 in Poznan. The general view on scientific progress of chemistry in Poland has been presented. The conference has been divided into 18 sessions covering the most important research fields in chemistry. The sessions topics were as follows: S-1 physical chemistry; S-2 photochemistry, radiation chemistry and chemical kinetics; S-3 catalysis; S-4 inorganic chemistry and coordination chemistry; S-5 organic chemistry; S-6 chemistry of hetero organic compounds; S-7 medical chemistry; S-8 crystallochemistry; S-9 environment protection; S-10 didactics in chemistry; S-11 analytical chemistry; S-12 chemical technology; S-13 chemical engineering; S-14 chemistry of polymers; S-15 young chemists forum; S-16 professor forum; S-17 membranes and membrane processes; S-18 supermolecular chemistry

  16. Chemical Engineering at NASA

    Science.gov (United States)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  17. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    Science.gov (United States)

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  18. Stoichiometry in Context: Inquiry-Guided Problems of Chemistry for Encouraging Critical Thinking in Engineering Students

    Directory of Open Access Journals (Sweden)

    Gabriel Pinto

    2013-01-01

    Full Text Available This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufacturers. These cases were developed in the context of an inquiry-guided instruction model. By bringing tangible chemistry examples into the classroom we provide an opportunity for engineering students to apply this science to familiar products in hopes that they will appreciate chemistry more, will be motivated to study concepts in greater detail, and will connect the relevance of chemistry to everyday life.

  19. Implications, large and small, from chemical education research for the teaching of chemistry

    Directory of Open Access Journals (Sweden)

    Peter J. Fensham

    2002-05-01

    Full Text Available Research studies in chemical education pose a communication problem for chemists. Unlike the findings from other specializations in chemistry the findings in chemical education tend to be reported in education journals that are not readily accessible to most chemists or chemistry teachers. This lecture is an attempt to remedy this gap in communication. Research studies fall into three broad categories. (i issues related to the content of chemistry itself, that is, What content to teach? And What meaning of each topic is to be conveyed? (ii issues related to how chemical content is taught, such as, the role of lectures, practical work, particular pedagogies, etc. and (iii issues related to its learning, that is, learning of concepts, conceptual change, motivation, etc. Findings in each of these categories of research over the last twenty years have drawn attention to opportunities for improving the quality of chemical education in each of the levels of formal education where chemistry is taught. Sometimes the research findings seem small since they, in fact, merely diagnose the actual problem in teaching and learning. At other times, the research findings are large because they provide a solution to these problems. What remains to be done is to disseminate the findings so that appropriate teaching occurs more widely, with its consequent gains in the quality of learning. Research findings, of these small and large types will be used to illustrate the potential of research to make the practice of chemical education more effective.

  20. An Introduction to the Fundamentals of Chemistry for the Marine Engineer.

    Science.gov (United States)

    Schlenker, Richard M.

    This document describes an introduction course in the fundamentals of chemistry for marine engineers. The course is modularized, audio tutorial allowing the student to progress at his own rate while integrating laboratory and lecture materials. (SL)

  1. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    Science.gov (United States)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Jing-Ping Wang1 Hong-Yu Niu1 Jing-Yang Niu1. Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475001, PR China ...

  3. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  4. Molecular and multiscale modeling: review on the theories and applications in chemical engineering

    International Nuclear Information System (INIS)

    Morales M, Giovanni; Martinez R, Ramiro

    2010-01-01

    We call molecular modeling to the application of suitable laws in the analysis of phenomena occurred at scales less than those accounted for by the macroscopic world. Such different scales (including micro-, meso- and macro scales), can be linked and integrated in order to improve understanding and predictions of complex physical chemistry phenomena, thus originating a global or multi scale analysis. A considerable amount of chemical engineering phenomena are complex due to the interrelation among these different realms of length and time. Multi scale modeling rises as an alternative for an outstanding mathematical and conceptual representation of such phenomena. This adequate representation may help to design and optimize chemical and petrochemical processes from a microscopic point of view. Herein we present a brief introduction to both molecular and multi scale modeling methods. We also comment and examine opportunities for applying the different levels of modeling to the analysis of industrial problems. The fundamental mathematical machinery of the molecular modelling theories is presented in order to motivate the study of these new engineering tools. Finally, we show a classification of different strategies for applying multilevel analysis, illustrating various examples of each methodology.

  5. Chemical engineering aspects in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chmiel, H

    1981-04-01

    Many basic chemical engineering processes are based on transport processes due, for example, to differences in temperature, pressure, and concentration. Such transport processes abound in the healthy circulatory system. Thus, metabolic processes supply the human body with the necessary warmth. The heart serves as a blood pump to provide optimal blood pressure in all vessels. Highly complex membranes in the kidneys ensure the efficient detoxification of the blood. It is therefore natural that the chemical engineer be involved in the solution of a number of biomedical engineering problems that come up in the field of medicine. Some typical tasks are: the characterization of the flow properties of biological fluids; research on the interaction between blood and foreign substances of the purpose of finding materials suitable for temporary or permanent use in the body and the development of blood pumps and artifical substitutes for the lungs, the liver, and the kidneys.

  6. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at Tgrant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30

  7. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  8. Proceedings of 20. Symposium of Malaysian Chemical Engineers (SOMChE 2006)

    International Nuclear Information System (INIS)

    2006-12-01

    The objective of the symposium is to provide a platform for participants and relevant chemical engineering community to meet and encourage expertise and knowledge sharing and to allow recent chemical engineering research and innovation works to be properly documented, displayed and made known to interested parties. The subjects discussed are advanced material modeling and simulation bioprocess, catalysis, chemical engineering education (outcome-based education), computational fluid dynamics, drying technology, energy, environment, fine chemicals, food engineering, oil and gas, oleochemical, particle technology, petrochemical, pharmaceutical engineering, polymer technology, process control, process system, engineering, reaction engineering, renewable energy, separation

  9. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine

    Directory of Open Access Journals (Sweden)

    Jahangirian H

    2017-04-01

    Full Text Available Hossein Jahangirian,1 Ensieh Ghasemian Lemraski,2 Thomas J Webster,1 Roshanak Rafiee-Moghaddam,3 Yadollah Abdollahi4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran; 3School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, 4Department of Electrical Engineering, Faculty of Engineering, University of Malaysia, Kuala Lumpur, Malaysia Abstract: This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed “green nanomedicine”. Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow. Keywords: green chemistry, cancer, drug delivery, nanoparticle

  10. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  11. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  12. Engineering microbes for efficient production of chemicals

    Science.gov (United States)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  13. Enhancement of Engine Oil Wear and Friction Control Performance Through Titanium Additive Chemistry

    International Nuclear Information System (INIS)

    Guevremont, J.; Guinther, G.; Szemenyei, D.; Devlin, M.; Jao, T.; Jaye, C.; Woicik, J.; Fischer, D.

    2008-01-01

    Traditionally, wear protection and friction modification by engine oil is provided by zinc dithiophosphate (ZDDP) or other phosphorus compounds. These additives provide effective wear protection and friction control on engine parts through formation of a glassy polyphosphate antiwear film. However, the deposition of phosphorus species on automotive catalytic converters from lubricants has been known for some time to have a detrimental effect of poisoning the catalysts. To mitigate the situation, the industry has been making every effort to find ZDDP-replacement additives that are friendly to catalysts. Toward this goal we have investigated a titanium additive chemistry as a ZDDP replacement. Fully formulated engine oils incorporating this additive component have been found to be effective in reducing wear and controlling friction in a high-frequency reciprocating rig (HFRR), 4-ball bench wear, Sequence IIIG, and Sequence IVA engine tests. Surface analysis of the tested parts by Auger electron spectroscopy, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) have shown that Ti species have been incorporated into the wear tracks and can only be found on the wear tracks. We used synchrotron based near edge X-ray absorption fine structure (NEXAFS) to investigate the chemical bonding mechanism of the Ti additive with the metal surface that affects the wear improvement mechanism. We postulate that Ti provides antiwear enhancement through inclusion in the metal/metal oxide structure of the ferrous surface by forming FeTiO3.

  14. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2008-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...

  15. Complex chemistry of Np(V) in aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi

    1989-01-01

    Despite the importance of Np(V) in both the nuclear chemical engineering and the actinoid chemistry, little work has been performed on the complex chemistry of Np(V) in aqueous solutions, since Np(V) reacts less readily with various ligands. The author has directed his effort to understand the chemical behavior of Np(V) in aqueous solutions, especially the determination of the stability constants of Np(V) complexes with various ligands. A part of the results obtained so far is presented in the following order. (1) The synergistic extraction of Np(V) as a method for studying the complex chemistry of Np(V): TTA-MTOA(methyltrioctylammonium chloride), TTA-phen and TTA-TOPO. (2) The determination of the stability constants of Np(V) complexes with 22 organic- and 5 inorganic ligands by means of the solvent extraction. (3) The distribution of the chemical species of Np(V) in solutions under various conditions

  16. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  17. 5th National meeting of the SA Institution of Chemical Engineers: chemical engineering in support of industry and society. V. 1-3

    International Nuclear Information System (INIS)

    1988-01-01

    The 5th national meeting of the SA Institution of Chemical Engineering was held from 15-16 August 1988 at Pretoria. The subject scope covered on the meeting include the broad spectrum of work done by the chemical engineer. The main categories include the processing of agricultural products, biotechnology, coal and hydrocarbons, the chemical engineering practice, fluid dynamics, gas treatment, heat and mass transfer, materials of construction, minerals processing, source materials and products, training and education, vapour-liquid equilibrium, and water and effluents. One seminar specifically covers process engineering in the context of nuclear reactors and two other papers cover supported liquid membrane extraction of uranium

  18. History of Chemistry and Chemical Engineering: Croatian Chemistry in the 20th Century. II. From the Collapse of Independent State of Croatia on May 8th, 1945 to the Establishment of the Republic of Croatia on June 25th, 1991.

    OpenAIRE

    Trinajstić, Nenad; Kaštelan-Macan, Marija; Paušek-Baždar, Snježana; Vančik, Hrvoj

    2009-01-01

    The development of Croatian chemistry from the end of the Second World War to the establishment of the Republic of Croatia is outlined. Briefly discussed is the founding and development of the Chemistry Department of the Faculty of Natural Sciences and Mathematics, and the Rugjer Bošković Institute. Also presented is the postwar structure and organization of the chemical- technological study at the Technical Faculty and later at the Faculty of Technology. The chemical lectures and research in...

  19. Chemistry without Borders: Careers, Research, and Entrepreneurship

    Science.gov (United States)

    This book is based on two symposia of the American Chemical Society (ACS): 1) “The Transnational Practice of Chemistry and Allied Sciences and Engineering: Study, Research and Careers without Borders” held at the Spring National Meeting in Denver in March 2015, and 2) “International Entrepreneurship...

