WorldWideScience

Sample records for chemical effects head-loss

  1. Emergency core cooling system sump chemical effects on strainer head loss

    International Nuclear Information System (INIS)

    Edwards, M.K.; Qiu, L.; Guzonas, D.A.

    2010-01-01

    Chemical precipitates formed in the recovery water following a Loss of Coolant Accident (LOCA) have the potential to increase head loss across the Emergency Core Cooling System (ECCS) strainer, and could lead to cavitation of the ECCS pumps, pump failure and loss of core cooling. AECL, as a strainer vendor and research organization, has been involved in the investigation of chemical effects on head loss for its CANDU® and Pressurized Water Reactor (PWR) customers. The chemical constituents of the recovery sump water depend on the combination of chemistry control additives and the corrosion and dissolution products from metals, concrete, and insulation materials. Some of these dissolution and corrosion products (e.g., aluminum and calcium) may form significant quantities of precipitates. The presence of chemistry control additives such as sodium hydroxide, trisodium phosphate and boric acid can significantly influence the precipitates formed. While a number of compounds may be shown to be thermodynamically possible under the conditions assumed for precipitation, kinetic factors play a large role in the morphology of precipitates. Precipitation is also influenced by insulation debris, which can trap precipitates and act as nucleation sites for heterogeneous precipitation. This paper outlines the AECL approach to resolving the issue of chemical effects on ECCS strainer head loss, which included modeling, bench top testing and reduced-scale testing; the latter conducted using a temperature-controlled variable-flow closed-loop test rig that included an AECL Finned Strainer® test section equipped with a differential pressure transmitter. Models of corrosion product release and the effects of precipitates on head loss will also be presented. Finally, this paper discusses the precipitates found in test debris beds and presents a possible method for chemical effects head loss modeling. (author)

  2. Chemical effects head-loss research in support of generic safety issue 191.

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Kasza, K.; Fisher, B.; Oras, J.; Natesan, K.; Shack, W. J.; Nuclear Engineering Division

    2006-10-31

    This summary report describes studies conducted at Argonne National Laboratory on the potential for chemical effects on head loss across sump screens. Three different buffering solutions were used for these tests: trisodium phosphate (TSP), sodium hydroxide, and sodium tetraborate. These pH control agents used following a LOCA at a nuclear power plant show various degrees of interaction with the insulating materials Cal-Sil and NUKON. Results for Cal-Sil dissolution tests in TSP solutions, settling rate tests of calcium phosphate precipitates, and benchmark tests in chemically inactive environments are also presented. The dissolution tests were intended to identify important environmental variables governing both calcium dissolution and subsequent calcium phosphate formation over a range of simulated sump pool conditions. The results from the dissolution testing were used to inform both the head loss and settling test series. The objective of the head loss tests was to assess the head loss produced by debris beds created by Cal-Sil, fibrous debris, and calcium phosphate precipitates. The effects of both the relative arrival time of the precipitates and insulation debris and the calcium phosphate formation process were specifically evaluated. The debris loadings, test loop flow rates, and test temperature were chosen to be reasonably representative of those expected in plants with updated sump screen configurations, although the approach velocity of 0.1 ft/s used for most of the tests is 3-10 times that expected in plants with large screens . Other variables were selected with the intent to reasonably bound the head loss variability due to arrival time and calcium phosphate formation uncertainty. Settling tests were conducted to measure the settling rates of calcium phosphate precipitates (formed by adding dissolved Ca to boric acid and TSP solutions) in water columns having no bulk directional flow. For PWRs where NaOH and sodium tetraborate are used to control

  3. Effects of debris generated by chemical reactions on head loss through emergency-core cooling-system strainers

    International Nuclear Information System (INIS)

    Howe, K.; Ghosh, A.; Maji, A.K.; Letellier, B.C.; Johns, R.; Chang, T.Y.

    2004-01-01

    The effect of debris generated during a loss of coolant accident (LOCA) on the emergency core cooling system (ECCS) strainers has been studied via numerous avenues over the last several years. The research described in this manuscript examines the generation and effect of secondary materials -- not debris generated in the LOCA itself, but materials created by chemical reactions between exposed surfaces/debris and cooling system water. The secondary materials studied in the research were corrosion products from exposed metallic surfaces and paint chips that may precipitate out of solution, with a focus on the corrosion products of aluminium, iron, and zinc. The processes of corrosion and leaching of metals with subsequent precipitation is important because: (1) the surface area of exposed metal inside containment represents a large potential source term, even for slow chemical reactions; the chemical composition of the cooling system water (boric acid, lithium, etc.) may affect corrosion or precipitation in ways that have not been studied thoroughly in the past; and (3) an eyewitness report of the presence of gelatinous material in the Three Mile Island containment pool after the 1979 accident suggests the formation of a secondary material that has not been examined under the generic safety issue (GSI)-191 research program. This research was limited in scope and consisted only of small-scale tests. Several key questions were investigated: (1) do credible corrosion mechanisms exist for leaching metal ions from bulk solid surfaces or from zinc-based paint chips, and if so, what are the typical rate constants? (2) can corrosion products accumulate in the containment pool water to the extent that they might precipitate as new chemical species at pH and temperatures levels that are relevant to the LOCA accident sequence? and (3) how do chemical precipitants affect the head loss across an existing fibrous debris bed? A full report of the research is available. (authors)

  4. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2009-01-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  5. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Sump strainer head loss testing to evaluate chemical effects. → Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. → Intermetallic particles released from Al alloy can also cause significant head loss. → When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 o C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH) 3 ) surrogate was more effective in increasing head loss than the Al(OH) 3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH) 3 when intermetallic particles are present.

  6. Intra-Wellbore Head Losses in a Horizontal Well with both Kinematic and Frictional Effects in an Anisotropic Confined Aquifer between Two Streams

    Science.gov (United States)

    Wang, Q.; Zhan, H.

    2017-12-01

    Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while

  7. Head losses in small hydropower plant trash racks (SHP

    Directory of Open Access Journals (Sweden)

    N. Walczak

    2016-12-01

    Full Text Available Small hydropower plants (SHP are technical facilities that are part of alternative energy sources [Paish 2002]. They are primarily characterised by low unit power (in Poland below 5 MW and are often constructed on existing barrages. Electrical current produced by these plants is used to meet local demand. Considering the exploitation of SHPs, it is important to ensure a stable flow through turbines. Aggidis et al. [2010] analysed SHP equipment costs depending on the turbine set. The turbines are protected against damage with trash racks applied for capturing water-borne detritus, such as plant debris carried by water. However, trash racks as solid equipment of SHPs cause head losses, and as a consequence reduce the efficiency of the system. These losses result not only from the spacing of bars, their shape and the technical condition of the inlet chamber, but also from plant debris, its nature, and the quantity of accumulated material that effectively limits the flow. The plant debris captured on trash racks is characterised by diversity in terms of species composition related to the vegetation period and the area where hydraulic facilities are located. Therefore, it is important to maintain trash racks clean by regular removal of the accumulated material. In this context, modernised and newly built power plants are fitted with mechanical cleaners. In older facilities, manual intervention for regular cleaning is required. The present study analyses how the bar shape and the orientation angle of trash racks as well as the accumulated plant debris affect head losses. The results were obtained from laboratory tests. The research examined the impact the inclination angle of trash racks (30°, 60° and 80° has on head loss values for three different shapes of bars (cylindrical, angled and flat rectangular and various weight portions of plant debris (0.25, 0.375 and 0.5 kg. The summarised losses were determined by measuring the difference in water

  8. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  9. An experimental investigation of head loss through a triangular “V- shaped” screen

    Directory of Open Access Journals (Sweden)

    Mahmoud Zayed

    2018-03-01

    Full Text Available Common traditional screens (screens perpendicular and vertical to the flow direction face extensive problems with screen blockage, which can result in adverse hydraulic, environmental, and economic consequences. Experimentally, this paper presents an advanced trash screen concept to reduce traditional screen problems and improve the hydraulic performance of screens. The traditional screen is re-developed using a triangular V shape with circular bars in the flow direction. Triangular V-shaped screen models with different angles, blockage ratios, circular bar designs, and flow discharges were tested in a scaled physical model. The analyses provide promising results. The findings showed that the head loss coefficients were effectively reduced by using the triangular V-shaped screens with circular bars (α < 90° in comparison with the traditional trash screen (α = 90. Additionally, the results indicated that the head loss across the screen increased with increasing flow discharge and blockage ratio. The losses considerably increase by large percentages when the screen becomes blocked by 40%. Low head losses were recorded at low screen angles for the circular bars. A new head loss equation is recommended for triangular screens with circular bars.

  10. Experimental study of head loss and filtration for LOCA debris

    International Nuclear Information System (INIS)

    Rao, D.V.; Souto, F.J.

    1996-02-01

    A series of controlled experiments were conducted to obtain head loss and filtration characteristics of debris beds formed of NUKON trademark fibrous fragments, and obtain data to validate the semi-theoretical head loss model developed in NUREG/CR-6224. A thermally insulated closed-loop test set-up was used to conduct experiments using beds formed of fibers only and fibers intermixed with particulate debris. A total of three particulate mixes were used to simulate the particulate debris. The head loss data were obtained for theoretical fiber bed thicknesses of 0.125 inches to 4.0 inches; approach velocities of 0.15 to 1.5 ft/s; temperatures of 75 F and 125 F; and sludge-to-fiber nominal concentration ratios of 0 to 60. Concentration measurements obtained during the first flushing cycle were used to estimate the filtration efficiencies of the debris beds. For test conditions where the beds are fairly uniform, the head loss data were predictable within an acceptable accuracy range by the semi-theoretical model. The model was equally applicable for both pure fiber beds and the mixed beds. Typically the model over-predicted the head losses for very thin beds and for thin beds at high sludge-to-fiber mass ratios. This is attributable to the non-uniformity of such debris beds. In this range the correlation can be interpreted to provide upper bound estimates of head loss. This is pertinent for loss of coolant accidents in boiling water reactors

  11. Kajian eksperimental head losses katup limbah pompa hydram

    Directory of Open Access Journals (Sweden)

    Made Suarda

    2018-01-01

    Full Text Available Abstrak Disain katup limbah yang baik dan penyetelan panjang langkah (stroke yang tepat merupakan faktor penting untuk operasi pompa hydram yang halus dan efisien. Katup limbah harus mampu menutup dengan cepat untuk menghasilkan tekanan tinggi pada saat terjadi water hammer. Disain detail katup limbah meliputi luas lubang katup limbah, luas penampang piringan katup, dan panjang langkah katup. Penelitian sebelumnya menyarankan bahwa diameter lubang katup limbah harus sama atau lebih besar dengan diameter pipa penggerak untuk menghindari terhambatnya aliran air keluar katup limbah. Namun diameter optimal katup limbah belum diketahui. Katup limbah tertutup akibat gaya drag yang terjadi karena aliran air melewati katup tersebut. Jadi geometri katup limbah adalah sedemikian rupa sehingga gaya seret tersebut meningkat dengan cepat sesuai arah pergerakan katup tersebut menuju posisi tertutupnya. Friction drag mengakibatkan kehilangan energi atau head losses aliran air melewati katup limbah yang merupakan besarnya perubahan energi aliran sebelum dan sesudah katup limbah tersebut. Head losses tersebut dapat diinvestigasi dengan mengukur tekanan di bawah katup limbah dan debit aliran yang mengalir melewati katup limbah tersebut pada posisi kesetimbangannya. Hasil penelitian menunjukkan bahwa rasio diameter lubang katup limbah terhadap diameter pipa penggerak yang mengakibatkan head losses terendah adalah sekitar 130 persen atau pada rasio luas penampangnya sekitar 172 persen. Kata kunci: Pompa hydram, katup limbah, head losses, rasio diameter Abstract Suitable design and appropriate stroke adjustment of a waste valve are important factors for smooth and efficient hydram pump operation. The waste valve must be able to close quickly to produce high pressure during a water hammer take placed. In addition, detailed design of the waste valve comprises of the hole-diameter of the valve, the cross-sectional area of valve disc, and the valve step stroke. Prior

  12. CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON U.S. RESEARCH EFFORTS

    Directory of Open Access Journals (Sweden)

    CHI BUM BAHN

    2013-06-01

    Full Text Available Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET, and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain.

  13. Quadratic head loss approximations for optimisation problems in water supply networks

    NARCIS (Netherlands)

    Pecci, Filippo; Abraham, E.; I, Stoianov

    2017-01-01

    This paper presents a novel analysis of the accuracy of quadratic approximations for the Hazen–Williams (HW) head loss formula, which enables the control of constraint violations in optimisation problems for water supply networks. The two smooth polynomial approximations considered here minimise the

  14. Evaluate of head loss, sediment value and copper removal in sand media (rapid sand filter

    Directory of Open Access Journals (Sweden)

    Daneshi Navab

    2014-06-01

    Full Text Available Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2 2014: 276-286

  15. Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Kim, Geon Young; Koh, Yong Kwon; Kim, Hyoung Soo

    2012-01-01

    The equation of the step-drawdown test 's w = BQ+CQ p ' written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated C (well head loss coefficient) and P (well head loss exponent) value of well head losses (CQ p ) ranged 3.689 x 10 -19 - 5.825 x 10 -7 and 3.459 - 8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The C and P value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of C and P value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between C and P value turned out very useful to interpret hydraulic properties of the fractured rocks.

  16. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Philips, G.O.

    1986-01-01

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  17. Head losses prediction and analysis in a bulb turbine draft tube under different operating conditions using unsteady simulations

    Science.gov (United States)

    Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.

    2016-11-01

    Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.

  18. Chemical effects of nuclear transformations

    Energy Technology Data Exchange (ETDEWEB)

    Bulbulian, S

    1982-06-01

    A brief survey of the present state of knowledge on the chemical effects of nuclear transformations is presented. The recoil energy produced by these transformations in the nuclide is often sufficiently high to disrupt the chemical ligands between these particular atoms affected by the nuclear transformations, while the rest of their molecules. It also contains a discussion of the different annealing processes that produce the cancellation of the chemical change produced by the nuclear transformation.

  19. Radiation, chemicals and combined effects

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1991-01-01

    A brief background has been provided on current carcinogenic risks from ionizing radiation and their magnitude in background circumstances. The magnitude of the risks from possibly carcinogenic chemicals at background levels in air, water and food are surprisingly similar. The exception is, perhaps, for the single source of radon which, while variable, on the average stands out above all other sources. Some basic principles concerning the interaction of combined radiation and chemicals and some practical examples where the two interact synergistically to enhance radiation effects has also been provided. Areas for human research in the future are discussed. (Author)

  20. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 4 – Integrated chemical effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward, E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Integrated test explored the material release of a postulated large break LOCA. • Aluminum concentration was very low (<0.1 mg/L) throughout the test duration. • Zinc concentration was low (<1 mg/L) in TSP-buffered system. • Calcium release showed two distinguished release zones: prompt and meta-stable. • Copper and iron has no distinguishable concentration up to first 24 h of testing. - Abstract: This paper presents the results of an integrated chemical effects experiment executed under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at the Vogtle nuclear power plant, operated by the Southern Nuclear Operating Company (SNOC). This test was conducted for closure of a series of bench scale experiments conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum (Howe et al., 2015) and zinc (Pease et al., 2015) from metallic surfaces, and calcium from NUKON fiberglass insulation (Olson et al., 2015) . The integrated test was performed in the Corrosion/Chemical Head Loss Experimental (CHLE) facility with representative amounts of zinc, aluminum, carbon steel, copper, NUKON fiberglass, and latent debris. The test was conducted using borated TSP-buffered solution under a post-LOCA prototypical temperature profile lasting for 30 days. The results presented in this article demonstrate trends for zinc, aluminum, and calcium release that are consistent with separate bench scale testing and previous integrated tests under TSP conditions. The release rate and maximum concentrations of the released materials were slightly different than the separate effect testing as a result of different experimental conditions (temperature, surface area-to-water volume ratio) and/or the presence of other metals and chemicals in the integrated test. Samples of metal coupons and fiberglass were selected for analysis using Scanning Electron Microscopy

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 4 – Integrated chemical effects testing

    International Nuclear Information System (INIS)

    Ali, Amir; LaBrier, Daniel; Blandford, Edward; Howe, Kerry

    2016-01-01

    Highlights: • Integrated test explored the material release of a postulated large break LOCA. • Aluminum concentration was very low (<0.1 mg/L) throughout the test duration. • Zinc concentration was low (<1 mg/L) in TSP-buffered system. • Calcium release showed two distinguished release zones: prompt and meta-stable. • Copper and iron has no distinguishable concentration up to first 24 h of testing. - Abstract: This paper presents the results of an integrated chemical effects experiment executed under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at the Vogtle nuclear power plant, operated by the Southern Nuclear Operating Company (SNOC). This test was conducted for closure of a series of bench scale experiments conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum (Howe et al., 2015) and zinc (Pease et al., 2015) from metallic surfaces, and calcium from NUKON fiberglass insulation (Olson et al., 2015) . The integrated test was performed in the Corrosion/Chemical Head Loss Experimental (CHLE) facility with representative amounts of zinc, aluminum, carbon steel, copper, NUKON fiberglass, and latent debris. The test was conducted using borated TSP-buffered solution under a post-LOCA prototypical temperature profile lasting for 30 days. The results presented in this article demonstrate trends for zinc, aluminum, and calcium release that are consistent with separate bench scale testing and previous integrated tests under TSP conditions. The release rate and maximum concentrations of the released materials were slightly different than the separate effect testing as a result of different experimental conditions (temperature, surface area-to-water volume ratio) and/or the presence of other metals and chemicals in the integrated test. Samples of metal coupons and fiberglass were selected for analysis using Scanning Electron Microscopy

  2. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...... thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties....

  3. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  4. Chemical and catalytic effects of ion implantation

    International Nuclear Information System (INIS)

    Wolf, G.K.

    1982-01-01

    Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented: (1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds. (2) The formation of thin films by decomposing chemical compounds with ion beams. 3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned. The present status and future prospects of these kinds of investigations will be discussed. (author)

  5. Isotope effects on chemical equilibria

    International Nuclear Information System (INIS)

    Golding, P.D.

    1974-01-01

    The thermodynamic equilibrium constants of three deuterated substituted acetic acids are reported. The calculation of secondary isotope effects of the second kind for the three isotopic acid pairs has been accomplished by the appropriate comparison of thermodynamic equilibrium constants, and by the comparison of isotopic slopes. The effect of substituent variation on the isotope effects reported here disqualifies the simple inductive model as a legitimate description of secondary isotope effects of the second kind. The correlation of diminishing isotope effect per deuterium atom with increasing acidity is also invalidated by the present results. The syntheses of 9-thia-9,10-dihydrophenanthrene-9-oxide and thioxanthene-10-oxide are described. These compounds have been partially deuterated at their respective methylene positions. Spectral evidence indicates stereoselectivity of the methylene protons in the exchange reactions of both compounds. (author)

  6. Contribuição da estrutura interna na perda de carga de filtros de areia utilizados na irrigação Contribution of the internal structure in the sand filters head loss used in irrigation

    Directory of Open Access Journals (Sweden)

    Marcio Mesquita

    2012-02-01

    Full Text Available A dinâmica de operação dos filtros de areia afeta o desempenho hidráulico do sistema de irrigação, elevando a perda de carga e alterando a altura manométrica total do sistema. Buscando entender parte dessa dinâmica, o objetivo deste trabalho foi determinar o efeito da estrutura interna de filtros de areia na perda de carga de três modelos de equipamentos fabricados no Brasil, sem a presença do elemento filtrante e utilizando água limpa. Adicionalmente, com o ajuste do modelo matemático exponencial aos dados experimentais, procurou-se estabelecer comparações entre os tipos de estrutura dos filtros avaliados. Os ensaios foram realizados em um módulo experimental construído no Laboratório de Hidráulica e Irrigação da FEAGRI/UNICAMP. Os resultados mostraram que a estrutura hidráulica interna dos filtros determinou comportamentos hidráulicos diferenciados e que os tipos de estruturas (placa difusora e drenos alteraram o padrão de operação dos modelos ensaiados. A função matemática proposta representou, significativamente, o fenômeno físico de perda de carga para as condições do experimento.The dynamic of operation of sand filters affect the hydraulic performance of irrigation systems, increasing the head loss and changing the total dynamic head of the system. Trying to understand part of this dynamic, the objective of this research was to determine the effect of internal hydraulic structures in the head loss of three sand filters of commercial models, manufactured in Brazil and operating without the filter layer and with clean water. In addition, using an exponential mathematical model adjusted to the experimental data, comparisons among types of structure of each evaluated filter were performed. The trails were accomplished in the experimental module developed in the Laboratory of Hydraulics and Irrigation of FEAGRI / UNICAMP. The results showed that the filters structures determined differentiate hydraulic behaviors

  7. Water quality and head loss in irrigation filters Qualidade da água e perda de carga em filtros de irrigação

    Directory of Open Access Journals (Sweden)

    Túlio Assunção Pires Ribeiro

    2004-12-01

    Full Text Available Among the irrigation systems used today, trickle irrigation is one of the most efficient methods. This research, conducted by means of field tests, had the objective of comparing head loss evolution on water filtration with a disc filter (130 mum and a non-woven synthetic fabric filter used in a drip irrigation system. The test consisted of fertirrigation with organic fertilizer, and chemical treatment of the water with sodium hypochlorite. Physical, chemical, and biological parameters were analyzed, such as: pH, turbidity, suspended solids, dissolved solids, EC, hardness, Langelier index, total iron, manganese, sulfides, algae, and bacteria. The water source used in this experiment was from an open reservoir, where an experimental trickle irrigation system had been installed. The research was developed in four steps lasting 30 days each, during different seasons. The chemical factors pH, total iron, and concentration of sulfides presented a medium risk of clogging the emitters. All other physical and biological water quality parameters analyzed resulted in values that did not present an emitter-clogging risk. There was a correlation of results between physical parameters turbidity, suspended solids, and algae, and suspended solids. Fertirrigation influenced water quality. The concentration of free chlorine was higher in the effluent from the disc filter. Head loss evolution in the non-woven synthetic fabric filter was more striking and faster than in the disc filter.Dentre os sistemas de irrigação atualmente utilizados, a irrigação por gotejamento é um dos métodos mais eficientes. Este trabalho teve como objetivo fazer uma investigação experimental para comparar a evolução da perda de carga dos meios filtrantes disco (130 mim e manta sintética não tecida na filtragem da água, utilizados em um sistema de irrigação por gotejamento. Nesta comparação utilizou-se a técnica da fertirrigação com fertilizante orgânico e um

  8. Thyroid effects of endocrine disrupting chemicals.

    Science.gov (United States)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-05-22

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert thyroid effects through a variety of mechanisms of action, and some animal experiments and in vitro studies have focused on elucidating the mode of action of specific chemical compounds. Long-term human studies on effects of environmental chemicals on thyroid related outcomes such as growth and development are still lacking. The human exposure scenario with life long exposure to a vast mixture of chemicals in low doses and the large physiological variation in thyroid hormone levels between individuals render human studies very difficult. However, there is now reasonably firm evidence that PCBs have thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Investigation on the relation between pressure drops and fluid chemical treatment

    International Nuclear Information System (INIS)

    Brun, C.; Engler, N.; Berthollon, G.; Muller, T.; Sala, B.; Combrade, P.; Turluer, G.

    2002-01-01

    Variations of primary coolant flow rate were sometimes observed on some plants some years ago. These variations come from variations of pressure drops in the various zones of the primary system. After many investigations, these changes were attributed to variations of physical and chemical conditions. One specific difficulty was to explain the level of head loss variations with the low amount of oxide present in a primary circuit. Another one was to account for the formation of deposits under high water velocity conditions. Therefore, Framatome-ANP launched laboratory tests to reproduce the observed head loss variations, identify the conditions of their occurrence and try to identify the root mechanisms. A small loop - called EMILIE - was implemented in the laboratories of the Technical Centre of Framatome-ANP in Le Creusot. It allows us to study the effect of the water chemistry and velocity, as well as the nature of the circuit surfaces on the occurrence of head loss variations and their relation with the amount, nature and morphology of oxide deposits. This paper summarizes the first results obtained and briefly discusses a possible mechanism. (authors)

  10. Chemical effects in the mine structure

    International Nuclear Information System (INIS)

    1992-02-01

    The main objective of the workshop was to bring together, and get talking to each other, long-term safety modellers, geochemical modellers and experimenters working in the field of chemical effects, and to give an insight into their respective activity areas and problem constellations. Lectures on the following subjects were given: modelling of chemical effects in long-term safety analysis; influence of brines; corrosion experiments; sorption experiments; actinide chemistry experiments; geochemical modelling; requirements of safety analyses and geochemical modelling. The workshop concluded with a detailed discussion of the subjects raised and of interdisciplinary aspects. (orig./DG) [de

  11. Chemical composition, antioxidant effects and antimicrobial ...

    African Journals Online (AJOL)

    Thymus vulgaris, Cinnamomum zeylanicum and Ocimum gratissimum are spices widely used as aroma enhancers and food preservatives. This work assessed the chemical composition, antioxidant and antimicrobial effect of their essential oils on some food pathogenic bacteria, namely, Staphylococcus aureus, Citrobacter ...

  12. Evaluating the Effects of Chemicals on Nervous System Development

    Science.gov (United States)

    There are thousands of chemicals that lack data on their potential effects on neurodevelopment. EPA is developing New Approach Methods to evaluate these chemicals for developmental neurotoxicity hazard.

  13. Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Research highlights: → Aluminum hydroxide precipitation boundary is similar to that for amorphous phase. → Various precipitation tests are combined into one map in temperature-'pH + p[Al] T '. → Flocculation tendency of precipitates depend on pH and total Al concentration. → DLVO theory explains qualitatively the dependency of flocculation tendency on pH. - Abstract: Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al] T ' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  14. Combined genetic effects of chemicals and radiation

    International Nuclear Information System (INIS)

    Kada, T.; Inoue, T.; Yokoiyama, A.; Russel, L.B.

    1979-01-01

    Interactions of chemicals and radiation are complex and there may exist other unexpected patterns that are not mentioned. We show some examples. Photodynamic mutation induction by fluorescein dyes and Radiosensitization with iodine compounds are classified as Interactions of chemicals and radiation outside of the cell. On the other hand, the Antimutagenic effects of cobaltous chloride is concerned with events taking place in cells that had already been exposed to a mutagenic agent. It is likely that the action of a mutagenic agent is not direct and that cellular functions, such as mutators or repair systems, are involved in the mutagenesis initiated by the agent. Such cellular functions can be affected by a second agent. In sexually reproducing organisms, the two agents can also act on separate cells (male and female germcells) which subsequently fuse. Interaction effects of all types will be useful in future research in shedding light on the main pathways of mutagenesis

  15. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  16. Chemical decontamination solutions: Effects on PWR equipment

    International Nuclear Information System (INIS)

    Pezze, C.M.; Colvin, E.R.; Aspden, R.G.

    1992-01-01

    A critical objective for the nuclear industry is the reduction of personnel exposure to radiation. Reductions have been achieved through industry's radiation management programs including training and radiation awareness concepts. Increased plant maintenance and higher radiation fields at many sites continue to raise concerns. To alleviate the radiation exposure problem, the sources of radiation which contribute to personnel exposure must be removed from the plant. A feasible was of significantly reducing these sources from a Pressurized Water Reactor (PWR) is to chemically decontaminate the entire reactor coolant system (RCS). A program was conducted to determine the technical acceptability of using certain dilute chemical solvent processes for full RCS chemical decontamination. The two processes evaluated were CAN-DEREM and LOMI. The purpose of the program was to define and complete a systematic evaluation of the major issues that need to be addressed for the successful decontamination of the entire RCS and affected portions of the auxiliary systems of a four-loop PWR system. A test program was designed to evaluate the corrosion effects of the two decontamination processes under expected plant conditions. Materials and sample configurations dictated by generic PWR components were evaluated. The testing also included many standard corrosion coupons. The test data were then used to assess the impact of chemical decontamination on the physical condition and operability of the components, equipment and mechanical systems that make up the RCS. An overview of the test program, sample configurations, data and engineering evaluations is presented. The data demonstrate that through detailed engineering evaluations of corrosion data and equipment function, the impact of full RCS chemical decontamination on plant equipment is established

  17. Combined genetic effects of chemicals and radiation

    International Nuclear Information System (INIS)

    Kada, T.; Inoue, T.; Yokoiyama, A.; Russell, L.B.

    1979-01-01

    The interactions of chemicals and radiation are complex, and there may exist other unexpected patterns. The photodynamic induction of mutation by fluorescein dyes, and the radiosensitization with iodine compounds are classified as the interactions of chemicals and radiation outside cells. On the other hand, the antimutagenic effects of cobaltous chloride is concerned with the events taking place in the cells that had already been exposed to mutagenic agents. It is likely that the action of mutagenic agents is not direct, and that cellular functions, such as mutators or repair systems, are involved in the mutagenesis initiated by the agents. Such cellular functions can be affected by a second agent. In sexually reproducing organisms, two agents can also act on separate cells (male and female germ cells) which subsequently fuse. In mice, the experiments combining the radiation applied to one sex with the chemicals given to the other sex are only in early stages. Males were irradiated with X-ray (spermatozoa and spermatids sampled) and females (mature oocytes) were treated with caffeine. When the endpoint was dominant lethal, the level of X-ray effect induced in the male genome was independent of the caffeine treatment of the female. However, when the endpoint was sex-chromosome-loss, and a different strain of female was used, the caffeine potentiation was statistically significant at 5% level. (Yamashita, S.)

  18. Chemical effects in the near-field

    International Nuclear Information System (INIS)

    Ewart, F.T.; Tasker, P.W.

    1987-01-01

    A research program is described which is designed to investigate the chemical conditions in the near-field of a concrete based repository and the behavior of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a new coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. Results are reported for plutonium, americium, neptunium and lead; these results have been under to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behavior of plutonium and americium, under the same conditions, have been studied, the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio

  19. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  20. Isotope effects of sulfur in chemical reactions

    International Nuclear Information System (INIS)

    Mikolajczuk, A.

    1999-01-01

    Sulfur is an important component of organic matter because it forms compounds with many elements. Due to high chemical activity of sulfur, it takes part in biological and geological processes in which isotope effects are occurring. It has been shown during last years research of isotope effects that we have take into account not only mass difference but also many other physical properties of nuclides e.g. even or odd number of neutrons in nuclei, shape and distribution of charge, turn of nuclear spin etc. The factor remains that new theoretical ideas have been formed on the base of data, being obtained in fractionation processes of heavy element isotope, particularly uranium. Now it is being well known that effects unconnected with vibration energy have also caused an effect on fractionation of considerably lighter elements like iron and magnesium. The important question is, if these effects would come to light during the separation of sulfur isotopes. Sulfur have three even isotopes M = (32, 34, 36) and one odd M 33). This problem is still open. (author)

  1. Thermo effect of chemical reaction in irreversible electrochemical systems

    International Nuclear Information System (INIS)

    Tran Vinh Quy; Nguyen Tang

    1989-01-01

    From first law of thermodynamics the expressions of statistical calculation of 'Fundamental' and 'Thermo-chemical' thermal effects are obtained. Besides, method of calculation of thermal effect of chemical reactions in non-equilibrium electro-chemical systems is accurately discussed. (author). 7 refs

  2. An integrated multi-label classifier with chemical-chemical interactions for prediction of chemical toxicity effects.

    Science.gov (United States)

    Liu, Tao; Chen, Lei; Pan, Xiaoyong

    2018-05-31

    Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Cost effectiveness of dilute chemical decontamination

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Weyman, G.D.

    The basic principles of dilute chemical decontamination are described, as well as the method of application. Methods of computing savings in radiation dose and costs are presented, with results from actual experience and illustrative examples. It is concluded that dilute chemical decontamination is beneficial in many cases. It reduces radiation exposure of workers, saves money, and simplifies maintenance work

  4. Immune effects of respiratory exposure to fragrance chemicals

    OpenAIRE

    Ezendam J; Klerk A de; Cassee FR; Fokkens PHB; Park MVDZ; Loveren H van; Jong WH de; GBO

    2007-01-01

    Inhalation of the fragrance chemicals, isoeugenol and cinnamal, by mice resulted in immune reactions in the respiratory tract. This was observed in experiments performed by the RIVM (National Institute for Public Health and the Enviroment) of which results indicate that inhalation of some fragrance chemicals could induce unwanted effects on the immune system. Fragrance chemicals are common ingredients in such consumer products as cosmetics and scented products. Several fragrance chemicals are...

  5. Chemical exchange effects in spectral line shapes

    International Nuclear Information System (INIS)

    Diaz, M.A.; Veguillas, J.

    1990-01-01

    A theory of spectral-line shapes has been extended to the case in which relaxation broadening may be influenced by reactive interactions. This extension is valid for gaseous systems in the same way it is valid for condensed media, and particularly, for such chemical mechanisms as isomerizations. The dependence of the spectral rate on the chemical exchange rate is clarified. Finally, a discussion concerning the above aspects and their applications has been included. (author)

  6. Chemical effect on ozone deposition over seawater

    Science.gov (United States)

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  7. Silicon Nanowire Field-effect Chemical Sensor

    NARCIS (Netherlands)

    Chen, S.