  20. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  1. NREL Scientist Selected for Major Award by the American Chemical Society

    Science.gov (United States)

    contributions to the advancement of surface chemistry. The 160,000-member American Chemical Society selected Dr Chemistry. The award recognizes his many research, teaching, writing and administrative accomplishments adjunct professor of chemistry, physics and engineering at the University of Denver and the author or co

  2. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  3. Efficiency of Energy Transduction in a Molecular Chemical Engine

    OpenAIRE

    Sasaki, Kazuo; Kanada, Ryo; Amari, Satoshi

    2006-01-01

    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in...

  4. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  5. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    Science.gov (United States)

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be

  6. Chemistry evaluation in French EDF Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jacquier, Hervé

    2014-01-01

    The Nuclear Production Division of EDF is comprised of 19 power stations (58 PWR reactors) and 2 national engineering organisations. Nuclear Inspection (IN) is an internal assessment unit of the EDF Nuclear Production Directorate. At the request of the Directorate, it carries out periodic evaluations of all the units of the division. The evaluation of the nuclear sites (EGE: Overall Excellence Assessment) is carried out every 4 years, an intermediate evaluation is also carried out between each EGE. These evaluations are independent of the WANO and IAEA evaluations. Exchanges are carried out between Nuclear Inspection and the other international operators (for example, USA (INPO), England, China...) to share site evaluation methods. These evaluations are carried out by a team of 30 inspectors, reinforced during each evaluation by 10 peers who come from the various French nuclear sites. Nuclear Inspection produces a performance standards document for each FUNCTIONAL AREA, which is based on the requirements of the company. On the whole, 13 areas are evaluated during each inspection, in particular: Management, Operations, Maintenance, Engineering and Chemistry. The area of reactor plant chemistry has been evaluated since 2009. The Chemistry performance standards document is written from the EDF internal requirements and international references. During site evaluations, all the performance standards are assessed for compliance. The Chemistry performance standards document is comprised of 3 topics: Management of plant chemistry, The respect of the chemical and radiochemical specifications, The condition of the laboratories and the sampling lines, measuring equipment, and chemical products. The evaluations carried out make it possible to define strengths and weaknesses which the sites must address. After each evaluation, the assessment is presented to the site management and to the director of EDF Nuclear Production. For 4 years these evaluations have allowed progress to

  7. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    Science.gov (United States)

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Fang Dong1 Jiang Chenning1 Zhu Ting1 Yang Jinming1. Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Teachers University, 50 Kai Fang Da Dao, Yancheng 224002, Jiangsu, P. R. China ...

  9. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  10. View at Croatian Chemistry through Meetings of Croatian

    Directory of Open Access Journals (Sweden)

    Trinajstić, N.

    2007-10-01

    Full Text Available The 20th Croatian meeting of chemists and chemical engineers was a proper occasion to consider the past meetings and their role in the development of Croatian chemistry and chemical engineering last 40 years, because these meetings reflect to a large extent the state of these sciences in Croatia. The circumstances that lead to establishment of the Croatian meetings of chemists and chemical engineers and the role of Professor Marijan Laaan (1919-1981 who started these meetings by organizing the first one are described. He also organized the second and the seventh meeting. All persons who chaired these meetings are mentioned, as well as all the lecturers who won the Nobel Prize in chemistry. Especially emphasized is the participation of Vladimir Prelog (1906-1998 since the twentieth meeting was dedicated to him and to Leopold Ružička (1887-1976 - two excellent Croatian chemists who for their first-class research in organic chemistry won the Nobel Prize (Ružička in 1939 and Prelog 1975. The places where the meetings were held are listed. The structure of the meetings when the change of the meetings' title happened is delineated and the representation of various branches of chemistry according to the number of contributions is discussed. Similarly, the Croatian institutions according to the number ofcontributions of their staff-members and the contributors with the highest number of communications at each meeting are pointed out. Emphasized is the international character of these meetings and the countries from which the participants came are listed. Finally, only one contribution is discussed in detail - the report by Kata Mlinarić-Majerski and Zdenko Majerski on the preparation of [3.1.1]propellane inserted in the structure of adamantane. Adamantane chemistry in Croatia started with the first ever adamantane synthesis in 1941, when Prelog and Seiwerth prepared this cage hydrocarbon and is still going strong due to efforts by Kata Mlinaria

  11. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  12. Chemistry and sustainable environment (abstract)

    International Nuclear Information System (INIS)

    Hussain, M.

    2011-01-01

    Chemistry is one of the oldest branches of science; the human beings had ever come across. It has consistently contributed towards meeting the human needs from the dawn of civilization. However, its role has multiplied since the inception of industrial revolution. Although anthropogenic activities have made the human life comfortable and even luxurious yet their impacts on the physical, biological and socio-economic environments had been destructive. Numerous kinds of chemicals have engulfed us and our environment. Modern chemistry has leading role in sculpting the present as well as future of human lifestyle. It is serving the man and other biodiversity by providing countless products in every sphere of life. At the same time it is playing villain role in the destruction of environment at an alarming rate. Today the world is confronted with heinous environmental issues hitherto unknown to the living beings mostly triggered by chemicals. Thousands of chemicals are used in industrial products, agricultural chemicals, persistent organic pollutants, freezers, pharmaceuticals, chemical and radiological warfare, construction industry, synthetic materials, electrical goods, medical gadgets etc. Some natural sources of chemicals are acid rains, volcanic eruptions, eutrophication and photochemical smog. The fact of matter is that chemicals are being consistently added into atmosphere, biosphere and lithosphere. For the sustainable environment it is imperative that the chemicals must not be added into human environment beyond its carrying capacity. It is responsibility of chemists to introduce environmentally benign and biodegradable chemicals. All types of chemistry need to be green and environment friendly. The scientists and engineers should develop chemicals and technologies which do not harm the living creatures during any stage of their life-cycle. (author)

  13. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  14. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  15. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  16. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  17. Implementation of the anaerobic digestion model (ADM1) in the PHREEQC chemistry engine.

    Science.gov (United States)

    Huber, Patrick; Neyret, Christophe; Fourest, Eric

    2017-09-01

    Anaerobic digestion is state-of-the-art technology to treat sludge and effluents from various industries. Modelling and optimisation of digestion operations can be advantageously performed using the anaerobic digestion model (ADM1) from the International Water Association. The ADM1, however, lacks a proper physico-chemical framework, which makes it difficult to consider wastewater of complex ionic composition and supersaturation phenomena. In this work, we present a direct implementation of the ADM1 within the PHREEQC chemistry engine. This makes it possible to handle ionic strength effects and ion-pairing. Thus, multiple mineral precipitation phenomena can be handled while resolving the ADM1. All these features can be accessed with very little programming effort, while retaining the full power and flexibility of PHREEQC. The distributed PHREEQC code can be easily interfaced with process simulation software for future plant-wide simulation of both wastewater and sludge treatment.

  18. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  19. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    Science.gov (United States)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  20. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  1. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  2. Using Think-Aloud Protocols to Investigate Secondary School Chemistry Teachers' Misconceptions about Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek

    2009-01-01

    Secondary school chemistry teachers' understanding of chemical equilibrium was investigated through interviews using the think-aloud technique. The interviews were conducted with twelve volunteer chemistry teachers in Hong Kong. Their teaching experience ranged from 3 to 18 years. They were asked to predict what would happen to the equilibrium…

  3. Chemical Engineering Division research highlights, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  4. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan

    2012-01-01

    Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics...

  5. At Age 100, Chemical Engineering Education Faces Changing World.

    Science.gov (United States)

    Krieger, James

    1988-01-01

    Stresses the need for chemical engineering education to keep abreast of current needs. Explores the need for global economics, marketing strategy, product differentiation, and patent law in the curriculum. Questions the abilities of current chemical engineering graduate students in those areas. (MVL)

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... XIONG1 WEIHUA ZHU1 HEMING XIAO1. Institute for Computation in Molecular and Materials Science and Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Materials Science and Engineering, Nanjing Institute of Technology, ...

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  9. Chemistry as the defining science: discipline and training in nineteenth-century chemical laboratories.

    Science.gov (United States)

    Jackson, Catherine M

    2011-06-01

    The institutional revolution has become a major landmark of late-nineteenth century science, marking the rapid construction of large, institutional laboratories which transformed scientific training and practice. Although it has served historians of physics well, the institutional revolution has proved much more contentious in the case of chemistry. I use published sources, mainly written by chemists and largely focused on laboratories built in German-speaking lands between about 1865 and 1900, to show that chemical laboratory design was inextricably linked to productive practice, large-scale pedagogy and disciplinary management. I argue that effective management of the novel risks inherent in teaching and doing organic synthesis was significant in driving and shaping the construction of late-nineteenth century institutional chemical laboratories, and that these laboratories were essential to the disciplinary development of chemistry. Seen in this way, the laboratory necessarily becomes part of the material culture of late-nineteenth century chemistry, and I show how this view leads not only to a revision of what is usually known as the laboratory revolution in chemistry but also to a new interpretation of the institutional revolution in physics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  11. Organic Chemistry and Biology: Chemical Biology Through the Eyes of Collaboration

    Science.gov (United States)

    Hruby, Victor J.

    2011-01-01

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists “see” the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations. PMID:20000552

  12. 6th world congress of chemical engineering. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The 6th World Congress of Chemical Engineering, held in Melbourne, was structured around 6 Vision Lectures which lead to 800 oral presentations and 600 poster presentations, spanning the entire range of chemical engineering. The main topics of the Congress were: environment, health and safety; energy; industrial applications; process simulation and control; management and education and the future. Items in INIS scope have been separately indexed

  13. Antibiotic Algae by Chemical Surface Engineering.

    Science.gov (United States)

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  15. PHYSICO-CHEMICAL CHARACTERISTICS OF MESUA FERREA ...

    African Journals Online (AJOL)

    a

    2Department of Chemistry, Rajshahi University of Engineering and ... Studies on the physico-chemical characteristics of seed oils of Mesua ferrea collected ..... Sarkar, Subodh Kumar M.Phil Thesis, Rajshahi University, Bangladesh; 2001; p 91 ...

  16. Chemical engineer in business; Kemikaru enjinia to bijinesu

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yasuaki

    1999-05-05

    It is Coca-Cola and General Electric Co. (GE) that the aggregate market value is drastically expanding in U.S.A. throughout over past of 15. Direct common point is not very much found to these 2 companies. During over of 15 years, the leadership was demonstrated as management top of both companies, 2 managers who drastically contributed to the enterprise value improvement are the chemical engineer graduate both. It does be not done either mere in which that both persons with the grounded ability of chemical engineering contributed to the enterprise value improvement of the dramatic was not accidental. It is the essence of the chemical engineering,'By discerning essence of the process, the appropriate countermeasure is passed' there was it for the basis of the management of both persons. (NEDO)

  17. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  18. Fostering green chemistry through a collaborative business model: A chemical leasing case study from Serbia

    NARCIS (Netherlands)

    Lozano, R.; Carpenter, A.; Satric, V.