    2011-01-01

    This thesis describes the work that has been done on the project “Design and optimization of silicon nanowire for chemical sensing‿, including Si-NW fabrication, electrical/electrochemical modeling, the application as ISFET, and the build-up of Si- NW/LOC system for automatic sample delivery. A

  8. Perda de carga em filtros orgânicos utilizados no tratamento de água residuária de suinoculturas Head-loss evolution in organic filters for swine wastewater treatment

    Directory of Open Access Journals (Sweden)

    Antonio T. de Matos

    2010-06-01

    Full Text Available Com a realização deste trabalho, objetivou-se parametrizar a equação de evolução da perda de carga, para descrição do processo de filtração de água residuária da suinocultura. No preenchimento das colunas filtrantes, foram utilizados bagaço de cana-de-açúcar triturado, serragem de madeira e pergaminho de grãos de café. Dados de perda de carga em diferentes profundidades e tempos de operação dos filtros orgânicos foram coletados para ajuste das equações de perda de carga. Para as equações ajustadas, foram obtidos altos coeficientes de determinação, sendo que a significância dos coeficientes da regressão foi, na sua quase totalidade, de 1% de probabilidade, podendo ser utilizada na predição do comportamento dos filtros. As variáveis tempo de operação e profundidade das colunas filtrantes, constituídas pelos três materiais filtrantes, apresentaram comportamento quadrático na estimativa da perda de carga total. O tempo ideal de operação ininterrupta dos filtros, sem troca de material filtrante, foi de, aproximadamente, 1,5 h e, depois de corrido esse tempo, o material filtrante deverá ser substituído.This work was developed to adjust the equation of head-loss, describing the head-loss process with the depth and operation time of organic filter utilized in treatment of swine wastewater. Sugarcane bagasse, sawdust and coffee husk, by-products of agricultural and agro-industrial activities, were used to fill the filter columns. Data on head-loss in different depths with the time of organic filters operation were collected to analyze the head-loss evolution. In head-loss equations as function of depth and filter operation time high values were obtained for the coefficients of determination and the regression coefficients presented, in almost, significant at 1% probability, predicting the behavior of the filters, constituted of sawdust, sugarcane bagasse and coffee husk. The variables, operation time and the filter

  9. Effectiveness and efficiency of chemical mutagens in cowpea (Vigna ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... A study was undertaken in a cowpea (Vigna unguiculata (L.) Walp.) variety CO 6 to assess the efficiency and effectiveness of chemical mutagens; ethyl methane sulphonate (EMS), diethyl sulphate (DES) and sodium azide (SA). EMS treatments were found highly effective than the other chemicals.

  10. Managing major chemical accidents in China: Towards effective risk information

    International Nuclear Information System (INIS)

    He Guizhen; Zhang Lei; Lu Yonglong; Mol, Arthur P.J.

    2011-01-01

    Chemical industries, from their very inception, have been controversial due to the high risks they impose on safety of human beings and the environment. Recent decades have witnessed increasing impacts of the accelerating expansion of chemical industries and chemical accidents have become a major contributor to environmental and health risks in China. This calls for the establishment of an effective chemical risk management system, which requires reliable, accurate and comprehensive data in the first place. However, the current chemical accident-related data system is highly fragmented and incomplete, as different responsible authorities adopt different data collection standards and procedures for different purposes. In building a more comprehensive, integrated and effective information system, this article: (i) reviews and assesses the existing data sources and data management, (ii) analyzes data on 976 recorded major hazardous chemical accidents in China over the last 40 years, and (iii) identifies the improvements required for developing integrated risk management in China.

  11. High-throughput screening of chemical effects on ...

    Science.gov (United States)

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples on steroidogenesis via HPLC-MS/MS quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a three stage screening strategy. The first stage established the maximum tolerated concentration (MTC; >70% viability) per sample. The second stage quantified changes in hormone levels at the MTC while the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were pre-stimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2,060 chemical samples evaluated, 524 samples were selected for six-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into five distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A d

  12. Prevalence and effects of multiple chemical sensitivities in Australia

    Directory of Open Access Journals (Sweden)

    Anne Steinemann

    2018-06-01

    Full Text Available Multiple chemical sensitivities (MCS is a medical condition associated with exposure to common chemical pollutants. The aims of this study are to assess the prevalence of MCS, its overlaps with asthma and fragrance sensitivity, and its health and societal effects in Australia. Data were collected in June 2016 using an on-line survey with a representative national sample (N = 1098 of adults (ages 18–65 in Australia. Results found that, across the country, 6.5% report medically diagnosed MCS, 18.9% report chemical sensitivity (being unusually sensitive to everyday chemicals and chemically formulated products, and 19.9% either or both. Among people with MCS, 74.6% also have diagnosed asthma or an asthma-like condition, and 91.5% have fragrance sensitivity, reporting health problems (such as migraine headaches when exposed to fragranced consumer products (such as air fresheners and cleaning supplies. In addition, among people with MCS, 77.5% are prevented from access to places because of fragranced products, 52.1% lost workdays or a job in the past year due to fragranced product exposure in the workplace, and 55.4% report health effects considered potentially disabling. Results indicate that MCS is a widespread disease, affecting an estimated 1 million adult Australians, with chemical sensitivity affecting another 2 million. Reducing chemical exposure to problematic sources, such as fragranced consumer products, is critical to reduce adverse effects. Keywords: MCS, Multiple chemical sensitivities, Chemical sensitivity, Asthma, Fragrance sensitivity, Fragranced consumer products

  13. WEED CONTROL EFFECTS ON SOIL CHEMICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2008-01-01

    Full Text Available The weed control procedures are known to affect the soil physical attributes and the nutrient amount taken up by weed roots. This work hypothesis is that weed control methods might also affect soil chemical attributes. Four experiments were carried out, three with maize (E-1, E-2 and E-3 and one with cotton (E-4, in randomized complete blocks design arranged in split-plots, with five replications. In E-1 experiment, the plots consisted of two weed control treatments: no-weed control and weed shovel-digging at 20 and 40 days after sowing; and the subplots consisted of six maize cultivars. In the three other experiments, the plots consisted of plant cultivars: four maize cultivars (E-2 and E-3 and four cotton cultivars (E-4. And, the subplots consisted of three weed control treatments: (1 no-weed control; (2 weed shovel-digging at 20 and 40 days after sowing; and (3 intercropping with cowpea (E-2 or Gliricidia sepium (Jacq. Walp. (E-3 and E-4. In all experiments, after harvest, eight soil samples were collected from each subplot (0-20 cm depth and composed in one sample. Soil chemical analysis results indicated that the weed control by shovel-digging or intercropping may increase or decrease some soil element concentrations and the alterations depend on the element and experiment considered. In E-2, the weed shovel-dug plots showed intermediate soil pH, lower S (sum of bases values and higher soil P concentrations than the other plots. In E-4, soil K and Na concentrations in plots without weed control did not differ from plots with intercropping, and in both, K and Na values were higher than in weed shovel-dug plots. Maize and cotton cultivars did not affect soil chemical characteristics.

  14. Modelação da perda de carga na filtração direta ascendente em meio granular de areia grossa e pedregulho Modeling of the head loss in up flow coarse sand and gravel direct filtration

    Directory of Open Access Journals (Sweden)

    Alexandre Botari

    2009-06-01

    Full Text Available Compreender e quantificar os mecanismos relacionados à perda de carga e à remoção de partículas em um meio filtrante granular é de importância fundamental para o estudo do processo da filtração. Este trabalho apresenta o desenvolvimento dos modelos de perda de carga na filtração em meios porosos e a proposição da modelação matemática semiempírica da perda de carga para meios filtrantes limpos e do desenvolvimento do perfil de perda de carga ao longo do tempo de filtração a partir da equação de Ergun. Objetivou-se a determinação dos valores das constantes da equação de Ergun para meio granular de areia grossa e pedregulho. Alguns exemplos de aplicação dessa modelação matemática são também apresentados e discutidos pelos autores com base em dados experimentais obtidos em uma estação piloto de dupla filtração.To understand and to quantify the head loss due to the particles removal in a porous medium has primary importance to filtration process study. This paper presents the development of the models of head loss used in the filtration in porous media and proposes a mathematical semi-empiric model for head loss in clean beds and head loss increasing profile during the filtration run length, by means of the Ergun equation. The goal was the determination of Ergun’s equation coefficients for granular material constituted of coarse sand and gravel. Examples of application of these mathematical modeling are also presented and discussed by the authors based on experimental data obtained in a double filtration pilot plant.

  15. Silicon Nanowire Field-effect Chemical Sensor

    OpenAIRE

    Chen, S.

    2011-01-01

    This thesis describes the work that has been done on the project “Design and optimization of silicon nanowire for chemical sensing‿, including Si-NW fabrication, electrical/electrochemical modeling, the application as ISFET, and the build-up of Si- NW/LOC system for automatic sample delivery. A novel top-down fabrication technique was presented for single-crystal Si-NW fabrication realized with conventional microfabrication technique. High quality triangular Si-NWs were made with high wafer-s...

  16. Effects of Irradiation on Albite's Chemical Durability.

    Science.gov (United States)

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  17. Effect of chemical reaction on unsteady MHD free convective two ...

    African Journals Online (AJOL)

    The effect of flow parameters on the coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, ...

  18. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  19. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  20. Chemical warfare in freshwater, allelopathic effects of macrophytes on phytoplankton

    NARCIS (Netherlands)

    Mulderij, G.

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field

  1. Chemical warfare in freshwater. Allelpathic effects of macrophytes on phytoplankton

    NARCIS (Netherlands)

    Mulderij, G.

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field

  2. Cost effectiveness of dilute chemical decontamination

    International Nuclear Information System (INIS)

    Le Surf, J.E.; Weyman, G.D.

    1983-01-01

    The origin and basic principles of the dilute chemical decontamination (DCD) concept are described and illustrated by reference to the CAN-DECON process. The estimated dose savings from the actual application of the process at several reactors are presented and discussed. Two methods of performing a cost/benefit appraisal are described and discussed. This methodology requires more study by the nuclear industry, including collection by station staff of relevant data on which future cost/benefit appraisals may be based. Finally, three illustrative cases are examinated to show the breakeven point and potential savings achievable by DCD with different initial radiation fields and different amounts of work to be done. The overall conclusion is that there are many situations in which DCD is desirable to reduce radiation exposure of workers, to save costs to the station, and to ease the performance of maintenance and repair work on reactor systems

  3. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    Science.gov (United States)

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chemical composition and antinociceptive effects of essential oil ...

    African Journals Online (AJOL)

    Antinociceptive effect of EOGT in rats was carried out using chemical (formalin and acetic acid) and .... rat using a microsyringe with a 27 gauge needle. Immediately after formalin ... SEM, and were analyzed using GraphPad Prism. Statistically ...

  5. Investigating the effects of different physical and chemical stress ...

    African Journals Online (AJOL)

    2018-04-09

    Apr 9, 2018 ... bacteria from extreme physical and chemical stress conditions. Additionally .... by inducing stress response genes, become more tolerant phenotypes ..... biofilm, monochloramine is more effective than free chlorine over long ...

  6. Effect of Biological and Chemical Ripening Agents on the Nutritional ...

    African Journals Online (AJOL)

    Effect of Biological and Chemical Ripening Agents on the Nutritional and Metal Composition of Banana ( Musa spp ) ... Journal Home > Vol 18, No 2 (2014) > ... curcas leaf were used and compared with a control with no ripening agent.

  7. Effect of potassium on micromorphological and chemical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... study the effect of potassium on yield and internal leaf tissues composition of cotton ... Nitrogen (N) and phosphorus (P) were applied at 150 mg N/kg soil and 75 mg ..... Copper enzymes in isolated chloroplasts: Polyphenol.

  8. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  9. Potential health effects associated with dermal exposure to occupational chemicals.

    Science.gov (United States)

    Anderson, Stacey E; Meade, B Jean

    2014-01-01

    There are a large number of workers in the United States, spanning a variety of occupational industries and sectors, who are potentially exposed to chemicals that can be absorbed through the skin. Occupational skin exposures can result in numerous diseases that can adversely affect an individual's health and capacity to perform at work. In general, there are three types of chemical-skin interactions of concern: direct skin effects, immune-mediated skin effects, and systemic effects. While hundreds of chemicals (metals, epoxy and acrylic resins, rubber additives, and chemical intermediates) present in virtually every industry have been identified to cause direct and immune-mediated effects such as contact dermatitis or urticaria, less is known about the number and types of chemicals contributing to systemic effects. In an attempt to raise awareness, skin notation assignments communicate the potential for dermal absorption; however, there is a need for standardization among agencies to communicate an accurate description of occupational hazards. Studies have suggested that exposure to complex mixtures, excessive hand washing, use of hand sanitizers, high frequency of wet work, and environmental or other factors may enhance penetration and stimulate other biological responses altering the outcomes of dermal chemical exposure. Understanding the hazards of dermal exposure is essential for the proper implementation of protective measures to ensure worker safety and health.

  10. Molecular effects: interactions with chemicals and viruses

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1980-01-01

    Research focused upon an understanding of the cellular responses to the molecular effects of ionizing radiation should be an essential program component in the Federal Strategy for Research into the Biological Effects of Ionizing Radiation. Although we know that DNA is a principal target molecule for some highly significant biological effects of ionizing radiation, we need to learn which other target substances such as membrane components may also be important. Most of the emphasis should continue to be on DNA effects and highest priority should be assigned to the identification of the complete spectrum of products produced in DNA. Once the lesions are known we can proceed to determine how these behave as blocks to replication and transcription or as modulators on the fidelity of these crucial processes. Considerable work should be done on the repair of these lesions. High priority should be given to the search for mutants in mammalian cell systems with evident defects in the processing of specific lesions. Viruses should provide important tools for the research in this area, as probes for host cell repair responses and also for the isolation of mutants. Furthermore, it is important to consider the interaction of viruses and ionizing radiation with regard to possible modulating effects on repair processes and tumorigenesis. Finally we must consider the important problem of the modification of repair responses by environmental factors

  11. Chemical composition and prophylactic effects of Saturja ...

    African Journals Online (AJOL)

    Results: The main components of SKEO were carvacrol (78.8%), thymol (7.5%), and beta-Bisabolene (1.2%). Findings of prophylactic effects revealed that mortality rate of infected mice was 8 days after oral administration of SKEO at the concentration of 0.2 and 0.3ml/kg (P<0.05). In contrast, this value for control group was ...

  12. Delayed effects of nuclear and chemical weapons in man

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1984-01-01

    Delayed radiation effects are discussed of the use of nuclear and chemical weapons (defoliants and herbicides). Attention is drawn to the development of delayed malignities in exposed subjects and their pathophysiologic causes are explained. The only prevention of these effects is to prohibit the use of weapons of mass destruction. (author)

  13. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  14. Determination of chemical solute transport parameters effecting radiostrontium interbed sediments

    International Nuclear Information System (INIS)

    Hemming, C.; Bunde, R.L.; Rosentreter, J.J.

    1993-01-01

    The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented

  15. Health effects assessment of chemical exposures: ARIES methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-07-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs.

  16. Health effects assessment of chemical exposures: ARIES methodology

    International Nuclear Information System (INIS)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-01-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs

  17. Health and environmental effects of complex chemical mixtures: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The Office of Health and Environmental Research (OHER) of the Department of Energy supports a broad long-term research program on human health and environmental effects from potential exposure to energy-related complex chemical mixtures. The program seeks basic mechanistic data on the effects of complex mixtures at the cellular, molecular, and whole animal levels to aid in predicting human health effects and seeks ecological data on biological and physical transformations in the mixtures, concentrations of the mixtures in various compartments of the environment, and potential routes for human exposure to these mixtures (e.g., food chain). On June 17-18, 1985, OHER held its First Annual Technical Meeting on the Complex Chemical Mixtures Program in Chicago, IL. The primary purpose of the meeting was to enable principal investigators to report the research status and accomplishments of ongoing complex chemical mixture studies supported by OHER. To help focus future research directions round table discussions were conducted.

  18. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. Adsorption and catalysis: The effect of confinement on chemical reactions

    International Nuclear Information System (INIS)

    Santiso, Erik E.; George, Aaron M.; Turner, C. Heath; Kostov, Milen K.; Gubbins, Keith E.; Buongiorno-Nardelli, Marco; Sliwinska-Bartkowiak, MaIgorzata

    2005-01-01

    Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area

  20. Radiation chemical effects of X-rays on liquids

    International Nuclear Information System (INIS)

    Holroyd, R.A.; Preses, J.M.

    1998-01-01

    This review describes some of the chemical changes induced by photoelectrons which are released in liquids when X-rays are absorbed. Both experimental studies and theory are discussed. In part 1, the basic processes occurring upon absorption of X-rays are described. Parts 2 and 3 deal with hydrocarbon liquids; in part 2 the ion yields, including effects at K-edges, and in part 3, the yields of excited states. Part 4 discusses chemical effects of X-rays in aqueous solutions. The authors end with a summary of future needs and directions

  1. Chemical effects of /sup 32/P recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, N [Tokyo Univ. (Japan). Coll. of General Education

    1975-06-01

    Szilard-Chalmers' effect of /sup 32/P were reviewed. The concentration method using Szilard-Chalmers' effect in production of radioisotope, circumstances such as exposure time in an atomic pile, states of target substances and the yields by them were discussed. Many kinds of chemical effects, such as chemical effects of /sup 32/P recoil atom in phosphorated glass, studies of the effect of adducts, the threshold of ..gamma..-ray effect, the oxidation number of /sup 32/P in phosphorated glass by exposure time in the pile and the labelling position of /sup 32/P, are associated with caryotransformation (nuclear transformation) by environmental factors. The abovementioned articles were explained concerning /sup 32/P.

  2. National Prevalence and Effects of Multiple Chemical Sensitivities.

    Science.gov (United States)

    Steinemann, Anne

    2018-03-01

    The aim of this study was to assess the prevalence of multiple chemical sensitivities (MCS), its co-occurrence with asthma and fragrance sensitivity, and effects from exposure to fragranced consumer products. A nationally representative cross-sectional population-based sample of adult Americans (n = 1137) was surveyed in June 2016. Among the population, 12.8% report medically diagnosed MCS and 25.9% report chemical sensitivity. Of those with MCS, 86.2% experience health problems, such as migraine headaches, when exposed to fragranced consumer products; 71.0% are asthmatic; 70.3% cannot access places that use fragranced products such as air fresheners; and 60.7% lost workdays or a job in the past year due to fragranced products in the workplace. Prevalence of diagnosed MCS has increased over 300%, and self-reported chemical sensitivity over 200%, in the past decade. Reducing exposure to fragranced products could help reduce adverse health and societal effects.

  3. Effects of radiation and other influences on chemical lymphomagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, H.J.

    1987-06-01

    Methylnitrosourea (MNU) or butylnitrosourea (BNU) was used to induce T cell lymphomas (thymomas) in BDF/sub 1/ mice. In addition to the chemical, X-rays in various dose schedules were applied. An effect of the irradiation (shortening of the latency period) was seen with 12 x 0.25 Gy in protocols with a prolonged median induction time in the controls as a result of a dose reduction of the chemical (median induction time 27-36 weeks instead of 16-18 weeks under optimal conditions using 50 mg kg/sup -1/ of MNU). Preirradiation 2-5 weeks before 40 mg kg/sup -1/ of MNU resulted in enhanced leukaemogenesis. Also, mice with regenerating lympho-haemopoiesis after lethal irradiation and bone marrow transplantation were more sensitive to the effect of both chemicals than were the controls. Treatment with anti-thy 1.2 and with corynebacterium parvum during the latency period had no influence.

  4. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, David

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a

  5. Effect of packaging and chemical treatment on storage life and ...

    African Journals Online (AJOL)

    Fresh fruits and vegetables are inherently more liable to deterioration under tropical conditions characterized by high ambient temperatures and humidity. In determining the effects of chemical treatment on tomatoes (Lycopersicon esculentum Mill cv. Roma), fruits purchased at turning stage of ripening were packaged in low ...

  6. Residual effects of animal manures on physical and chemical ...

    African Journals Online (AJOL)

    This experiment was conducted to investigate effects of animal manures on chemical composition of silage produced from Panicum maximum (Ntchisi) two - years post application. The plots were established in June 2010 during this period, animal manures from cattle dung, swine waste, poultry droppings and small ...

  7. Effect of Phosphorus Fertilizer Application on Some Soil Chemical ...

    African Journals Online (AJOL)

    Research was conducted during the 2004, 2005 and 2006 cropping seasons to study the effect of phosphorus fertilizer on some soil chemical properties and nitrogen fixation of legumes at Bauchi, northeastern Nigeria. Composite soil samples were collected from sites before planting and after harvesting at the depths of ...

  8. Effect of maturity stage and processing on chemical composition, in ...

    African Journals Online (AJOL)

    Effect of maturity stage and processing on chemical composition, in vitro gas production and preference of Panicum maximum and Pennisetum purpureum. ... It is concluded that in order to optimize DM intake farmers should consider the type of grasses and their age at harvest particularly for Muturu. Pelleting improves ...

  9. The effects on health of radiological and chemical toxicity

    International Nuclear Information System (INIS)

    Toledano, M.; Flury-Herard, A.

    2003-01-01

    Future trends in the protection against the effects on health of radiological and/or chemical toxicity will certainly be based on improved knowledge of specific biological mechanisms and individual sensitivity. Progress in these areas will most likely be made at the interfaces between research, health care and biomedical monitoring. (authors)

  10. Effect of natural and chemical insecticides on Hyalopterus pruni and ...

    African Journals Online (AJOL)

    Experiments were carried out to evaluate the effect of water extracts of Fagonia arabica, Salix alba and Anthmis pseudocotula and their mixtures with chemical insecticide (Malathion) on growth of. Hyalopterus pruni and characters of Armeniaca vulgaris plants and their soils. The data revealed that F.arabica extract at 20% ...

  11. Effects of Molasses and Storage Period on the Chemical, Microbial ...

    African Journals Online (AJOL)

    The study was conducted to determine the effects of molasses and storage periods on the chemical composition, microbial and fermentation characteristics of silage produced from guinea grass and cassava leaves mixture. Guinea grass was harvested at 2 months regrowth from an established pasture and cassava tops ...

  12. Effective chemical control of fruit flies (Diptera: Tephritidae) pests in ...

    African Journals Online (AJOL)

    Effective chemical control of fruit flies (Diptera: Tephritidae) pests in mango orchards in northern Côte-d'Ivoire. OR N'depo, N Hala, A N'da Adopo, F Coulibaly, PK Kouassi, JF Vayssieres, M de Meyer ...

  13. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  14. Effects of different organic materials and chemical fertilizers on ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... 2The Chamber of Agricultural Engineers, Gaziantep, Turkey. Accepted 5 July, 2010. This study was conducted under greenhouse conditions to investigate the effects of applied nutrients such as ... Key words: Organic material, chemical fertilizer, Pistacia vera L., soil ... systematic approach of soil and plant.

  15. Effect of integration of cultural, botanical, and chemical methods of ...

    African Journals Online (AJOL)

    A field experiment was conducted from November 2011 to June 2013 to evaluate the effects of botanical, cultural, and chemical methods on termite colony survival, crop and wooden damage, and other biological activities in Ghimbi district of western Ethiopia. The termite mounds were dug and the following treatments were ...

  16. Effects of thermal treatments and germination on physico-chemical ...

    African Journals Online (AJOL)

    Certain physico-chemical properties including viscoelasticity, crystallinity and maltose content of corn depends on the gelatinization of starch under different treatments. Three different treatments were performed; boiling in water, steam heating, and germination. The effects of gelatinization on viscoelastic property of corn ...

  17. Antifoaming effect of chemical compounds in manure biogas reactors

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan

    2013-01-01

    A precise and efficient antifoaming control strategy in bioprocesses is a challenging task as foaming is a very complex phenomenon. Nevertheless, foam control is necessary, as foam is a major operational problem in biogas reactors. In the present study, the effect of 14 chemical compounds on foam......), siloxanes (polydimethylsiloxane) and ester (tributylphosphate) were found to be the most efficient compounds to suppress foam. The efficiency of antifoamers was dependant on their physicochemical properties and greatly correlated to their chemical characteristics for dissolving foam. The antifoamers were...... more efficient in reducing foam when added directly into the liquid phase rather than added in the headspace of the reactor....

  18. The effects of environmental chemicals on renal function.

    Science.gov (United States)

    Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard

    2015-10-01

    The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.

  19. Effectiveness and environmental considerations for non-dispersant chemical countermeasures

    International Nuclear Information System (INIS)

    Walker, A.H.; Kucklick, J.H.; Michel, J.

    1999-01-01

    Mechanical countermeasures for oil spill response have various effectiveness and operational limitations under certain spill situations. This has led to an interest in and use of alternative treatment methods. This chapter reviews the potential utility of one such group, nondispersant chemical countermeasures, in controlling the adverse impacts from marine oil spills. The types of nondispersant chemical countermeasures presented here include: herding agents, emulsion treating agents, solidifiers, elasticity modifiers, and shoreline cleaning agents. Each countermeasure group is discussed separately to provide a definition, mechanism of action, and effectiveness and environmental considerations for the group. Where ever possible, examples are given of countermeasure use during an actual spill. In addition to the groups mentioned above, a few other treating agents are briefly described under the section 'Miscellaneous Agents' to illustrate other, less prominent types of chemical countermeasures. Non-dispersant chemical countermeasures appear to have discrete response niches, i.e. situations where the countermeasures are well-suited and offer potential benefits. The key is matching conditions for optimal effectiveness with the appropriate incident-specific characteristics and window of opportunity. The practical aspects of logistics are not addressed because, if their potential utility can be demonstrated, the resolution of these issues would follow. (author)

  20. The effects of specified chemical meals on food intake.

    Science.gov (United States)

    Koopmans, H S; Maggio, C A

    1978-10-01

    Rats received intragastric infusions of various specified chemical meals and were subsequently tested for a reduction in food intake. A second experiment, using a novel technique, tested for conditioned aversion to the meal infusions. The nonnutritive substances, kaolin clay and emulsified fluorocarbon, had no significant effect on food intake. Infusions of 1 M glucose and 1 M sorbitol reduced feeding behavior, but the 1 M sorbitol infusion also produced a conditioned aversion to flavored pellets paired with the sorbitol infusion, showing that the reduced feeding could have been caused by discomfort. Infusion of a high-fat meal consisting of emulsified triolein mixed with small amounts of sugar and protein or the rat's normal liquid diet, Nutrament, also reduced food intake, and both infusions failed to produce a conditioned aversion. The use of specified meals to understand the chemical basis of satiety requires a sensitive behavioral test to establish that the meal does not cause discomfort or other nonspecific effects.

  1. Uptake of chemicals from indoor air: Pathways and health effects

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2016-01-01

    Building occupants are exposed to manufactured chemicals. Exposure in the indoor environment can occur via non-dietary ingestion (e.g. indoor dust), inhalation and dermal absorption including dermal uptake directly from air. The extent of dermal uptake from air has been previously studied...... for volatile organic compounds (VOC). Not much is however known about its role for semivolatile organics (SVOC) and therefore this exposure pathway is often neglected in exposure assessments. Dermal uptake received attention with regards to contact transfer from contaminated surfaces. Recent modeling efforts...... intake from inhalation. Further experiments have been conducted with nicotine and the results are similar. Some of the SVOCs present indoors may have adverse health effects or are categorized as potential endocrine-disrupting compounds. It has been suggested that the health effects of a chemical may...

  2. Physico-chemical evaluation of radiation effects on apple juice

    International Nuclear Information System (INIS)

    Blumer, Lucimara; Domarco, Rachel E.; Spoto, Maria H.F.; Walder, Julio M.M.; Matraia, Clarice

    1997-01-01

    Gala and Fuji varieties apple's juice were clarified with enzyme and irradiated aiming to extend the shelf-life without conservants and chemical additives. The juices were analysed for soluble solids, titrable acidity, pH and color. Results showed effect of storage periods in soluble solids, pH and color. The variety and storage period modified the titrable acidity. The pH was altered by irradiation dose and the storage period. (author). 9 refs., 6 figs

  3. Irradiation of starches for industrial uses: Chemical and physical effects

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.

    1999-01-01

    Corn and cassava starches have been irradiated with gamma doses from 10 to 180 kGy and pastes have been prepared by boiling the starches in water. The rheological properties of the pastes have been determined showing that the 10 kGy dose reduces sharply the viscosity of the aqueous pastes. The solubility of the irradiated starches has been also studied. The cassava starch irradiated with 180 kGy is soluble in boiling water and remains soluble at room temperature. After some considerations on the chemical effects of the irradiation it is concluded that the irradiation technique is suitable to replace the chemical treatment in many industrial applications of the starch. (author)

  4. Chemical effects of ionizing radiation and sonic energy in the context of chemical evolution

    International Nuclear Information System (INIS)

    Negron Mendoza, A.; Albarran, G.

    1992-01-01

    Ionizing radiation and sonic energy are considered as sources for chemical evolution processes. These sources have still a modest place in the interdisciplinary approach for the prebiological synthesis of organic compounds. Studies in Radiation Chemistry and Sonochemistry can provide a deeper insight into the chemical processes that may have importance for prebiotic chemistry. The present work concerns the analysis of some chemical reactions induced by ionizing radiation or cavitation in aqueous media that may be relevant to chemical evolution studies. (author)

  5. The modelling of direct chemical kinetic effects in turbulent flames

    Energy Technology Data Exchange (ETDEWEB)

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  6. Biological Effects of Interaction between Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Kyung Man; Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2009-05-15

    The organisms are exposed to natural radiations from cosmic or terrestrial origins. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. The combined action between radiation and various chemicals is a distinguishing feature of modern life. Mercury chloride is a widespread environmental pollutant that is known to have toxic effects. Synergistic effects of radiation and HgCl{sub 2} on human cells was previously reported. NAC is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been explored in several studies. There has been an increasing interest of studying the role of NAC as a radioprotective substance. The present study was designed not only to assess the synergistic effects between radiation and HgCl{sub 2}, but also to investigate protective effects of NAC on cells.

  7. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    Fremuth, F.

    1981-01-01

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  8. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  9. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

    International Nuclear Information System (INIS)

    Bae, Eun Joo; Park, Hee Jin; Park, Jun Su; Yoon, Je Yong; Yi, Jong Heop; Kim, Young Hun; Choi, Kyung Hee

    2011-01-01

    Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers

  10. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Eun Joo; Park, Hee Jin; Park, Jun Su; Yoon, Je Yong; Yi, Jong Heop [Seoul National University, Seoul (Korea, Republic of); Kim, Young Hun [Kwangwoon University, Seoul (Korea, Republic of); Choi, Kyung Hee [National Institute of Environmental Research, Incheon (Korea, Republic of)

    2011-02-15

    Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

  11. Effects of Chemical Treatments on Microbiologically Influenced Corrosion

    Science.gov (United States)

    Friedman, E. S.; Strom, M.; Dexter, S. C.

    2008-12-01

    Biofilms are known to have an effect on galvanic corrosion of alloys in seawater systems. In the Delaware Bay, biofilm formation on surface of cathodes has been shown to cause galvanic corrosion to occur up to 100 times more rapidly. Given the impacts that corrosion can have on structures, it is important to study how we can affect corrosion rates. One way of doing this is the application of chemical treatments to biofilms on metal samples. To investigate this, natural marine biofilms were grown on alloy 6XN stainless steel samples, and various chemical treatments were applied to discover their effects on open circuit potentials and corrosion currents. Another objective of this study was to determine if there was a threshold molecular weight above which molecules were unable to penetrate the biofilm. It was discovered that chemicals with molecular weights as high as 741.6 g/mol were able to penetrate at least some parts of the heterogeneous biofilm and reach the metal surface. No upper threshold value was found in this study. It was found that the reducing agents sodium L-ascorbate and NADH as well as the chelate ferizene caused a drop in open circuit potential of biofilmed 6XN samples. Also, glutaraldahyde, which is used as a fixative for bacteria, shifted the open circuit potential of biofilm samples in the noble direction but had no effect on the corrosion current. Sodium L- ascorbate was found to reach the metal surface, but in concentrations lower than those present in the bulk fluid. It was not determined in this study whether this was due to physical or chemical processes within the biofilm. A synergistic effect was observed when applying a mixture of ferizene and glutaraldahyde. It is thought that this was due to the death of the bacteria as well as the disruption of iron cycling in the biofilm. Finally, it was observed that NADH caused a reduction in current at potentials associated with iron reduction, leading us to believe that the iron was being reduced

  12. Chemical Composition and Hypotensive Effect of Campomanesia xanthocarpa

    Directory of Open Access Journals (Sweden)

    Liane Santariano Sant’Anna

    2017-01-01

    Full Text Available Campomanesia xanthocarpa is known in Brazil as Guabiroba and is popularly used for various diseases, such as inflammatory, renal, and digestive diseases and dyslipidemia. The aim of the study was to analyze the chemical composition and investigate the effects of aqueous extract of C. xanthocarpa on the blood pressure of normotensive rats, analyzing the possible action mechanism using experimental and in silico procedures. The extract was evaluated for total phenolic compounds and total flavonoid content. The chemical components were determined by HPLC analyses. Systolic and diastolic blood pressure and heart rate were measured with extract and drugs administration. The leaves of C. xanthocarpa presented the relevant content of phenolics and flavonoids, and we suggested the presence of chlorogenic acid, gallic acid, quercetin, and theobromine. The acute administration of aqueous extract of C. xanthocarpa has a dose-dependent hypotensive effect in normotensive rats, suggesting that the action mechanism may be mediated through the renin-angiotensin system by AT1 receptor blockade and sympathetic autonomic response. Docking studies showed models that indicated an interaction between chlorogenic acid and quercetin with the AT1 receptor (AT1R active site. The findings of these docking studies suggest the potential of C. xanthocarpa constituents for use as preventive agents for blood pressure.

  13. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  14. Accumulation of Co by abalone, 1. Effect of chemical form

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, T.; Suzuki, Y.; Nakamura, R.; Nakahara, M. (National Inst. of Radiological Sciences, Nakaminato, Ibaraki (Japan). Nakaminato Lab. Brance Office); Shimizu, C.