    2013-01-01

    Green and sustainable chemistry have been developed to help reduce the production and use of harmful chemicals. The two main approaches that have been used in fostering green and sustainable chemistry have been through policy initiatives and science/technology. This paper focuses on a complementary

  19. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  20. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  1. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  2. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  3. A Quantitative Method to Determine Preservice Chemistry Teachers' Perceptions of Chemical Representations

    Science.gov (United States)

    Head, M. L.; Yoder, K.; Genton, E.; Sumperl, J.

    2017-01-01

    Chemical representations serve as a cornerstone to guide the teaching of chemistry concepts. The influence that a chemical representation has on instruction is largely dependent on how well the viewer interprets the information in the representation. Teachers serve as a guide to the students as they point out and make connections between the…

  4. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    Science.gov (United States)

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  5. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  6. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  7. Sustainability in Chemical Engineering Curriculum

    Science.gov (United States)

    Glassey, Jarka; Haile, Sue

    2012-01-01

    Purpose: The purpose of this paper is to describe a concentrated strategy to embed sustainability teaching into a (chemical) engineering undergraduate curriculum throughout the whole programme. Innovative teaching approaches in subject-specific context are described and their efficiency investigated. Design/methodology/approach: The activities in…

  8. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    Science.gov (United States)

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  9. The 10th Joint Meeting on Medicinal Chemistry (JMMC 2017) Held in Dubrovnik, Croatia.

    Science.gov (United States)

    Perković, Ivana; Stepanić, Višnja; Marković, Vesna Gabelica

    2018-01-08

    The Croatian Chemical Society was established in 1926 and has developed over the decades into a society that actively supports all chemical activities in Croatia. The Society has eight divisions, the youngest of which, the Division of Medicinal and Pharmaceutical Chemistry, was established in 2012 and immediately became a member of the European Federation of Medicinal Chemistry (EFMC). The mission of the Medicinal and Pharmaceutical Chemistry Division is the promotion and development of scientific, professional, and educational activities within the medicinal chemistry community in Croatia, as well as to build partnerships and collaborations with other primarily EU-based medicinal chemistry societies. In Croatia, medicinal chemistry research is ongoing at several institutes, including the University of Zagreb (Faculty of Science, Faculty of Pharmacy and Biochemistry, and Faculty of Chemical Engineering and Technology), national institutes of science (Ruđer Bošković Institute), and private-sector drug discovery companies (CRO Fidelta Ltd.). In order to effectively exchange knowledge, ideas, and scientific results, Croatian medicinal chemists meet twice annually. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  11. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  12. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  13. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  14. Design of Molecular Materials: Supramolecular Engineering

    Science.gov (United States)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  15. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  16. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    Science.gov (United States)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  17. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  18. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    Science.gov (United States)

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  19. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    Science.gov (United States)

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  20. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  1. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    Science.gov (United States)

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  2. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    Science.gov (United States)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  3. Challenges and opportunities in synthetic biology for chemical engineers.

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.

  4. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Lapinsky, David J; Johnson, Douglas S

    2015-01-01

    Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol- or lipid-protein interactions and characterization of ligand-binding sites are presented.

  5. Thermodynamics in finite time: A chemically driven engine

    International Nuclear Information System (INIS)

    Ondrechen, M.J.; Berry, R.S.; Andresen, B.

    1980-01-01

    The methods of finite time thermodynamics are applied to processes whose relaxation parameters are chemical rate coefficients within the working fluid. The direct optimization formalism used previously for heat engines with friction and finite heat transfer rates: termed the tricycle method: is extended to heat engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an engine. Conditions are established for the achievement of maximum power from such a system. Emphasis is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here, there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Reza Fareghi-Alamdari1 Mohsen Golestanzadeh1 Farima Agend1 Negar Zekri1. Department of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, 16765-3454, I. R. Iran ...

  7. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  8. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  9. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  10. Challenges and opportunities in synthetic biology for chemical engineers

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  11. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  12. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  13. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  15. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  16. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    theory as applied to biological systems. ... methods to follow the course of chemical reactions devised by. K Fukui and R .... optimize the structure of organic molecules using classical-em- pirical potential ..... science or engineering dis- ciplines.

  17. Defects in silicon carbide grown by fluorinated chemical vapor deposition chemistry

    Science.gov (United States)

    Stenberg, Pontus; Booker, Ian D.; Karhu, Robin; Pedersen, Henrik; Janzén, Erik; Ivanov, Ivan G.

    2018-04-01

    Point defects in n- and p-type 4H-SiC grown by fluorinated chemical vapor deposition (CVD) have been characterized optically by photoluminescence (PL) and electrically by deep-level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). The results are considered in comparison with defects observed in non-fluorinated CVD growth (e.g., using SiH4 instead of SiF4 as silicon precursor), in order to investigate whether specific fluorine-related defects form during the fluorinated CVD growth, which might prohibit the use of fluorinated chemistry for device-manufacturing purposes. Several new peaks identifying new defects appear in the PL of fluorinated-grown samples, which are not commonly observed neither in other halogenated chemistries, nor in the standard CVD chemistry using silane (SiH4). However, further investigation is needed in order to determine their origin and whether they are related to incorporation of F in the SiC lattice, or not. The electric characterization does not find any new electrically-active defects that can be related to F incorporation. Thus, we find no point defects prohibiting the use of fluorinated chemistry for device-making purposes.

  18. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  19. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    Science.gov (United States)

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  20. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    Science.gov (United States)

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  1. Engineering electrical properties of graphene: chemical approaches

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Yuna; Hong, Byung Hee; Novoselov, Konstantin

    2015-01-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed. (topical review)

  2. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    Science.gov (United States)

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  3. Institute of Chemical Process Fundamentals of the ASCR: Expectation

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav

    2013-01-01

    Roč. 62, 5-6 (2013), s. 214-215 ISSN 0022-9830 Institutional support: RVO:67985858 Keywords : laboratory investigation * large-scale applications * novel instrumentation and technology . Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  4. Modeling Chemistry for Effective Chemical Education: An Interview with Ronald J. Gillespie

    Science.gov (United States)

    Cardellini, Liberato

    2010-01-01

    Ronald J. Gillespie, the inventor of the Valence Shell Electron Pair Repulsion (VSEPR) model, relates how his career as researcher in Christopher Ingold's laboratories started. Gillespie developed a passion for chemistry and chemical education, searching for more appropriate and interesting ways to transmit the essential knowledge and enthusiasm…

  5. Chemical engineering challenges and investment opportunities in sustainable energy.

    Science.gov (United States)

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  6. Charles J. Pedersen's legacy to chemistry.

    Science.gov (United States)

    Izatt, Reed M

    2017-05-09

    The serendipitous discovery in 1961 of dibenzo-18-crown-6 by Charles J. Pedersen marked the beginning of research on cyclic polyether macrocyclic compounds. These compounds have a remarkably selective affinity for certain metal ions and provide a framework for studying molecular recognition processes. Pedersen's work excited much interest in the scientific community and fueled important advances in macrocyclic and supramolecular chemistry. Born in Korea of a Japanese mother and a Norwegian engineer father, he was educated in Japan and later graduated from the University of Dayton (BS, chemical engineering) and Massachusetts Institute of Technology (MS, chemistry). He worked at du Pont for 42 years as a research chemist. His research talent at du Pont earned him an appointment as a Research Associate allowing him to pursue research as he chose. This freedom served him well making it possible for him to devote all his efforts following his discovery of dibenzo-18-crown-6 until his retirement to synthesis of cyclic polyethers and evaluation of their metal ion complexation properties. His influence on macrocyclic and supramolecular chemistry has been pervasive. He was co-recipient of the 1987 Nobel Prize in chemistry for development and use of molecules with structure-specific interactions of high selectivity. The year 2017 marks the fiftieth anniversary of the publication of his first paper describing his synthesis of over 50 crown ethers.

  7. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  8. Summaries of FY 1993 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  9. General areas needing chemical competence to support reactor operation

    International Nuclear Information System (INIS)

    Proksch, E.; Bildstein, H.

    1963-01-01

    Chemical competence is needed not only for the development of new types of reactors but also for the start-up and safe operation of reactors. The activities of chemistry and chemical engineering cover a number of fields, namely chemical analysis, radiochemical analysis, corrosion research, radiolysis of water and water purification. The author reviews fields in reactor operation and maintenance in which chemical competence is needed. (author). 9 refs

  10. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  11. Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach

    International Nuclear Information System (INIS)

    Bougrine, S.; Richard, S.; Michel, J.-B.; Veynante, D.

    2014-01-01

    Highlights: • A new 0D combustion model (CFM1D-TC) based on a tabulation approach is proposed. • Complex chemistry calculations are used to deduce composition and relaxation times. • NO and CO exponentially relax from a perturbed state to the equilibrium state. • The new model is implemented in an engine simulation software. • Validations are performed by comparison with a wide range of experimental data. - Abstract: Environmental issues stimulate the elaboration of new powertrain systems and fuels for transport as an essential priority to decrease air pollution and green house gases emissions. Developments ranging from architecture definition to engine control and calibration are today increasingly performed using complete vehicle simulators running close to real times. The challenge for engineers is therefore to develop models able to accurately reproduce the engine response without altering the CPU efficiency of the simulator. For this purpose, 0-dimensional models are commonly used to describe combustion processes in engine combustion chambers. This paper extends a 0-dimensional coherent flame model (CFM), called CFM1D, to incorporate chemical effects related to the fuel composition and thermodynamic conditions at low computational costs. Improvements are carried out integrating the NO relaxation approach (NORA) based on a priori homogeneous reactor computations and initially developed for 3D simulations to describe post-oxidation processes in the burnt gases. In this work, this method is extended to the modeling of CO production and oxidation leading to the CORA (CO Relaxation Approach) model. Both NO and CO reaction rates are therefore written as linear relaxations towards their equilibrium mass fraction values Y k eq (where k stands for NO or CO) within a characteristic time τ k . In this approach, Y k eq and τ k are tabulated as functions of equivalence ratio, fresh gases dilution rate by burnt gases, pressure and enthalpy. The resulting new

  12. The role of chemical engineering in medicinal research including Alzheimer's.

    Science.gov (United States)

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.

  13. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  14. Using Familiar Contexts to Ease the Transition between A-Level and First-Year Degree-Level Chemistry

    Science.gov (United States)

    Turner, John J.

    2013-01-01

    This article endeavours to define how an understanding of the context of chemical principles and processes investigated at A-level (post-16) and earlier can be continued and contribute to easing the tensions and uncertainties encountered by chemistry and chemical engineering students on entry to university. The importance of using chemistry…

  15. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  16. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  17. Chemical Compound Navigator: A Web-Based Chem-BLAST, Chemical Taxonomy-Based Search Engine for Browsing Compounds

    Czech Academy of Sciences Publication Activity Database

    Prasanna, M. D.; Vondrášek, Jiří; Wlodawer, A.; Rodriguez, H.; Bhat, T. N.

    2006-01-01

    Roč. 63, č. 4 (2006), s. 907-917 ISSN 0887-3585 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV * AIDS * drug discovery * chemical data-tree Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.730, year: 2006

  18. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  19. High-throughput screening of chemicals as functional substitutes using structure-based classification models

    Science.gov (United States)

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional...

  20. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  1. MULTIDISCIPLINARY PROJECTS FOR SECOND YEAR CHEMICAL AND MECHANICAL ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2013-04-01

    Full Text Available In the second semester of the second year of a Mechanical Engineering course, students are supposed to take a Module Outside the Main Discipline (MOMD. This module is chosen to be “Product Design Exercise” a module that is offered to Chemical Engineering students at the same stage. The aim was to expose students from both disciplines to an environment in which they are encouraged to interact with and engage team members with a relatively different background. The students were divided into eight groups all comprised of Chemical and Mechanical Engineering students, and they were offered different open-ended projects that were selected to exploit the knowledge developed by the students thus far and they were slightly skewed towards Chemical Engineering. The students demonstrated a high level of cooperation and motivation throughout the period of the project. Effective communication and closing of knowledge gaps were prevalent. At the end of the project period, students produced a journal paper in lieu of the project report.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Hong-Wen Gao1 Fa-Shui Hong2 Qing-Song Ye2. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, P. R. China; Department of Biological Science, Huaibei Coal Teachers College, Huaibei 235000, P. R. China ...

  3. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  4. Economic Aspects of the Chemical Industry

    Science.gov (United States)

    Koleske, Joseph V.

    Within the formal disciplines of science at traditional universities, through the years, chemistry has grown to have a unique status because of its close correspondence with an industry and with a branch of engineering—the chemical industry and chemical engineering. There is no biology industry, but aspects of biology have closely related disciplines such as fish raising and other aquaculture, animal cloning and other facets of agriculture, ethical drugs of pharmaceutical manufacture, genomics, water quality and conservation, and the like. Although there is no physics industry, there are power generation, electricity, computers, optics, magnetic media, and electronics that exist as industries. However, in the case of chemistry, there is a named industry. This unusual correspondence no doubt came about because in the chemical industry one makes things from raw materials—chemicals—and the science, manufacture, and use of chemicals grew up together during the past century or so.

  5. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    on each topic. The chapter reviews the some of the scientific and technical challenges in metabolic engineering and the new possibilities emerging from recent technological developments. It concludes by discussing the outlook for bioengineered chemical defences as part of crop protection strategies, also...... with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews...

  6. PENGEMBANGAN ASESMEN ALTERNATIF PRAKTIKUM KIMIA DASAR II MELALUI CHEMISTRY FAIR PROJECT (CFP BERBASIS KONSERVASI DENGAN MEMANFAATKAN DAILY CHEMICAL

    Directory of Open Access Journals (Sweden)

    Indah Urwatin Wusqo

    2016-12-01

    Full Text Available Penelitian ini bertujuan untuk (1 Mengembangkan asesmen alternatif pada praktikum kimia dasar II melalui chemistry fair project berbasis konservasi dengan memanfaatkan daily chemical(2 Mengetahui tingkat kevalidan, kepraktisan dan keefektifannya. Penelitian ini merupakan penelitian pengembangan (Development Research Model pengembangan yang diterapkan Dick dan Carey (1985. Subjek uji coba terbatas maupun subjek uji coba lapangan adalah dosen dan mahasiswa Prodi Pendidikan IPA UNNES. Sampel ditentukan secara purposive, yaitu dosen pengampu dan mahasiswa yang menempuh mata kuliah Praktikum Kimia Dasar II. Data yang diperoleh dari uji coba ini adalah: (1 masukan dari pakar, untuk menentukan validitas isi dan konstruk dari fitur asesmen; (2 masukan dari sampel uji coba terbatas, untuk menentukan kepraktisan petunjuk chemistry fair project (CFP berbasis konservasi dengan memanfaatkan daily chemical ; Instrumen pengumpul data berupa angket keterbacaan petunjuk pembuatan chemistry fair project (CFP berbasis konservasi dengan memanfaatkan daily chemical, pedoman penskoran. (3 data hasil belajar siswa untuk mengetahui efektivitas asesmen. Masukan dari pakar angket mahasiswa, dan nilai chemistry fair project (CFP sampel ujicoba terbatas dianalisis secara kualitatif, dan kuantitatif. Asesmen alternative Praktikum Kimia Dasar II yang dikembangkan dikatakan berhasil baik apabila asesmen yang dikembangkan valid, praktis, dan efektif.

  7. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  8. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    Science.gov (United States)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  9. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J

    2007-01-01

    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  10. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  11. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; Food and Drug Department, Qingyuan Polytechnic, Qingyuan 511510, P. R. China; Department of City Science, The City Vocational College of Jiangsu, Nanjing 210017, China; Department of Science and Technology, ...

  13. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...... to chemists, chemical engineers, biologists, material and food scientists and many more....

  14. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    Science.gov (United States)

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  15. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  16. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  17. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  18. Energy efficiency as an example of cross-discipline collaboration in chemical engineering

    DEFF Research Database (Denmark)

    de Hemptinne, J.-C; Ferrasse, J.-H.; Górak, A.

    2017-01-01

    This paper summarizes the round-table discussion that was held during the European Congress of Chemical Engineering (ECCE) in Nice, France, in October 2015 on this topic. The panellists come from different fields of chemical engineering and have thus brought in different perspectives. The objective...... (industrials, mostly market-driven, or academic), or in terms of discipline. The role of professional societies as the European Federation for Chemical Engineers (EFCE) is stressed as a promotor of collaboration between disciplines.Finally, once willingness for collaboration is identified, the final question...

  19. Guest Editorial: The Professional Status of European Chemists and Chemical Engineers.

    Science.gov (United States)

    Salzer, Reiner; Taylor, Philip; Majcen, Nineta H; De Angelis, Francesco; Wilmet, Sophie; Varella, Evangelia; Kozaris, Ioannis

    2015-07-06

    Which country pays its chemists and chemical engineers the highest salaries? Where can I find a new job quickest? Which chemical sub-discipline offers most jobs? Reliable answers for these and other questions have been derived from the first European employment survey for chemists and chemical engineers, which was carried out in 2013. Here we publish the first general evaluation of the results of this survey. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. My contribution to broadening the base of chemical engineering.

    Science.gov (United States)

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  1. Applications of chemical engineering principles to glassmaking for nuclear waste fixation

    International Nuclear Information System (INIS)

    Boersma, M.D.

    1988-01-01

    There are five important differences between radwaste vitrification and normal industrial glassmaking. The hostile (radioactive) environment requires the entire process to be operated and maintained remotely. This is largely a mechanical/architectural engineering problem because radiation has very little direct impact on process chemistry or energy. A second difference is that process plant economics are dominated by safety and reliability considerations, rather than market conditions and energy costs. Third, the product quality criteria are quite different; rather than optical clarity, mechanical strength, functional shape, and esthetic appeal, the important quality for radwaste glass is its chemical durability in final storage. Fourth, the off-gases from a radwaste vitrification process are of greater environmental concern. Equipment must be airtight or under vacuum, and highly efficient gas cleanup systems must be used. Finally, feed to a radwaste glass melter is typically at least 50% water. Liquid slurry melter feed is not unheard of in commercial glassmaking but dry batch feed is normal. Slurry water more than doubles the process energy demand in the melter and causes some very large local temperature gradients. 2 figs

  2. Combined use of computational chemistry and chemoinformatics methods for chemical discovery

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Manabu, E-mail: sugimoto@kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ideo, Toshihiro; Iwane, Ryo [Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)

    2015-12-31

    Data analysis on numerical data by the computational chemistry calculations is carried out to obtain knowledge information of molecules. A molecular database is developed to systematically store chemical, electronic-structure, and knowledge-based information. The database is used to find molecules related to a keyword of “cancer”. Then the electronic-structure calculations are performed to quantitatively evaluate quantum chemical similarity of the molecules. Among the 377 compounds registered in the database, 24 molecules are found to be “cancer”-related. This set of molecules includes both carcinogens and anticancer drugs. The quantum chemical similarity analysis, which is carried out by using numerical results of the density-functional theory calculations, shows that, when some energy spectra are referred to, carcinogens are reasonably distinguished from the anticancer drugs. Therefore these spectral properties are considered of as important measures for classification.

  3. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  4. The Chemical Weapons Convention and the Role of Engineers and Scientists

    Directory of Open Access Journals (Sweden)

    Matoušek, J

    2010-02-01

    Full Text Available Chemical weapons, like all military technology, are associated with activities of scientists and engineers. However, chemical weapons differ from any other military technology because they were invented, and their first mass use directly developed by famous chemists. The active contribution of engineers and scientists and their organisations in the negotiations on chemical disarmament, including drafting the Chemical Weapons Convention, is described. Their present and future role in implementing the Convention is analysed, taking into consideration the threats and benefits of advances in science and technology, and stressing the independent expertise of the OPCW Scientific Advisory Board.

  5. Nigerian Journal of Chemical Research 29 Vol. 15, 2010 ...

    African Journals Online (AJOL)

    Hp

    Nigerian Journal of Chemical Research. 29. Vol. 15, 2010. Antibacterial & Antifungal Studies On Some Coordination Compound Of Metals. With Ampicillin. Pranay Guru. Department of Engineering Chemistry, People's College of Research & Technology, Bhopal. (M. P.) India, email:pranayguru@rediffmail.com. ABSTRACT.

  6. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  7. Institute of Chemical Process Fundamentals of the ASCR: State of the Art

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří

    2013-01-01

    Roč. 62, 5-6 (2013), s. 210-241 ISSN 0022-9830 Institutional support: RVO:67985858 Keywords : fundamental research * multi-disciplinary character * external cooperation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  8. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  9. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  10. Some current problems in atmospheric ozone chemistry; role of chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.A.

    1987-03-01

    A review is given on selected aspects of the reaction mechanisms of current interest in the chemistry of atmospheric ozone. Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical reactions involving O/sub x/, HO/sub x/, NO/sub x/, CIO/sub x/ and hydrocarbon species. At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35 Km altitude and the large reductions in the ozone column in the Antartic Spring which has been observed in recent years. In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.