    1982-03-01

    The appearance of radioactive Co in the liver of abalone from sea water was examined to consider the effect of chemical forms of Co(CoCl/sub 2/ and cyanocobalamin; vitamin B/sub 12/) in sea water upon the metabolisms in marine organisms. Organic /sup 57/Co(cyanocobalamin) from sea water appeared in the liver of abalone combining with a constituent with a molecular weight of 4 x 10/sup 4/. The constituent had the activity of vitamin B/sub 12/, while inorganic /sup 60/Co(CoCl/sub 2/) appeared combining with three constituents with molecular weights more than or equal to 1.5 x 10/sup 6/, 7 x 10/sup 3/ and less than or equal to 1.5 x 10/sup 3/ which did not show the activities of vitamin B/sub 12/. The effect of chemical forms of Co in sea water is significant in its accumulation by some species of marine organisms.

  15. Statistical study of chemical additives effects in the waste cementation

    International Nuclear Information System (INIS)

    Tello, Cledola C.O. de; Diniz, Paula S.; Haucz, Maria J.A.

    1997-01-01

    This paper presents the statistical study, that was carried out to analyse the chemical additives effect in the waste cementation process. Three different additives from two industries were tested: set accelerator, set retarder and super plasticizers, in cemented pates with and without bentonite. The experiments were planned in accordance with the 2 3 factorial design, so that the effect of each type of additive, its quantity and manufacturer in cemented paste and specimens could be evaluated. The results showed that the use of these can improve the cementation process and the product. The admixture quantity and the association with bentonite were the most important factors affecting the process and product characteristics. (author). 4 refs., 9 figs., 4 tabs

  16. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  17. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  18. Effects of scalp dermatitis on chemical property of hair keratin

    Science.gov (United States)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  19. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  20. Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles.

    Directory of Open Access Journals (Sweden)

    Richard Mark Evans

    Full Text Available A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX and cell proliferation (ESCREEN endpoints. Two mixture designs were used: 1 a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10 and 2 a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential

  1. Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles.

    Science.gov (United States)

    Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas

    2012-01-01

    A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators

  2. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  3. Chemical and biological effects of radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Gupta, B.L.

    1975-01-01

    Radiation is extensively used for the sterilization of plastic materials, pharmaceuticals and biological tissue grafts. The pharmaceuticals may be solid, liquid, or suspension in a liquid or a solution. Cobalt-60 gamma radiation, generally used for sterilization, primarily interacts with these materials through the Compton process. The resulting damage may be direct or indirect. In aqueous systems the primary species produced compete for interaction among themselves and the dissolved solutes. The nature, the G-values and the reactions of the primary species very much depend on the pH of the solution. The important chemical changes in plastic materials are gas liberation, change in concentration of double bonds, cross-linking, degradation and oxidation. These chemical changes lead to some physical changes like crystallinity, specific conductivity and permeability. The reactions in biological systems are very complex and are influenced by the presence or absence of water and oxygen. Water produces indirect damage and the radiation effect is generally more in the presence of oxygen. Most microorganisms are relatively radioresistant. Various tissues of an animal differ in their response to radiation. Catgut is not stable to irradiation. Lyophilized human serum is stable to irradiation whereas, when irradiated in aqueous solutions, several changes are observed. Generally, pharmaceuticals are considerably more stable in the dry solid state to ionizing radiations than in aqueous solutions or in any other form of molecular aggregation. (author)

  4. Managing major chemical accidents in China: Towards effective risk information

    NARCIS (Netherlands)

    He, G.; Zhang, L.; Lu, Y.; Mol, A.P.J.

    2011-01-01

    Chemical industries, from their very inception, have been controversial due to the high risks they impose on safety of human beings and the environment. Recent decades have witnessed increasing impacts of the accelerating expansion of chemical industries and chemical accidents have become a major

  5. Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates

    Directory of Open Access Journals (Sweden)

    Steven Shoei-Lung Li

    2012-08-01

    Full Text Available The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs of environmental chemicals such as bisphenol A (BPA and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1 promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues.

  6. Chemical and radiation induced late dominant lethal effects in mice

    International Nuclear Information System (INIS)

    Favor, J.; Crenshaw, J.W. Jr.; Soares, E.R.

    1978-01-01

    Although theoretically expected, experimental data to date have not shown dominant lethal expression to occur throughout the developmental period. Specifically, late post-implantation effects have not been demonstrated. The authors routinely use an experimental technique in which parental females mated to mutagenically treated males are allowed to give birth and wean their litter, and their uterine horns are then inspected for uterine scars indicative of live and dead embryos. In a number of experiments in which males were mutagenically treated with either chemicals or X-irradiation, a discrepancy was observed between the number of live embryos as determined by the scar technique and the number of live observed at birth, suggesting the possibility of embryonic losses at a late stage in development. Initial analyses showed that mutagenic treatment increased the percentage of these late losses. These differences were statistically significant in 2 of 3 analyses. Factors affecting statistical significance and an understanding of dominant lethal mutations are discussed. (Auth.)

  7. Bioprocess intensification for the effective production of chemical products

    DEFF Research Database (Denmark)

    Woodley, John

    2017-01-01

    The further implementation of new bioprocesses, using biocatalysts in various formats, for the synthesis of chemicals is highly dependent upon effective process intensification. The need for process intensification reflects the fact that the conditions under which a biocatalyst carries out...... a reaction in nature are far from those which are optimal for industrial processes. In this paper the rationale for intensification will be discussed, as well as the four complementary approaches used today to achieve bioprocess intensification. Two of these four approaches are based on alteration...... of the biocatalyst (either by protein engineering or metabolic engineering), resulting in an extra degree of freedom in the process design. To date, biocatalyst engineering has been developed independently from the conventional process engineering methodology to intensification. Although the integration of these two...

  8. Chemical effects of nuclear transformations in metal permanganates

    International Nuclear Information System (INIS)

    Lee, Byung Hun; Kim, Bong Whan

    1986-01-01

    The chemical effects resulting from the capture of the thermal neutrons by manganese in different crystalline permanganates, that is, potassium permanganate,sodium permanganate, silver permanganate, barium permanganate and ammonium permanganate, have been investigated. The distribution of radioactive manganese formed has been determined by using different absorbents and ion-exchangers, that is,manganese dioxide, alumina, Zeolite A-3, Kaolinite and Dowex-50. The distribution of radioactive manganese in various adsorbents and ion-exchangers has almost similar result for each permanganate. The affinity for radioactive manganous ion is greatest for Dewex-50. A significant increase of retention is shown through the thermal annealing and the retention depends on the first ionization potential of metal ion in permanganates. (Author)

  9. Designing Intelligent Secure Android Application for Effective Chemical Inventory

    Science.gov (United States)

    Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad

    2017-08-01

    Mobile services support various situations in everyday life and with the increasing sophistication of phone functions, the daily life is much more easier and better especially in term of managing tools and apparatus. Since chemical inventory management system has been experiencing a new revolution from antiquated to an automated inventory management system, some additional features should be added in current chemical inventory system. Parallel with the modern technologies, chemical inventory application using smart phone has been developed. Several studies about current related chemical inventory management using smart phone application has been done in this paper in order to obtain an overview on recent studies in smartphone application for chemical inventory system which are needed in schools, universities or other education institutions. This paper also discuss about designing the proposed secure mobile chemical inventory system. The study of this paper can provide forceful review analysis support for the chemical inventory management system related research.

  10. Effects of the fluid flows on enzymatic chemical oscillations

    Science.gov (United States)

    Shklyaev, Oleg; Yashin, Victor; Balazs, Anna

    2017-11-01

    Chemical oscillations are ubiquitous in nature and have a variety of promising applications. Usually, oscillating chemical systems are analyzed within the context of a reaction-diffusion framework. Here, we examine how fluid flows carrying the reactants can be utilized to modulate the negative feedback loops and time delays that promote chemical oscillations. We consider a model where a chemical reaction network involves two species, X and Y, which undergo transformations catalyzed by respective enzymes immobilized at the bottom wall of a fluid-filled microchamber. The reactions with the enzymes provide a negative feedback in the chemically oscillating system. In particular, the first enzyme, localized on the first patch, promotes production of chemical X, while the second enzyme, immobilized on the second patch, promotes production of chemical Y, which inhibits the production of chemical X. The separation distance between the enzyme-coated patches sets the time delay required for the transportation of X and Y. The chemical transport is significantly enhanced if convective fluxes accompany the diffusive ones. Therefore, the parameter region where oscillations are present is modified. The findings provide guidance to designing micro-scale chemical reactors with improved functionalities.

  11. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  12. New effective chemically synthesized anti-smallpox compound NIOCH-14.

    Science.gov (United States)

    Mazurkov, Oleg Yu; Kabanov, Alexey S; Shishkina, Larisa N; Sergeev, Alexander A; Skarnovich, Maksim O; Bormotov, Nikolay I; Skarnovich, Maria A; Ovchinnikova, Alena S; Titova, Ksenya A; Galahova, Darya O; Bulychev, Leonid E; Sergeev, Artemiy A; Taranov, Oleg S; Selivanov, Boris A; Tikhonov, Alexey Ya; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2016-05-01

    Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis.

  13. Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability

    Directory of Open Access Journals (Sweden)

    Maria Cristina Maldonado

    2013-12-01

    Full Text Available Alicyclobacillus acidoterrestris is considered to be one of the important target microorganisms in the quality control of acidic canned foods. There is an urgent need to develop a suitable method for inhibiting or controlling the germination and outgrowth of A.acidoterrestris in acidic drinks. The aim of this work was to evaluate the chemicals used in the lemon industry (sodium benzoate, potassium sorbate, and lemon essential oil as a natural compound, against a strain of A.acidoterrestris in MEB medium and in lemon juice concentrate. The results pointed out that sodium benzoate (500-1000-2000 ppm and lemon essential oil (0.08- 0.12- 0.16% completely inhibited the germination of A. acidoterrestris spores in MEB medium and LJC for 11 days. Potassium sorbate (600-1200 ppm was more effective to inhibit the growth of the microbial target in lemon juice than in MEB medium. The effect of sodium benzoate, potassium sorbate and essential oil was sporostatic in MEB and LJC as they did not affect spore viability.

  14. Mass-independent isotope effects in chemical exchange reaction

    International Nuclear Information System (INIS)

    Nishizawa, Kazushige

    2000-01-01

    Isotope effects of some elements in chemical exchange reaction were investigated by use of liquid-liquid extraction, liquid membrane or chromatographic separation. Cyclic polyether was used for every method. All polyethers used in a series of the studies were made clear that they distinguished the isotopes not only by their nuclear masses but also by their nuclear sizes and shapes. Chromium isotopes, for example, were recognized to have enrichment factors being proportional to δ 2 > which is a parameter to show field shift or the nuclear size and shape of the isotope. It follows that the chromium isotopes are separated not by their masses but by their field shift effects. Nuclear spin also played a great role to separate odd mass number isotopes from even mass number isotopes in even atomic number elements. Contribution of the nuclear spin (I=3/2) of 53 Cr to total enrichment factor, ε 53/52 = -0.00028, for 53 Cr to 52 Cr was observed to be, ε spin = -0.0025. (author)

  15. Sensitivity of men and women to effect of chemical factors

    Energy Technology Data Exchange (ETDEWEB)

    Aliyev, V.A.

    1985-05-01

    The activity of enzymes performing energy metabolism and electron transport in the respiratory chain and anabolism and catabolism processes in cells of the blood system of men and women petroleum processing workers is described and discussed. Enzymic activity was studied by cytochemical methods. Subjects included basic petroleum processing device operators (96 women and 74 men ranging in age from 19-30 years with work experience ranging from 4 months to 10 years). The control group included 133 persons of corresponding age-sex groups who were not involved in petroleum processing work. The cytoenzymic studies refuted the assumption that women workers are more sensitive than men workers to the effect of toxic substances. On the whole, the men in the study were found to be less resistant to the effect of chemical factors encountered in petroleum processing work. It was assumed that specific features of functioning of the female body (menstruation, pregnancy and birth), causing stress and reconstruction of homeostasis systems, promoted improvement of adaptational mechanisms in the process of evolution, which mechanisms were coded in the gene pool. It is speculated that sexual differences may cause differences in cell metabolism. 12 refs.

  16. Physico-chemical analyses and corrosion effect of produced water ...

    African Journals Online (AJOL)

    Physico-chemical characteristics of the composite produced water sample used for the study has a higher concentration compared with DPR standard for discharge of produced formation water into surface environment. It was assumed that the corrosion of the coupons was due to presence of high chemical matters in the ...

  17. Effect of Natural Fermentation on the Chemical and Nutritional ...

    African Journals Online (AJOL)

    Changes in the chemical and nutritional composition of naturally fermented soy nono were studied at ambient temperature (27 ± 2oC) for 72 h. The differently fermented soy nono samples were collected at 6 h intervals and analysed for chemical, proximate and mineral composition using standard laboratory procedures.

  18. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  19. Natural mineral waters: chemical characteristics and health effects

    Science.gov (United States)

    Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa

    2016-01-01

    Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777

  20. Effects of Temperature on Polymer/Carbon Chemical Sensors

    Science.gov (United States)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  1. Chemical effects of nuclear transformations symposium in Prague

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-01-15

    The Symposium on Chemical Effects of Nuclear Transformations showed that interest in the subject matter is far from being exclusively academic. Though a large number of the papers dealt with theoretical aspects, it was felt that hot atom reactions provided a valuable means by which a large number of radioactive isotopes and labelled compounds could be prepared practically free from their inactive counterparts. Such so-called carrier-free preparations are in great demand for industrial, medical and scientific applications. Discussions showed that a detailed knowledge o: the characteristics of radiation damage was essential to the successful development of nuclear power Nuclear transformations in solids provide a method of generating such damage and at the same time leave radioactive products that permit the study of the subsequent repair. This technique permits studies a' levels of damage much below those that are necessary with the less sensitive purely physical procedures. A number of papers emphasized the theoretical importance of the insight which hot atom chemistry gives into the mechanism of reactions occurring at abnormal temperatures.

  2. Effect of plant chemicals on the behavior of the Mediterranean fruit fly

    International Nuclear Information System (INIS)

    Papadopoulos, N.T.; Kouloussis, N.A.; Katsoyannos, B.I.

    2006-01-01

    A review of current information on the relation between plant chemicals and the Mediterranean fruit fly is presented. The influence of age and adult physiology on the response of med flies to plant chemicals is studied. The effect of plant chemicals on med fly behavior during host finding, mating and oviposition is analysed. The possible influence of plant chemicals on the dispersion patterns and spatial distribution of the fly is also addressed. (MAC)

  3. Effect of plant chemicals on the behavior of the Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, N.T., E-mail: nikopap@uth.g [University of Thessaly (Greece). Dept. of Crop Production and Rural Environment. Lab. of Entomology and Agricultural Zoology; Kouloussis, N.A.; Katsoyannos, B.I. [University of Thessaloniki, Thessaloniki (Greece). School of Agriculture

    2006-07-01

    A review of current information on the relation between plant chemicals and the Mediterranean fruit fly is presented. The influence of age and adult physiology on the response of med flies to plant chemicals is studied. The effect of plant chemicals on med fly behavior during host finding, mating and oviposition is analysed. The possible influence of plant chemicals on the dispersion patterns and spatial distribution of the fly is also addressed. (MAC)

  4. Sublethal effects of industrial chemicals on fish fingerlings (Tilapia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-22

    Mar 22, 2010 ... Key words: Tilapia guineensis, industrial chemical, bioaccumulation, surfactants. ... product that has acceptable stability in oil pipelines. (Patton, 1995). .... assays were assessed with the two-factor ANOVA (analysis of.

  5. The effect of storage on Physical, Chemical and Bacteriological ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Ten (10) different companies' water samples each of bottled water (B) and ... after storage as with other chemical element except that lead showed ... Although it is true that soil generally ... organic pollutants, heavy metals and radioactive.

  6. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    chemical properties of gluten proteins were investigated after treatment with .... differences in most of the visible bands among all samples. Figure 1: SDS-PAGE analysis of protein patterns in wheat gluten and glutenin, with and without ozone.

  7. Effect of natural and chemical insecticides on Hyalopterus pruni and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Anthmis pseudocotula and their mixtures with chemical insecticide (Malathion) on growth of ... ed the use of natural extracts of Fagonia arabica, Salix ..... Studies on the efficacy of neem products against the aphid Aphis.

  8. The Effect of Detergent Effluent on the Physico-Chemical ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    2Department of Biological Sciences, Federal University of Agriculture, Abeokuta, Nigeria ... KEYWORDS: Physico-chemical characteristics, Osere stream, Plankon and Diversity ... stream is the main sources of water for most domestic.

  9. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  10. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of chemical pretreatment on the biodegradation of cyanides

    International Nuclear Information System (INIS)

    Aronstein, B.N.; Paterek, J.R.; Rice, L.E.; Srivastava, V.J.

    1995-01-01

    The application of Fenton's reagent (H 2 O 2 ; Fe 2+ ) as a chemical pretreatment for acceleration of biological degradation of cyanides in soil-containing systems has been studied. In slurries of topsoil freshly amended with radiolabeled free cyanide (K 14 CN) at pH 7.2, about 100% of the compound was removed from the system by the combination of chemical oxidation and biodegradation. In slurry of manufactured gas plant (MGP) soil, the extent of combined chemical-biological treatment was 50%. At the same time, approximately 15% of the cyanide was lost from the system by protonation and evolution of formed HCN. In slurries of both topsoil and MGP soil amended with radiolabeled K 4 [Fe(CN) 6 ], less than 20% was degraded. In soils previously equilibrated with free and complex cyanide, the highest extent of degradation resulted from chemical-biological treatment did not exceed 15%. To avoid massive evolution of HCN, the cyanide-amended topsoil was maintained at a pH of 10.0. At this pH, nearly 35% of the cyanides were removed from the system by combined chemical-biological treatment

  12. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Giaever Guri

    2009-01-01

    Full Text Available Abstract Background Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. Results Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches – analysis of the sensitivity of ρ0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. Conclusion Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells.

  13. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    Science.gov (United States)

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  14. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  15. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  16. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  17. Challenges to studying the health effects of early life environmental chemical exposures on children's health.

    Science.gov (United States)

    Braun, Joseph M; Gray, Kimberly

    2017-12-01

    Epidemiological studies play an important role in quantifying how early life environmental chemical exposures influence the risk of childhood diseases. These studies face at least four major challenges that can produce noise when trying to identify signals of associations between chemical exposure and childhood health. Challenges include accurately estimating chemical exposure, confounding from causes of both exposure and disease, identifying periods of heightened vulnerability to chemical exposures, and determining the effects of chemical mixtures. We provide recommendations that will aid in identifying these signals with more precision.

  18. Transgenerational effects of radiation and chemicals in mice and humans

    International Nuclear Information System (INIS)

    Nomura, Taisei

    2006-01-01

    Parental exposure of mice to radiation and chemicals causes a variety of adverse effects (e.g., tumors, congenital malformations and embryonic deaths) in the progeny and the tumor-susceptibility phenotype is transmissible beyond the first post-radiation generation. The induced rates of tumors were 100-fold higher than those known for mouse specific locus mutations. There were clear strain differences in the types of naturally-occurring and induced tumors and most of the latter were malignant. Another important finding was that germ-line exposure elicited very weak tumorigenic responses, but caused persistent hypersensitivity in the offspring for the subsequent development of cancer by the postnatal environment. Activations of oncogenes, ras, mos, abl, etc. and mutations in tumor suppressor genes such as p53 were also detected in specific tumors in cancer-prone descendants. However, the majority of tumors observed in the progeny were those commonly observed in the strains that were used and oncogene activations were rarely observed in these tumors. It can be hypothesized that genetic instability modifies tumor occurrence in a transgenerational manner, but so far no links could be established between chromosomal and molecular changes and transmissible tumor risks. Our data are consistent with the hypothesis that cumulative changes in many normal but cancer-related genes affecting immunological, biochemical and physiological functions may slightly elevate the incidence of tumors or fasten the tumor development. This hypothesis is supported by our GeneChip analyses which showed suppression and/or over-expression of many such genes in the offspring of mice exposed to radiation. In humans, a higher risk of leukemia and birth defects has been reported in the children of fathers who had been exposed to radionuclides in the nuclear reprocessing plants and to diagnostic radiation. These findings have not been supported in the children of atomic bomb survivors in Hiroshima

  19. Effects of HZE irradiation on chemical neurotransmission in rodent hippocampus

    Science.gov (United States)

    Machida, Mayumi

    Space radiation represents a significant risk to the CNS (central nervous system) during space missions. Most harmful are the HZE (high mass, highly charged (Z), high energy) particles, e.g. 56Fe, which possess high ionizing ability, dense energy deposition pattern, and high penetrance. Accumulating evidence suggests that radiation has significant impact on cognitive functions. In ground-base experiments, HZE radiation induces pronounced deficits in hippocampus dependent learning and memory in rodents. However, the mechanisms underlying these impairments are mostly unknown. Exposure to HZE radiation elevates the level of oxidation, resulting in cell loss, tissue damage and functional deficits through direct ionization and generation of reactive oxygen species (ROS). When hippocampal slices were exposed to ROS, neuronal excitability was reduced. My preliminary results showed enhanced radio-vulnerability of the hippocampus and reduction in basal and depolarization-evoked [3H]-norepinephrine release after HZE exposure. These results raised the possibility that HZE radiation deteriorates cognitive function through radiation-induced impairments in hippocampal chemical neurotransmission, the hypothesis of this dissertation. In Aim 1 I have focused on the effects of HZE radiation on release of major neurotransmitter systems in the hippocampus. I have further extended my research on the levels of receptors of these systems in Aim 2. In Aim 3, I have studied the level of oxidation in membranes of my samples. My research reveals that HZE radiation significantly reduces hyperosmotic sucrose evoked [3H]-glutamate and [14C]-GABA release both three and six months post irradiation. The same radiation regimen also significantly enhances oxidative stress as indicated by increased levels of lipid peroxidation in the hippocampus, suggesting that increased levels of lipid peroxidation may play a role in reduction of neurotransmitter release. HZE radiation also significantly reduces

  20. Effects of Chemical Peeling and Cultivars on the Antinutritional and ...

    African Journals Online (AJOL)

    2205, TMS30572) roots were peeled using three different methods: manual peeling, chemical peeling with either 10% NaOH followed by treatment with 3% citric acid, or 10% NaOH solution followed by treatment with 15% NaCl. Peeled roots ...

  1. Effect of Chemical Refining on Citrullus Colocynthis and Pongamia ...

    African Journals Online (AJOL)

    Oil from the both plant seeds was evaluated (both before and after refining) for different physico-chemical parameters like free fatty acids, iodine value, peroxide value, saponification value, unsaponifiable matter and fatty acid composition. Oil yield (30-35 %) in both plants was found average. After refining, per cent reduction ...

  2. Presence and Effects of Chemical Toxin on Feeding of Cowpea ...

    African Journals Online (AJOL)

    These varieties along with one susceptible variety (Tvu.76(Prima) were used for conducting two experiments together to find out the presence of a chemical and their role in aphid's feeding and survival. Comparative studies of the number of honey dew drops produced on varieties used in the experiment, and the reaction of ...

  3. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    NARCIS (Netherlands)

    Levitsky, I.; Naim, R.; Duek, A.; Gitis, V.

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning

  4. Effect of vegetation switch on soil chemical properties

    Czech Academy of Sciences Publication Activity Database

    Iwashima, N.; Masunaga, T.; Fujimaki, R.; Toyota, Ayu; Tayasu, I.; Hiura, T.; Kaneko, N.

    2012-01-01

    Roč. 58, č. 6 (2012), s. 783-792 ISSN 0038-0768 Institutional support: RVO:60077344 Keywords : earthworm * litter * nutrient cycling * soil chemical properties * vegetation switch Subject RIV: EH - Ecology, Behaviour Impact factor: 0.889, year: 2012

  5. The effects of physical and chemical changes on the optimum ...

    African Journals Online (AJOL)

    The aim of this study was to determine physical and chemical changes during fruit development and their relationship with optimum harvest maturity for Bacon, Fuerte and Zutano avocado cultivars grown under Dörtyol ecological condition. Fruits cv. Bacon, Fuerte and Zutano were obtained trees grafted on seedlings and ...

  6. Effect of drying methods on the chemical composition of three ...

    African Journals Online (AJOL)

    Three methods of drying (oven, sun and smoke) were used to dry Bonga spp., Sardinella spp. and Heterotis niloticus. The physico-chemical and minerals contents of the sample were determined using standard methods. Oven dried H. niloticus recorded the highest (16.42%) moisture content while the least moisture content ...

  7. Chemical effects in x-ray emission spectra

    International Nuclear Information System (INIS)

    Fernandes, N.G.

    1982-01-01

    The chemical bond influence in X-ray emission spectra of hafnium, iodine, iron, sulphur, aluminium and magnesium is detected. The position of one X-ray emission line is determined by three methods: parabolic profile; Gaussian distribution and extra-heavy maximum. (author)

  8. Immune effects of respiratory exposure to fragrance chemicals

    NARCIS (Netherlands)

    Ezendam J; Klerk A de; Cassee FR; Fokkens PHB; Park MVDZ; Loveren H van; Jong WH de; GBO

    2007-01-01

    Inhalation of the fragrance chemicals, isoeugenol and cinnamal, by mice resulted in immune reactions in the respiratory tract. This was observed in experiments performed by the RIVM (National Institute for Public Health and the Enviroment) of which results indicate that inhalation of some fragrance

  9. The effects of continuous cropping and fallowing on the chemical ...

    African Journals Online (AJOL)

    In this study, soil chemical properties were determined in a cleared forestland continuously grown to cassava (Manihot esculenta Crantz), pigeon pea (Cajanus cajan), maize (Zea mays) and their combination for seven years and from then was fallowed for ten years. Soil samples were also collected from the adjacent ...

  10. Effects of different chemical materials and cultural methods on ...

    African Journals Online (AJOL)

    reading 6

    2011-10-27

    Oct 27, 2011 ... which accounts for 53% of wheat production in China and about 15% of the total ... environment as it is mainly made from chemical mate- rials. ... yield and yield components in harvest in both years were deter- mined. The data were subjected to analyses of variance (ANOVA) ..... Long-term stability of.

  11. Effects of Meditation on Anxiety and Chemical Dependency.

    Science.gov (United States)

    Wong, Martin R.; And Others

    1981-01-01

    Studied a non-self-selected sample of chemically dependent people instructed in meditation techniques. Differences established upon training termination were no longer evident in the instructed group after six months. Subjects who reported continuing at least minimal meditative practices, however, showed differences in social adjustment, work…

  12. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  13. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  14. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    International Nuclear Information System (INIS)

    Cui, L L; Hou, X M; Li, G D; Jiang, J; Liang, Y Y; Xin, X

    2008-01-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  15. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  16. Effects of chemical treatments on hemp fibre structure

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, M.M., E-mail: kabirm@usq.edu.au [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Wang, H. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Lau, K.T. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Cardona, F. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2013-07-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  17. Effects of chemical treatments on hemp fibre structure

    International Nuclear Information System (INIS)

    Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F.

    2013-01-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  18. Medición de caída de presión en túneles de viento por método alternativo; Head Loss Measurement in WindTunnel, an Alternative Method

    Directory of Open Access Journals (Sweden)

    Rubén Borrajo Pérez

    2011-02-01

    Full Text Available La caracterización de modelos de intercambiadores de calor es de vital importancia en el diseño de estosequipos y no se encuentran fácilmente en la bibliografía, correlaciones que permitan predecir su comportamientotérmico e hidráulico, mas aún, si se trata de intercambiadores con alguna técnica de intensificación de latransferencia de calor aplicada. La caracterización, desde el punto de vista hidráulico, permite obtenercorrelaciones útiles para calcular el trabajo de bombeo o caída de presión necesaria para hacer circular losfluidos en las magnitudes requeridas por el cálculo térmico. Cuando se trata con intercambiadores de calorcompactos, que trabajan en régimen laminar, los valores de pérdidas de presión que el fluido experimenta alcircular a través de este son en extremo pequeños. La no existencia de medios para la realización de medicionesde caída de presión de pequeño orden en los laboratorios, llevó a los autores a desarrollar un método demedición que satisficiera las expectativas en lo que a medición de presión se refiere. A partir de esta motivación,fue implementado el método que es descrito y validado en este artículo.  Compact heat exchangers are used in many technical applications. Experimental characterization of compactheat exchangers is a very important issue at present. This kind of results is not found frequently in the bibliographybecause of the quantity and diversity of parameters involving the heat exchangers design. The hydrauliccharacterization is conducted to obtain the correlation of head loss suffered by the mass flowing across the heatexchangers. This correlation is a useful tool for finally calculate the power of pumping. At laminar regimen thehead loss are very small. The method of measurement described in this paper was developed for measurementof small pressure differences using a balance and the appropriate hydrostatic principles. The results were comparedto limited values of the

  19. Effects of Confinement on Chemical Reaction Equilibrium in Nanoporous Materials

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Lísal, Martin; Brennan, J.K.

    2006-01-01

    Roč. 3984, - (2006), s. 743-751 ISSN 0302-9743 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR 1ET400720507 Grant - others:NRCC(CA) OGP 1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanoporous materials * chemical reaction equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.402, year: 2005

  20. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    Science.gov (United States)

    Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie

    1999-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  1. General constraints on the effect of gas flows in the chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Edmunds, M.G.

    1990-01-01

    The basic equations for the chemical evolution of galaxies in which the 'simple' closed box model is modified to allow any form of inflow or outflow are examined. It is found that there are quite general limiting constraints on the effects that such flows can have. Some implications for the actual chemical evolution of galaxies are discussed, and the constraints should also be useful in understanding the behaviour of detailed numerical models of galactic chemical evolution involving gas flows. (author)

  2. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    OpenAIRE

    Vargas Diana P.; Giraldo Liliana; Moreno-Piraján Juan Carlos

    2017-01-01

    The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribu...

  3. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  4. The Effects of CW (Chemical Warfare)-Related Chemicals on Social Behavior and Performance

    Science.gov (United States)

    1984-10-01

    34Demonstrate -J Sexual Behavicrs: Sexual Present Mount (qO thrutting) Mount (with thrusting) Masturbate Genital Manipulation (other animal) Genital Sniff...Bites (object) (13) Other contacts with object(s) (14) Vocalizations (15) Self directed behaviors (groom, masturbate , etc.) If two or more animals...stimulant in our society as there is a general assumption that in moderate amounts it presents little risk of harmful effects. Recent research has called

  5. Effects of a chemical imbalance causal explanation on individuals' perceptions of their depressive symptoms.

    Science.gov (United States)

    Kemp, Joshua J; Lickel, James J; Deacon, Brett J

    2014-05-01

    Although the chemical imbalance theory is the dominant causal explanation of depression in the United States, little is known about the effects of this explanation on depressed individuals. This experiment examined the impact of chemical imbalance test feedback on perceptions of stigma, prognosis, negative mood regulation expectancies, and treatment credibility and expectancy. Participants endorsing a past or current depressive episode received results of a bogus but credible biological test demonstrating their depressive symptoms to be caused, or not caused, by a chemical imbalance in the brain. Results showed that chemical imbalance test feedback failed to reduce self-blame, elicited worse prognostic pessimism and negative mood regulation expectancies, and led participants to view pharmacotherapy as more credible and effective than psychotherapy. The present findings add to a growing literature highlighting the unhelpful and potentially iatrogenic effects of attributing depressive symptoms to a chemical imbalance. Clinical and societal implications of these findings are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Teachers' Misconceptions about the Effects of Addition of More Reactants or Products on Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek; Ma, Hong-jia; Yang, Jie

    2009-01-01

    The importance of research on misconceptions about chemical equilibrium is well recognized by educators, but in the past, researchers' interest has centered on student misconceptions and has neglected teacher misconceptions. Focusing on the effects of adding more reactants or products on chemical equilibrium, this article discusses the various…

  7. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  8. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  9. Effectiveness of Instruction Based on the Constructivist Approach on Understanding Chemical Equilibrium Concepts

    Science.gov (United States)

    Akkus, Huseyin; Kadayifci, Hakki; Atasoy, Basri; Geban, Omer

    2003-01-01

    The purpose of this study was to identify misconceptions concerning chemical equilibrium concepts and to investigate the effectiveness of instruction based on the constructivist approach over traditional instruction on 10th grade students' understanding of chemical equilibrium concepts. The subjects of this study consisted of 71 10th grade…

  10. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  11. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  12. Evaluation of the Effectiveness of Chemical Dependency Counseling Course Based on Patrick and Partners

    Science.gov (United States)

    Keshavarz, Yousef; Ghaedi, Sina; Rahimi-Kashani, Mansure

    2012-01-01

    Background The twelve step program is one of the programs that are administered for overcoming abuse of drugs. In this study, the effectiveness of chemical dependency counseling course was investigated using a hybrid model. Methods In a survey with sample size of 243, participants were selected using stratified random sampling method. A questionnaire was used for collecting data and one sample t-test employed for data analysis. Findings Chemical dependency counseling courses was effective from the point of view of graduates, chiefs of rehabilitation centers, rescuers and their families and ultimately managers of rebirth society, but it was not effective from the point of view of professors and lecturers. The last group evaluated the effectiveness of chemical dependency counseling courses only in performance level. Conclusion It seems that the chemical dependency counseling courses had appropriate effectiveness and led to change in attitudes, increase awareness, knowledge and experience combination and ultimately increased the efficiency of counseling. PMID:24494132

  13. Theory of the chemical effects of high-energy electrons

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1978-01-01

    The general nature of radiation chemical yields arising from electron irradiations is examined. A relationship between the G value of an arbitrary radiation product and the initial electron energy (greater than 20 keV) in the form of an integro-differential equation is derived. G values for the water decomposition products in acid solution are obtained by numerical solution of the equation and the use of a model. A differential equation equivalent to the integro-differential equation for the case of Rutherford scattering is introduced and an approximate analytical solution is found (eq 10). The latter turns out to be in agreement with the numerical solution of the integro-differential equation obtained with the more accurate Moeller cross section. Experimental data for ferrous sulfate oxidation (Fricke dosimeter) are examined and found to be in agreement with the relationships obtained here. Primary yields of the water decomposition products are also given. 4 figures, 2 tables, 35 references

  14. Fluids in porous media. IV. Quench effect on chemical potential.

    Science.gov (United States)

    Qiao, C Z; Zhao, S L; Liu, H L; Dong, W

    2017-06-21

    It appears to be a common sense to measure the crowdedness of a fluid system by the densities of the species constituting it. In the present work, we show that this ceases to be valid for confined fluids under some conditions. A quite thorough investigation is made for a hard sphere (HS) fluid adsorbed in a hard sphere matrix (a quench-annealed system) and its corresponding equilibrium binary mixture. When fluid particles are larger than matrix particles, the quench-annealed system can appear much more crowded than its corresponding equilibrium binary mixture, i.e., having a much higher fluid chemical potential, even when the density of each species is strictly the same in both systems, respectively. We believe that the insight gained from this study should be useful for the design of functionalized porous materials.