  11. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  12. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  13. The history of Korean Institute Chemical Engineers for fifteen years

    International Nuclear Information System (INIS)

    2012-12-01

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  14. The history of Korean Institute Chemical Engineers for fifteen years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  15. Practical Engineering Aspects of Catalysis in Microreactors

    Czech Academy of Sciences Publication Activity Database

    Křišťál, Jiří; Stavárek, Petr; Vajglová, Zuzana; Vondráčková, Magdalena; Pavlorková, Jana; Jiřičný, Vladimír

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9357-9371 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * homogeneous catalysis * photo catalysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  16. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    Science.gov (United States)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  17. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  18. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    Science.gov (United States)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 3. Issue front cover thumbnail. Volume 122, Issue 3. May 2010, pages 295-451. pp 295-310 Perspective Articles. Supramolecular chemistry and crystal engineering · Ashwini Nangia · More Details Abstract Fulltext PDF. Advances in supramolecular ...

  20. Managing expectations: assessment of chemistry databases generated by automated extraction of chemical structures from patents.

    Science.gov (United States)

    Senger, Stefan; Bartek, Luca; Papadatos, George; Gaulton, Anna

    2015-12-01

    First public disclosure of new chemical entities often takes place in patents, which makes them an important source of information. However, with an ever increasing number of patent applications, manual processing and curation on such a large scale becomes even more challenging. An alternative approach better suited for this large corpus of documents is the automated extraction of chemical structures. A number of patent chemistry databases generated by using the latter approach are now available but little is known that can help to manage expectations when using them. This study aims to address this by comparing two such freely available sources, SureChEMBL and IBM SIIP (IBM Strategic Intellectual Property Insight Platform), with manually curated commercial databases. When looking at the percentage of chemical structures successfully extracted from a set of patents, using SciFinder as our reference, 59 and 51 % were also found in our comparison in SureChEMBL and IBM SIIP, respectively. When performing this comparison with compounds as starting point, i.e. establishing if for a list of compounds the databases provide the links between chemical structures and patents they appear in, we obtained similar results. SureChEMBL and IBM SIIP found 62 and 59 %, respectively, of the compound-patent pairs obtained from Reaxys. In our comparison of automatically generated vs. manually curated patent chemistry databases, the former successfully provided approximately 60 % of links between chemical structure and patents. It needs to be stressed that only a very limited number of patents and compound-patent pairs were used for our comparison. Nevertheless, our results will hopefully help to manage expectations of users of patent chemistry databases of this type and provide a useful framework for more studies like ours as well as guide future developments of the workflows used for the automated extraction of chemical structures from patents. The challenges we have encountered

  1. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    Science.gov (United States)

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  2. What are the Limitations of Enzymes in Synthetic Organic Chemistry?

    Science.gov (United States)

    Reetz, Manfred T

    2016-12-01

    Enzymes have been used in organic chemistry and biotechnology for 100 years, but their widespread application has been prevented by a number of limitations, including the often-observed limited thermostability, narrow substrate scope, and low or wrong stereo- and/or regioselectivity. Directed evolution provides a means to address and generally solve these problems, especially since recent methodology development has made this protein engineering method faster, more efficient, and more reliable than in the past. This Darwinian approach to asymmetric catalysis has led to a number of industrial applications. Metabolic-pathway engineering, mutasynthesis, and fermentation are likewise enzyme-based techniques that enrich chemistry. This account outlines the scope, and particularly, the limitations, of biocatalysis. The complementary nature of enzymes and man-made catalysts is emphasized. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. General Chemistry for Engineers.

    Science.gov (United States)

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  4. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  5. Relation between shape of liquid-gas interface and evolution of buoyantly unstable three-dimensional chemical fronts

    Czech Academy of Sciences Publication Activity Database

    Šebestíková, Lenka

    2013-01-01

    Roč. 88, č. 3 (2013), , 033023-1-033023-7 ISSN 1539-3755 R&D Projects: GA ČR GAP105/10/0919 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : iodate-arsenous acid reaction * arsenous acid * concave meniscus * convex meniscus * buoyancy driven convection * chemical waves Subject RIV: BK - Fluid Dynamics; CI - Industrial Chemistry, Chemical Engineering (UCHP-M); CC - Organic Chemistry (UOCHB-X) Impact factor: 2.326, year: 2013

  6. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  7. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  8. Big Data Analytics in Chemical Engineering.

    Science.gov (United States)

    Chiang, Leo; Lu, Bo; Castillo, Ivan

    2017-06-07

    Big data analytics is the journey to turn data into insights for more informed business and operational decisions. As the chemical engineering community is collecting more data (volume) from different sources (variety), this journey becomes more challenging in terms of using the right data and the right tools (analytics) to make the right decisions in real time (velocity). This article highlights recent big data advancements in five industries, including chemicals, energy, semiconductors, pharmaceuticals, and food, and then discusses technical, platform, and culture challenges. To reach the next milestone in multiplying successes to the enterprise level, government, academia, and industry need to collaboratively focus on workforce development and innovation.

  9. Introduction of Life Cycle Assessment and Sustainability Concepts in Chemical Engineering Curricula

    Science.gov (United States)

    Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence

    2018-01-01

    Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…

  10. Experimental Investigation of Electro-chemical Processes Controlled by High Magnetic Fields.

    Czech Academy of Sciences Publication Activity Database

    Mathon, Ph.; Nouri, A.; Alemany, A.; Chopart, J.P.; Sobolík, Václav

    2006-01-01

    Roč. 42, 4 (2006) , s. 363-369 ISSN 0024-998X Institutional research plan: CEZ:AV0Z40720504 Keywords : lorentz and magnetic force * diffusion-controlled regime * electrical current Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  11. Design and analysis of questionnaires for survey skills in chemical engineering

    Directory of Open Access Journals (Sweden)

    Susana Lucas

    2011-09-01

    Full Text Available 800x600 Normal 0 21 false false false CA X-NONE X-NONE The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the identification of the main general and transferable skills, the implementation of the new teaching and learning strategies necessary to achieve them and, in addition, an evaluation procedure for determining the importance and the degree of development of a student´s skills and competences. In this exercise, two obligatory chemical reactor engineering subjects of the still in effect Chemical Engineering degree were chosen as examples of competence-based learning disciplines. For each one, a significant group of transferable and specific skills were selected to be developed. The identification and selection of skills was made according to the recommendations of the European Federation of Chemical Engineering (EFCE together with the established requirements in the ministerial order for the new Chemical Engineering Degree (Ministerial order CIN/351/2009. In order to check the effectiveness of teaching strategies in helping students to acquire these abilities, specific questionnaires were designed. These tests allowed for the utility of the competences in question to be evaluated in terms of the students´ professional work as future chemical engineering graduates and also facilitated the perception of skill development acquired through the methodology implemented in these subjects. The results of the skill evaluation questionnaires revealed the importance that both university collectives (students and professors give to the development of transferable skills. These skills included the ability to communicate effectively (including in English, to work in

  12. Do High School Chemistry Examinations Inhibit Deeper Level Understanding of Dynamic Reversible Chemical Reactions?

    Science.gov (United States)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-01-01

    Background and purpose: Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers…

  13. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    Science.gov (United States)

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  14. Using US EPA’s Chemical Safety for Sustainability’s Comptox Chemistry Dashboard and Tools for Bioactivity, Chemical and Toxicokinetic Modeling Analyses (Course at 2017 ISES Annual Meeting)

    Science.gov (United States)

    Title: Using US EPA’s Chemical Safety for Sustainability’s Comptox Chemistry Dashboard and Tools for Bioactivity, Chemical and Toxicokinetic Modeling Analyses • Class format: half-day (4 hours) • Course leader(s): Barbara A. Wetmore and Antony J. Williams,...

  15. A numerical primer for the chemical engineer

    NARCIS (Netherlands)

    Zondervan, E.

    2015-01-01

    This book provides an introduction to numerical methods for students in chemical engineering. The book starts with a recap on linear algebra. It then presents methods for solving linear and nonlinear equations, with a special focus on Gaussian elimination and Newton’s method. It also discusses

  16. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  17. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  18. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  19. ChemicalTagger: A tool for semantic text-mining in chemistry.

    Science.gov (United States)

    Hawizy, Lezan; Jessop, David M; Adams, Nico; Murray-Rust, Peter

    2011-05-16

    The primary method for scientific communication is in the form of published scientific articles and theses which use natural language combined with domain-specific terminology. As such, they contain free owing unstructured text. Given the usefulness of data extraction from unstructured literature, we aim to show how this can be achieved for the discipline of chemistry. The highly formulaic style of writing most chemists adopt make their contributions well suited to high-throughput Natural Language Processing (NLP) approaches. We have developed the ChemicalTagger parser as a medium-depth, phrase-based semantic NLP tool for the language of chemical experiments. Tagging is based on a modular architecture and uses a combination of OSCAR, domain-specific regex and English taggers to identify parts-of-speech. The ANTLR grammar is used to structure this into tree-based phrases. Using a metric that allows for overlapping annotations, we achieved machine-annotator agreements of 88.9% for phrase recognition and 91.9% for phrase-type identification (Action names). It is possible parse to chemical experimental text using rule-based techniques in conjunction with a formal grammar parser. ChemicalTagger has been deployed for over 10,000 patents and has identified solvents from their linguistic context with >99.5% precision.

  20. ChemicalTagger: A tool for semantic text-mining in chemistry

    Directory of Open Access Journals (Sweden)

    Hawizy Lezan

    2011-05-01

    Full Text Available Abstract Background The primary method for scientific communication is in the form of published scientific articles and theses which use natural language combined with domain-specific terminology. As such, they contain free owing unstructured text. Given the usefulness of data extraction from unstructured literature, we aim to show how this can be achieved for the discipline of chemistry. The highly formulaic style of writing most chemists adopt make their contributions well suited to high-throughput Natural Language Processing (NLP approaches. Results We have developed the ChemicalTagger parser as a medium-depth, phrase-based semantic NLP tool for the language of chemical experiments. Tagging is based on a modular architecture and uses a combination of OSCAR, domain-specific regex and English taggers to identify parts-of-speech. The ANTLR grammar is used to structure this into tree-based phrases. Using a metric that allows for overlapping annotations, we achieved machine-annotator agreements of 88.9% for phrase recognition and 91.9% for phrase-type identification (Action names. Conclusions It is possible parse to chemical experimental text using rule-based techniques in conjunction with a formal grammar parser. ChemicalTagger has been deployed for over 10,000 patents and has identified solvents from their linguistic context with >99.5% precision.

  1. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  2. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  3. Evaluation of Chemical Representations in Physical Chemistry Textbooks

    Science.gov (United States)

    Nyachwaya, James M.; Wood, Nathan B.