  15. Chemical effects in materials studies using Auger analysis

    International Nuclear Information System (INIS)

    Rye, R.R.

    1985-01-01

    Core-valence-valence Auger spectra (AES) afford a unique local view of valence electron structure. The direct involvement in the Auger process of both core and valence states means that the transition matrix element will have a large value only for that portion of the valence electron density which covers the same spatial extent as the core wave function. Thus, the information content of AES is local to the atomic site containing the initial core hole. Our approach in understanding the local information content of AES has been mainly experimental through the intercomparison of model systems, both molecular and solid. The use of molecules in this regard is particularly useful since the vast array of molecular species of known geometric and electronic structures allows one to both vary these properties in a systematic fashion to observe trends and to choose a molecule to probe a specific chemical question

  16. Effects of air pollutants on epicuticular wax chemical composition

    International Nuclear Information System (INIS)

    Percy, K.E.; McQuattie, C.J.; Rebbeck, J.A.

    1994-01-01

    There are numerous reports in the literature of modifications to epicuticular wax structure as a consequence of exposure to air pollutants. Most authors have used scanning electron microscopy (SEM) to describe changes in wax crystallite morphology or distribution. ''Erosion'' or ''weathering'' of crystalline structure into an amorphous state is the most common observation, particularly in the case of conifer needles having the characteristic tube crystallites comprised of nonacosan-10-ol. Wax structure is largely determined by its chemical composition. Therefore, many of the reported changes in wax structure due to air pollutants probably arise from direct interactions between pollutants such as ozone and wax biosynthesis. The literature describing changes in wax composition due to pollutants is briefly reviewed. New evidence is introduced in support of the hypothesis for a direct interaction between air pollutants and epicuticular wax Biosynthesis. (orig.)

  17. Chemical and microbiological effects in the near field: current status

    International Nuclear Information System (INIS)

    Ewart, F.T.; Pugh, S.Y.R.; Wisbey, S.J.; Woodwark, D.R.

    1988-12-01

    The radionuclide inventory of a radioactive waste repository, influenced by the chemical conditions in the near-field, determines the source term for radionuclides entering the geosphere. The research described in this report is focussed on providing the information necessary to quantify this source term. The processes which interact to determine near field behaviour over a long period of time are complex and a simplified representation is required for radiological assessment modelling. The assumptions made in formulating the near field assessment methodology are discussed and justified in this report. The techniques for acquiring the necessary large body of data for a wide range of relevant radionuclides are also described and the values used in the CASCADE I exercise are given. (author)

  18. Effect of Trichoderma spp. inoculation on the chemical composition ...

    African Journals Online (AJOL)

    in this study was complete randomized design (CRD) through factorial experiment with 2 factors (factor A = effects of sterilization, factor B = effects of Trichoderma spp.) in three replicates for each treatment. Effects of the Trichoderma isolates on the substrate neutral detergent fiber (NDF), acid detergent fiber (ADF) and pH as ...

  19. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  20. A study of the effects of physical dermabrasion combined with chemical peeling in porcine skin.

    Science.gov (United States)

    Kang, Boo Kyoung; Choi, Jeong Hwee; Jeong, Ki Heon; Park, Jong Min; Suh, Dong Hye; Lee, Sang Jun; Shin, Min Kyung

    2015-02-01

    Many comparative studies of chemical peeling and dermabrasion have been reported. However, rare basic scientific data about the immediate effects after combined treatment with chemical peeling and dermabrasion have been confirmed. The aim of this study is to evaluate the effect of the application of physical abrasion in combination with chemical peels. Three pigs were treated with physical abrasion using a water jet device in combination with an α-hydroxy acid solution, and the skin samples of the control received chemical peeling solution alone. The levels of growth factors and neuropeptides were measured with a multiplex immunoassay. Skin treated with physical dermabrasion combined with chemical peeling showed prominent detachment and swelling of the stratum corneum (SC), and fluid collection in the hair follicles. The mean cell count of CD34 positive fibroblasts and mast cells, levels of epidermal growth factor, fibroblast growth factor-2, vascular endothelial growth factor, and neurotensin, were significantly increased in the tissue treated with physical abrasion combined with a chemical peeling agent, compared to the skin in the control. We concluded that physical dermabrasion combined with chemical peeling can be more effective than chemical peeling alone, for the approach through transfollicular routes.

  1. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  2. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    Science.gov (United States)

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURESR. Julian PrestonEnvironmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USAThere ...

  3. Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats

    DEFF Research Database (Denmark)

    Hadrup, Niels; Pedersen, Mikael; Skov, Kasper

    2016-01-01

    Humans are simultaneously exposed to several chemicals that act jointly to induce mixture effects. At doses close to or higher than no-observed adverse effect levels, chemicals usually act additively in experimental studies. However, we are lacking knowledge on the importance of exposure to complex...... real-world mixtures at more relevant human exposure levels. We hypothesised that adverse mixture effects occur at doses approaching high-end human exposure levels. A mixture (Mix) of 14 chemicals at a combined dose of 2.5 mg/kg bw/day was tested in combination with perfluorononanoic acid (PFNA...... pituitary-adrenal axis. In conclusion, our data suggest that mixtures of environmental chemicals at doses approaching high-end human exposure levels can cause a hormonal imbalance and disturb steroid hormones and their regulation. These effects may be non-monotonic and were observed at low doses. Whether...

  4. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    Science.gov (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  6. Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling

    NARCIS (Netherlands)

    Laender, de F.; Morselli, M.; Baveco, H.; Brink, van den P.J.; Guardo, Di A.

    2015-01-01

    Predicting ecosystem response to chemicals is a complex problem in ecotoxicology and a challenge for risk assessors. The variables potentially influencing chemical fate and exposure define the exposure scenario while the variables determining effects at the ecosystem level define the ecological

  7. Combined effects of prenatal exposures to environmental chemicals on birth weight

    DEFF Research Database (Denmark)

    Govarts, Eva; Remy, Sylvie; Bruckers, Liesbeth

    2016-01-01

    Prenatal chemical exposure has been frequently associated with reduced fetal growth by single pollutant regression models although inconsistent results have been obtained. Our study estimated the effects of exposure to single pollutants and mixtures on birth weight in 248 mother-child pairs...... with cadmium showed the strongest association with birth weight. In conclusion, birth weight was consistently inversely associated with exposure to pollutant mixtures. Chemicals not showing significant associations at single pollutant level contributed to stronger effects when analyzed as mixtures....

  8. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    Science.gov (United States)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  9. Monitoring the effects of toxic chemicals on protein expression

    International Nuclear Information System (INIS)

    Giometti, C.S.; Taylor, J.

    1987-01-01

    Two-dimensional gel electrophoresis coupled with computer-assisted image and data analysis was used to monitor protein populations for both qualitative and quantitative changes induced by exposure to chemicals. For mutagenesis studies designed to screen for heritable mutations, a computer-assisted search of the optical density data from 2DE patterns was used to look for (a) new protein spots, (b) missing protein spots and/or (c) altered expression of normal protein spots. Using this approach, 320 mice were screened for mutations induced by treatment of sires with 150 mg/kg body weight of ethylnitrosourea (ENU) and four different mutations were identified. Protein patterns from 105 offspring from untreated male mice (controls) and 369 offspring from irradiated male mice (3 Gy gamma) were also screened. No heritable mutations were found in those data sets, however. In addition, protein changes were observed in livers of animals exposed to the hepatocellular peroxisomal proliferation agents (and carcinogens) Wy-14,643 and DEHP. The de novo synthesis of a new protein by these agents was demonstrated and quantitated

  10. The Effects of Smartphone Use on Organic Chemical Compound Learning

    Science.gov (United States)

    Zan, Nuray

    2015-01-01

    As a result of rapid technological advances, smartphones have recently enjoyed widespread use. The basic purpose of this study is to examine the effects of smartphones when they are used as educational tools in learning environments. To assess the effects of smartphone use on learning, this study uses smartphones as educational tools in a…

  11. Chemical effects of nuclear transformations in molybdenum complexes

    International Nuclear Information System (INIS)

    Millan S, S.A.

    1977-01-01

    The Szilard-Chalmers effect was studied in the complexes: tetraacetatedimolybdenum(II), tetrabenzoatedimolybdenum(II), benzenetricarbonylmolybdenym(0). The results we obtained in the measurement of the Szilard-Chalmers effect on the studied complexes imply some influence of the structure in the molecular fragmentation, or the conservation of the links molybdenum-ligands. (author)

  12. Biological effects under combined action of radiation and chemical factors

    International Nuclear Information System (INIS)

    Malenchenko, A.F.

    1990-01-01

    The paper considers the manifoild factors of environmental pollution effect upon living organisms and their possible response manifested in additivity, synergism and anthogonism. Consideration is also given to the possible practical measures for improving ecological situation and decreasing the risk of anthropogenesis negative after-effects

  13. Effects Of Physical And Chemical Modifications On The Disintegrant ...

    African Journals Online (AJOL)

    Regardless of the mode of incorporation, Tacca starch was most efficient in effecting the disintegration of the tablets and releasing their riboflavin contents in its unmodified form. In this regard, pregelatinized Tacca starch was more effective as a disintegrant than the acid hydrolysed form of the starch. Generally, fastest ...

  14. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers

    Institute of Scientific and Technical Information of China (English)

    HE Li-li; ZHONG Zhe-ke; YANG Hui-min

    2017-01-01

    The objective of this study was to evaluate the effects on chemical and microbiological properties of paddy soil of short-term biochar,straw,and chemical fertilizers compared with chemical fertilization alone.Five soil fertilization treatments were evaluated:regular chemical fertilizers (RF),straw+regular chemical fertilizers (SRF),straw biochar+regular chemical fertilizers (SCRF),bamboo biochar (BC)+regular chemical fertilizers (BCRF),and straw biochar+70% regular chemical fertilizers (SC+70%RF).Their effects were investigated after approximately 1.5 years.The soil pH and cation exchange capacity (CEC) were significantly higher in biochar-treated soils.The soil phosphorous (P) and potassium (K) contents increased with biochar application.The soil Colwell P content was significantly increased with the addition of straw biochar in the treatments of SCRF and SC+70%RF.The oxygen (O):carbon (C) ratio doubled in BC picked from the soil.This indicated that BC underwent a significant oxidation process in the soil.The denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial communities differed among the treatments.Soils with added biochar had higher Shannon diversity and species richness indices than soils without biochars.The results suggest that biochar can improve soil fertility.

  15. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  16. Effect of Chemical Reaction on Unsteady MHD Free Convective Two

    African Journals Online (AJOL)

    Joseph et al.

    radiation effects on mixed convection heat and mass transfer over a vertical plate in ... numerically by finite difference method and analytically by perturbation. ... Brinkman equation was used to model the flow in the porous region. The.

  17. The effect of environmental chemicals on the tumor microenvironment

    NARCIS (Netherlands)

    Casey, Stephanie C.; Vaccari, Monica; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Barcellos-Hoff, Mary Helen; Brown, Dustin G.; Chapellier, Marion; Christopher, Joseph; Curran, Colleen S.; Forte, Stefano; Hamid, Roslida A.; Heneberg, Petr; Koch, Daniel C.; Krishnakumar, P. K.; Laconi, Ezio; Maguer-Satta, Veronique; Marongiu, Fabio; Memeo, Lorenzo; Mondello, Chiara; Raju, Jayadev; Roman, Jesse; Roy, Rabindra; Ryan, Elizabeth P.; Ryeom, Sandra; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Soucek, Laura; Vermeulen, Louis; Whitfield, Jonathan R.; Woodrick, Jordan; Colacci, Annamaria; Bisson, William H.; Felsher, Dean W.

    2015-01-01

    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be

  18. Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Caixia; Xi, Zhucong; Guo, Dexiang; Chen, Xiangju; Yin, Longwei

    2018-01-01

    Despite great progress in lithium-sulfur batteries (LSBs), great obstacles still exist to achieve high loading content of sulfur and avoid the loss of active materials due to the dissolution of the intermediate polysulfide products in the electrolyte. Relationships between the intrinsic properties of nanostructured hosts and electrochemical performance of LSBs, especially, the chemical interaction effects on immobilizing polysulfides for LSB cathodes, are discussed in this Review. Moreover, the principle of rational microstructure design for LSB cathode materials with strong chemical interaction adsorbent effects on polysulfides, such as metallic compounds, metal particles, organic polymers, and heteroatom-doped carbon, is mainly described. According to the chemical immobilizing mechanism of polysulfide on LSB cathodes, three kinds of chemical immobilizing effects, including the strong chemical affinity between polar host and polar polysulfides, the chemical bonding effect between sulfur and the special function groups/atoms, and the catalytic effect on electrochemical reaction kinetics, are thoroughly reviewed. To improve the electrochemical performance and long cycling life-cycle stability of LSBs, possible solutions and strategies with respect to the rational design of the microstructure of LSB cathodes are comprehensively analyzed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of chemical dispersants on oil-brine interfacial tension and droplet formation

    International Nuclear Information System (INIS)

    Khelifa, A.; So, L.L.C.

    2009-01-01

    The dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). In this study, the physical properties and dispersion of oil were measured in order to determine the effects of chemical dispersants on IFT and oil viscosity and the effects on oil droplet formation. In theory, the maximum size of oil droplet that forms under turbulent mixing increases with IFT. Therefore, a reduction in IFT reduces the size distribution of oil droplets. This paper presented the results of an ongoing project aimed at providing quantitative understanding the influence that chemical dispersants have on the size distribution of oil droplets and oil dispersion. Findings showed that a valid approach is to separate the direct effects of chemical dispersants on oil properties, specifically oil-brine IFT and the effects of mixing on dispersion of chemically treated oil. Under constant mixing conditions, the reduction of the maximum oil droplet size that overcomes the breakage process is determined by the effects of chemical dispersant on oil properties. This correlates well with the dispersant-to-oil ratio (DOR) up to the critical micelle concentration (CMC). This good agreement can be attributed to the reduction of IFT with DOR. It was concluded that the reduction of IFT with dispersant concentration is an additional signature of oil composition on droplet formation, while mixing energy is an external parameter that is independent of oil properties. 17 refs., 3 tabs., 9 figs

  20. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies

    Science.gov (United States)

    Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona

    2015-03-01

    The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.

  1. Effect of temperature on shelf life, chemical and microbial properties ...

    African Journals Online (AJOL)

    Cream cheese samples were analyzed to find out the effect of recommended storage temperature (4±1°C) and ambient room temperature (21±1°C) on pH, titratable acidity (% lactic acid), moisture content and microbial growth. Percent reduction in moisture content and increase in titratable acidity of cheeses were found to ...

  2. The Effect of Detergent Effluent on the Physico-Chemical ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    abundance of Anabaena and Oscillatoria sp. which are pollution indicator ... negative effect the effluent from the detergent factory has on the stream, thus ... in aquatic ecosystems and represents one of the most .... American Public Health Association (1998). ... (Cyanophyta) in Nigeria coastal waters. The ... South Western.

  3. Antimicrobial and physico-chemical effects of essential oils on ...

    African Journals Online (AJOL)

    SARAH

    2016-03-31

    Mar 31, 2016 ... oils for biopreservation in food pathogen control. The objectives were to study the effect of two essential oils extracted from .... TTC decreased, in a fast way during the fifteen days of ... production of smell rancid and bad taste.

  4. Effect of animal manures on selected soil chemical properties (1 ...

    African Journals Online (AJOL)

    The effects of animal manures on selected soil properties were studied in the laboratory. Manures of Rabbit (RBM), Swine (SWM), Poultry (POM), Goat, (GTM) and Cow (COM) were added at 10, 20, 30 and 40 t/ha to an acidic Ultisol. The amended soils were incubated at 70% water holding capacity for 3 weeks.

  5. Competition between elastic and chemical effects in the intermixing ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. We have performed ab initio density functional theory calculations to investigate the forma- tion energy and the effects of low dimensionality and reduced coordination on the magnetic properties of pseudomorphically grown monolayers of Co–Ag surface alloys on a Rh(111) substrate. We find that if such an alloy ...

  6. Physiological Effects of Trace Elements and Chemicals in Water

    Science.gov (United States)

    Varma, M. M.; And Others

    1976-01-01

    The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…

  7. Effects of different chemical materials and cultural methods on ...

    African Journals Online (AJOL)

    reading 6

    2011-10-27

    Oct 27, 2011 ... dry matter accumulation at different growing stages in 2004-2005, yield and yield components in harvest in both years were deter- mined. The data were subjected to analyses of variance (ANOVA) to determine the effects of treatments, and the mean differences were adjudged by Duncan multiple range test ...

  8. Polypropylene-modified kaolinite composites: Effect of chemical ...

    African Journals Online (AJOL)

    PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. The thermogravimetric analysis thermograms (TGA) ...

  9. Discerning Chemical Composition and Mutagenic Effects of Soy Biodiesel PM

    Science.gov (United States)

    Exhaust particles from the combustion of traditional diesel fuel have been shown to lead to increases in adverse health effects such as impaired lung function, respiratory distress, and cardiovascular disease. This has resulted in an effort to find alternative fuels, such as soy...

  10. Effects of chemical contamination on HDPE - thermo-mechanical and characterisation properties

    International Nuclear Information System (INIS)

    Ashraf, G.

    2002-01-01

    Studying the effects of chemical contamination on HDPE is an important precursor in recycling of plastic packaging and polymer reprocessing. This research involves and discusses the results of an in-depth investigation into the effects of chemically contaminating, using various acids, commercial grade high density polyethylene (HDPE) used commonly in packaging applications. An extensive formulation study was conducted and it became obvious that in some cases degradation had occurred to HDPE when chemically contaminated with particular functional group types. The functional groups in contaminated HDPE were successfully identified. A variety of analytical techniques such as Fourier transform Infra-red spectroscopy, X-ray Florescence, x-ray photo electron spectroscopy could identify compounds such as HCl acid, HNO/sub 3/ acid and other related contaminants. Some chemical additives had effects on the mechanical and thermal properties when added in the most appropriate concentration. The results have shown lower tensile modulus and strength tensile elongation, lower modular weight, melt flow index and crystallinity. The amount of contaminant concentration, the type of chemical functional groups used and the type of test selected to affect degradation are important factors in proving the effects of chemical contamination on HDPE in the melt state. (author)

  11. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.

    Science.gov (United States)

    de Sousa, Ricardo Silva; Santos, Vilma Maria; de Melo, Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; van den Brink, Paul J; Araújo, Ademir Sérgio Ferreira

    2017-12-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the time-dependent effect of CTS on the chemical and microbial properties of soil. CTS was applied at 0, 2.5, 5, 10, and 20 Mg ha -1 and the soil chemical and microbial properties were evaluated at 0, 45, 75, 150, and 180 days. Increased CTS rates increased the levels of Ca, Cr, and Mg. While Soil pH, organic C, and P increased with the CTS rates initially, this effect decreased over time. Soil microbial biomass, respiration, metabolic quotient, and dehydrogenase increased with the application of CTS, but decreased over time. Analysis of the Principal Response Curve showed a significant effect of CTS rate on the chemical and microbial properties of the soil over time. The weight of each variable indicated that all soil properties, except β-glucosidase, dehydrogenase and microbial quotient, increased due to the CTS application. However, the highest weights were found for Cr, pH, Ca, P, phosphatase and total organic C. The application of CTS in the soil changed the chemical and microbial properties over time, indicating Cr, pH, Ca, phosphatase, and soil respiration as the more responsive chemical and microbial variables by CTS application.

  12. Domino effect in chemical accidents: main features and accident sequences.

    Science.gov (United States)

    Darbra, R M; Palacios, Adriana; Casal, Joaquim

    2010-11-15

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes are external events (31%) and mechanical failure (29%). Storage areas (35%) and process plants (28%) are by far the most common settings for domino accidents. Eighty-nine per cent of the accidents involved flammable materials, the most frequent of which was LPG. The domino effect sequences were analyzed using relative probability event trees. The most frequent sequences were explosion→fire (27.6%), fire→explosion (27.5%) and fire→fire (17.8%). Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Effects of Surfactants on the Rate of Chemical Reactions

    Directory of Open Access Journals (Sweden)

    B. Samiey

    2014-01-01

    Full Text Available Surfactants are self-assembled compounds that depend on their structure and electric charge can interact as monomer or micelle with other compounds (substrates. These interactions which may catalyze or inhibit the reaction rates are studied with pseudophase, cooperativity, and stoichiometric (classical models. In this review, we discuss applying these models to study surfactant-substrate interactions and their effects on Diels-Alder, redox, photochemical, decomposition, enzymatic, isomerization, ligand exchange, radical, and nucleophilic reactions.

  14. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  15. Domino effect in chemical accidents: main features and accident sequences

    OpenAIRE

    Casal Fàbrega, Joaquim; Darbra Roman, Rosa Maria

    2010-01-01

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes a...

  16. The significance of domino effect in chemical accidents

    OpenAIRE

    Hemmatian, Behrouz; Abdolhamidzadeh, B; Darbra Roman, Rosa Maria; Casal Fàbrega, Joaquim

    2014-01-01

    A historical survey was performed on 330 accidents involving domino effect, occurred in process/storage plants and in the transportation of hazardous materials; only accidents occurred after 1st-January-1961 have been considered. The main features – geographical location, type of accident, materials involved, origin and causes, consequences, domino sequences – were analyzed, with special consideration to the situation in the developing countries and compared to those from other previous surve...

  17. Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines

    International Nuclear Information System (INIS)

    Zhang, Silong; Cui, Naigang; Xiong, Yuefei; Feng, Yu; Qin, Jiang; Bao, Wen

    2017-01-01

    The working process of an advanced aeroengine such as scramjet with endothermic hydrocarbon fuel cooling is a chemical recuperative cycle. The design of cooling channel in terms of engine real working conditions is very important for the chemical recuperation process. To study the effects of channel aspect ratio (AR) on chemical recuperation process of advanced aeroengines, three dimensional model of pyrolysis coolant flow inside asymmetrical rectangular cooling channels with fins is introduced and validated through experiments. Cases when AR varies from 1 to 8 are carried out. In the pyrolysis zone of the cooling channel, decreasing the channel aspect ratio can reduce the temperature difference and non-uniformity of fuel conversion in the channel cross section, and it can also increase the final conversion and corresponding chemical heat absorption. A small channel aspect ratio is beneficial for the chemical recuperation process and can guarantee the engine cooling performance in the pyrolysis zone of the cooling channel. - Highlights: • Large non-uniformity of conversion is bad for the chemical recuperation. • Small channel aspect ratio is beneficial for improving the chemical recuperation effectiveness. • Small channel aspect ratio is also beneficial for reducing the engine wall temperature.

  18. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    Science.gov (United States)

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  19. Effects of toxic chemicals on the reproductive system. Council on Scientific Affairs.

    Science.gov (United States)

    1985-06-21

    In an effort to make physicians more aware of the hazards of the workplace to pregnant workers, the Council on Scientific Affairs' Advisory Panel on Reproductive Hazards in the Workplace prepared this third and final report reviewing the effects of chemical exposure. A total of 120 chemicals were considered for reviews based on an estimation of their imminent hazard, ie, widespread use and/or inherent toxicity. Following a brief introduction, which sets out general principles, clinical applications, and aids to the recognition of a human teratogen, the report presents reviews and opinions for three representative chemicals. Information concerning the remaining 117 compounds is available upon request.

  20. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Arnhild; Ensslin, Klaus [Solid State Physics Laboratory, ETH Zurich (Switzerland); Koehler, Fabian M; Stark, Wendelin J, E-mail: arnhildj@phys.ethz.ch, E-mail: fabian.koehler@chem.ethz.ch [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland)

    2010-12-15

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  1. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    International Nuclear Information System (INIS)

    Jacobsen, Arnhild; Ensslin, Klaus; Koehler, Fabian M; Stark, Wendelin J

    2010-01-01

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  2. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  3. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 3—Calcium

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Sterling; Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward D, E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Calcium leaching from NUKON fiberglass in borated TSP-buffered solution is independent of the level of fiberglass destruction. • The initial calcium release rate and the maximum calcium concentration increases with increased fiber concentration. • The calcium release in solution has a repeatable pattern of four distinct regions (prompt release, metastable, autocatalytic drop, and stable region) for all experiments. • Magnesium plays a significant role in initiating calcium precipitation in TSP-buffered environment. • Head loss through multi-constituents debris beds was found to increase progressively in all calcium concentration regions. - Abstract: Calcium that leaches from damaged or destroyed NUKON fiberglass in containment post a loss of coolant accident (LOCA) could lead to the formation of chemical precipitates. These precipitates could be filtered through the accumulated fibrous debris on the sump screen and compromising the emergency core cooling system (ECCS) sump pump performance. Reduced-scale leaching experiments were conducted on three solution inventory scales—bench (0.5 L), vertical column (31.5 L), and tank (1136 L) using three different flow conditions, and fiberglass concentrations (1.18–8 g/L) to investigate calcium release from NUKON fiber. All experiments were conducted in simulated post-LOCA water chemistry. (∼220 mM boric acid with ∼5.8 mM trisodium phosphate (TSP) buffer). Prior to the leaching tests, a preliminary experiment was carried out on the bench scale to determine the effect of the fiber preparation (unaltered and blended) method on calcium leaching. Results indicate that the extent of fiberglass destruction does not affect the amount of calcium released from fiberglass. Long-term calcium leach testing at constant temperature (80 °C) in borated TSP-buffered solution had repeatable behavior on all solution scales for different fiberglass concentrations. The calcium-leaching pattern can be divided into

  4. Marijuana extracts possess the effects like the endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Watanabe, Kazuhito; Motoya, Erina; Matsuzawa, Naoki; Funahashi, Tatsuya; Kimura, Toshiyuki; Matsunaga, Tamihide; Arizono, Koji; Yamamoto, Ikuo

    2005-01-01

    The progesterone 17α-hydroxylase activity, which is one of the steroidogenic enzymes in rat testis microsomes, was significantly inhibited by crude marijuana extracts from Δ 9 -tetrahydrocannabinolic acid (THCA)- and cannabidiolic acid (CBDA)-strains. Δ 9 -Tetrahydrocannabinol, cannabidiol and cannabinol also inhibited the enzymatic activitiy with relatively higher concentration (100-1000 μM). Testosterone 6β- and 16α-hydroxylase activities together with androstenedione formation from testosterone in rat liver microsomes were also significantly inhibited by the crude marijuana extracts and the cannabinoids. Crude marijuana extracts (1 and 10 μg/ml) of THCA strain stimulated the proliferation of MCF-7 cells, although the purified cannabinoids (THC, CBD and CBN) did not show significant effects, such as the extract at the concentration of 0.01-1000 nM. These results indicate that there are some metabolic interactions between cannabinoid and steroid metabolism and that the constituents showing estrogen-like activity exist in marijuana

  5. Effect of some chemical radioprotectors on mouse bone marrow

    International Nuclear Information System (INIS)

    Lata, Manju; Ghose, A.; Khanna, C.M.

    1993-01-01

    Effect of 5-hydroxy-L-tryptophan (HT), AET and Se on mice bone marrow has been studied by counting bone marrow micronucleated cells and endogenous spleen colony count (CFU-S). Combination of HT and AET used as a radioprotector has not caused any significant variation in any of the parameter studied when administered once, it increases bone marrow micronucleated cells and decreases CFU-S slightly after daily administration for 7 days. The individual constituent of the combination administered singly does not increase micronucleated cell number. Seven consecutive doses of HT+AET and same in combination with Se enhances micronucleated cells to a higher level. Daily injection of Se alone up to 7 days also causes an increase in micronucleated cells up to same level. CFU-S pool does not show any significant change in number of bone marrow cells through out the study except in the groups where animals were treated with Se. (author). 15 refs., 3 tabs

  6. Chemical composition and effective temperatures of metallic line white dwarfs

    International Nuclear Information System (INIS)

    Hammond, G.L.

    1974-01-01

    Model atmosphere techniques have been employed to determine the composition, effective temperatures, radii, masses and surface gravities of white dwarfs Ross 640 and van Maanen 2. The non-gray, LTE, convective, constant flux models employed collisional damping constants for the Ca II H and K lines that were measured in a laboratory device that simulated white dwarf atmospheric conditions. Ross 640 was found to have an extremely helium-rich composition and T/sub eff/ = 8500K, while the observed properties of van Maanen 2 were fitted best by a model with 91 percent helium, 9 percent hydrogen and T/sub eff/ = 6100K. The laboratory measurements of pressure shifts for the Ca II lines casts some doubt on the interpretation of recent radial velocity determinations for van Maanen 2. (U.S.)

  7. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  8. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  9. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  10. Reduction of radiation effects by chemical protector (WR-2721)

    International Nuclear Information System (INIS)

    Lee, C.H.; Kim, Y.K.; Yun, T.K.; Koh, J.H.

    1985-01-01

    As a part studies on effect of radiation, the present report was carried out to evaluate the changes of leukocytes, lymphocytes percent of leukocytes and several organs in swiss webster (NIH-GP) mice by radiation protective agents prior to γ-ray exposure. The whole body irradiation after administration of a radiation protective agents was done in dose level of 25,50,100 and 300 rads by a single exposure of γ-ray delivered from 60 Co, source tele-irradiation unit at a dose rate of 100 rad/min. Mice of each experimental group were whole body γ-irradiated in plastic cage with special producted rotating machine. The radiation protective agent was employed WR-2721 and the amounts injected intraperitoneally were 400mg/kg of body weight. The leukocytes were counted with hemocytometer. Differential count of leukocytes was done with 200 cells every smear and lymphocyte percent of leukocyte were determined in relative proportion only. All major organ were examined grossly and weighted. After fixation with formalin solution, histo-pathological preparations were made for microscopical study. (Author)

  11. Effects of combining microbial and chemical insecticides on mortality of the Pecan Weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Shapiro-Ilan, David I; Cottrell, Ted E; Wood, Bruce W

    2011-02-01

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecan [Carya illinoinensis (Wangenh.) K. Koch]. Current control recommendations are based on chemical insecticide applications. Microbial control agents such as the entomopathogenic nematode, Steinernema carpocapsae (Weiser) and the fungus Beauveria bassiana (Balsamo) Vuillemin occur naturally in southeastern U.S. pecan orchards and have shown promise as alternative control agents for C. caryjae. Conceivably, the chemical and microbial agents occur simultaneously within pecan orchards or might be applied concurrently. The objective of this study was to determine the interactions between two chemical insecticides that are used in commercial C. caryae control (i.e., carbaryl and cypermethrin applied below field rates) and the microbial agents B. bassiana and S. carpocapsae. In laboratory experiments, pecan weevil larval or adult mortality was assessed after application of microbial or chemical treatments applied singly or in combination (microbial + chemical agent). The nature of interactions (antagonism, additivity, or synergy) in terms of weevil mortality was evaluated over 9 d (larvae) or 5 d (adults). Results for B. bassiana indicated synergistic activity with carbaryl and antagonism with cypermethrin in C. caryae larvae and adults. For S. carpocapsae, synergy was detected with both chemicals in C. caryae larvae, but only additive effects were detected in adult weevils. Our results indicate that the chemical-microbial combinations tested are compatible with the exception of B. bassiana and cypermethrin. In addition, combinations that exhibited synergistic interactions may provide enhanced C. caryae control in commercial field applications; thus, their potential merits further exploration.

  12. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    Science.gov (United States)

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  13. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  14. Guidelines of Italian CCTN for classification of some effects of chemical substances

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, N [ISPESL, Monteporzio Catone, Rome (Italy). Dip. di Medicina del Lavoro; Camoni, I [Ist. Superiore di Sanita` , Rome (Italy). Lab. di Tossicologia Applicata

    1996-03-01

    Definitions of the categories and the criteria for the classification of chemical substances on the basis of their potential carcinogenic, mutagenic and toxic-reproductive effects, elaborated by the Italian National Advisory Toxicological Committee (CCTN) in 1994. Besides all the allocations effected by the CCTN in the period 1977-1995 are reported, updated according to these criteria.

  15. Skin rejuvenating effects of chemical peeling: a study in photoaged hairless mice.

    Science.gov (United States)

    Han, Sung Hyup; Kim, Hong Jig; Kim, Si Yong; Kim, You Chan; Choi, Gwang Seong; Shin, Jeong Hyun

    2011-09-01

    Chemical peeling is a dermatologic treatment for skin aging. However, the mechanism by which the chemical peel achieves its results is not clear. We investigated the effects of chemical peeling and the mechanism of wrinkle reduction in photoaged hairless mice skin. After inducing photoaged skin in hairless mice by repetitive ultraviolet-B irradiation applied over 14 weeks, we applied trichloroacetic acid (TCA) 30%, TCA 50%, and phenol on areas of the same size on the backs of the mice. Punch biopsies were obtained 7, 14, 28, and 60 days after the procedure for histologic and immunohistochemical analyses. Histologic examination showed an increase in dermal thickness, collagen fibers, and elastic fibers in the dermis of intervention groups compared with control groups. These increases were maintained significantly for 60 days. This study demonstrates that chemical peeling reduces wrinkles and regenerates skin by increasing dermal thickness and the amount of collagen and elastic fibers in photoaged skin. © 2011 The International Society of Dermatology.

  16. Effect of Containment Spray Additives on the Chemical Effect after a Loss of Coolant Accident in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Chan; Park, Jong Woon; Lee, Guen Sung [KOREA HYDRO and NUCLEAR POWER Co., Daejeon (Korea, Republic of)

    2007-10-15

    As a part of USNRC GSI-191, evaluation of Kori Unit 1 ECCS recirculation sump performance has been carried out in 2006. The work is derived from the result of first PSR(Periodic Safety Review) of Kori Unit1. In this work, we have considered the replacement of spray additive in containment building to solve issues of GSI-191 and GL2004-02. We estimated the chemical effect of changing NaOH into TSP(Trisodium Phosphate) based on SRP(Standard Review Plan) 6.5.2. Rev.02. WCAP-16530 methodology is used to compare chemical effects of spray additive(or buffering agents). In the other side, chemical thermodynamic simulation can be utilized. Herein, the results using WCAP-16530 methodology and chemical simulation are presented.

  17. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    Science.gov (United States)

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  19. Irradiation effect on chemical components of oil palm empty fruit bunch and palm press fibre

    International Nuclear Information System (INIS)

    Zainon Othman; Mat Rasol Awang; Hassan Hamdani Mutaat; Tamikazu Kume; Hitoshi Ito; Shinpei Matsuhashi; Ishigaki, I.

    1998-01-01

    Physico-chemical properties of empty fruit bunch (EFB) and palm press fibre (PPF), which are major by-products of the oil palm industries, were studied for upgrading their utilisation as animal feed by radiation-fermentation process. Comparative analyses of raw EFB and PPF from 3 different mills showed significant variations in some of their chemical components. Significant differences were also observed between the chemical components of EFB and PPF samples. The water holding capacities (WHC) of both EFB and PPF suggested their suitability for use as fermentation media. Gamma irradiation of up to 50 kGy have little effect on the components of both EFB and PPF. Irradiation dose of 25 kGy appeared to produce enhancement effect on cellulase hydrolysis of holocellulose and alpha-cellulose of EFB but a retarding effect on hydrolysis of PPF

  20. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    Science.gov (United States)

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  1. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  2. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Science.gov (United States)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  3. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  4. Physico-chemical studies of radiation effects in cells: Final report

    International Nuclear Information System (INIS)

    Powers, E.L.

    1987-03-01

    The career of Dr. E.L. Powers, a pioneer in the development of radiobiology, is reviewed. His initial research involved the effects of radiation and certain chemicals on Paramecium, associated ultrastructural studies on protozoan cells, responses of Rickettsia and bacteriophage to irradiation, and the development of techniques for studying bacterial spores. These efforts established the basic radiation biology of the spore and its importance in understanding the effects of free radicals, oxygen, and water. His recent research extended work on the dry spore to the very wet spore and to other selected chemical systems in aqueous suspension. 126 refs., 2 figs

  5. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  6. Coupling effects of chemical stresses and external mechanical stresses on diffusion

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2009-01-01

    Interaction between diffusion and stress fields has been investigated extensively in the past. However, most of the previous investigations were focused on the effect of chemical stress on diffusion due to the unbalanced mass transport. In this work, the coupling effects of external mechanical stress and chemical stress on diffusion are studied. A self-consistent diffusion equation including the chemical stress and external mechanical stress gradient is developed under the framework of the thermodynamic theory and Fick's law. For a thin plate subjected to unidirectional tensile stress fields, the external stress coupled diffusion equation is solved numerically with the help of the finite difference method for one-side and both-side charging processes. Results show that, for such two types of charging processes, the external stress gradient will accelerate the diffusion process and thus increase the value of concentration while reducing the magnitude of chemical stress when the direction of diffusion is identical to that of the stress gradient. In contrast, when the direction of diffusion is opposite to that of the stress gradient, the external stress gradient will obstruct the process of solute penetration by decreasing the value of concentration and increasing the magnitude of chemical stress. For both-side charging process, compared with that without the coupling effect of external stress, an asymmetric distribution of concentration is produced due to the asymmetric mechanical stress field feedback to diffusion.

  7. The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects

    Science.gov (United States)

    Liu, Z. J.; Li, X. K.; Tang, L. Q.

    2010-05-01

    The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.

  8. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    International Nuclear Information System (INIS)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E.; Pjontek, D.

    2007-01-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs

  9. Effect of Zn content on the chemical conversion treatments of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Lifang; Meng Qingsen; Chen Shaoping; Wang Hao

    2012-01-01

    Highlights: ► The effect of Zn content on the chemical conversion process of Mg alloy was studied. ► The coating thickness grows up with the increase of the Zn content. ► The corrosion resistance of the coating is comparable if the Zn content below 2 wt.%. ► The corrosion resistance of the coating became poorer if the Zn content beyond 2 wt.%. - Abstract: In this study, four AZ91D magnesium plates with different Zn content were treated with chemical conversion treatments. The chemical conversion coating was examined using scanning electron microscope, optical microscope and glow discharge optical emission spectrometer. The testing results indicated that increase in Zn content produced a thicker chemical conversion coating. However, when the Zn content exceeded 2 wt.%, the thickness of the chemical conversion coating decreased. To investigate the chemical conversion mechanism, potentiodynamic polarization and electrochemical impedance spectroscopy were employed to evaluate the corrosion resistance of the magnesium substrate in 3.5 wt.% NaCl solution.

  10. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    Science.gov (United States)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  11. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: lewis.michael@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)

    2011-10-15

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  12. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  13. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation

    International Nuclear Information System (INIS)

    Asur, Rajalakshmi; Balasubramaniam, Mamtha; Marples, Brian; Thomas, Robert A.; Tucker, James D.

    2010-01-01

    Many studies have examined bystander effects induced by ionizing radiation, however few have evaluated the ability of chemicals to induce similar effects. We previously reported the ability of two chemicals, mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cell lines. The focus of the current study was to determine the involvement of the MAPK proteins in bystander effects induced by physical and chemical DNA damaging agents and to evaluate the effects of MAPK inhibition on bystander-induced caspase 3/7 activation. The phosphorylation levels of the MAPK proteins ERK1/2, JNK, and p38, were measured from 1 to 24 h following direct or bystander exposure to MMC, PHL or radiation. We observed transient phosphorylation, at early time points, of all 3 proteins in bystander cells. We also evaluated the effect of MAPK inhibition on bystander-induced caspase 3/7 activity to determine the role of MAPK proteins in bystander-induced apoptosis. We observed bystander-induced activation of caspase 3/7 in bystander cells. Inhibition of MAPK proteins resulted in a decrease in caspase 3/7 activity at the early time points, and the caspase activity increased (in the case of ERK inhibition) or returned to basal levels (in the case of JNK or p38 inhibition) between 12 and 24 h. PHL is considered to be a radiomimetic agent, however in the present study PHL behaved more like a chemical and not like radiation in terms of MAPK phosphorylation. These results point to the involvement of MAPK proteins in the bystander effect induced by radiation and chemicals and provide additional evidence that this response is not limited to radiation but is a generalized stress response in cells.

  14. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail: anna.cousins@ivl.se

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  15. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  16. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art.

    Science.gov (United States)

    Arenas-Sánchez, Alba; Rico, Andreu; Vighi, Marco

    2016-12-01

    Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas

  17. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  18. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  19. Effect of Reused Litter and Chemical Amendment on Broiler Chicken Performance and Litter Quality

    Directory of Open Access Journals (Sweden)

    M Lotfi

    2016-06-01

    Full Text Available An experiment was conducted to evaluate the effect of chemical amendments and reused litter on broiler performances, immune response and skin quality. Five hundred and seventy six (576 day old broiler chickens were randomly allocated to 3x2 factorial design experiment. Three amendments treatment included control (no chemical addition, alunminum sulfate and zeolite; two types of litter were new and reused one. There were 4 replicates and 24 broiler chickens in each pen. The feed and water were available ad libitum during 42 days of experiment. The type of bedding had no significant effect on broilers performances (weight gain, feed efficiency ratio and mortality. Chemical amendments improved broilers performances during 0-35 days of production period but by the end of experiment there was no differences between treatment groups. Neither bedding type nor chemical amendments influenced skin erosion criteria responses. The immune response of broilers was not affected by either type of bedding or chemical amendments. It could be concluded that although beddings to be reused, it should be treated so as to overcome any defect of reused bedding.

  20. Chemical Processing effects on the radiation doses measured by Film Dosimeter System

    International Nuclear Information System (INIS)

    Mihai, F.

    2009-01-01

    Halide film dosimetry is a quantitative method of measurement of the radiation doses. The fog density and chemical processing of the dosimeter film affect the radiation dose measurement accuracy. This work presents the effect of the developer solution concentration on the response of the dosimetric film which different fog densities. Thus, three batches of film, dosimeters with following fog density 0.312 ± 1.31 %, 0.71 ± 0.59% and 0.77 ± 0.81 %, were irradiated to 137 Cs standard source to dose value of 1mSv. The halide films have been chemical processed at different concentrations of the developer solution: 20 %; 14.29 %; 11.11%; all other physics-chemical conditions in baths of development have been kept constants. Concentration of 20% is considered to be chemical processed standard conditions of the films. In case of the films exposed to 1 mSv dose, optical density recorded on the low fog films processed at 20% developer solution is rather closed of high fog film optical densities processed at 11.11% developer solution concentration. Also, the chemical processing effect on the image contrast was taken into consideration

  1. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  2. Endocrine effects of chemicals: aspects of hazard identification and human health risk assessment.

    Science.gov (United States)

    Dekant, Wolfgang; Colnot, Thomas

    2013-12-16

    Hazard and risk assessment of chemicals with endocrine activity is hotly debated due to claimed non-monotonous dose-response curves in the low-dose region. In hazard identification a clear definition of "endocrine disruptors" (EDs) is required; this should be based on the WHO/IPCS definition of EDs and on adverse effects demonstrated in intact animals or humans. Therefore, endocrine effects are a mode of action potentially resulting in adverse effects; any classification should not be based on a mode of action, but on adverse effects. In addition, when relying on adverse effects, most effects reported in the low-dose region will not qualify for hazard identification since most have little relation to an adverse effect. Non-monotonous dose-response curves that had been postulated from limited, exploratory studies could also not be reproduced in targeted studies with elaborate quality assurance. Therefore, regulatory agencies or advisory bodies continue to apply the safety-factor method or the concept of "margin-of-exposure" based on no observed adverse effect levels (NOAELs) in the risk assessment of chemicals with weak hormonal activity. Consistent with this approach, tolerable levels regarding human exposure have been defined for such chemicals. To conclusively support non-monotonous dose-response curves, targeted experiments with a sufficient number of animals, determination of adverse endpoints, adequate statistics and quality control would be required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions.

    Science.gov (United States)

    Polak, Micha; Rubinovich, Leonid

    2011-10-06

    Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors.

  4. Domino effects within a chemical cluster: a game-theoretical modeling approach by using Nash-equilibrium.

    Science.gov (United States)

    Reniers, Genserik; Dullaert, Wout; Karel, Soudan

    2009-08-15

    Every company situated within a chemical cluster faces domino effect risks, whose magnitude depends on every company's own risk management strategies and on those of all others. Preventing domino effects is therefore very important to avoid catastrophes in the chemical process industry. Given that chemical companies are interlinked by domino effect accident links, there is some likelihood that even if certain companies fully invest in domino effects prevention measures, they can nonetheless experience an external domino effect caused by an accident which occurred in another chemical enterprise of the cluster. In this article a game-theoretic approach to interpret and model behaviour of chemical plants within chemical clusters while negotiating and deciding on domino effects prevention investments is employed.

  5. The effect of chemical treatment on life broilers before slaughter and ...

    African Journals Online (AJOL)

    In this study, effect of chemical treatment (surface and oral) using chlorine and TH4 of life broilers before slaughter and slaughter conditions on bacterial and keeping quality of broiler meat was investigated. The objectives were to improve both bacterial and keeping quality of broiler meat and to identify critical control points ...

  6. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    Science.gov (United States)

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  7. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria)

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Poel, van der A.F.B.

    2011-01-01

    An experiment was conducted to determine the effects of diet on the chemical composition of migratory locusts (Locusta migratoria L.). Fresh and dry weight and the contents of dry matter, ash, lipid, protein, Ca, K, Mg, Na, P, Cu, Fe, Zn, retinol, lutein, zeaxanthine, cryptoxanthin, carotenes,

  8. Effect of Continuous Assessment on Learning Outcomes on Two Chemical Engineering Courses: Case Study

    Science.gov (United States)

    Tuunila, R.; Pulkkinen, M.

    2015-01-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning…

  9. How synergistic or antagonistic effects may influence the mutual hazard ranking of chemicals

    Directory of Open Access Journals (Sweden)

    Lars Carlsen

    2015-04-01

    Full Text Available The presence of various agents, including humic materials, nanomaterials, microplastics, or simply specific chemical compounds, may cause changes in the apparent persistence, bioaccumulation, and/or toxicity (PBT of a chemical compound leading to an either increased or decreased PBT characteristics and thus an increased or decreased hazard evaluation. In the present paper, a series chloro-containing obsolete pesticides is studied as an illustrative example. Partial order methodology is used to quantify how changed P, B, or T characteristics of methoxychlor (MEC influences the measure of the hazard of MEC, relative to the other 11 compounds in the series investigated. Not surprisingly, an increase in one of the three indicators (P, B, or T lead to an increased average order and thus an increased relative hazard as a result of a synergistic effect. A decrease in one of the indicator values analogously causes a decreased average order/relative hazard through an antagonistic effect; the effect, however, being less pronounced. It is further seen that the effect of changing the apparent value of the three indicators is different. Thus, persistence apparently is more important that bioaccumulation which again appears more important than toxicity, which is in agreement with previous work. The results are discussed with reference to the European chemicals framework on registration, evaluation and authorization of chemicals (REACH framework.

  10. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil

    NARCIS (Netherlands)

    Sousa, de Ricardo Silva; Santos, Vilma Maria; Melo, de Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; Brink, van den Paul J.; Araújo, Ademir Sérgio Ferreira

    2017-01-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the

  11. The Effect of Rubber Effluent on some Chemical Properties of Soil ...

    African Journals Online (AJOL)

    A preliminary pot trial was conducted in a greenhouse to determine the effects of rubber effluent on some soil chemical properties as well as early growth and nutrient uptake by maize plant. The levels of rubber effluent used were 0, 50, 100, 150, 200, 250 ml per 2 kg soil. The trial was arranged in a completely randomized ...

  12. The Effects of Rubber Effluent on Some Chemical Properties of Soil ...

    African Journals Online (AJOL)

    A preliminary pot trial was conducted in a greenhouse to determine the effects of rubber effluent on some soil chemical properties as well as growth and nutrient uptake by maize plant. The levels of rubber effluent used were 0, 50, 100, 150, 200, 250 ml per 2 kg soil. The trial was organized in a completely randomized ...

  13. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it therefore has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.

  14. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent...

  15. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  16. Chemical composition effects of methylene containing polymers on gas emission under γ-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Dannoux-Papin, A. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Dély, N. [CEA, DSM, IRAMIS, LIDYL, PCR, F-91191 Gif-sur-Yvette (France); Legand, S.; Durand, D.; Roujou, J.L.; Lamouroux, C.; Dauvois, V. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Coignet, P.; Cochin, F. [AREVA NC DOR/RDP, 1 place Jean Millier, 92084 La Défense (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); CEA, DSM, IRAMIS, LIDYL, PCR, F-91191 Gif-sur-Yvette (France)

    2014-09-01

    The presence of different chemical groups in methylene containing polymers can lead to very different behaviors under ionizing radiation. To better understand the effect of these groups on gas production under γ-irradiation, especially on hydrogen formation, and to study the efficiency of energy transfer between chemical groups, several methylene containing polymers with different controlled group concentrations were studied in inert atmosphere. We analyzed the influence of the nature and position of the chemical group using methylene containing copolymers with aliphatic side-chains (different lengths), ester groups in the side-chains (different concentrations) and ester groups in the polymer backbone (different concentrations). Radiation chemical yields of H{sub 2}, CO, CO{sub 2} and CH{sub 4} were determined at room temperature by high resolution mass spectrometry. On the basis of these results, we attempt to obtain a better understanding of the mechanisms involved. It can be observed that crystallinity and aliphatic side-chain have no effect on hydrogen formation. On contrary, esters on side-chain and in the backbone have an important influence on hydrogen formation, with the most important effect when esters groups are in the backbone. In these two kind of materials, energy fraction transferred from methylene to ester groups has been quantified and only 10 wt% (or less) of ester groups are sufficient to protect effectively the aliphatic moiety.

  17. Effects of pond fertilization on the physico-chemical water quality of ...

    African Journals Online (AJOL)

    The effect of fertilization on the physico-chemical water quality of six selected earthen fishponds in Ife North Local Government Area of Osun State was investigated for a period of two years sampling the ponds every other month. The fishponds were grouped with regard to fertilization practice and water flowage regime into ...

  18. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  19. Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM

    Science.gov (United States)

    Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM David G. Nashab, Esra Mutluc, William T. Prestond, Michael D. Haysb, Sarah H. Warrenc, Charly Kingc, William P. Linakb, M. lan Gilmourc, and David M. DeMarinic aOak Ridge Institute for Science and Ed...

  20. A new cascade method for studying isotope effect in chemical exchange system without valance change

    International Nuclear Information System (INIS)

    Wen Xiaoning; Luo Wenzong

    1987-01-01

    A new cascade method for studying isotope effect in chemical exchange system without valance change is developed and described. This method is simple to use and consumes less extractant as compared with the commonly used Woodward method. It is also convenient for unstable systems

  1. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    Science.gov (United States)

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  2. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  3. The Effectiveness of Conceptual Change Texts in Remediating High School Students' Alternative Conceptions Concerning Chemical Equilibrium

    Science.gov (United States)

    Ozmen, Haluk

    2007-01-01

    This study investigated the effectiveness of conceptual change texts in remediating high school students' alternative conceptions concerning chemical equilibrium. A quasi-experimental design was used in this study. The subjects for this study consisted of a total 78 tenth-grade students, 38 of them in the experimental group and 40 of them in the…

  4. Chemical effects in ion mixing of a ternary system (metal-SiO2)

    Science.gov (United States)

    Banwell, T.; Nicolet, M.-A.; Sands, T.; Grunthaner, P. J.

    1987-01-01

    The mixing of Ti, Cr, and Ni thin films with SiO2 by low-temperature (- 196-25 C) irradiation with 290 keV Xe has been investigated. Comparison of the morphology of the intermixed region and the dose dependences of net metal transport into SiO2 reveals that long range motion and phase formation probably occur as separate and sequential processes. Kinetic limitations suppress chemical effects in these systems during the initial transport process. Chemical interactions influence the subsequent phase formation.

  5. Effective interactions between concentration fluctuations and charge transfer in chemically ordering liquid alloys

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1992-08-01

    The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li 4 Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs

  6. Biological effects of concomitant influence of radioactive and chemical factors. (Experimental research)

    International Nuclear Information System (INIS)

    Meshkov, N.A.

    1995-01-01

    Remote consequences of concomitant influence of radioactive and chemical hazards substances, modeling the ecological situation at the territory of the Altaj region after the nuclear tests at the Semipalatinsk test site is studied on the mice. Negative effect of the concomitant impact of radioactive and hazardous chemical substances on the basic morpho-functional systems of animals is revealed; the reproduction function proved to be the most sensitive one. It is noted that the radiation factor constitutes the basis of all violations of bone marrow blood-producing function by concomitant influence

  7. Effect of chemical treatment on thermal properties of fibers from pineapple

    International Nuclear Information System (INIS)

    Fernandes, Rafael I.M.; Mulinari, Daniella R.; Carvalho, Kelly C.C.; Conejo, Luiza dos Santos; Voorwald, Herman J.C.; Cioffi, Maria Odila H.

    2009-01-01

    In this work the effect of the chemical modification of natural fibres from of pineapple fibres with alkaline solution was studied. After modification the in nature and modified fibres were analyzed by XRD diffractometry and thermogravimetry with objective to evaluate influence chemical treatment in surface and in the thermal properties fibres. With the obtained results it was possible to verify an increase of 10.4 % in the crystallinity index of fibres beyond the increase around 4.5% in the degradation temperature, what it indicates an increase in the stability thermal of the fibres. (author)

  8. Investigation of effect of Ag(1), Cd(2) and Zn(2) on chemical nickel plating

    International Nuclear Information System (INIS)

    Lunyatskas, A.M.; Tarozajte, R.K.; Gyanutene, I.K.; Lyaukonis, Yu.Yu.

    1978-01-01

    Investigated is the effect of Ag(1), Cd(2) and Zn(2) on chemical nickel plating using hypophosphite aimed to get corresponding alloys from alkali solutions. The H 2 formed volume and potential of coating have been measured while nickel plating. It is possible to have plating of Ni-P-Ag, Ni-P-Zn, Ni-P-Cd, Ni-P-Zn-Cd content coatings in alkali solutions using hypophosphite Ni-P-Zh and Ni-P-Zn-Cd coatings have corrosion resistance and unporousness. Cd and Zn inclusion in Ni-P coating is supposed to have both chemical and electrochemical origin

  9. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  10. Effect of Sewage Sludge on Some Macronutrients Concentration and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Sakine Vaseghi

    2005-03-01

    Full Text Available Sewage sludge as an organic fertilizer has economic benefits. Land application of sewage sludge improves some soil chemical and physical properties. The objective of this study was to evaluate the effect of sewage sludge on soil chemical properties and macronutrient concentration in acid and calcareous soils. The study was carried out in a greenhouse using factorial experiment design as completely randomized with three replications. Treatments included : four levels of 0 or control, 50, and 100, 200 ton ha-1 sludge and one level of chemical fertilizer (F consisting of 250 kg ha-1 diammonium phosphate and 250 kg ha-1 urea, and soil including soils of Langroud, Lahijan, Rasht, and Isfahan. As a major vegetable , crop spinach (Spinacea oleracea was grown in the treated soils. Soils samples were analyzed for their chemical properties after crop narvesting. Application of sewage sludge significantly increased plant available k, P, total N, organic matter, electrical conductivity and cation exchange in the soils. Soils pH significantly decreased as a result sewage sludge application. The effect of sewage sludge on plant yield was significant. Overall, the results indicated that sewage sludge is potentially a valuable fertilizer. However, the sludge effect on soil EC and heavy metals should be taken into consideration before its widespread use on cropland.

  11. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils

    International Nuclear Information System (INIS)

    Chen Wei; Hou Lei; Luo Xiaoli; Zhu Lingyan

    2009-01-01

    In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO 4 -treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO 4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. - Chemical oxidation of soils had little effect on the mechanisms controlling sorption and desorption of PAHs.

  12. Effect of chemical peeling on the skin in relation to UV irradiation.

    Science.gov (United States)

    Funasaka, Yoko; Abdel-Daim, Mohamed; Kawana, Seiji; Nishigori, Chikako

    2012-07-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. However, it needs to be clarified whether the repetitive procedure of chemical peeling on photodamaged skin is safe and whether the different chemicals used for peeling results in similar outcomes or not. In this article, we reviewed the effect of peeling or peeling agents on the skin in relation to ultraviolet (UV) radiation. The pretreatment of peeling agents usually enhance UV sensitivity by inducing increased sunburn cell formation, lowering minimum erythematous dose and increasing cyclobutane pyrimidine dimers. However, this sensitivity is reversible and recovers to normal after 1-week discontinuation. Using animals, the chronic effect of peeling and peeling agents was shown to prevent photocarcinogenesis. There is also an in vitro study using culture cells to know the detailed mechanisms of peeling agents, especially on cell proliferation and apoptotic changes via activating signalling cascades and oxidative stress. It is important to understand the effect of peeling agents on photoaged skin and to know how to deal with UV irradiation during the application of peeling agents and treatment of chemical peeling in daily life. © 2012 John Wiley & Sons A/S.

  13. Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available An exact solution to the flow of a viscous incompressible unsteady flow past an infinite vertical oscillating plate with variable temperature and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. Both the plate temperature and the concentration level near the plate are raised linearly with respect to time. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time are studied. The solutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter. .

  14. The effect of nozzle location on the concentration profiles in chemical addition tank

    International Nuclear Information System (INIS)

    Park, B. H.; Kim, E. K.; Ro, T. S.; Lee, C. H.

    2001-01-01

    A numerical analysis of the flow and injection characteristics is performed for the flow field created by water injected into a cylindrical tank with an initially stationary fluid. The flow is relevant to the operation of the chemical addition system in the chemical and volume control system( CVCS) of nuclear power plants. This study is performed to improve the current design which has a disk block inside tank. The numerical analysis for the flow and injection characteristics in chemical addition tank are carried out using CFD code FLUENT 5. Results show that the inlet nozzle installed in tangential direction at the uppermost region of the tank cylinder and the outlet nozzle located at the center of the tank bottom is very effective in enhancing the injection in the tank

  15. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vargas Diana P.

    2017-12-01

    Full Text Available The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

  16. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of Planting Date and Biological and Chemical Fertilizers on Phenology and Physiological Indices of Peanuts

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2017-06-01

    Full Text Available Introduction Peanut (Arachis hypogaea L. is an annual herbaceous plant in Fabaceae which grown in tropical to temperate regions worldwide for extracting its seed oil and nut consumption. Select the optimum planting date is one of the most important agricultural techniques that comply with the seed yield is maximized . For instance, delay planting date can reduce the number of fertile nodes and the number of pods per plant. The delay in planting date reduces total dry matter (TDM, leaf area index (LAI, crop growth rate (CGR and yield in bean (Phaseolus vulgaris L.. Daneshian et al., (2008 reported that the delay in planting date reduced sunflower (Helianthus annuus yield due to high temperatures in early growth which shortened flowering time and reduced solar radiation. On the other hand, due to increase importance of environmental issues has been attending biofertilizers to replace chemical fertilizers. Biofertilizers has formed by beneficial bacteria and fungi that each of them are produced for a specific purpose, such as nitrogen fixation, release of phosphate, potassium and iron ions of insoluble compound. The use of nitrogen fertilizer with slow-releasing ability stimulated shoot growth in soybean (Glycine max and be created more LAI in the reproductive process, particularly during grain filling stage and finally increased seed yield . Therefore, this study was conducted in order to evaluate the interaction of biological and chemical fertilizers in the purpose of achieving sustainable agriculture with emphasis of the effects of various planting dates on physiological parameters and growth of peanut in Hamadan. Materials and Methods In order to investigate the effects of planting date on important physiological indices of peanuts (Arachis hypogaea L. under the influence of biological and chemical fertilizers. A field experiment was conducted in the research farm of Bu-Ali Sina University, Hamedan during 2013 growing season. This study was

  18. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Jørgensen, E.C.B.; Larsen, John Christian

    1999-01-01

    Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential antiandrog......Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential...... antiandrogenic chemicals present in our environment. Thus, there is a great need for an effective in vitro screening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were...... calcium phosphate transfection method, this method has the advantage of being more feasible, as the assay can be scaled down to the microtiter plate format. Furthermore, the transfection reagent is noncytotoxic, allowing its addition together with the test compounds thereby reducing the hands...

  19. Comprehensive investigation of the corrosion and surface chemical effects of the decontamination technologies

    International Nuclear Information System (INIS)

    Szabo-Nagy, Andrea; Varga, Kalman; Deak-Horvath, Emese; Nemeth, Zoltan; Horvath, David; Schunk, Janos; Patek, Gabor

    2012-09-01

    Decontamination technologies are mainly developed to reduce the collective dose of the maintenance personnel at NPPs. The highest efficiency (i.e., the highest DF values) available without detrimental modification of the treated surface of structural material is the most important goal in the course of the application of a decontamination technology. A so-called 'soft' chemical decontamination technology has been developed - supported by the Paks Nuclear Power Plant - at the Institute of Radiochemistry and Radioecology of the University of Pannonia. The novel base technology can be effectively applied for the decontamination of the heat exchanger tubes of steam generators. In addition, by optimizing the main technological parameters (temperature, concentration of the liquid chemicals, flow rates, contact time, etc.) it can be utilized for specific applications such as decontamination of some dismountable devices and separable equipment or the total decontamination prior to plant dismantling (decommissioning) in the future. The aim of this work is to compare the efficiency, corrosion and surface chemical effects of some improved versions of the novel base-technology elaborated for decontamination of austenitic stainless steel surfaces. The experiments have been performed at laboratory conditions in decontamination model systems. The applied methods: γ-spectrometry, ICP-OES, voltammetry and SEM-EDX. The experimental results revealed that the efficiency of the base-technology mainly depends on the surface features of the stainless steel samples such as the chemical composition and thickness of the oxide layer, the nature (quantity, morphology and chemical composition) of the crystalline deposits. It has been documented that the improved version of the base-technology are suitable for the decontamination of both steel surfaces covered by chemically resistant large Cr-content crystals and that having compact oxide-layers (up to a thickness of 10

  20. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Hossein Pourmoghadas

    2017-03-01

    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  1. Sex-Specific Effects of Combined Exposure to Chemical and Non-chemical Stressors on Neuroendocrine Development: a Review of Recent Findings and Putative Mechanisms.

    Science.gov (United States)

    Cowell, Whitney J; Wright, Rosalind J

    2017-12-01

    Environmental toxicants and psychosocial stressors share many biological substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-induced changes to the maternal milieu may prime rapidly developing physiological systems for disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we highlight putative mechanisms underlying sex-specific susceptibility of the developing neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants (bisphenol A, alcohol, phthalates, lead, chlorpyrifos, and traffic-related air pollution). We provide evidence indicating that concurrent or tandem exposure to chemical and non-chemical stressors during windows of rapid development is associated with sex-specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits, and innate immune function. We additionally identify gaps, such as the role that the endocrine-active placenta plays, in our understanding of these complex interactions. Finally, we discuss future research needs, including the investigation of non-hormonal biomarkers of stress. We demonstrate multiple physiologic systems are impacted by joint exposure to chemical and non-chemical stressors differentially among males and females. Collectively, the results highlight the importance of evaluating sex-specific endpoints when investigating the neuroendocrine system and underscore the need to examine exposure to chemical toxicants within the context of the social environment.

  2. Isotope effects in gas-phase chemical reactions and photodissociation processes: Overview

    International Nuclear Information System (INIS)

    Kaye, J.A.

    1992-01-01

    The origins of isotope effects in equilibrium and non-equilibrium chemical processes are reviewed. In non-equilibrium processes, attention is given to isotope effects in simple bimolecular reactions, symmetry-related reactions, and photodissociation processes. Recent examples of isotope effects in these areas are reviewed. Some indication of other scientific areas for which measurements and/or calculations of isotope effects are used is also given. Examples presented focus on neutral molecule chemistry and in many cases complement examples considered in greater detail in the other chapters of this volume

  3. Cumulative and competitive effects of chemical elements on nuclear glass alteration

    International Nuclear Information System (INIS)

    Arena, Helene

    2016-01-01

    This work takes place in the context of the long-term behavior of nuclear glasses under repository conditions. The main objective is to identify, understand and compare the effects of some chemical elements present in the glass composition and/or in the repository media (Zn, Mg, Ni, Co, Fe, Ca, Gd, Ce, K, Cs, Cr and Ag) on the processes involved in glass alteration by water. The cumulative or competitive nature of the effects of these chemical elements was determined. To reach this goal, a 6 oxides simple glass (ISG) has been altered for more than 500 days in a solution containing one or more of the chemical elements of interest. The results indicate that Zn, Mg, Ni, Co and Fe elements increase glass alteration forming secondary phases with the same structure and stoichiometry (tri-octahedral smectites). To form, these silicates consume chemical elements (Si, Al) from the environment and induce a pH decrease until a limiting value of pH. Beyond this pH the precipitation of secondary phases is inhibited and these chemical elements can be integrated into the gel, replacing Ca whose solubility increases at lower pH. As long as they form secondary phases, the effects of these elements are cumulative. Rare earths Gd and Ce also increase glass alteration forming secondary phases but their effects are lower as they contain less silicon. These elements are not integrated in the gel. Chromium increases glass alteration by precipitating with Ca and leading to a less protective gel, depleted in Ca. Silver precipitates as AgCl and has no effect on the alteration of the glass. The chemical elements K, Cs and Ca limit glass alteration by integrating into the gel and slowing down the transport phenomena therein. This integration is competitive: the order of integration (quantity and effectiveness glass alteration limitation) is the following Ca≥≥Cs≥K. Thus, the increase of glass alteration may be proportional to the quantity of elements promoting the precipitation of

  4. Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers

    Science.gov (United States)

    Liu, Qian; Jiang, Shaolong; Teng, Jiao

    2018-05-01

    To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.

  5. Use of medaka as a tool in studies of radiation effects and chemical carcinogenesis

    International Nuclear Information System (INIS)

    Hyodo-Taguchi, Y.; Aoki, K.; Matsudaira, H.

    1982-01-01

    The medaka, Oryzias latipes, a small freshwater oviparous fish, is common in Japan and found in some parts of Asia. Adult fish are 3.0-3.5 cm long and weigh 0.5-0.7 g. The small fish have been used extensively in this laboratory for analysis of radiation effects and for study of chemical carcinogenesis. These fish are relatively easy to rear and their reproductive biology is well known. Recently, inbred strains of the fish have been established by full sister-brother mating. In this report, we will review experimental results using medaka in studies of : 1) radiation effects on spermatogenesis, and 2) induction of hepatic tumors by MAM acetate, we will also review use of medaka in related studies of radiation effects and chemical carcinogenesis. (author)

  6. Possible Long Term Effects of Chemical Warfare Using Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Abbas Riazi

    2014-09-01

    Full Text Available Some studies have already addressed the effects of occupational organic solvent exposure on the visually evoked potentials (VEPs. Visual system is an important target for Sulphur Mustard (SM toxicity. A number of Iranian victims of Sulphur Mustard (SM agent were apprehensive about the delay effect of SM on their vision and a possible delay effect of SM on their visual cortex. This investigation was performed on 34 individuals with a history of chemical exposure and a control group of 15 normal people. The Toennies electro-diagnosis device was used and its signals were saved as the latencies. The mean of N75, N140 and P100 of victims of chemical warfare (VCWs and control group indicated no significant results (P>0.05. The VCWs did not show any visual symptoms and there was no clear deficit in their VEPs.