    2014-01-01

    That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…

  4. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  5. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  6. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  7. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  8. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  9. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  10. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    -conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.

  11. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  12. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  13. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    Science.gov (United States)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  14. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  15. Flame Dynamics and Chemistry in LRE Combustion Instability

    Science.gov (United States)

    2016-12-22

    negative temperature coefficient phenomenon and engine knock. In this work, the coupling of cool flame chemistry and convective– diffusive transport...note, practical engine conditions are highly turbulent, and the autoignition phenomenon depends on both chemistry and turbulent mixing. For example...negative temperature coefficient (NTC) phenomenon and engine knock. In this work, the coupling of cool flame chemistry and convective–diffusive

  16. Interactive Mathematica Simulations in Chemical Engineering Courses

    Science.gov (United States)

    Falconer, John L.; Nicodemus, Garret D.

    2014-01-01

    Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…

  17. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  18. Female Faculty Members in University Chemistry Departments: Observations and Conclusions Based on Site Visits

    Science.gov (United States)

    Chapman, Sally; Dixon, Felicia F.; Foster, Natalie; Kuck, Valerie J.; McCarthy, Deborah A.; Tooney, Nancy M.; Buckner, Janine P.; Nolan, Susan A.; Marzabadi, Cecilia H.

    2011-01-01

    Oral interviews in focus groups and written surveys were conducted with 877 men and women, including administrators, faculty members, postdoctoral associates, and graduate students, during one-day site visits to chemistry and chemical engineering departments at 28 Ph.D.-granting institutions. This report is a preliminary review of the perceptions…

  19. Chemical cleaning for sludge in steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Lu Yucheng; Zhang Binyong; Yu Jinghua

    2002-01-01

    The sludge induced corrosion damage to secondary side of tubes of Steam Generator (SG), effect of chemical cleaning technique on maintenance integrity of tubes of SG NPP and use of chemical cleaning technique in SG NPP have been summarized. The engineering technique of chemical cleaning for removing sludge in secondary side of SG NPP has been studied and qualified by CIAE (China Institute of Atomic Energy). Chemical cleaning engineering technique is introduced (main agent is EDTA, temp. <100 degree C), including chemical cleaning technology for tube plate and full tube nest of secondary side of SG, the monitoring technique of chemical cleaning process (effectiveness and safety), the disposal method of wastage of chemical cleaning, the system of chemical cleaning. The method for preventing sludge deposition in secondary side and the research on advanced water chemistry of secondary loop are introduced

  20. Efficient process intensification of fine chemical production: a new classification tool for flow chemistry technologies

    NARCIS (Netherlands)

    Lexmond, A.S.; Roelands, C.P.M.; Graaff, M.P. de; Bassett, J.M.

    2010-01-01

    The fine chemicals and pharmaceuticals industry needs to innovate to beat international competition and resolve environmental issues. Process intensification by flow chemistry is the most promising route for this change, as it can reduce raw material and energy consumption, waste production, lead

  1. Research in the chemical sciences: Summaries of FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  2. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    Science.gov (United States)

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  3. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    Science.gov (United States)

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  4. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  5. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  6. Development and tuning of an original search engine for patent libraries in medicinal chemistry.

    Science.gov (United States)

    Pasche, Emilie; Gobeill, Julien; Kreim, Olivier; Oezdemir-Zaech, Fatma; Vachon, Therese; Lovis, Christian; Ruch, Patrick

    2014-01-01

    The large increase in the size of patent collections has led to the need of efficient search strategies. But the development of advanced text-mining applications dedicated to patents of the biomedical field remains rare, in particular to address the needs of the pharmaceutical & biotech industry, which intensively uses patent libraries for competitive intelligence and drug development. We describe here the development of an advanced retrieval engine to search information in patent collections in the field of medicinal chemistry. We investigate and combine different strategies and evaluate their respective impact on the performance of the search engine applied to various search tasks, which covers the putatively most frequent search behaviours of intellectual property officers in medical chemistry: 1) a prior art search task; 2) a technical survey task; and 3) a variant of the technical survey task, sometimes called known-item search task, where a single patent is targeted. The optimal tuning of our engine resulted in a top-precision of 6.76% for the prior art search task, 23.28% for the technical survey task and 46.02% for the variant of the technical survey task. We observed that co-citation boosting was an appropriate strategy to improve prior art search tasks, while IPC classification of queries was improving retrieval effectiveness for technical survey tasks. Surprisingly, the use of the full body of the patent was always detrimental for search effectiveness. It was also observed that normalizing biomedical entities using curated dictionaries had simply no impact on the search tasks we evaluate. The search engine was finally implemented as a web-application within Novartis Pharma. The application is briefly described in the report. We have presented the development of a search engine dedicated to patent search, based on state of the art methods applied to patent corpora. We have shown that a proper tuning of the system to adapt to the various search tasks

  7. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  8. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  9. Cyanobacteria: Promising biocatalysts for sustainable chemical production.

    Science.gov (United States)

    Knoot, Cory J; Ungerer, Justin; Wangikar, Pramod P; Pakrasi, Himadri B

    2018-04-06

    Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO 2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential of these microbial biofactories for sustainable production of chemicals conventionally produced from fossil fuels. Here, we present an overview of the unique chemistry that cyanobacteria have been co-opted to perform. We highlight key lessons learned from these engineering efforts and discuss advantages and disadvantages of various approaches. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Engineering and service activities in the Cogema group

    International Nuclear Information System (INIS)

    1998-03-01

    This short document presents the engineering and service daughter companies of the Cogema group: SGN (nuclear engineering, fuel cycle, wastes and spent fuels management, decontamination and dismantling); Euriware group (advice, expertise and information systems in nuclear, pharmacy, petroleum, automotive and steel making industries); Game group (industrial maintenance in nuclear, chemistry, petroleum, automotive and steel making industries); Eurisys Mesures (nuclear measurements, instrumentation, radiation protection and nuclear imaging); SICN (mechanics); STMI and Socodei (nuclear cleansing and management of low level radioactive wastes); Krebs/Speichim (chemical engineering, divisions of SGN and Technip). (J.S.)

  11. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  12. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  13. System approach to chemistry course

    OpenAIRE

    Lorina E. Kruglova; Valentina G. Derendyaeva

    2010-01-01

    The article considers the raise of chemistry profile for engineers and constructors training, discloses the system approach to chemistry course and singles out the most important modules from the course of general chemistry for construction industry.

  14. The role of chemical engineering in medicinal research including Alzheimer’s

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10–15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53......:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute......” disease), and Alzheimer’s which are connected to “protein aggregation.” Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics...

  15. Combining Chemical Information Literacy, Communication Skills, Career Preparation, Ethics, and Peer Review in a Team-Taught Chemistry Course

    Science.gov (United States)

    Jones, Mary Lou Baker; Seybold, Paul G.

    2016-01-01

    The widely acknowledged need to include chemical information competencies and communication skills in the undergraduate chemistry curriculum can be accommodated in a variety of ways. We describe a team-taught, semester-length course at Wright State University which combines chemical information literacy, written and oral communication skills,…

  16. The Fragment Network: A Chemistry Recommendation Engine Built Using a Graph Database.

    Science.gov (United States)

    Hall, Richard J; Murray, Christopher W; Verdonk, Marcel L

    2017-07-27

    The hit validation stage of a fragment-based drug discovery campaign involves probing the SAR around one or more fragment hits. This often requires a search for similar compounds in a corporate collection or from commercial suppliers. The Fragment Network is a graph database that allows a user to efficiently search chemical space around a compound of interest. The result set is chemically intuitive, naturally grouped by substitution pattern and meaningfully sorted according to the number of observations of each transformation in medicinal chemistry databases. This paper describes the algorithms used to construct and search the Fragment Network and provides examples of how it may be used in a drug discovery context.

  17. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    Science.gov (United States)

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  18. Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry

    Science.gov (United States)

    Beichner, Robert

    1997-04-01

    An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.

  19. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Unifying principles of irreversibility minimization for efficiency maximization in steady-flow chemically-reactive engines

    International Nuclear Information System (INIS)

    Ramakrishnan, Sankaran; Edwards, Christopher F.

    2014-01-01

    Systems research has led to the conception and development of various steady-flow, chemically-reactive, engine cycles for stationary power generation and propulsion. However, the question that remains unanswered is: What is the maximum-efficiency steady-flow chemically-reactive engine architecture permitted by physics? On the one hand the search for higher-efficiency cycles continues, often involving newer processes and devices (fuel cells, carbon separation, etc.); on the other hand the design parameters for existing cycles are continually optimized in response to improvements in device engineering. In this paper we establish that any variation in engine architecture—parametric change or process-sequence change—contributes to an efficiency increase via one of only two possible ways to minimize total irreversibility. These two principles help us unify our understanding from a large number of parametric analyses and cycle-optimization studies for any steady-flow chemically-reactive engine, and set a framework to systematically identify maximum-efficiency engine architectures. - Highlights: • A unified thermodynamic model to study chemically-reactive engine architectures is developed. • All parametric analyses of efficiency are unified by two irreversibility-minimization principles. • Variations in internal energy transfers yield a net work increase that is greater than engine irreversibility reduced. • Variations in external energy transfers yield a net work increase that is lesser than engine irreversibility reduced

  1. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  2. The Chemical Engineering behind How Carbonated Beverages Go Flat: A Hands-On Experiment for Freshmen Students

    Science.gov (United States)

    Hohn, Keith L.

    2007-01-01

    A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…

  3. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    Science.gov (United States)

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  4. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  5. A green chemistry lab course

    International Nuclear Information System (INIS)

    Rank, J.; Lenoir, D.; Bahadir, M.; Koning, B.

    2006-01-01

    The traditional course content of chemistry classes must change to achieve better awareness of the important issues of sustainability in chemistry within the next generation of professional chemists. To provide the necessary material for the organic chemistry teaching lab course, which is part of almost all study programs in chemistry, material was developed and collected (http://www.oc-praktikum.de/en) that allows students and teachers to assess reactions beyond the experimental set up, reaction mechanism and chemical yield. Additional parameters like atom economy of chemical transformations, energy efficiency, and questions of waste, renewable feed stocks, toxicity and ecotoxicity, as well as the safety measures for the chemicals used are discussed. (author)

  6. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol

    DEFF Research Database (Denmark)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis

    2016-01-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for l...... of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform.......Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well...

  7. Proceedings of the international seminar on chemistry and process engineering for high-level liquid waste solidification

    International Nuclear Information System (INIS)

    Odoj, R.; Merz, E.