  7. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    Science.gov (United States)

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of

  8. Using proven, cost-effective chemical stabilization to remediate radioactive and heavy metal contaminated sites

    International Nuclear Information System (INIS)

    Jensen, R.; Sogue, A.

    1999-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS) has deployed a cost-effective metals stabilization method which can be used to reduce the cost of remediation projects where radioactivity and heavy metals are the contaminants of concern. The Envirobond TM process employs the use of a proprietary chemical process to stabilize metals in many waste forms, and provides an excellent binding system that can easily be compacted to reduce the waste into a shippable brick called Envirobric TM . The advantages of using chemical stabilization are: (1) Low cost, due to the simplicity of the process design and inexpensive reagents. (2) Chemical stabilization is easily deployed in field applications, which limit the amount of shielding and other protective measures. (3) The process does not add volume and bulk to the treated waste; after treatment the materials may be able to remain on-site, or if transportation and disposal is required the cost will be reduced due to lower volumes. (4) No secondary waste. The simplicity of this process creates a safe environment while treating the residues, and the long-term effectiveness of this type of chemical stabilization lowers the risk of future release of hazardous elements associated with the residues. (author)

  9. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  10. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency

    Czech Academy of Sciences Publication Activity Database

    Janoš, P.; Ederer, J.; Pilařová, V.; Henych, Jiří; Tolasz, Jakub; Milde, D.; Opletal, T.

    2016-01-01

    Roč. 362, SEP (2016), s. 114-120 ISSN 0043-1648 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Chemical mechanical polishing * Ceria-based polishing powders * Polishing efficienc Subject RIV: CA - Inorganic Chemistry Impact factor: 2.531, year: 2016

  11. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Neurological effects on startle response and escape from predation by medaka exposed to organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.; Drummond, R.; Hammermeister, D.; Bradbury, S. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1995-12-31

    Simultaneous electrophysiological and behavioral studies were performed on juvenile Japanese medaka (Oryzias latipes) exposed to representative neurotoxic organic chemicals at sublethal concentrations. Non-invasive recordings were made of the electrical impulses generated within giant neuronal Mauthner cells, associated interneurons or motoneurons, and musculature, all of which initiate the startle or escape response in fish. Timing in milliseconds between these electrical sequelae was measured for each fish before and at 24 and 48 hours exposure to a chemical. Also noted was the number of startle responses to number of stimuli ratio (R/S). Other groups of medaka were fed to bluegills and consumption times recorded to assess their ability to escape predation. These results were compared to neurophysiological effect levels. Phenol, 2,4-dinitrophenol, chlorpyrifos, fenvalerate, and 1-octanol impaired the ability of medaka to escape predation at all concentrations. Medaka were more susceptible to predation in high concentrations of carbaryl and strychnine, but less susceptible at low concentrations, whereas the reverse was true for endosulfan. The variety of neurological effects detected at these concentrations suggest that different mechanisms may be responsible. Phenol and strychnine affected Mauthner cell to motoneuron transmission, chlorpyrifos and carbaryl showed neuromuscular effects, and R/S was affected by most chemicals. Although a variety of neurotoxic mechanisms were examined, the exposure threshold for significant effects for each specific compound was found to be consistent for both the neurophysiological and behavioral endpoints.

  13. Effect of Gamma Rays and Salinity on Growth and Chemical Composition of Ambrosia maritima L. Plant

    International Nuclear Information System (INIS)

    Moemen, A.M.E.

    2012-01-01

    This work achieved to study the effects of, mixture of salt 2:2:1 (Na Cl-CaCl 2 and Mg SO 4 ), concentration of (0, 2000, 4000 and 6000 ppm). on growth characters, some chemical components and some active ingredients in shoots of Ambrosia maritima plants, at different stages of growth, during two seasons. Pots 30 cm in diameter were filled of sand-loamy soils in appropriate concentration, all pots were irrigated with tap water. The exposed damsisa seeds to gamma rays, doses (0, 20, 40, and 80 Gy) before sowing together with control non irradiated seeds were sown in saline soils (0, 2000, 4000 and 6000 ppm). Soil salinity treatments caused a decrease in plant height, number of leaves, content of damsin, and an increase in fresh weigh, dry weight, total sugars, total chlorophyll, amino acids and ambrosine content. Also, Gamma rays caused an increase in most of growth parameters and most of chemical composition. It was observed that 40 or 80 Gy was more effective. We investigated the combined effect of levels of salinity and doses of radiation used, this interference improve growth parameters and chemical composition in ambrosia maritima plants and caused ascertain the role of gamma irradiation in plants tolerance to soil salinity and alleviation their harmful effect on plants.

  14. Environmental chemicals and their effects on female reproductive health: Searching for molecular mechanisms and effect biomarkers

    DEFF Research Database (Denmark)

    Johansson, Hanna Katarina Lilith

    Incorrect developmental programming of the female reproductive tract can lead to compromised reproductive fitness later in life. It has been suggested that exposure to endocrine disrupting chemicals (EDCs) in utero can disrupt ovarian programming in humans, which is supported by several animal st...

  15. Effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing: an in vitro study.

    Science.gov (United States)

    Sharan, Smitha; Kavitha, H R; Konde, Harish; Kalahasti, Deepthi

    2012-05-01

    To evaluate the effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing. A total of 256 rectangular specimens (65 * 10 * 3 mm) 128 per resin (Lucitone-199 and Acralyn-H) were fabricated. One side of each specimen was not polished and the other was either mechanically (n = 96) or chemically (n = 96) polished and immersed for 10, 30 and 60 minutes in 2% alkaline glutaraldehyde. Mechanically polished (n = 32) and chemically polished (n = 32) control specimens were immersed only in distilled water. The transverse strength (N/mm(2)) was tested for failure in a universal testing machine, at a crosshead speed of 5 mm/min. Data were statistically analyzed using 2-way ANOVA and Student t-test. chemical polishing resulted in significantly lower transverse strength values than mechanical polishing. Lucitone- 199 resin demonstrated the highest overall transverse strength for the materials tested. Heat-polymerized acrylic resins either mechanically or chemically polished, did not demonstrate significant changes in transverse strength during immersion in the disinfecting solution tested, regardless of time of immersion. Lucitone-199 resin demonstrated the highest overall transverse strength for the materials tested and significantly stronger than Acralyn-H with either type of polishing following immersion in 2% alkaline glutaraldehyde. There is a concern that immersion in chemical solutions often used for cleansing and disinfection of prostheses may undermine the strength and structure of denture base resins. In this study it was observed that, the transverse strength of samples of Lucitone-199 was higher than that of the samples of Acralyn-H. The chances of fracture of the denture made of Lucitone-199 are less than that of dentures made of Acralyn-H. The chemically polished dentures may be more prone to fracture than mechanically polished dentures.

  16. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment.

    Science.gov (United States)

    Connon, Richard E; Geist, Juergen; Werner, Inge

    2012-01-01

    Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of "adverse outcome pathways (AOP)" links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  17. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Richard E. Connon

    2012-09-01

    Full Text Available Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s. The promising concept of “adverse outcome pathways (AOP” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  18. Domino effects within a chemical cluster : A game-theoretical modeling approach by using Nash-equilibrium

    NARCIS (Netherlands)

    Reniers, Genserik; Dullaert, Wout; Karel, Soudan

    2009-01-01

    Every company situated within a chemical cluster faces domino effect risks, whose magnitude depends on every company's own risk management strategies and on those of all others. Preventing domino effects is therefore very important to avoid catastrophes in the chemical process industry. Given that

  19. Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.

    Science.gov (United States)

    Pekin, Burak K

    2013-12-01

    Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas. © 2013 Society for Conservation Biology.

  20. An in vitro approach for prioritization and evaluation of chemical effects on glucocorticoid receptor mediated adipogenesis.

    Science.gov (United States)

    Hartman, Jessica K; Beames, Tyler; Parks, Bethany; Doheny, Daniel; Song, Gina; Efremenko, Alina; Yoon, Miyoung; Foley, Briana; Deisenroth, Chad; McMullen, Patrick D; Clewell, Rebecca A

    2018-05-18

    Rising obesity rates worldwide have socio-economic ramifications. While genetics, diet, and lack of exercise are major contributors to obesity, environmental factors may enhance susceptibility through disruption of hormone homeostasis and metabolic processes. The obesogen hypothesis contends that chemical exposure early in development may enhance adipocyte differentiation, thereby increasing the number of adipocytes and predisposing for obesity and metabolic disease. We previously developed a primary human adipose stem cell (hASC) assay to evaluate the effect of environmental chemicals on PPARG-dependent adipogenesis. Here, the assay was modified to determine the effects of chemicals on the glucocorticoid receptor (GR) pathway. In differentiation cocktail lacking the glucocorticoid agonist dexamethasone (DEX), hASCs do not differentiate into adipocytes. In the presence of GR agonists, adipocyte maturation was observed using phenotypic makers for lipid accumulation, adipokine secretion, and expression of key genes. To evaluate the role of environmental compounds on adipocyte differentiation, progenitor cells were treated with 19 prioritized compounds previously identified by ToxPi as having GR-dependent bioactivity, and multiplexed assays were used to confirm a GR-dependent mode of action. Five chemicals were found to be strong agonists. The assay was also modified to evaluate GR-antagonists, and 8/10 of the hypothesized antagonists inhibited adipogenesis. The in vitro bioactivity data was put into context with extrapolated human steady state concentrations (Css) and clinical exposure data (Cmax). These data support using a human adipose-derived stem cell differentiation assay to test the potential of chemicals to alter human GR-dependent adipogenesis. Copyright © 2017. Published by Elsevier Inc.

  1. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    Science.gov (United States)

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  2. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    Science.gov (United States)

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  3. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  4. Condutivity effect in electro-coagulation-flotation applied to physico-chemical wastewater treatment

    OpenAIRE

    Francisco Javier Cuba Terán; Mário Luiz Rodrigues Foco

    2007-01-01

    This study reports on the effect of conductivity on the simultaneous applicability of water electrolysis , chemical coagulation and flotation fundamentals in the treatment of wastewater with large amounts of suspended matter, characterizing electro-coagulation-flotation (ECF) . Results from experiments carried out in a pilot study implanted and operated in the Laboratory of Environment Control (LCA), at the State University of Campinas in Limeira are presented. ECF was developed in an electro...

  5. High resolution studies of the effects of magnetic fields on chemical reactions

    OpenAIRE

    Hamilton, C. A.; Hewitt, J. P.; McLauchlan, Keith A.; Steiner, Ulrich

    1988-01-01

    A simple and inexpensive experiment is described which detects magnetic field effects on chemical reactions with high signal-to-noise ratio and high resolution. It consists in applying a small modulation field to the sample, whilst the main field it experiences is varied, with optical detection at the modulation frequency. It consequently measures the derivative of the normal MARY spectrum. It is shown by theoretical analysis that when using this method it is better to monitor reaction interm...

  6. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil

    OpenAIRE

    Emad Khalilzadeh; Gholamreza Vafaei Saiah; Hamideh Hasannejad; Adel Ghaderi; Shahla Ghaderi; Gholamreza Hamidian; Razzagh Mahmoudi; Davoud Eshgi; Mahsa Zangisheh

    2015-01-01

    Objective: Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Materials and methods: Chemical composition of EOVAC was analyzed using gas chromatography ? mass spectrom...

  7. Chemical Composition and Pharmacological Effects of Geopropolis Produced by Melipona quadrifasciata anthidioides

    OpenAIRE

    dos Santos, Cintia Miranda; Campos, Jaqueline Ferreira; dos Santos, Helder Freitas; Balestieri, José Benedito Perrella; Silva, Denise Brentan; de Picoli Souza, Kely; Carollo, Carlos Alexandre; Estevinho, Leticia M.; dos Santos, Edson Lucas

    2017-01-01

    Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl...

  8. Effect of Mouse Strain in a Model of Chemical-induced Respiratory Allergy

    OpenAIRE

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Kosaka, Tadashi

    2014-01-01

    The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, and effective protocols are needed for the detection of environmental chemical–related respiratory allergies. In our previous studies, we developed a method for detecting environmental chemical–related respiratory allergens by using a long-term sensitization–challenge protocol involving BALB/c mice. In the current study, we sought to improve our model by characterizing strain-associated differences ...

  9. Combined Effects of Prenatal Exposures to Environmental Chemicals on Birth Weight

    OpenAIRE

    Govarts, Eva; Remy, Sylvie; Bruckers, Liesbeth; Den Hond, Elly; Sioen, Isabelle; Nelen, Vera; Baeyens, Willy; Nawrot, Tim; Loots, Ilse; Van Larebeke, Nick; Schoeters, Greet

    2016-01-01

    Prenatal chemical exposure has been frequently associated with reduced fetal growth by single pollutant regression models although inconsistent results have been obtained. Our study estimated the effects of exposure to single pollutants and mixtures on birth weight in 248 mother-child pairs. Arsenic, copper, lead, manganese and thallium were measured in cord blood, cadmium in maternal blood, methylmercury in maternal hair, and five organochlorines, two perfluorinated compounds and diethylhexy...

  10. Estimation of the effects of chemical mutagens: lessons from radiation genetics

    International Nuclear Information System (INIS)

    Wolff, S.; Calfornia Univ., Los Angeles

    1975-01-01

    Years of work with ionizing radiations have produced a wealth of data on radiation-induced mutations. These data, which have given insights regarding the mutational processes, should form the background for all mutagenesis work. In chemical mutagenesis, as in radiation mutagenesis, it is important to know the shape of the dose-effect curve in order to make further interpretations and calculations. It is also important to be on the constant alert for new relations that can be explored

  11. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    International Nuclear Information System (INIS)

    Sandre, C.; Moulin, C.; Bresson, C.; Gault, N.; Poncy, J. L.; Lefaix, J. L.

    2010-01-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B 12 , but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, 58 Co and 60 Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl 2 ) with or without gamma-ray doses to mimic contamination by 60 Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  12. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  13. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  14. Physical-chemical characteristics of whitening toothpaste and evaluation of its effects on enamel roughness

    Directory of Open Access Journals (Sweden)

    Sérgio Paulo Hilgenberg

    2011-08-01

    Full Text Available This in vitro study evaluated the physical-chemical characteristics of whitening toothpastes and their effect on bovine enamel after application of a bleaching agent (16% carbamide peroxide. Physical-chemical analysis was made considering mass loss by desiccation, ash content and pH of the toothpastes. Thirty bovine dental enamel fragments were prepared for roughness measurements. The samples were subjected to bleaching treatments and simulated brushing: G1. Sorriso Dentes Brancos (Conventional toothpaste, G2. Close-UP Whitening (Whitening toothpaste, and G3. Sensodyne Branqueador (Whitening toothpaste. The average roughness (Ra was evaluated prior to the bleaching treatment and after brushing. The results revealed differences in the physical-chemical characteristics of the toothpastes (p < 0.0001. The final Ra had higher values (p < 0.05 following the procedures. The mean of the Ra did not show significant differences, considering toothpaste groups and bleaching treatment. Interaction (toothpaste and bleaching treatment showed significant difference (p < 0.0001. The whitening toothpastes showed differences in their physical-chemical properties. All toothpastes promoted changes to the enamel surface, probably by the use of a bleaching agent.

  15. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    Science.gov (United States)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  16. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    Science.gov (United States)

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Effect of maturation on physico-chemical and sensory quality characteristics of custard apple wine

    Directory of Open Access Journals (Sweden)

    Vikas Kumar

    2016-12-01

    Full Text Available Recently, researchers have taken a shift to utilize the custard apple for wine preparation besides its major use in ice cream, confectionary and milk products. In the present study, an attempt has been made to study the effect of maturation on physico-chemical and sensory quality characteristics of custard apple wine. Custard apple wine was prepared as per the earlier standardized method. The wine so prepared was matured for six months. The physico-chemical analysis was conducted at every three months interval for six months and sensory evaluation was performed after six months of storage. With the maturation, a decrease in total soluble solids, total sugars, titratable acidity, ethanol, total phenols and tannins was observed, whereas, an increase in reducing sugars and pH was observed. All the sensory quality characteristics of custard apple wine increased with advancement of the maturation period except astringency. Cluster analysis of the data obtained from physico-chemical analysis revealed that there was no difference between three months and six months of storage. Physico-chemical characteristics of custard apple wine were reduced to two principal components using principal component analysis which accounted for 100% variation. In general, maturation for six months improved the quality of custard apple wine considerably.

  18. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  19. Effect of teapot materials on the chemical composition of oolong tea infusions.

    Science.gov (United States)

    Liao, Zih-Hui; Chen, Ying-Jie; Tzen, Jason Tze-Cheng; Kuo, Ping-Chung; Lee, Maw-Rong; Mai, Fu-Der; Rairat, Tirawat; Chou, Chi-Chung

    2018-01-01

    The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  1. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m 3 for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m 3 (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs

  2. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Science.gov (United States)

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  3. Windows of sensitivity to toxic chemicals in the motor effects development.

    Science.gov (United States)

    Ingber, Susan Z; Pohl, Hana R

    2016-02-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.

  4. Toxic Effects of Peracetic Acid Used as a Chemical Weapon During Workers Riots

    International Nuclear Information System (INIS)

    Jovic-Stosic, J.; Todorovic, V.; Segrt, Z.

    2007-01-01

    Peracetic acid (PAA) is a mixture of acetic acid and hydrogen peroxide, often used as antimicrobial agent on food processing equipment. It may explosively decompose on shock, friction or concussion. PAA is a strong oxidant, corrosive to the eyes, skin, respiratory and digestive tract. Depending on concentration, contact may cause severe burns of the skin or the eyes, and inhalation may cause lung edema. We report toxic effects of PAA used as a chemical weapon in workers riots. Group of workers attacked the security guards in beverage plant, throwing out beer bottles filled with PAA. Bottles exploded, producing irritant mists and fumes, and splashing some of the guards with acid. After about 20 minutes of exposure in the closed space, 30 persons were transported to the emergency room; 22 of them were transferred to the hospital. After the initial treatment, 10 patients were admitted for further treatment. The symptoms of exposure included burning sensation and pain of the eyes, throat and skin, cough and shortness of breath. Effects on the eyes included redness and corneal erosions. Pulmonary disturbances were prolonged expirium and wheezing by auscultation, and hypoxemia. Skin burns were ranged as grade I-III. Treatment included rinse of eyes and skin, systemic therapy with corticosteroids, beta adrenergic drugs and theophylline. Surgical treatment was necessary in grade III skin burns. A variety of common industrial chemicals may be misused as a chemical weapon. We point out the hazards of serious toxic effects of PAA if used in riots or terrorists attacks. (author)

  5. Mutagenic effect of ionizing radiation and chemical and environmental agents in Tradescantia

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1988-01-01

    The studies covered the following problems: an influence of some environmental agents on the mutagenic effectiveness of ionizing radiation, interaction between ionizing radiation and chemical mutagens in the induction of somatic mutations and also an application of Tradescantia model system for biological monitoring. The studies showed that the pretreatment of Tradescantia plants with sodium fluoride or the modification of the soil composition with dolomite admixture, visibly influences plants radiosensitivity. The analysis of the changes in the dose-response curves suggested that the employed agents were influencing in different ways the repair processes of the DNA. The studies on the interaction between agents proved that the synergistic effect occurs in case of combined action of ionizing radiation with such chemical mutagens as ethyl methansulfonate or 1,2 dibromomethane. It was also discovered that in the range of low doses the effect was proportional to radiation dose and total exposition to chemical mutagen. The field application of Tradescantia method defined the mutagenicity of air pollution in the Cracow area. The highest frequencies of mutations were detected after the Chernobyl accident and after the damage of the filters in the Pharmaceutical Plant. The applied method was evaluated in respect of its usefulness for biological monitoring of environmental pollution. 163 refs. (author)

  6. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  7. Effect of Lepidium meyenii (maca) on testicular function of mice with chemically and physically induced subfertility.

    Science.gov (United States)

    Valdivia Cuya, M; Yarasca De La Vega, K; Lévano Sánchez, G; Vásquez Cavero, J; Temoche García, H; Torres Torres, L; Cruz Ornetta, V

    2016-10-01

    The aim of this study was to evaluate the effect of Lepidium meyenii (maca) in chemically and physically subfertile mice. After 35 days, the following groups of mice were evaluated: control, sham, chemical subfertility, chemical subfertility-maca-supplemented, physical subfertility, physical subfertility-maca-supplemented and maca-supplemented only. Motility (32.36% ± 5.34%) and sperm count (44.4 ± 5.37 × 10(6) /ml) in the chemically and physically subfertile mice (11.81% ± 4.06%, 17.34 ± 13.07 × 10(6) /ml) decreased compared to the control (75.53% ± 2.97% and 57.4 ± 19.6 10(6) /ml) and sham (53.5% ± 7.86% and 58.4 ± 14.10 10(6) /ml). Maca was able to reverse the deleterious effect of motility (76.36 ± 1.97) as well as sperm count (53.5 ± 9.18 × 10(6) /ml) on chemical subfertility. In contrast, maca did not reverse the effects of induced physical subfertility nor motility (18.78% ± 14.41%) or sperm count (20.17 ± 11.20 × 10(6) /ml). The percentage of sperm DNA fragmentation in the physically subfertile mice increased (11.1% ± 19.29%) compared to the control (0.84% ± 0.85%). However, in the physically subfertile group, maca decreased sperm DNA fragmentation (2.29% ± 2.30%) closer to the sham (1.04% ± 0.62%) and the control (0.84% ± 0.85%). The group supplemented only with maca showed 0.54% ± 0.50% of spermatozoa with DNA fragmentation. Yet, the differences observed were statistically not significant. In conclusion, it appears that maca activates the cytochrome P450 system after chemically induced subfertility. However, it does not reverse the low mitochondrial membrane potential in spermatozoa compromised in the physical subfertility group. © 2016 Blackwell Verlag GmbH.

  8. The effects of environmental chemical carcinogens on the microRNA machinery.

    Science.gov (United States)

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    Science.gov (United States)

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The effects of cytoplasmic male sterility and xenia on the chemical composition of maize grain

    Directory of Open Access Journals (Sweden)

    Vančetović Jelena

    2009-01-01

    Full Text Available Sterile hybrids often outyield their fertile counterparts, especially if pollinated by a genetically unrelated pollinator. The combined effect of cms and xenia is referred to as the Plus-hybrid effect. The objective of this study was to determine the individual, as well as, combining effect of cms and xenia on the maize grain chemical composition. The percent of oil, protein and starch in the grain was also observed. Two sterile hybrids, their fertile counterparts and five fertile pollinator-hybrids were selected for the studies. The three-replicate trial set up according to the split-plot experimental design was performed at Zemun Polje in 2008. The obtained results show that the effects of cms on the oil percent was not significant in the studied hybrid ZP 341, while it increased at the significance level of P = 0.1 in the second observed hybrid ZP 360. The effect of this factor on the protein and starch percent was also significant (P = 0.01 in some hybrid combinations. Xenia effects on all three chemical parameters were significant (P = 0.01 in some hybrid combinations. The gained results indicate that the identification of a good combination of two hybrids, in which one would be a sterile female component, and the other a pollinator, would end up not only in the increased yield, but also in the improved maize grain quality.

  11. Effects of various organic and chemical fertilizers on growth indices of basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S.M.K. Tahami

    2016-05-01

    Full Text Available In order to develop the high intensive agriculture, more chemical fertilizers are applied to the soil that resulting in soil degradation and environment deterioration. Application of organic manure is an important approach for maintaining and improving the soil fertility and increasing fertilizer use efficiency. Therefore, in order to evaluate the effect of organic manures and chemical fertilizer on growth indices and biological yield of basil (Ocimum basilicum L., an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2008-2009. A complete randomized block design with six treatments and three replications was used. The treatments were: cow manure, sheep manure, chicken manure, vermicompost, chemical NPK fertilizers and control (no fertilizer. The results showed that the use of organic fertilizers significantly increased seed and biological yield of basil compared with chemical fertilizer and control. The maximum and the minimum dry weights were observed at 105 days after planting, in sheep and cow manures, respectively. Gradually during the period of plant growth and development to reproduction phase percent of stem decreased and dry weight of inflorescence increased. The highest and the lowest leaf area index were observed at 90 days after planting, in cow manure and control, respectively, and then decreased in all treatments. The maximum crop growth rate in most of treatments at 90 days after planting was obtained, except the control which plant growth rate was lowest. Net assimilation rate (NAR in most treatments increased until 75 days after planting and then declined. While the highest and the lowest NAR were observed at 75 days after planting in chicken manure and chemical treatment, respectively.

  12. Effect of mouse strain in a model of chemical-induced respiratory allergy.

    Science.gov (United States)

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Kosaka, Tadashi

    2014-01-01

    The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, and effective protocols are needed for the detection of environmental chemical-related respiratory allergies. In our previous studies, we developed a method for detecting environmental chemical-related respiratory allergens by using a long-term sensitization-challenge protocol involving BALB/c mice. In the current study, we sought to improve our model by characterizing strain-associated differences in respiratory allergic reactions to the well-known chemical respiratory allergen glutaraldehyde (GA). According to our protocol, BALB/c, NC/Nga, C3H/HeN, C57BL/6N, and CBA/J mice were sensitized dermally with GA for 3 weeks and then challenged with intratracheal or inhaled GA at 2 weeks after the last sensitization. The day after the final challenge, all mice were euthanized, and total serum IgE levels were assayed. In addition, immunocyte counts, cytokine production, and chemokine levels in the hilar lymph nodes (LNs) and bronchoalveolar lavage fluids (BALF) were also assessed. In conclusion, BALB/c and NC/Nga mice demonstrated markedly increased IgE reactions. Inflammatory cell counts in BALF were increased in the treated groups of all strains, especially BALB/c, NC/Nga, and CBA/J strains. Cytokine levels in LNs were increased in all treated groups except for C3H/HeN and were particularly high in BALB/c and NC/Nga mice. According to our results, we suggest that BALB/c and NC/Nga are highly susceptible to respiratory allergic responses and therefore are good candidates for use in our model for detecting environmental chemical respiratory allergens.

  13. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The growth hormone (GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97% accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize or suppress (feminize STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93% of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR or peroxisome proliferator-activated receptor alpha (PPARα. Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene

  14. Effects of Chemical Fertilizer, Algea Compost and Zeolite on Green Bean Yield

    Directory of Open Access Journals (Sweden)

    Aysun Türkmen

    2017-03-01

    Full Text Available The present study used chemical fertilizer, brown algae compost and zeolite carried out in the field of Giresun Hazelnut Research Center between May-November 2014 in pots according to randomized blog design as three replicate each. Treatment groups were consist of eight different combinations as follow; G1-Control, G2-Zeolite, G3-Compost, G4-Chemical Fertilizer, G5-Zeolite+Compost, G6-Zeolite+Chemical Fertilizer, G7-Compost+ Chemical Fertilizer, G8-Compost+Zeolite+ Chemical Fertilizer. The brown algae (Cystoseira sp. were used as compost material. These combinations were applied to green beans (Phaseolus vulgaris. The green beans were seeded by hand to arrange planting depth of 5-6 cm and 20 seeds/m2. Except control group, each treatment was added fertilizers as 50 g zeolite, 50 g compost, and 25 g chemical according to treatment design. Half of the chemical fertilizers were added at seeding time and the rest after two weeks. Collected soil samples were analyzed right after harvest, the greatest values of treatment groups were determined as; Carbon% G1: 5.08, nitrogen G3: 0.09 ppm, sodium G5: 139 ppm, potassium G6 and G8: 5 ppm, magnesium G2: 1865 ppm, calcium G6: 8.33 ppm, manganese G2: 359 ppm, iron G6 : 16070 ppm, cobalt G6 and G7: 7.91 ppm, copper G2: 17.5 ppm, zinc G8: 28.0 ppm, selenium G7: 4.17 ppm, cadmium G5: 0.08 ppm, lead G4: 5.31 ppm. The greatest harvest value as g/m2 was obtained from zeolite only group G2 with 273 while the lowest was obtained from Compost only group G3 with 113 g/m2, obviously showing the effectiveness of zeolite only application moreover, also thinking that better results may get if the present study run for longer period.

  15. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    Science.gov (United States)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  16. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  17. Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction

    Directory of Open Access Journals (Sweden)

    S. A. Shehzad

    2013-03-01

    Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.

  18. Chemical Effects of Nuclear Transformations Vol. I. Proceedings of the Symposium on Chemical Effects Associated with Nuclear Reactions and Radioactive Transformations

    International Nuclear Information System (INIS)

    1965-01-01

    The study of the chemical changes consequent upon the nuclear transformation of an atom that is linked with other atoms in a molecule and surrounded by other similar or dissimilar molecules has intrigued chemists for a number of years. This interest is certainly not static but if anything is increasing. The main theme of this meeting was a discussion of the suggestions and theories that have been advanced to explain the wealth of experimental observations on the behaviour of atoms at energies and in situations not normally accessible in the laboratory. Though the subject has some practical implications in the preparation of radioisotopes, this was not an important consideration at this Symposium. The first Symposium on hot-atom chemistry organized by the Agency was held in Prague in October 1960. Comparison of the past and the present state of the subject shows that a greater variety and sophistication of techniques are now being applied as the simpler approaches used in the past have been shown to be inadequate. Progress has been made in the understanding of the simpler gas system, but in liquids and solids there is still much to clarify. It is also of interest that for the majority of the work reported in these Proceedings a reactor was the radiation source, and in this field much experimental work still remains to be done. The Symposium on Chemical Effects Associated with Nuclear Reactions and Radioactive Transformations was held from 7 to 11 December 1964 in Vienna, and was attended by 136 participants from 29 countries and 4 international organizations. It was organized by the International Atomic Energy Agency in co-operation with the Joint Commission on Applied Radioactivity. The publication of these Proceedings makes the content of the papers and discussion available to a wider audience than was possible at the meeting in Vienna

  19. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals

    Directory of Open Access Journals (Sweden)

    Hafiz Majid Rasheed

    2015-01-01

    Full Text Available Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester, santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases.

  20. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-01-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  1. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals

    Science.gov (United States)

    Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar

    2015-01-01

    Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519

  2. Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits.

    Science.gov (United States)

    Trojak-Goluch, Anna; Skomra, Urszula

    2013-12-01

    Chemically induced polyploids were obtained by the colchicine treatment of shoot tips of Humulus lupulus L. 'Sybilla'. Flow cytometry revealed that most of the treatments resulted in the production of tetraploids. The highest number of tetraploids was obtained when explants were immersed in 0.05% colchicine for 48 h. A field experiment was conducted to compare diploid and tetraploid plants and assess the effect of genome polyploidization on the morphological and chemical characteristics. Tetraploids showed significant differences in relation to diploids. They had thinner and shorter shoots. The influence of chromosome doubling was also reflected in the length, width and area of leaves. The length of female flowers in the tetraploids was significantly shorter than that observed in diploids. Tetraploids produced a diverse number of lupuline glands that were almost twice as large as those observed in diploids. The most distinct effect of genome polyploidization was a significant increase in the weight of cones and spindles. Contents of major chemical constituents of hop cones was little affected by ploidy level. Total essential oils were significantly lower than those in diploids. However there was a significant increase in the proportion of humulene, caryophyllene and farnesene, oils desired by the brewing industry.

  3. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  4. [Chemical weapons and chemical terrorism].

    Science.gov (United States)

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  5. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    Science.gov (United States)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where

  6. Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect

    International Nuclear Information System (INIS)

    Liu, Yi-Wei; Teng, Jiao; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua; Wu, Zheng-Long

    2014-01-01

    Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe] 3 /MgO and [Pt/Fe] 3 /SiO 2 multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO 2 interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R xy ) was greatly increased in the [Pt/Fe] 3 /MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R xy of the [Pt/Fe] 3 /SiO 2 multilayer only increased 10% after annealing.

  7. Preventive effect of two-component chemical radioprotector and variability in its application

    International Nuclear Information System (INIS)

    Lambov, V.; Metodiev, S.

    1993-01-01

    The purpose of the study is to evaluate the radioprotective efficiency of two-component radioprotective schema consisting of the chemically synthesized radioprotector WR-2721 (OK-79) and a new glycoside pigment obtained from melanoidine CL. The application of melanoidine 7-21 days before WR-2721 significantly increases the radioprotective efficiency of the chemically obtained product and enhances the 30-day survival of hybrid mice treated with 15 Gy whole body gamma irradiation. The effect of potentiated radioprotection is not observed when the interval between the application of the two agents is reduced to 24 h. It is suggested that the observed enhancement of the radioprotective efficiency in the two-component schema is due to the antioxidant and immuno modulating properties of the pigment product, observed and described in our previous investigations. (author)

  8. The effect of flow and chemical corrosion in reverse osmosis over desalinated water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jae [Chunnam National Univ., Gwangju (Korea, Republic of); Pak, Byung Gu [Doosan Heavy Industry Co., Tongyoung (Korea, Republic of)

    2015-12-15

    Desalinated water produced by a reverse osmosis (RO) filtering method forms about 22% of total production of desalinated water in the world. However, the RO environment is very corrosive due to the presence of various chemicals for water treatment and the flow of sand particles leading to corrosion. Recently, there has been much effort to substitute cheaper and more corrosion resistant stainless steels for copper based alloys as a valve material in RO. Nevertheless, the effects of chemicals and particles on the corrosion of stainless steels have rarely been studied. Erosion phenomenon was detected under the condition with the flow rate of more than 8ms{sup -1} in spite of the absence of sand particles. In seawater containing sand particles, the erosion in stainless steels was accelerated further.

  9. Localized Quantitative Characterization of Chemical Functionalization Effects on Adhesion Properties of SWNT

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2011-01-01

    Full Text Available Chemical modification of single-walled carbon nanotubes (SWNT has been found to be an excellent method to promote SWNT dispersion, and possibly to improve interaction with matrices via covalent bonding. It is thus a quite promising technique to enhance the mechanical properties of SWNT-reinforced nanocomposites. However, the underlying mechanism of SWNT chemical functionalization effects on interfacial strength is not quantitatively understood, limiting their usefulness in the design of nanocomposites. In this work, an atomic force microscopy (AFM- based adhesive force mapping technique combined with a statistical analysis method were developed and implemented to study adhesive interactions of small SWNT bundles functionalized by amino, epoxide, and hydroperoxide groups as compared to SDS-treated SWNT in controlled environment. Finally, the importance of such localized quantitative measurements in SWNT-reinforced nanocomposites design and fabrication was also discussed.

  10. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  11. Effect of gamma irradiation on microbial load, chemical and sensory evaluation of chicken meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2008-03-01

    The effect of gamma irradiation on microbial load, chemical sensory characteristics of chicken meat has been evaluated. Chicken meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Degree Centigrade). Immediately after irradiation, general composition, microbiological and sensory evaluation of chicken meat were done. Microbiological and chemical analysis of chicken meat were evaluated at weekly up to end of the storage period. The results indicated that all doses of gamma irradiation reduced the microbial load, and increased the shelf-life of chicken meat. Total acidity, volatile basic nitrogen (VBN) and lipid oxidation value in chicken meat were not affected by gamma irradiation. Sensory evaluation showed no significant differences between irradiated and un-irradiated chicken meat. (author)

  12. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  13. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  14. Effect of gamma irradiation on microbial load, chemical and sensory evaluation of chicken meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2009-01-01

    The effect of gamma irradiation on microbial load, chemical sensory characteristics of chicken meat has been evaluated. Chicken meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Degree Centigrade). Immediately after irradiation, general composition, microbiological and sensory evaluation of chicken meat were done. Microbiological and chemical analysis of chicken meat were evaluated at weekly up to end of the storage period. The results indicated that all doses of gamma irradiation reduced the microbial load, and increased the shelf-life of chicken meat. Total acidity, volatile basic nitrogen (VBN) and lipid oxidation value in chicken meat were not affected by gamma irradiation. Sensory evaluation showed no significant differences between irradiated and un-irradiated chicken meat. (author)

  15. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  16. Effect of ionizing radiation on chemical and biological properties of Salmonella minnesota R595 lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    El Sabbagh, M; Galanos, C; Luederitz, O [Max-Planck-Institut fuer Immunbiologie, Freiburg (Germany, F.R.); Bertok, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary); Fuest, Gy [Orszagos Haema--tologiai es Vertranszfuzios Intezet, Budapest (Hungary)

    1982-01-01

    The effects of /sup 60/Co irradiation performed with various doses on the biological and chemical properties of the endotoxin of the Salmonella minnesota R595 were compared with those of unirradiated ones. The biological activity was measured using the lethal toxicity test, the local Schwartzman reaction and by activating the complementary system. Increasing the irradiation dose from 50 to 200 kGy the preparation became less active in the biological tests but the protective activity against the lethal action of the endotoxin remained uneffected. The irradiation resulted in a dose-dependent decrease of the amounts of 2-keto-3-deoxy-octonate, glucosamine, fatty acids, but did not affect all the degradation products identified. Therefore, no correlation between the chemical composition and the absence of endotoxin activity was found.

  17. Effect of UHT processing and storage conditions on physico-chemical characteristics of buffalo skim milk

    International Nuclear Information System (INIS)

    Hussain, I.

    2011-01-01

    The obtained results indicated that physico-chemical and nutritional changes in UHT processed buffalo skimmed milk were more pronounced at 45 deg. C than 25 deg. C and 10 deg. C. Duration of storage adversely affected the chemical and nutritional quality of processed milk. A slight decrease in pH, total ash and lactose contents, was observed, whereas acidity was increased on the mentioned storage conditions. Total nitrogen and casein nitrogen contents gradually decreased during storage, whereas non-casein nitrogen (NCN) and non-protein nitrogen (NPN) increased to a great extent in samples stored at higher temperatures. A significant increase in hydroxyl methyl furfural (HMF) values occurred in UHT processed buffalo skim milk at 25 deg. C and 45 deg. C after of 90 days storage. Storage at high temperature (45 deg. C) caused undesirable effects on sensory properties, general quality characteristics and acceptability of UHT buffalo skimmed milk. (author)

  18. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Science.gov (United States)

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  19. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi

    2006-01-01

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  20. Effect of hydrostatic and chemical pressure on the exchange interaction in magnetic borocarbide superconductors

    Science.gov (United States)

    Michor, H.; El-Hagary, M.; Naber, L.; Bauer, E.; Hilscher, G.

    2000-03-01

    The investigation of pair-breaking effects in magnetic rare-earth nickel borocarbide superconductors reveals a considerable increase of the magnetic exchange integral Jsf by hydrostatic as well as chemical pressure. In both, Jsf is governed by the R-C distance (or lattice constant a) and is described quantitatively by a simple phenomenological model. Thereby, just two parameters Jsf0=31 meV and ΔJsf/Δa=165 meV/Å explain well the influence of chemical pressure upon the initial depression rates of Tc in solid solutions R'1-xRxNi2B2C with R=Gd, Tb, Dy, Ho and R'=Y and Lu.

  1. Effect of pH and dissociation on the fate and exposure of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2010-01-01

    Ionizable organic chemicals comprise an important fraction of pharmaceuticals, pesticides as well as industrial chemicals. It has been estimated that 33% of the preregistered REACH substances is mostly ionized at pH 7. To extend the appliccability of existing exposure models, a Multimedia Activity...... parameters. The sensitivity analysis showed that the parameters describing ionization, pH and the dissociation constant (pKa), are among the most sensitive model parameters. The uncertainty analysis, however, indicated that these parameters are not the major source of uncertainty, which statistically...... and sediments. In most cases, the uncertainty of PECs and of persistance is largely explained by the uncertainty of (bio)degradation rates, which may be caused by model assumptions, experimental or estimation errors or by the environmental variability, including the effect of pH....

  2. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  3. Combined Effects of Prenatal Exposures to Environmental Chemicals on Birth Weight

    Directory of Open Access Journals (Sweden)

    Eva Govarts

    2016-05-01

    Full Text Available Prenatal chemical exposure has been frequently associated with reduced fetal growth by single pollutant regression models although inconsistent results have been obtained. Our study estimated the effects of exposure to single pollutants and mixtures on birth weight in 248 mother-child pairs. Arsenic, copper, lead, manganese and thallium were measured in cord blood, cadmium in maternal blood, methylmercury in maternal hair, and five organochlorines, two perfluorinated compounds and diethylhexyl phthalate metabolites in cord plasma. Daily exposure to particulate matter was modeled and averaged over the duration of gestation. In single pollutant models, arsenic was significantly associated with reduced birth weight. The effect estimate increased when including cadmium, and mono-(2-ethyl-5-carboxypentyl phthalate (MECPP co-exposure. Combining exposures by principal component analysis generated an exposure factor loaded by cadmium and arsenic that was associated with reduced birth weight. MECPP induced gender specific effects. In girls, the effect estimate was doubled with co-exposure of thallium, PFOS, lead, cadmium, manganese, and mercury, while in boys, the mixture of MECPP with cadmium showed the strongest association with birth weight. In conclusion, birth weight was consistently inversely associated with exposure to pollutant mixtures. Chemicals not showing significant associations at single pollutant level contributed to stronger effects when analyzed as mixtures.

  4. Combined Effects of Prenatal Exposures to Environmental Chemicals on Birth Weight

    Science.gov (United States)

    Govarts, Eva; Remy, Sylvie; Bruckers, Liesbeth; Den Hond, Elly; Sioen, Isabelle; Nelen, Vera; Baeyens, Willy; Nawrot, Tim S; Loots, Ilse; Van Larebeke, Nick; Schoeters, Greet

    2016-01-01

    Prenatal chemical exposure has been frequently associated with reduced fetal growth by single pollutant regression models although inconsistent results have been obtained. Our study estimated the effects of exposure to single pollutants and mixtures on birth weight in 248 mother-child pairs. Arsenic, copper, lead, manganese and thallium were measured in cord blood, cadmium in maternal blood, methylmercury in maternal hair, and five organochlorines, two perfluorinated compounds and diethylhexyl phthalate metabolites in cord plasma. Daily exposure to particulate matter was modeled and averaged over the duration of gestation. In single pollutant models, arsenic was significantly associated with reduced birth weight. The effect estimate increased when including cadmium, and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) co-exposure. Combining exposures by principal component analysis generated an exposure factor loaded by cadmium and arsenic that was associated with reduced birth weight. MECPP induced gender specific effects. In girls, the effect estimate was doubled with co-exposure of thallium, PFOS, lead, cadmium, manganese, and mercury, while in boys, the mixture of MECPP with cadmium showed the strongest association with birth weight. In conclusion, birth weight was consistently inversely associated with exposure to pollutant mixtures. Chemicals not showing significant associations at single pollutant level contributed to stronger effects when analyzed as mixtures. PMID:27187434

  5. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    Science.gov (United States)

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P embryos with low oil concentration had an increased (P embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  6. Effect of electromagnetic radiation on the physico-chemical properties of minerals

    International Nuclear Information System (INIS)

    Lopez M, A.; Delgadillo G, J. A.; Vega C, H. R.

    2014-08-01

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from 137 Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  7. Effects of chemical-induced DNA damage on male germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Holme, J.A.; Bjoerge, C.; Trbojevic, M.; Olsen, A.K.; Brunborg, G.; Soederlund, E.J. [National Inst. of Public Health, Oslo (Norway). Dept. of Environmental Medicine; Bjoeras, M.; Seeberg, E. [National Hospital, Oslo (Norway). Dept. of Microbiology; Scholz, T.; Dybing, E.; Wiger, R. [National Hospital, Oslo (Norway). Inst. for Surgical Research and Surgical Dept. B

    1998-12-31

    Several recent studies indicate declines in sperm production, as well as increases in the incidence of genitourinary abnormalities such as testicular cancer, cryptorchidism and hypospadias. It is not known if these effects are due to exposure to chemical pollutants or if other ethiological factors are involved. Animal studies indicate that chemicals will induce such effects by various genetic, epigenetic or non-genetic mechanisms. Recently, much attention has been focused on embryonic/fetal exposure to oestrogen-mimicking chemicals (Toppari et al., 1996). However, the possibility that chemicals may cause reproductive toxicity by other mechanisms such as interactions with DNA, should not be ignored. DNA damage in germ cells may lead to the production of mutated spermatozoa, which in turn may result in spontaneous abortions, malformations and/or genetic defects in the offspring. Regarding the consequences of DNA alterations for carcinogenesis it is possible that genetic damage may occur germ cells, but the consequences are not expressed until certain genetic events occur in postnatal life. Transmission of genetic risk is best demonstrated by cancer-prone disorders such as hereditary retinoblastoma and the Li-Fraumeni syndrome. A number of experiments indicate that germ cells and proliferating cells may be particularly sensitive to DNA damaging agents compared to other cells. Furthermore, several lines of evidence have indicated that one of the best documented male reproductive toxicants, 1,2-dibrome-3-chloropropane (DBCP), causes testicular toxicity through DNA damage. It is possible that testicular cells at certain maturational stages are more subject to DNA damage, have less efficient DNA repair, or have different thresholds for initiating apoptosis following DNA damage than other cell types. (orig.)

  8. In silico prediction of harmful effects triggered by drugs and chemicals

    International Nuclear Information System (INIS)

    Vedani, Angelo; Dobler, Max; Lill, Markus A.

    2005-01-01

    While the computer-assisted discovery and optimization of drug candidates based on the known three-dimensional structure of the macromolecular target (structure-based design) or a binding-site surrogate (receptor modeling) is doubtless one of the more potent approaches in rational drug design, the simulation and quantification of side effects triggered by drugs and chemicals are still in their infancy. Major obstacles include the often not available 3D structure of the molecular target, the low specificity of the involved bioregulators and the identification of the controlling metabolic pathways. In the recent past, our laboratory has explored concepts allowing to simulate receptor-mediated toxic phenomena by developing algorithms, allowing to construct realistic 3D binding-site surrogates of receptors known or assumed triggering adverse effects and validating them against large batches of molecular data. The underlying technology (software Quasar and Raptor, respectively) specifically allows for induced fit, solvation phenomena and entropic effects. It has been applied to various systems both of pharmacological and toxicological interest including the neurokinin-1, chemokine-3, bradykinin B 2 , steroid, 5 HT 2A , aryl hydrocarbon, estrogen and androgen receptor, respectively. In this account, we describe the design of a virtual laboratory allowing for a reliable estimation of harmful effects triggered by drugs, chemicals and their metabolites in silico. In the recent past, the Biographics Laboratory 3R has compiled a 3D database including the surrogates of three major receptor systems known to mediate adverse effects (the aryl hydrocarbon, the estrogen and the androgen receptor, respectively) and validated them against a total of 345 compounds (drugs, chemicals, toxins) using multidimensional QSAR technologies. Within this pilot project, we could demonstrate that our virtual laboratory is able to both recognize toxic compounds substantially different from those

  9. A comparative study of the effect on irradiation and chemical preservatives on fresh-cut mangoes

    International Nuclear Information System (INIS)

    Gasu, E.K.

    2011-01-01

    The quest for ready-to-eat fruits has resulted in cut-fruits such as pawpaw, watermelon and pineapple in the local market. However the safety and quality these products cannot be guaranteed due to the mode of preparation and packaging. Mango (Mangifera indica L.) fruits are consumed, among other reasons, for their pleasant flavour. They are rich sources of vitamins A, B6 and C. Mango fruits are being increasingly processed into ready-to-eat products such as fresh-cut mango slices. These products have longer shelf life when properly preserved and, therefore, assure all year round availability of mango in different forms. In order to produce fresh-cut mango slices of acceptable quality, determination of the most appropriate stage of ripening of fruits for fresh-cut slices production should be known. This study determined the effects of irradiation and chemical preservatives on the safety and shelf life quality of fresh-cut mango products. The effects of gamma irradiation and chemical preservatives on physicochemical, microbiological and sensory qualities of fresh-cut mango products were evaluated. Questionnaires were administered to evaluate public perception of cut-fruits and irradiated foods. Well matured half-ripe with peel of green and a little yellow intact fruits were sampled for laboratory analysis using 2x2x5 factorial experiment. The fruits were sanitized, peeled and sliced into cubes and packaged in two sets of 30 PET jars. One set was subjected to various radiation dose levels (1.0, 1.5, 2.0 and 2.5) kGy and a control. The second set was chemically preserved with various chemicals (sucrose, citric acid, sodium benzoate and a combination of these chemicals in equal proportions. The treated cut-mangoes were stored at 6 degrees Celsius and 10 degrees Celsius for 15 days and samples taken at 3 days interval for analysis. The pH, titratable acidity (TTA), vitamins C content, total soluble solids (TSS), microbial quality and sensory evaluations were carried out

  10. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    Science.gov (United States)

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  11. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    Science.gov (United States)

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  12. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria.

    Science.gov (United States)

    Gao, Bo; Zhang, Jianming; Xie, Lianhui

    2018-01-01

    The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria . In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria .

  13. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2018-01-01

    Full Text Available The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria. In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria.

  14. Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower.

    Science.gov (United States)

    Kim, Ji-Young; Oh, Tae-Heon; Kim, Byeong Jin; Kim, Sang-Suk; Lee, Nam Ho; Hyun, Chang-Gu

    2008-01-01

    In this study, the chemical composition and anti-inflammatory activities of hydrodistilled essential oil from Farfugium japonicum were investigated for the first time. The chemical constituents of the essential oil were further analyzed by GC-MS and included 1-undecene (22.43%), 1-nonene (19.83%), beta-caryophyllene (12.26%), alpha-copaene (3.70%), gamma-curcumene (2.86%), germacrene D (2.69%), and 1-decene (2.08%). The effects of the essential oil on nitric oxide (NO) and prostaglandin E2 (PGE(2)) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages were also examined. The results indicate that the F. japonicum essential oil is an effective inhibitor of LPS-induced NO and PGE(2) production in RAW 264.7 cells. These inhibitory effects of the F. japonicum essential oil were accompanied by dose-dependent decreases in the iNOS and COX-2 mRNA expression. In order to determine whether F. japonicum essential oil can safely be applied to human skin, the cytotoxic effects of F. japonicum essential oil were determined by colorimetric MTT assays in human dermal fibroblast and keratinocyte HaCaT cells. F. japonicum essential oil exhibited low cytotoxicity at 100 mug/mL. Based on these results, we suggest that F. japonicum essential oil may be considered a potential anti-inflammatory candidate for topical application.

  15. Effects of gamma irradiation on physical-chemical properties and dewatering characteristics of sludges

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1976-01-01

    Separation of solids from liquids is a paramount operation in the processes applied in treating sewage and waste waters. Therfore, studies were undertaken to investigate effects of gamma irradiation on the physical-chemical properties of sludges and the de-watering characteristics of anaerobically digested sludge and aerobically activated sludge. A dose of 300 krad reduced the specific resistance of anaerobically digested sludges from 33 x 10 sec 2 /g to approximately 10 x 10 9 sec 2 /g. This conditioning effect was little influenced by the presence of oxygen or nitrogen. Pasteurization increased the specific resistance to filtration up to 48 x 10 9 sec 2 /g. Dewatering characteristics of raw sludge were not affected by irradiation in the presence of oxygen but a slight conditioning effect was noticed when the sludge was irradiated under deaerated conditions. Experimental evidence indicated that gamma irradiation detached organic substances from the sludge flocks resulting in a decrease of the specific resistance and an increase in the Total Organic Carbon (TOC) and the Chemical Oxygen Demand (COD) in the filtrates. Elutriation reduced but did not eliminate the conditioning effect of gamma irradiation. (author)

  16. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  17. Predicting In Vivo Effect Levels for Repeat Dose Systemic Toxicity using Chemical, Biological, Kinetic and Study Covariates

    Science.gov (United States)

    In an effort to ensure chemical safety while reducing reliance on animal testing, USEPA and L’Oréal have collaborated to address a major challenge in chemical safety assessment using alternative approaches: the prediction of points-of-departure (POD) of systemic effects. Systemic...

  18. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted of lectu...

  19. Chemical and physical effects of crowding on growth and survival of Penaeus monodon Fabricius post-larvae

    NARCIS (Netherlands)

    Nga, B.T.; Lürling, M.F.L.L.W.; Peeters, E.T.H.M.; Roijackers, R.M.M.; Scheffer, M.; Nghia, T.T.

    2005-01-01

    The hypothesis that crowding effects through physical and/or chemical interference may be an important factor in lowering the chance of survival and reducing growth of Penaeus monodon post-larvae under high stocking densities was tested. To separate physical interference from chemically-exerted

  20. Ecological Models to Predict and Test the Effects of Chemical Stressors: Integration across 2 EPA STAR cooperative agreements

    Science.gov (United States)

    Accessible tools to quantify adverse outcomes pathways (AOPs) that can predict the ecological effects of chemicals and other stressors are a major goal of Chemical Safety and Sustainability research within US EPA’s Office of Research and Development. To address this goal, w...

  1. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and textiles

    DEFF Research Database (Denmark)

    Thomsen, Anne Belinda; Thygesen, Anders; Bohn, Vibeke

    2006-01-01

    Retted hemp fibres were treated using chemical-physical pre-treatments and the material was characterised chemically in order to evaluate the effect of the pre-treatments, respectively, wet oxidation (WO), hydrothermal treatment (HT) and steam explosion (STEX). Process variables were addition...

  2. Important sources and chemical species of ambient fine particles related to adverse health effects

    Science.gov (United States)

    Heo, J.

    2017-12-01

    Although many epidemiological studies have reported that exposure to ambient fine particulate matter (PM2.5) has been linked to increases in mortality and mobidity health outcomes, the key question of which chemical species and sources of PM2.5 are most harmful to public health remains unanswered in the air pollution research area. This study was designed to address the key question with evaluating the risks of exposure to chemical species and source-specific PM2.5 mass on morbidity. Hourly measurements of PM2.5 mass and its major chemical species, including organic carbon, elemental carbon, ions, and trace elements, were observed from January 1 to December 31, 2013 at four of the PM2.5 supersites in urban environments in Korea and the reuslts were used in a positive matrix factorization to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emission, industry, oil combustion, soil, and aged sea salt, were identified and secondary inorganic aerosol factors (i.e. secondary sulfalte, and secondary nitrate) were the dominant sources contributing to 40% of the total PM2.5 mass in the study region. In order to evaluate the risks of exposure to chemical species and sources of PM2.5 on morbidity, emergency room visits for cardivascular disease and respiratory disease were considered. Hourly health outcomes were compared with hourly measurments of the PM2.5 chemical species and sources using a poission generalized linear model incorporating natural splines, as well as time-stratified case-crossover design. The PM2.5 mass and speveral chemical components, such as organic carbon, elemetal carbon, zinc, and potassium, were strongly associated with morbidity. Source-apporitionmened PM2.5 mass derived from biomass burning, and mobile sources, was significantly associated with cardiovascular and respiratory diseases. The findings represent that local combustion may be particularly important

  3. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    Science.gov (United States)

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  4. Lipid spectrum of the newborn rats' blood at the radioactive and chemical effects in the prenatal period

    International Nuclear Information System (INIS)

    Buzan, Kh.

    1998-01-01

    The radioactive and chemical factors used in complex or separately during the prenatal period in the experiment induce ambiguous effects on the lipid metabolism in blood plasma and erythrocytes of newborn rats. The chemicals cause more significant changes in the blood plasma lipid metabolism than the radioactive irradiation does. Being used combined the radioactive and chemical factors do not increase each other's effect- their effects have opposite directions. The radiochemical exposure induce more significant shifts in the lipid spectrum in erythrocytic membranes than the separate factors

  5. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    International Nuclear Information System (INIS)

    Awada, Houssein; Noel, Olivier; Hamieh, Tayssir; Kazzi, Yolla; Brogly, Maurice

    2011-01-01

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  6. Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus.

    Science.gov (United States)

    Xu, Xiangqun; Quan, Lili; Shen, Mengwei

    2015-01-01

    Polysaccharides are important secondary metabolites from the medicinal mushroom Inonotus obliquus. Various fatty acids, surfactants and organic solvents as cell membrane-reorganizing chemicals were investigated for their stimulatory effects on the growth of fungal mycelium and production of exopolysaccharides (EPS) and endopolysaccharides (IPS) by submerged fermentation of I. obliquus. After evaluation of 14 chemicals, oleic acid, Tween 80, and TritonX-100 were chosen for optimization of addition concentration and addition time. Among the three chemicals, 0.1% (v/v) Tween 80 gave maximum production of mycelial biomass, EPS, IPS1, and IPS2 with a increase of 16.6, 81.6, 37.7 and 18.1%, respectively, when supplemented at the early growth phase (24h after inoculation). These EPS, IPS1, and IPS2 had significantly (pmonosaccharide compositions than those from the control. The simultaneously enhanced accumulation of bioactive EPS and IPS of cultured I. obliquus supplemented with Tween 80 was evident. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The effect of natural weathering on the chemical and isotopic composition of biotites

    International Nuclear Information System (INIS)

    Clauer, N.; Bonnot-Courtois, C.

    1982-01-01

    The effect of progressive natural weathering on the isotopic (Rb-Sr, K-Ar, deltaD, delta 18 O) and chemical (REE, H 2 O + ) compositions of biotite has been studied on a suite of migmatitic biotites from the Chad Republic. During the early stages of weathering the Rb-Sr system is strongly affected, the hydrogen and oxygen isotope compositions change markedly, the minerals are depleted in light REE, the water content increases by a factor of two, and the K-Ar system is relatively little disturbed. During intensive weathering the K-Ar system is more strongly disturbed than the Rb-Sr system. Most of the isotopic and chemical modifications take place under nonequilibrium conditions and occur before newly formed kaolinite and/or smectite can be detected. These observations suggest that (a) 'protominerals' may form within the biotite structure during the initial period of weathering, and (b) only when chemical equilibrium is approached in the weathering profile are new minerals able to form. (author)

  8. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  9. Effect of hydrocolloids on the physico-chemical and rheological properties of reconstituted sweetened yoghurt powder.

    Science.gov (United States)

    Seth, Dibyakanta; Mishra, Hari Niwas; Deka, Sankar Chandra

    2018-03-01

    The consistency of sweetened yoghurt (misti dahi) is a desired characteristic which is attributed to the casein protein network formation during fermentation. Unfortunately, this property is lost in reconstituted sweetened yoghurt (RSY) due to the irreversible nature of protein denaturation during spray drying. Therefore, this study aimed to increase the consistency of RSY using different hydrocolloids. The effects addition of guar gum, pectin, κ-carrageenan and gelatin (0.1%w/v each) on the physico-chemical, microbial, rheological and sensory properties of RSY were investigated. RSY with 40% total solids demonstrated the rheological properties which are very similar to those of fresh sweetened yoghurt. RSY containing different hydrocolloids further increased the rheological properties. The dynamic rheological study revealed that the magnitude of storage modulus (G'), loss modulus (G″), and loss tangent (tan δ) were significantly influenced by the addition of hydrocolloids and gelatin exhibited highest dynamic moduli in RSY. However, κ-carrageenan added RSY was preferred sensorially as the rheological properties were very close to gelatin added RSY. Addition of hydrocolloids significantly increased the starter bacteria count and pH and reduced water expulsion rate (P < 0.05). Addition of hydrocolloids can improve the rheological properties of reconstituted yoghurt. The study concluded that the addition of κ-carrageenan showed better results in terms of rheological and sensory properties of RSY. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Lithium isotope effects in chemical exchange with (2,2,1) cryptand

    International Nuclear Information System (INIS)

    Jepson, B.E.; Cairns, G.A.

    1979-01-01

    Equilibrium single-stage separation factors were determined for three lithium - (2,2,1) cryptand two-phase chemical exchange systems. The equilibrated phases consisted of an aqueous solution of a lithium salt and a chloroform solution of lithium cryptate salt complex. Lithium-6 concentrated in the organic phase in all cases, and the lithium isotope exchange rate with (2,2,1) cryptand was rapid. The separation factors were α = 1.026 +- 0.006 (LiBr exchange), α = 1.035 +- 0.003 (LiTFA), and α = 1.041 +- 0.006 (LiTFA + HTFA), where TFA represents trifluoroacetate. These values were compared with separation factors of other lithium chemical exchange systems. This work has shown that separation factors are influenced by the choice of chemical species and parameters. It has also demonstrated that significant lithium isotope effects can be obtained without a valence change of the metal exchanging between the aquo and cryptate complexes

  11. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  12. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  13. Chemical track effects in condensed systems and implications for biological damage

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1979-01-01

    The spatial distributions of reactive intermediates, chemical reactions, and products are involved in the chemical interests in particle tracks. Biological systems are considred to be concentrated aqueous solutions, and the reactions of biological molecules can occur at any time including prethermal period. Heavy particles lose approximately equal amounts of energy by two mechanisms which lead to the different patterns of energy deposit; that is, the resonant process with individual losses in the range of 0 - 100 eV, and the knock-on process which creates recoil electrons in spectra from 100 eV to the maximum. The survival of cultured cells after irradiation depends on certain parameters of the radiation. Such theories seem to imply that the deposit of energy in the proper location of a cell can guarantee its death, that is, there is all-or-none effect, dependent solely on the absorption of energy. The initial dissociation of water is assumed to require 17 eV. A weakness regarding heavy particle tracks is the lack of knowledge on the phenomena that occur at extremely high energy deposit, approximately 1000 eV per A. Significantly high temperature must be generated, accompanied by shock waves and bubble formation. In a radical diffusion model for cell survival, it is assumed that a particular type of the lesion of DNA may be formed by a purely chemical process which can provide a certain lethality. The chemical processes following the energy deposit by high energy particles are known at least in approximate way, including most of the phenomena in space and time. (Yamashita, S.)

  14. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  15. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    Science.gov (United States)

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  16. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  17. Contribution of the Endocrine Perspective in the Evaluation of Endocrine Disrupting Chemical Effects

    DEFF Research Database (Denmark)

    Bourguignon, Jean-Pierre; Juul, Anders; Franssen, Delphine

    2016-01-01

    Debate makes science progress. In the field of endocrine disruption, endocrinology has brought up findings that substantiate a specific perspective on the definition of endocrine disrupting chemicals (EDCs), the role of the endocrine system and the endpoints of hormone and EDC actions among other...... issues. This paper aims at discussing the relevance of the endocrine perspective with regard to EDC effects on pubertal timing. Puberty involves particular sensitivity to environmental conditions. Reports about the advancing onset of puberty in several countries have led to the hypothesis...

  18. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Tanigaki, Katsumi; Nouchi, Ryo; Yin Lichang

    2010-01-01

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  19. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoyan; Tanigaki, Katsumi [Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Nouchi, Ryo [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan); Yin Lichang, E-mail: nouchi@sspns.phys.tohoku.ac.jp [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2010-11-26

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  20. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors.

    Science.gov (United States)

    Cho, Seunghee H; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-01-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  1. Effect of gamma radiation on chemical composition and storability of lime RTS

    International Nuclear Information System (INIS)

    Pandey, S.K.; Bisen, A.; Dwivedi, V.

    2008-01-01

    In the present investigation, the RTS was irradiated with different doses of gamma radiation to study their effect on chemical composition and storability of lime RTS and vitamin C content only was influenced significantly by 50 Gy gamma radiation during storage (16 days) without adversely affecting the quality of lime fruits, whereas, under control and higher doses of gamma radiation, the quality of lime RTS was deteriorated. The irradiation of lime with 50 Gy gamma radiation may be useful for extending storability of lime of RTS and stabilizing the market demand. (author)

  2. Chemical effects of (n, γ) nuclear reaction on (Mo6Cl8)Cl4

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Millan, S.; Mondragon, A.; Solache-Rios, M.

    1994-01-01

    The chemical effects of 98 Mo(n, γ) 99 Mo reaction on molybdenum(II) chloride [(Mo 6 Cl 8 )Cl 4 ] have been studied. Retention, thermal and radiolytical annealing were determined. It was found that this molybdenum compound has low retention, a negligible tendency to thermal annealing and a virtual insensitivity to hydrolysis. For practical applications in the enrichment of 99 Mo by the Shilard-Chalmers method, molybdenum(II) chloride [(Mo 6 Cl 8 )Cl 4 ] appears to offer good prospects. (author) 14 refs.; 2 figs

  3. Compensation effects in molecular interactions and the quantum chemical le Chatelier principle.

    Science.gov (United States)

    Mezey, Paul G

    2015-05-28

    Components of molecular interactions and various changes in the components of total energy changes during molecular processes typically exhibit some degrees of compensation. This may be as prominent as the over 90% compensation of the electronic energy and nuclear repulsion energy components of the total energy in some conformational changes. Some of these compensations are enhanced by solvent effects. For various arrangements of ions in a solvent, however, not only compensation but also a formal, mutual enhancement between the electronic energy and nuclear repulsion energy components of the total energy may also occur, when the tools of nuclear charge variation are applied to establish quantum chemically rigorous energy inequalities.

  4. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  5. Dependence of radioprotective effect of chemical modifying agents on their intracellular concentrations

    International Nuclear Information System (INIS)

    Eidus, L.K.; Korystov, Y.N.; Kublik, L.N.; Vexler, A.M.

    1982-01-01

    Regularities of the radioprotective effect of chemical modifying agents cysteamine, caffeine benzoate, thioglycolic acid, and caffeine, all weak electrolytes, have been studied in cultured Chinese hamster cells. Efficiency of protection is shown to be dependent on pH and concentrations of the drug inside the cells and in the medium. Based on the theory of the dissociation of weak electrolytes and their distribution between the cells and the medium a strong correlation between the efficiency of modification of the radiation response and intracellular concentration of a modifying agent is shown. (author)

  6. Investigations with beagles about toxicity and radioprotective effect of the chemical radioprotection substance WR 2721

    International Nuclear Information System (INIS)

    Wagner, M.; Sedlmeier, H.; Wustrow, T.; Messerschmidt, O.

    1980-01-01

    The toxicity of the chemical radioprotection substance WR 2721 (S-2-(3-aminopropylamino)ethyl-thiophosphate) was examined in 25 beagles. The study showed that the toxicity of the substance increases as the dose gets higher. Between the doses 200 and 250 mg/kg of body weight, the increase of toxicity was significantly greater than could be expected on the basis of the dose difference. Until a dose of 200 mg/kg, the authors found no side effects which would have disturbed vital functions, but higher doses led to marked symptoms of intoxication. (orig.) [de

  7. Effect of surface physical and chemical properties on interaction and annihilation mechanisms of positrons

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.; Levin, B.M.; Shantarovich, V.P.

    1982-01-01

    The possibility of positron use is illustrated, to investigate physical and chemical properties of the surface, by a number of effects found by the authors while studying the interaction and annihilation of β + -decay positrons in highly-dispersed heterogeneous systems positronium formation and ortho-para conversion close to the surface of metal particles in a dielectric matrix, postronium oxidation by proton centers on the surface of an aluminosilicate catalyst). The ways, new in the main, are revealed to study the properties of the surface by the technique of monochromatic positron beams of low energy

  8. Effects of ionizing radiation in the physico-chemical characteristics of red wine Cabernet Sauvignon

    International Nuclear Information System (INIS)

    Silva, Fellipe Souza da; Leiras, Anderson; Wagner, Walsan

    2014-01-01

    The oenology in the current days is increasingly aimed obtain improvements on wine quality produced without there the deterioration of characteristics of the same, using new technologies for such order. The objective of present work will be the application of the radiation ionizing in wines Cabernet Sauvignon, with the interest of analyzing its effects on physic-chemical characteristics of this wines, such as quality, aging and etc. Were analyzed the following strands: degree alcoholic; dry extract; density and absorbance with spectrometer (420, 520 and 620 nm). (author)

  9. Chemical effects in the stopping cross sections of protons in rare earth fluorides

    International Nuclear Information System (INIS)

    Miranda, J.; Pineda, J.C.