    1981-06-01

    The proceedings record a very distinct phase of the chemistry and process engineering for high-level liquid waste solidification in the past years. The main purpose is to provide solutions which guarantee sufficient safe and economically acceptable measure causing no adverse consequence to man and his environment. (DG)

  8. Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Chemistry and Nanoscience Center at NREL investigates materials and processes for converting renewable and new technologies. NREL's primary research in the chemistry and nanoscience center includes the Electrochemical Engineering and Materials Chemistry Providing a knowledge base in materials science covering

  9. Life's Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry?

    Science.gov (United States)

    Krishnamurthy, Ramanarayanan

    2018-06-05

    Research into understanding the origins -and evolution- of life has long been dominated by the concept of taking clues from extant biology and extrapolating its molecules and pathways backwards in time. This approach has also guided the search for solutions to the problem of how contemporary biomolecules would have arisen directly from prebiotic chemistry on early earth. However, the continuing difficulties in finding universally convincing solutions in connecting prebiotic chemistry to biological chemistry should give us pause, and prompt us to rethink this concept of treating extant life's chemical processes as the sole end goal and, therefore, focusing only -and implicitly- on the respective extant chemical building blocks. Rather, it may be worthwhile "to set aside the goal" and begin with what would have been plausible prebiotic reaction mixtures (which may have no obvious or direct connection to life's chemical building blocks and processes) - and allow their chemistries and interactions, under different geochemical constraints, to guide and illuminate as to what processes and systems can emerge. Such a conceptual approach gives rise to the prospect that chemistry of life-as-we-know-it is not the only result (not a "destiny"), but one that has emerged among many potential possibilities (a "destination"). This postulate, in turn, could impact the way we think about chemical signatures and criteria used in the search for alternative and extraterrestrial "life". As a bonus, we may discover the chemistries and pathways naturally that led to the emergence of life as we know it. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  11. Elements of distance learning in the course of chemistry for engineering faculty students of People's Friendship University of Russia

    Directory of Open Access Journals (Sweden)

    О А Егорова

    2015-12-01

    Full Text Available At the Department of General Chemistry RUDN a program control and consulting activities is developed.. This program is conducted with the use of Internet technology and is used for training students of evening and correspondence departments of the Faculty of Engineering of PFUR in the study course "Chemistry". Application of this technology can improve the quality of student learning. In article the received results are stated.

  12. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  13. DNS with detailed and tabulated chemistry of engine relevant igniting systems

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2014-01-01

    Developments in modern engine technology are moving towards a regime with fuel injection uncoupled from combustion. Auto-ignition is an essential characteristic in these systems. The accurate prediction of this chemical process is of paramount importance. Tabulation techniques can provide a detailed

  14. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  15. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  16. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    Science.gov (United States)

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  17. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1988-01-01

    Current and Ongoing Projects include: Committee on Nuclear and Radiochemistry; Committee on Nuclear and Radiochemistry Workshop on Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas; Committee on Nuclear and Radiochemistry Workshop on High-Temperature and Nuclear Chemical Processes in Severe Reactor Accidents; Committee on Chemical Engineering Frontiers Research Needs and Opportunities; Committee on Separation Science on Technology; Panel on Future Directions for Fundamental Science in Fossil Energy Research; Committee for Handling and Disposal of Biohazards in the Laboratory (BIL); Advisory Panels to the AFSOR Chemical and Atmospheric Sciences Directorate; US National Committee for Pure and Applied Chemistry; US National Committee for Biochemistry; US National Committee for Crystallography

  18. Chemical Reaction Engineering: Current Status and Future Directions.

    Science.gov (United States)

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  19. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  20. Expanding P450 catalytic reaction space through evolution and engineering

    Science.gov (United States)

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  1. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  2. Military Engineers and Chemical Warfare Troops (Inzhenernye Voiska Khimicheskie Voiska),

    Science.gov (United States)

    MILITARY FORCES(FOREIGN), *MILITARY ORGANIZATIONS, MILITARY ENGINEERING , INFANTRY, AMPHIBIOUS OPERATIONS, MINELAYING, ARMORED VEHICLES, NUCLEAR...RADIATION, DOSIMETERS, CHEMICAL WARFARE, PROTECTIVE CLOTHING, DECONTAMINATION, HEALTH PHYSICS.

  3. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N 3 ). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N 3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    Science.gov (United States)

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  5. Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models

    OpenAIRE

    M. Bocquet; H. Elbern; H. Eskes; M. Hirtl; R. Žabkar; G. R. Carmichael; J. Flemming; A. Inness; M. Pagowski; J. L. Pérez Camaño; P. E. Saide; R. San Jose; M. Sofiev; J. Vira; A. Baklanov

    2015-01-01

    Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorologica...

  6. selectivity engineering in sustainable production of chemicals, fuels ...

    Indian Academy of Sciences (India)

    admin

    Cost. Landfill. –400. Source: Tuck et al., Science, 337 (6095): 695-699 10 August ... libraries for novel enzymes that transform lignocellulosics ... Bio-process engineering for optimal production of ... fine chemicals and petrochemical industries. ..... Mole ratio : Epichlorohydrin to acetone of 1:8 , 100 % atom economy. Sr.No.

  7. HBCUs and Chemical Engineering: Analysis of Baccalaureate Programs

    Science.gov (United States)

    Reeves, Sheena; Thompson, Audie

    2018-01-01

    Historically Black Colleges and Universities (HBCUs) provide significant STEM degrees to African Americans. Initiatives toward increasing diversity in STEM fields have been implemented by government and industry leaders. HBCUs annually award over 20% of all African American baccalaureate chemical engineering degrees. This speaks volume to the…

  8. The Intersection of Gender and Race: Exploring Chemical Engineering Students' Attitudes

    Science.gov (United States)

    Goodwin, Allison; Verdín, Dina; Kirn, Adam; Satterfield, Derrick

    2018-01-01

    We surveyed 342 first-year engineering students at four U.S. institutions interested in a chemical engineering career about their feelings of belonging in engineering, motivation, and STEM identities. We compared these students by both gender and race/ethnicity on these attitudinal factors. We found several significant differences in…

  9. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    Science.gov (United States)

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  10. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  11. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  12. Engineering cyanobacteria for fuels and chemicals production.

    Science.gov (United States)

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  13. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    Science.gov (United States)

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  15. An Introduction to Boiler Water Chemistry for the Marine Engineer: A Text of Audio-Tutorial Instruction.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    Presented is a manuscript for an introductory boiler water chemistry course for marine engineer education. The course is modular, self-paced, audio-tutorial, contract graded and combined lecture-laboratory instructed. Lectures are presented to students individually via audio-tapes and 35 mm slides. The course consists of a total of 17 modules -…

  16. American Chemical Society, Division of Environmental Chemistry

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Separate abstracts were prepared for 161 papers of this divisional meeting for the US Department of Energy's Database. Main topics discussed included: acid rain mitigation - liming technologies and environmental considerations; biotechnology for wastewater treatment; environmental chemistry of lakes and reservoirs and pollution prevention and process analytical chemistry

  17. Chemical Reaction Engineering Applications in Non-traditional Technologies. A Textbook Supplement.

    Science.gov (United States)

    Savage, Phillip E.; Blaine, Steven

    1991-01-01

    A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)

  18. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  19. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  20. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  1. Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses

    Science.gov (United States)

    Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff

    2013-01-01

    Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…

  2. Discrete mathematical data analysis approach: a valuable assessment method for sustainable chemistry.

    Science.gov (United States)

    Voigt, Kristina; Scherb, Hagen; Bruggemann, Rainer; Schramm, Karl-Werner

    2013-06-01

    Sustainable/Green Chemistry is a chemical philosophy encouraging the design of products and processes that reduce or eliminate the use and generation of hazardous substances. In this respect, metrical scientific disciplines like Chemometrics are important, because they indicate criteria for chemicals being hazardous or not. We demonstrated that sustainable principles in the disciplines Green Chemistry, Green Engineering, and Sustainability in Information Technology have main aspects in common. The use of non-hazardous chemicals or the more efficient use of chemical substances is one of these aspects. We take a closer look on the topic of the hazards of chemical substances. Our research focuses on data analyses concerning environmental chemicals named Persistent Organic Pollutants (POPs), which are found all over the world and pose a large risk to environment as well as to humans. The evaluation of the data is a major step in the elucidation of the danger of these chemicals. The data analysis method demonstrated here, is based on the theory of partially ordered sets and provides a generalized ranking. In our approach we investigate data sets of breast milk samples of women in Denmark, Finland, and Turkey which contained measurable levels of 20 POPs. The goal is twofold: On the one side the hazardous chemicals are to be identified and on the other side possible differences among the three nations should be detected, because in that case possible different uptake mechanisms may be supposed. The data analysis is performed by the free available software package PyHasse, written by the third author. We conclude that the data analysis method can well be applied for distinguishing between more or less dangerous existing chemicals. Furthermore, it should be used in sustainable chemistry in the same manner for detecting more and less sustainable chemicals. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Candidates Profile in FUVEST Exams from 2004 to 2013: Private and Public School Distribution, FUVEST Average Performance and Chemical Equilibrium Tasks Performance

    Directory of Open Access Journals (Sweden)

    R.S.A.P. Oliveira

    2014-08-01

    Full Text Available INTRODUCTION. Chemical equilibrium is recognized as a topic of several misconceptions. Its origins must be tracked from previous scholarship. Its impact on biochemistry learning is not fully described. A possible bulk of data is the FUVEST exam. OBJECTIVES: Identify students’ errors profile on chemical equilibrium tasks using public data from FUVEST exam. MATERIAL AND METHODS: Data analysis from FUVEST were: i Private and Public school distribution in Elementary and Middle School, and High School candidates of Pharmacy-Biochemistry course and total USP careers until the last call for enrollment (2004-2013; ii Average performance in 1st and 2nd parts of FUVEST exam of Pharmacy-Biochemistry, Chemistry, Engineering, Biological Sciences, Languages and Medicine courses and total enrolled candidates until 1st call for enrollment (2008- 2013; iii Performance of candidates of Pharmacy-Biochemistry, Chemistry, Engineering, Biological Sciences, Languages and Medicine courses and total USP careers in chemical equilibrium issues from 1st part of FUVEST (2011-2013. RESULTS AND DISCUSSION: i 66.2% of candidates came from private Elementary-Middle School courses and 71.8%, came from High School courses; ii Average grade over the period for 1st and 2nd FUVEST parts are respectively (in 100 points: Pharmacy-Biochemistry 66.7 and 61.2, Chemistry 65.9 and 58.9, Engineering 75.9 and 71.9, Biological Sciences 65.6 and 54.6, Languages 49.9 and 43.3, Medicine 83.5 and 79.5, total enrolled candidates 51,5 and 48.9; iii Four chemical equilibrium issues were found during 2011-2013 and the analysis of multiplechoice percentage distribution over the courses showed that there was a similar performance of students among them, except for Engineering and Medicine with higher grades, but the same proportional distribution among choices. CONCLUSION: Approved students came majorly from private schools. There was a different average performance among courses and similar on

  4. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  5. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  6. Turkish, Indian, and American Chemistry Textbooks Use of Inscriptions to Represent "Types of Chemical Reactions"

    Science.gov (United States)

    Aydin, Sevgi; Sinha, Somnath; Izci, Kemal; Volkmann, Mark

    2014-01-01

    The purpose of this study was to investigate inscriptions used in "Types of Chemical Reactions" topic in Turkish, Indian, and American chemistry textbooks. We investigated both the types of inscriptions and how they were used in textbooks to support learning. A conceptual analysis method was employed to determine how those textbooks use…

  7. Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory

    Science.gov (United States)

    Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra

    2017-01-01

    We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…

  8. 24th Current Trends in Computational Chemistry

    Science.gov (United States)

    2017-05-17

    Corps of Engineers Army Research Office Conference on Current Trends in Computational Chemistry 2016 NOVEMBER 11-12, 2016 JACKSON, MS... Chemistry and Biochemistry Jackson, MS 39217 U.S.A. Tel: 6019793723 E-mail: shonda@icnanotox.org Richard Alo Dean College of Science, Engineering ...Report: 24th Current Trends in Computational Chemistry The views, opinions and/or findings contained in this report are those of the author(s) and should

  9. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  10. The Nature of the Interplay among Components of Pedagogical Content Knowledge in Reaction Rate and Chemical Equilibrium Topics of Novice and Experienced Chemistry Teachers

    Science.gov (United States)

    Akin, Fatma Nur; Uzuntiryaki-Kondakci, Esen

    2018-01-01

    We examined the interactions among pedagogical content knowledge (PCK) components of novice and experienced chemistry teachers in teaching reaction rate and chemical equilibrium topics in this qualitative multiple-case design study. For this aim, three chemistry teachers who had different levels of teaching experience in chemistry teaching were…

  11. Introducing integrated product and process development into the education of science and engineering undergraduates: a lecture course with an accompanying case-study programme at the ETH chemistry department.

    Science.gov (United States)

    Fenner, K; Jödicke, G; Alean-Kirkpatrick, P; Hungerbühler, K

    2001-04-01

    Increased quality requirements in the development of chemical products and a growing awareness within society of the activities of chemical companies present a new challenge to the education of young scientists. Nowadays, the teaching of chemists, chemical engineers and environmental scientists at universities has to go beyond the traditional, discipline-orientated knowledge acquisition. The students also have to learn to work and communicate in interdisciplinary teams, to solve application-oriented tasks and to integrate scientific, economical, ecological and social aspects into their work. For this reason, a case-study programme was launched at the chemistry department of the Swiss Federal Institute of Technology. In this paper, we describe the organisational aspects of the programme, its inclusion into academic and industrial environments and summarise some of the scientific methodologies applied. One of the seven case-studies, an assessment of a modern insecticide, is presented in more detail. Finally, we discuss how far the case-study programme is suitable for introducing a new mode of knowledge production to universities.

  12. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  13. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  14. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  15. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  16. "CHEM"opera for Chemistry Education

    Science.gov (United States)

    Chung, Yong Hee

    2013-01-01

    "CHEM"opera is an opera blended with demonstrations of chemical reactions. It has been produced and performed twice by chemistry undergraduate students at Hallym University in South Korea. It aims to demonstrate interesting chemical reactions to chemistry students, children and the public and to facilitate their understanding of the role…

  17. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  18. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  19. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  20. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.

  1. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    International Nuclear Information System (INIS)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-01

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers

  2. A computational environment for creating and testing reduced chemical kinetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, C.J.; Swensen, D.A.; Harding, T.V.; Cremer, M.A.; Bockelie, M.J. [Reaction Engineering International, Salt Lake City, UT (USA)

    2002-02-01

    This paper describes software called computer assisted reduced mechanism problem solving environment (CARM-PSE) that gives the engineer the ability to rapidly set up, run and examine large numbers of problems comparing detailed and reduced (approximate) chemistry. CARM-PSE integrates the automatic chemical mechanism reduction code CARM and the codes that simulate perfectly stirred reactors and plug flow reactors into a user-friendly computational environment. CARM-PSE gives the combustion engineer the ability to easily test chemical approximations over many hundreds of combinations of inputs in a multidimensional parameter space. The demonstration problems compare detailed and reduced chemical kinetic calculations for methane-air combustion, including nitrogen oxide formation, in a stirred reactor and selective non-catalytic reduction of NOx, in coal combustion flue gas.

  3. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  4. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    Science.gov (United States)

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  5. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  6. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  7. New solid-state chemical sensors for monitoring water chemistry at elevated temperatures

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    1996-01-01

    One of the most important chemical sensors for water chemistry is a pH sensor. Characteristics of two types of common pH sensors for high temperature use, that is, a ZrO 2 membrane type and a TiO 2 semiconductor type, were first reviewed. Then, a new ZrO 2 disk pH sensor was introduced. This new pH sensor covers weak points of the common pH sensors and shows good linear relationships between the potential of the sensor and the solution pH at high temperatures. (author)

  8. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  9. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  10. The Role of Chemical Processes in the Transition to Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stucki, S.; Palumbo, R.; Baltensperger, U.; Boulouchos, K.; Haas, O.; Scherer, G.G.; Siegwolf, R.; Wokaun, A

    2002-01-01

    Chemical science and engineering play a central role in improving the eco- efficiency of energy services, be it by optimizing fossil fuel utilization from the source to the sinks, be it by exploring new ways of replacing fossil fuels with renewable ones. Catalytic fuel processing is required for providing clean and easy to convert inputs from contaminated and/or high molecular weight primary resources into efficient energy conversion systems such as advanced combustion engines and fuel cells. The switch from conventional fossil fuel resources to renewables such as solar or biomass requires new approaches in chemical engineering. Efficiency vs. emissions trade-offs for improving the eco-performance of combustion engines need to be optimized with improved understanding of the complex chemistry taking place in flames. New materials for fuel cells and batteries provide a means of making these devices applicable, thereby drastically cutting down on emissions from energy systems. Chemistry is not only involved in fuel processing and conversion, but it is also important at the end of the pipe, i.e. in catalytic emission control devices, in the treatment of hazardous residues from the incineration of waste materials, and in the complex interactions of air pollutants with the biosphere. (author)

  11. Supramolecular chemistry and crystal engineering*

    Indian Academy of Sciences (India)

    Administrator

    two important prototypes – the large unit cell of elusive saccharin hydrate, .... tures that are able to guide the rational design of .... methanolyated complex could be regenerated to the ..... turn all of chemistry on its ear, since one of chemis-.

  12. Chemistry and Biology of the Caged Garcinia Xanthones

    Science.gov (United States)

    Chantarasriwong, Oraphin; Batova, Ayse; Chavasiri, Warinthorn

    2011-01-01

    Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70% of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development. PMID:20648491

  13. Challenges of green chemistry in Ukraine

    Directory of Open Access Journals (Sweden)

    Shevtsova Ganna Ziyvna

    2017-06-01

    Full Text Available The article deals with study of Ukrainian chemical enterprises’ ecologisation issues and elaboration of the economic problems to realize principles of green chemistry. Theoretical aspects of green chemistry as a modern interdisciplinary conception, which reveals peculiarities to implement sustainable development paradigm in the chemical industry, are studied. Based on the analysis of essence and effectiveness to introduce international initiatives on sustainable development at the chemical industry enterprises, it is concluded that the implemented measures are only first steps on the way to realize key principles of green chemistry.It is proved that in order to promote conceptual ideas of the green chemistry further, it is reasonable to consider economic and marketing aspects of the ecological innovations: to provide economic effectiveness of green chemical products and technologies, to form ecological culture of consumption, to motivate green demand and to prevent market asymmetry of information.

  14. Stoichiometry in Context: Inquiry-Guided Problems of Chemistry for Encouraging Critical Thinking in Engineering Students

    OpenAIRE

    Gabriel Pinto; María Luisa Prolongo

    2013-01-01

    This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufactu...

  15. The US EPA CompTox Chemistry Dashboard as a source of data to fill data gaps for chemical sources of risk

    Science.gov (United States)

    Chemical risk assessment is both time-consuming and difficult because it requires the assembly of data for chemicals generally distributed across multiple sources. The US EPA CompTox Chemistry Dashboard is a publicly accessible web-based application providing access to various da...

  16. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  17. Role of Biocatalysis in Sustainable Chemistry.

    Science.gov (United States)

    Sheldon, Roger A; Woodley, John M

    2018-01-24

    Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled the optimization of existing enzymes and the invention of entirely new biocatalytic reactions that were previously unknown in Nature. It is now eminently feasible to develop enzymatic transformations to fit predefined parameters, resulting in processes that are truly sustainable by design. This approach has successfully been applied, for example, in the industrial synthesis of active pharmaceutical ingredients. In addition to the use of protein engineering, other aspects of biocatalysis engineering, such as substrate, medium, and reactor engineering, can be utilized to improve the efficiency and cost-effectiveness and, hence, the sustainability of biocatalytic reactions. Furthermore, immobilization of an enzyme can improve its stability and enable its reuse multiple times, resulting in better performance and commercial viability. Consequently, biocatalysis is being widely applied in the production of pharmaceuticals and some commodity chemicals. Moreover, its broader application will be further stimulated in the future by the emerging biobased economy.

  18. Towars a chemical reagents and residues management at the teaching laboratories of the Chemistry School of the Universidad Nacional

    OpenAIRE

    Ana Cristina Benavides Benavides; Xinia Vargas González; Gustavo Chaves Barboza; José Ángel Rodríguez Corrales

    2016-01-01

    The academic activities carried out at the School of Chemistry make indispensable to develop actions oriented toward the consolidation of a reagent and residue management system, especially in the teaching laboratories. The project “Management of reagents and residues in the teaching laboratories of the School of Chemistry” works under the Green Chemistry values which designs products and chemical processes that reduce or eliminate the use and production of dangerous substances, to benefit th...

  19. Abstracts of the 54. Canadian Chemical Engineering Conference : Energy for the Future

    International Nuclear Information System (INIS)

    2004-01-01

    The key energy challenges facing the chemical process industries were addressed at this international conference. Chemical engineering was shown to play a critical role in offering technical solutions to the challenges of climate change and pollution abatement on a global scale. The sessions addressed a variety of issues dealing with heavy oil processing and utilization, natural gas processing, reservoir engineering and biotechnology process systems. The presentations also addressed issues dealing with applied thermodynamics, new technologies, polymer engineering and other fundamental processes, including some used by the pulp and paper industry. The conference featured more than 500 presentations from around the world, including Canada, the United States, Asia and Europe. A total of 84 papers have been indexed separately for inclusion in this database

  20. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.