    2007-01-01

    Stopping cross sections were measured for 0.5-0.7 MeV protons impinging on selected rare earth fluorides using energy differences of ions backscattered by thin films. The surface approximation was employed to determine the stopping cross sections. Consideration of chemical effects through the enthalpy of formation of the target compounds, as suggested by Bauer and Semrad (Nucl. Instr. and Meth. B 182 (2001) 62), allows a much better agreement with the electronic stopping predictions of the SRIM code, the Montenegro et al. universal formula and the tables by Janni

  10. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    Energy Technology Data Exchange (ETDEWEB)

    Urpin, V., E-mail: Vadim.urpin@uv.es [Ioffe Institute of Physics and Technology (Russian Federation)

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  11. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  12. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [Agronomy Department, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  13. Magnetic field effects on the chemical equilibrium in LaCo5-H system

    International Nuclear Information System (INIS)

    Yamamoto, Isao; Yamaguchi, Masuhiro; Deguchi, Noritaka; Miura, Shigeto.

    1997-01-01

    Magnetic field effects on the chemical equilibrium were investigated for a ferromagnetic metal hydride-hydrogen system. The equilibrium hydrogen pressure, measured in the β+γ region for LaCo 5 H x , changed significantly with the applied magnetic fields up to 15 T in the temperature range between 293 and 343 K. Namely, the measured hydrogen pressure increased with increasing magnetic fields. However, such a change in the equilibrium pressure became less remarkable with increasing temperature. These experimental results agreed with the thermodynamic calculation based on magnetic data. (author)

  14. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN

    Science.gov (United States)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-08-01

    Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing (CMP) of GaN were deeply investigated in this paper. Working as an ideal homogeneous substrate material in LED industry, GaN ought to be equipped with a smooth and flat surface. Taking the strong chemical stability of GaN into account, photocatalytic oxidation technology was adopted in GaN CMP process to realize efficient removal. It was found that, because of the improved reaction rate of photocatalytic oxidation, GaN material removal rate (MRR) increases by a certain extent with catalyst concentration increasing. Cross single line analysis on the surface after polishing by Phase Shift MicroXAM-3D was carried out to prove the better removal effect with higher catalyst concentration. Ultraviolet intensity field in H2O2-SiO2-based polishing system was established and simulated, revealing the variation trend of ultraviolet intensity around the outlet of the slurry. It could be concluded that, owing to the higher planarization efficiency and lower energy damage, the UV lamp of 125 W is the most appropriate lamp in this system. Based on the analysis, defects removal model of this work was proposed to describe the effects of higher catalyst concentration and higher power of UV lamp.

  15. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  16. Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates.

    Science.gov (United States)

    Mathieu, Cécile; Duval, Romain; Xu, Ximing; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

    2015-01-01

    Thiocarbamates are chemicals widely used as pesticides. Occupational exposure is associated with acute intoxication. Populations can be exposed through food and water. Moreover, certain thiocarbamates are used clinically. The widespread use of thiocarbamates raises many issues regarding their toxicological and pharmacological impact. Thiocarbamates and their metabolites can modify biological macromolecules functions, in particular enzymes, through modification of cysteine residues, chelation of metal ions or modulation of the oxidative stress. Loss of enzyme activity can lead to the disruption of metabolic pathways, and explain, at least in part, the effects of these pesticides. Additionally, their reactivity and ability to easily cross biological barrier confer them a great interest for development of clinical applications. Many advances in the study of thiocarbamates metabolism and reactivity have led to a better knowledge of biological effects of these compounds. However, more data are needed on the determination of targets and specificity. Only few data concerning the exposure to a cocktail of pesticides/chemicals are available, raising the need to evaluate the toxic side effects of representative pesticides mixtures. Moreover, the dithiocarbamate Disulfiram has shown great potential in therapeutic applications and leads to the development of pharmacological thiocarbamates derivatives, highly specific to their target and easily distributed.

  17. Isotope effects on chemical shifts in tautomeric systems with double proton transfer. Citronin

    International Nuclear Information System (INIS)

    Hansen, P.E.; Langgard, M.; Bolvig, S.

    1998-01-01

    Primary and secondary deuterium isotope effects on 1 H and 13 C chemical shifts are measured in citrinin, a tautomeric compound with an unusual doubly intramolecularly hydrogen bonded structure. The isotope effects are to a large extent dominated by equilibrium contributions and deuteration leads to more of the deuterated enol forms rather than the deuterated acid form. 1 H 13 C and 17 O nuclear shieldings are calculated using density functional ab initio methods. A very good correlation between calculated nuclear shieldings and experimental 1 H and 13 C chemical shifts is obtained. The tautomeric equilibrium can be analyzed based on the isotope effects on B-6 and C-8 carbons and shows an increase in the o-quinone form on lowering the temperature. Furthermore, upon deuteration the largest equilibrium shift is found for deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration is increasing at lower temperature. (author)

  18. An external domino effects investment approach to improve cross-plant safety within chemical clusters

    International Nuclear Information System (INIS)

    Reniers, Genserik

    2010-01-01

    Every company situated within a chemical cluster faces the risk of being struck by an escalating accident at one of its neighbouring plants (the so-called external domino effect risks). These cross-plant risks can be reduced or eliminated if neighbouring companies are willing to invest in systems and measures to prevent them. However, since reducing such multi-plant risks does not lead to direct economic benefits, enterprises tend to be reluctant to invest more than needed for meeting minimal legal requirements and they tend to invest without collaborating. The suggested approach in this article indicates what information is required to evaluate the available investment options in external domino effects prevention. To this end, game theory is used as a promising scientific technique to investigate the decision-making process on investments in prevention measures simultaneously involving several plants. The game between two neighbouring chemical plants and their strategic investment behaviour regarding the prevention of external domino effects is described and an illustrative example is provided. Recommendations are formulated to advance cross-plant prevention investments in a two-company cluster.

  19. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices

    Science.gov (United States)

    Guo, Yulong; Yang, Shouye; Su, Ni; Li, Chao; Yin, Ping; Wang, Zhongbo

    2018-04-01

    Although the proxies based on elemental geochemistry of siliciclastic sediments have been well developed to indicate the intensity of chemical weathering in various catchments, their geological indications and limitations, and especially how the differentiation of minerals and sediment grain size influences the applications of these proxies needs more clarification. This paper investigates the interactive effects of weathering, hydraulic sorting and sedimentary recycling on river sediment chemistry, and further validates the application of various weathering indices by measuring mineralogical and geochemical compositions of bank sediments and suspended particulate matters (SPMs) from five rivers in East China bearing various sizes, geologic settings and climatic regimes. For a specific river, the silicate weathering intensity registered in the fine SPMs is systematically stronger than that in the coarse-grained bank sediments. Most of the weathering indices not only reflect the integrated weathering history of various catchments but also depend on hydraulic sorting effect during sediment transport and depositional processes. The correlation between CIA (chemical index of alteration) and WIP (weathering index of Parker) offers an approach to predict the weathering trends of the fine SPMs, coarse bank sediments and recycled sediments under the influence of quartz dilution. To minimize the effects of hydrodynamic sorting and sedimentary recycling, we suggest that the fine sediments (e.g. SPMs and <2 μm fraction of bank sediments) in rivers can better reflect the average of present-day weathering crust in catchments and the weathered terrigenous materials into marginal seas and oceans.

  20. Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.

    Science.gov (United States)

    Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth

    2008-11-01

    To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.

  1. Investigation of the chemical effects of nuclear transformations by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Nagy, G.A.

    1978-01-01

    Moessbauer spectroscopy proved to be a very successful method for the investigation of the effect of nuclear transformations in solid matrixes. This method makes possible the observation of the atoms to be investigated without the dissolution of the sample i.e. without interfering with the eventual intermediates or their environment, ensuring thus ''in situ'' analysis. The method besides the informations concerning the chemical state of the derivative gives data concerning its immediate environment and its site in the crystal lattice. Products having a very short lifetime can be observed, too. Though the method is suitable only for the investigation of such nucleogenetic nuclei which are at the same time also Moessbauer atoms, the method has several times given fundamental information on the chemical and crystal-structural effects of transformations in solid compounds. Isotopes from nuclear reactions are in general pushed back at a high kinetical energy during their formation, and the method makes possible to deduce the consequences of this push-back effect and of radioactive decays and nuclear reactions. A separate chapter summarizes the recent statements concerning the consequences of the electron capture in solid cobalt compounds, the consequences of the isomer transition of Sn-119 in solid tin compounds etc. (P.J.)

  2. An external domino effects investment approach to improve cross-plant safety within chemical clusters.

    Science.gov (United States)

    Reniers, Genserik

    2010-05-15

    Every company situated within a chemical cluster faces the risk of being struck by an escalating accident at one of its neighbouring plants (the so-called external domino effect risks). These cross-plant risks can be reduced or eliminated if neighbouring companies are willing to invest in systems and measures to prevent them. However, since reducing such multi-plant risks does not lead to direct economic benefits, enterprises tend to be reluctant to invest more than needed for meeting minimal legal requirements and they tend to invest without collaborating. The suggested approach in this article indicates what information is required to evaluate the available investment options in external domino effects prevention. To this end, game theory is used as a promising scientific technique to investigate the decision-making process on investments in prevention measures simultaneously involving several plants. The game between two neighbouring chemical plants and their strategic investment behaviour regarding the prevention of external domino effects is described and an illustrative example is provided. Recommendations are formulated to advance cross-plant prevention investments in a two-company cluster. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  4. Military chemical warfare agent human subjects testing: part 2--long-term health effects among participants of U.S. military chemical warfare agent testing.

    Science.gov (United States)

    Brown, Mark

    2009-10-01

    Military chemical warfare agent testing from World War I to 1975 produced thousands of veterans with concerns about how their participation affected their health. A companion article describes the history of these experiments, and how the lack of clinical data hampers evaluation of long-term health consequences. Conversely, much information is available about specific agents tested and their long-term health effects in other populations, which may be invaluable for helping clinicians respond effectively to the health care and other needs of affected veterans. The following review describes tested agents and their known long-term health consequences. Although hundreds of chemicals were tested, they fall into only about a half-dozen pharmaceutical classes, including common pharmaceuticals; anticholinesterase agents including military nerve agents and pesticides; anticholinergic glycolic acid esters such as atropine; acetylcholine reactivators such as 2-PAM; psychoactive compounds including cannabinoids, phencyclidine, and LSD; and irritants including tear gas and riot control agents.

  5. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties

    DEFF Research Database (Denmark)

    Debosz, K.; Petersen, S.O.; Kure, L.K.

    2002-01-01

    Recycling of organic wastes within agriculture may help maintain soil fertility via effects on physical, chemical and biological properties. Efficient use, however, requires an individual assessment of waste products, and effects should be compared with natural variations due to climate and soil......C, as well as in the field. The following properties were monitored: wet-stability of soil aggregates, clay dispersibility, hot-water extractable carbohydrates, resin-extractable P-i, inorganic N, biomass C and N, PLFA profiles, FDA hydrolysis activity, beta-glucosidase activity and CO2 evolution. In general...... amendment on the fraction of soil in wet-stable aggregates, or on the microbiological properties tested, which supported the observation from the incubation study that effects of organic wastes were transient. (C) 2002 Elsevier Science B.V. All rights reserved....

  6. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  7. Climate-chemical interactions and effects of changing atmospheric trace gases

    Science.gov (United States)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  8. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  9. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors

    Directory of Open Access Journals (Sweden)

    Mario La Notte

    2014-03-01

    Full Text Available Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI as sensing device instead of an add drop ring resonator.

  10. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages.

    Science.gov (United States)

    Wright, Linnzi K M; Lee, Robyn B; Vincelli, Nicole M; Whalley, Christopher E; Lumley, Lucille A

    2016-01-22

    Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX. Published by Elsevier Ireland Ltd.

  11. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-01-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted

  12. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-10-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted.

  13. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  14. Long term effects of chemical weapons on health in Kurdistan of Iraq

    International Nuclear Information System (INIS)

    Dizaye, K.

    2009-01-01

    Extensive exposure to chemical weapons such as mustard gas, nerve gas and cyanide caused high mortality, morbidity, injuries, and chronic side effects in vital organs, especially the respiratory tract. Chemical weapons were heavily used by Iraq against Iranian soldiers between 1984-1986. Then, against the Iraqi Kurd in Sheikh Wasan and Balisan valley, during April 1987 and in Halabja on 18th March 1988. Reports suggested that as many as 2.9 percent of the Kurdish population have been exposed to chemical weapon at some level. This case report describes a Kurdish lady who was exposed to mustard gas during a chemical attack in sheikh Wasan in Iraq. A thirty two years old woman wearing black clothes presented to our center at 1999 complaining from shortness of breath (SOB). Her condition started 12 years ago when the Iraqi Government attacked her village Sheikh Wasan by Chemical weapons which included Mustard gas and nerve gases such as Sarin, Tabun and VX in April 1987. She described how the gas smelled like garlic as it spread over the village. During the attack she suffered from sever SOB, cough, skin burn and eyes irritation and lacrimation. After several days of being without medical care, she received some medical attention by local medical staff at the area because the Iraqi authorities at that time refused and prohibited them from management at the major hospitals. After several days when she returned back to her home she found that several members of her family have died during the exposure to chemical gases. Among the dead people were her husband, her son, her brother in addition to other second and third degree relatives. Since that time she suffered from repeated attacks of cough and SOB and wheezing that were increased by exertion and cold exposure. The attacks were more sever with time and the SOB has interfered with her daily activity and even lastly she was suffering from SOB at rest and during sleep that made her unable to sleep lying down. Moreover

  15. The effects of wood storage on the chemical composition and indigenous microflora of eucalyptus species used in the pulping industry

    CSIR Research Space (South Africa)

    Ramnath, L

    2018-02-01

    Full Text Available Lipophilic extractives naturally occurring in wood tend to coalesce during pulping to form pitch deposits, which have particularly undesirable effects on the pulping process and quality of pulp produced. A chemical characterization of different...

  16. The effect of microplastic on chemical uptake by the lugworm Arenicola marina (L.) under environmentally relevant conditions

    NARCIS (Netherlands)

    Besseling, E.; Foekema, E.M.; Heuvel-Greve, van den M.J.; Koelmans, A.A.

    2017-01-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore we studied the effect

  17. Photodynamic Action against Wastewater Microorganisms and Chemical Pollutants: An Effective Approach with Low Environmental Impact

    Directory of Open Access Journals (Sweden)

    Maria Bartolomeu

    2017-08-01

    Full Text Available Wastewater (WW from urban and industrial activities is often contaminated with microorganisms and chemical pollutants. To reduce the concentration of microorganisms in WW to levels comparable to those found in natural waters, the sewage effluent is usually subjected to disinfection with chlorine, ozone, or ultraviolet light, which may lead to the formation of toxic products and contribute to the selection of resistant genes. Moreover, the changing patterns of infectious diseases and the emerging of multidrug resistant microbial strains entail the development of new technologies for WW decontamination. Microbial photodynamic inactivation (PDI with photosensitizers, oxygen, and visible light has demonstrated to be effective in the inactivation of microorganisms via photogeneration of reactive oxygen species able to induce microbial damage at the external structures level. The promising results of PDI suggest that this principle can be applied to WW treatment to inactivate microorganisms but also to photodegrade chemical pollutants. The aim of this study was to assess the applicability of PDI for the microbial and chemical decontamination of secondarily treated WW. To evaluate the efficiency of bacterial inactivation in WW, experiments were done in both phosphate buffer saline (PBS and filtered WW with the bioluminescent Escherichia coli, using small and large volumes of WW. The potential of PDI to inactivate the native bacteria (E. coli and Enterococcus present in WW was tested and assays without the adding of bacteria to the WW were performed. It was also tested if the same PDI protocol was able to induce phototransformation of phenol. The cationic porphyrin 5,10,15,20-tetrakis(1-methylpyridinium-4-ylporphyrin tetra-iodide (Tetra-Py+-Me was shown to be effective against both bacterial groups representing both Gram-negative and Gram-positive bacteria used as microbiological parameters to instigate water quality and even showing the power to

  18. Numerical Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems: Chemical Kinetics and Hydrodynamic Effects

    International Nuclear Information System (INIS)

    Wu, Chao; Kanthi Kiran Dasika; Chen, Yitung; Moujaes, Samir

    2002-01-01

    Using liquid Lead-Bismuth Eutectic (LBE) as coolant in nuclear systems has been studied for more than 50 years. And LBE has many unique nuclear, thermo physical and chemical attributes which are attractive for practical application. But, corrosion is one of the greatest concerns in using liquid Lead-Bismuth Eutectic (LBE) as spallation target in the Accelerator-driven Transmutation of Waste (ATW) program. Los Alamos National Laboratory has designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten LBE. A difference of 100 deg. C was designed between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow was activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. Therefore, it is of importance to understand what the oxygen concentrations are in the LBE loop related to the corrosion effects on the metal surface, the temperature profiles, the flow rates, and diffusion rates through the metal surface. The chemical kinetics also needs to be fully understood in the corrosion processes coupled with the hydrodynamics. The numerical simulation will be developed and used to analyze the system corrosion effects with different kind of oxygen concentrations, flow rates, chemical kinetics, and geometries. The hydrodynamics modeling of using computational fluid dynamics will provide the necessary the levels of oxygen and corrosion products close to the boundary or surface. This paper presents an approach towards the above explained tasks by analyzing the reactions between the Lead and oxygen at a couple of sections in the MTL. Attempt is also made to understand the surface chemistry by choosing an example model and estimating the near wall surface concentration values for propane and oxygen. (authors)

  19. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures

    International Nuclear Information System (INIS)

    Khakzad, Nima

    2015-01-01

    A domino effect is a low frequency high consequence chain of accidents where a primary accident (usually fire and explosion) in a unit triggers secondary accidents in adjacent units. High complexity and growing interdependencies of chemical infrastructures make them increasingly vulnerable to domino effects. Domino effects can be considered as time dependent processes. Thus, not only the identification of involved units but also their temporal entailment in the chain of accidents matter. More importantly, in the case of domino-induced fires which can generally last much longer compared to explosions, foreseeing the temporal evolution of domino effects and, in particular, predicting the most probable sequence of accidents (or involved units) in a domino effect can be of significance in the allocation of preventive and protective safety measures. Although many attempts have been made to identify the spatial evolution of domino effects, the temporal evolution of such accidents has been overlooked. We have proposed a methodology based on dynamic Bayesian network to model both the spatial and temporal evolutions of domino effects and also to quantify the most probable sequence of accidents in a potential domino effect. The application of the developed methodology has been demonstrated via a hypothetical fuel storage plant. - Highlights: • A Dynamic Bayesian Network methodology has been developed to model domino effects. • Considering time-dependencies, both spatial and temporal evolutions of domino effects have been modeled. • The concept of most probable sequence of accidents has been proposed instead of the most probable combination of accidents. • Using backward analysis, the most vulnerable units have been identified during a potential domino effect. • The proposed methodology does not need to identify a unique primary unit (accident) for domino effect modeling

  20. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment.

    Science.gov (United States)

    Diepens, Noël J; Koelmans, Albert A; Baveco, Hans; van den Brink, Paul J; van den Heuvel-Greve, Martine J; Brock, Theo C M

    A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.

  1. Model of physico-chemical effect on flow accelerated corrosion in power plant

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Domae, Masafumi; Yoneda, Kimitoshi; Inada, Fumio

    2011-01-01

    Highlights: → Model of chemical effect on FAC was developed. → Equation to evaluate the dissolved oxygen concentration for FAC suppression was derived. → The model explains the qualitatively the effect of parameters on FAC rate. → Diffusion of soluble species well reproduces the unique FAC behavior. - Abstract: Flow accelerated corrosion (FAC) is caused by the accelerated dissolution of protective oxide film under the condition of high flow rate and has been one of the most important subjects in fossil and nuclear power plants. The dominant factors of FAC are water chemistry, material, and fluid dynamics. Understanding of the thinning mechanism is very important to estimate the quantitative effects of the dominant factors on FAC. In this study, a novel model of chemical effect on FAC under the steady-state condition was developed in consideration of the diffusion of soluble iron and chromium species, dissolved hydrogen, and dissolved oxygen. The formula to evaluate the critical concentration of dissolved oxygen for FAC suppression was derived. The present model reproduced qualitatively the effect of major environmental parameters on FAC rate. The model could explain the following facts. (1) The FAC rate shows a peak around 413 K. (2) The FAC rate decreases with an increase in Cr content. (3) The FAC rate decreases with an increase in pH. (4) The FAC rate decreases with an increase in dissolved oxygen concentration. (5) The maximum of critical dissolved oxygen concentration is observed around 353 K. (6) The critical dissolved oxygen concentration decreases with an increase in pH. We conclude that the diffusion of soluble species from the saturated layer under the steady-state condition well reproduces the unique FAC behavior with variation of water chemistry parameters.

  2. Chemical and biological effects of β-decay and inner shell ionization in biomolecules

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1979-01-01

    Tritium and iodine-125, and the Auger effect either caused by the EC-decay of 125 I or by the inner shell vacancy created selectively by mono-energetic X-ray are reviewed in this paper. The specifically labelled precursors to bound 3 H large biomolecules were prepared by conventional syntheses, and then incorporated into the DNA of proliferating cells. The effects like DNA strand breaks or mutational changes are likely to be affected by the localization of the carbonium ions in biological molecules. In contrast to lethality, it was demonstrated that 3 H transmutation effect contributed to DNA strand breaks and played a key role in producing genetic effects. The decay of 3 H in uracil-5- 3 H in the DNA of E. coli was about 7 times as mutagenic as that in uracil-6- 3 H, and 500-fold greater in bacteriophage S13. Drastic chemical consequences are associated with the Auger effect occurring as a possible relaxation process whenever inner shell ionization is initiated. When the vacancy is filled by an electron from an outer shell, the bond energy difference between inner shell electron and outer shell electron is released either in the form of an X-ray fluorescence photon or it can be transmitted to another outer electron which is then ejected. The radioactive decay in specifically labelled biomolecules or the inner shell ionization in heavy constituent atoms caused by resonant X-ray are relevant to a) selective microsurgery in biological macromolecules for the correlation of biological and chemical functions, b) radiotoxicity estimation, and c) radiation therapy. (Yamashita, S.)

  3. Determination of the capabilities of a detachment for neutralizing chemical attack effects in the brigade defense zone

    Directory of Open Access Journals (Sweden)

    Dejan R. Inđić

    2012-04-01

    Full Text Available This paper presents one possible way of deploying detachments for neutralizing the effects of chemical attacks in a brigade defense zone. The detachment composition is provisional and depends on the assessment of whether the enemy in the incoming combat will use weapons of mass destruction. A detachment consists of several organizational units: medical care forces, chemical reconnaissance forces, forces for the establishment of combat efficiency and chemical decontamination forces. The capabilities of the mentioned forces depend on their size, equipment, training level, extent of effects and combat conditions. The paper indicates a potential to overcome the gap in the provisions after disbanding the Army Corps.

  4. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Directory of Open Access Journals (Sweden)

    Angel Catalá

    2013-01-01

    Full Text Available I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.

  5. Effect of Radiation processing on sensory and chemical characteristics of broad beans (Giza,2)(Vicia Faba)

    International Nuclear Information System (INIS)

    Mahmoud, A.A.; El-Niely, F.G.

    2002-01-01

    Broad bean is the important leguminous protein consumed in egypt as a source of protein diet. The most popular way of preparing beans is the stewd form (Fool Medames). However, great losses due to insect infestation occur during storage. To combat these losses radiation processing has been used as an effective alternative of chemical fumigants to combat insect pets. The beans were irradiated at 25.5, 10 and kgy. The effects of treatments were investigated on sensory and chemical characteristics and on the solubility of broad beans protein, the amino acids content and on the nutritive value of bean protein from the view of its amino acids profile. The results of study indicate that the sensory evaluation of sewed irradiated 2.5 and 5 kGy samples revealed no significantdiffference in hardness, gumminess and acceptability. moreover, no significant changes in adhesivess, between samples irradiated at 5, 10 and 20 KGy, irradiation up to 20 KGy was found to improve the hardness of stewed broad bean which would improve the quality of broad of bean

  6. Effects of chemical smokes on flora and fauna under field and laboratory exposures.

    Science.gov (United States)

    Schaeffer, D J; Novak, E W; Lower, W R; Yanders, A; Kapila, S; Wang, R

    1987-06-01

    Various types of obscurant smokes are used routinely in training by the U.S. Army. Because continued routine use of the smokes could be detrimental to the native flora and fauna at training sites, a preliminary biological and chemical field study of fogoil, hexachloroethane, and tank diesel smokes was conducted. Smoke plumes were sampled and chemically analyzed at distances of 15-150 m from the smoke source where Tradescantia clones 4430 and 03 and the native plant Ambrosia dumosa and the native rodent Dipodomys merriami were exposed for 30 min. In addition, Tradescantia clone 4430 was exposed to tank diesel in the laboratory at concentration levels equivalent to exposure at 15 and 50 m. Tradescantia clones were examined for mutagenic effects indicated by micronuclei induction in developing pollen and pink somatic mutations in stamen hairs. Photosynthetic perturbations were measured in Tradescantia and A. dumosa using variable fluorescence induction. Animals were examined for sister chromatid exchanges and chromosome aberrations. It was found that all of the smokes tested exerted varying degrees of physiological and mutagenic effects in one or more assay system at one or more exposure distance. The studies reported here indicate that exposed ecological systems, or at least components of these systems, are at a higher risk than are unexposed components (e.g., organisms) for several types of damage attributed to obscurant smoke exposure.

  7. The effect of gamma irradiation on the chemical composition and digestible crude protein of poultry excreta

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1994-06-01

    The changes in the chemical composition, digestible crude protein and cell-wall constituents for two types of excreta of laying hens were studied. In type I, excreta were dried at 170-180 C for 10 minutes whereas in type II dried at 55-60 C for several days. Each type was divided into two parts, the first stored for 3 months with the control. The second part was irradiated by gamma irradiation at 100 KGy and stored for 3 months with the control. The results indicated that here was significant decrease in the crude fibre (CF), NDF and ADF between the samples and the control, for the types I and II where CF, NDF and ADF values, before and after storage, decreased by 12%, 5% and 6%, respectively, ADL values decreased by 8% (I) and 3%(II). Hemicellulose and soluble carbohydrate (NFE) values increased by 5% and 7% for types I and II respectively as a result of irradiation in comparison to the control before and after storage. Gamma irradiation had no effect on crude protein, crude fat, crude ash and digested crude protein for types I and II before and after storage. Drying type I at high temperature in comparison to type II, before and after storage, decreased the crude protein values by 16%. Digested crude protein and CF, decreased 12% and NDF by 7%. Storage of excreta after drying had no effect on the chemical changes due to irradiation for types I and II. (author). 23 refs., 6 figs., 7 tabs

  8. Investigation on the effect of chemical composition on the texture and bake hardening I F steels

    International Nuclear Information System (INIS)

    Kariman, M.; Motaghi, A.; Raygan, Sh.; Habibi Parsa, M.; Nili Ahmadabadi, M.

    2008-01-01

    Interstitial free steels have good formability and also excellent deep draw ability. These features make them one of the applicable materials in automotive industry. Chemical composition and thermomechanical treatment used to process these steels have important role in final properties of them. In this study, the effect of chemical composition on texture, anisotropic properties and bake harden ability of these steels were investigated. The results showed that contribution of vanadium as a weak carbonitride former element with titanium as strong carbonitride former could change the texture of steels. Replacing titanium with vanadium caused harmful effect on mechanical properties. In this research deep drawing properties of five steels were compared based on I {111} / I{001} and I {111} / I{110} parameters. The results of bake harden ability test showed that there were critical limits for vanadium volume fractions above which bake harden properties was improved. It was shown that the bake harden properties of Nb-steels were better than that of Ti-steels. This was due to the better solution of Nb(C,N) compared to Ti(C,N). Addition of vanadium to Ti-steels may improve bake harden properties of I F steels

  9. Effect of nuclear radiation on the electrical properties of chemical double layer capacitors

    International Nuclear Information System (INIS)

    Laghari, J.R.; Hammoud, A.N.

    1990-01-01

    The effects of nuclear radiation on the electrical properties of chemical double layer capacitors are determined. The capacitors were irradiated in a 2-MW nuclear reactor to different fluence levels. The exposure rate was 2.2 x 10 10 n/cm 2 · s of thermal neutrons, 9.52 x 10 8 n/cm 2 · s of fast neutrons (> 2 MeV), and 1.47 x 10 6 rad/h of gamma radiation. The properties measured during and after irradiation included the capacitance, equivalent series resistance, and open-circuit voltage. The post-irradiation effect on the leakage current was also determined. It was found that while the capacitance increased during irradiation, the equivalent series resistance and the open-circuit voltage decreased slightly during irradiation. Changes in these properties were not permanent s was evident from post-irradiation measurements. The leakage current did not show any significant change with radiation. The results indicate that chemical double layer capacitors can be suitably used as backup power source in electronic equipment operating in a radiation environment with total fluences up to 4.05 x 10 14 n/cm 2

  10. Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization

    International Nuclear Information System (INIS)

    Jeong, Sukhoon; Lee, Hyunseop; Cho, Hanchul; Lee, Sangjik; Kim, Hyoungjae; Kim, Sungryul; Park, Jaehong; Jeong, Haedo

    2010-01-01

    High roughness and a greater number of defects were created by lithium niobate (LN; LiNbO 3 ) processes such as traditional grinding and mechanical polishing (MP), should be decreased for manufacturing LN device. Therefore, an alternative process for gaining defect-free and smooth surface is needed. Chemical mechanical planarization (CMP) is suitable method in the LN process because it uses a combination approach consisting of chemical and mechanical effects. First of all, we investigated the LN CMP process using commercial slurry by changing various process conditions such as down pressure and relative velocity. However, the LN CMP process time using commercial slurry was long to gain a smooth surface because of lower material removal rate (MRR). So, to improve the material removal rate (MRR), the effects of additives such as oxidizer (hydrogen peroxide; H 2 O 2 ) and complexing agent (citric acid; C 6 H 8 O 7 ) in a potassium hydroxide (KOH) based slurry, were investigated. The manufactured slurry consisting of H 2 O 2 -citric acid in the KOH based slurry shows that the MRR of the H 2 O 2 at 2 wt% and the citric acid at 0.06 M was higher than the MRR for other conditions.

  11. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef.

    Science.gov (United States)

    Zou, Yunhe; Kang, Dacheng; Liu, Rui; Qi, Jun; Zhou, Guanghong; Zhang, Wangang

    2018-09-01

    The objective of this study was to assess the effects of ultrasonic assisted cooking on the chemical profiles of spiced beef taste and flavor. Ultrasound power with 0 W, 400 W, 600 W, 800 W and 1000 W (frequency of 20 kHz) were used for cooking 120 min. The sodium chloride, sugar, free amino acids (FAAs), 5'-ribonucleotides, lipid oxidation, volatile flavor substance contents and electronic nose of spiced beef were determined. Results showed that ultrasonic treatment could significantly increase the content of sodium chloride in beef sample (P  0.05). With the ultrasonic treatment, the types and relative content of volatile flavor substances were significantly increased (P alcohols and ketones. However, there was no significant variation among the different ultrasound power groups (P > 0.05). This result was consistent with the measurement of electronic nose. Data points of control samples were away from ultrasonic treatment groups, while data points of different ultrasonic treatment groups were flock together. The results indicate that the application of ultrasound during cooking has a positive effect on chemical profiles of spiced beef taste and flavor, particularly for the power of 800 W. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Chemical effects of low-energy electron impact on hydrocarbons in the gas phase. II. Propene

    International Nuclear Information System (INIS)

    Derai, R.; Danon, J.

    1977-01-01

    The chemical effects of low-energy (3.5 to 15.0 eV) electron impact on propene were investigated. The setup used for the irradiations has previously been described. Appearance curves for stable products were determined, from which correlations between products and precursors were deduced. In the excitation range, the main precursors are the triplet state at 4.4 eV and various singlet states around 7.0 and 9.0 eV. Above the ionization potential, contribution from superexcited molecules and ions was noted. Superexcited molecules are formed with a much higher cross section than excited molecules. A reaction scheme was proposed to account for the chemical effects associated with excited states and the yields of excited molecules in dissociating states were derived from experimental data. Results concerning the fragmentation of propene excited in singlet states conform to photolysis data. The following new results were obtained: the decomposition of propene excited in the triplet state at 4.4 eV involves mainly C--C bond rupture; the decomposition processes of superexcited and excited molecules are similar. A higher degree of fragmentation is observed in the case of superexcited molecules

  13. Estrogenic chemical effects are independent from the degree of sex role reversal in pipefish.

    Science.gov (United States)

    Sárria, Marisa P; Santos, Miguel M; Castro, L Filipe C; Vieira, Natividade M; Monteiro, Nuno M

    2013-12-15

    Endocrine disrupting chemicals (EDCs) have been reported to disturb several ecological relevant endpoints. Surprisingly, EDC-induced effects on fish sexual behaviour have been poorly studied despite the fact that even subtle alterations might contribute to a disruption of sexual interactions, thus negatively impacting reproduction. As the few assessments on sexual behaviour have been conducted in species with orthodox sex roles, it might be argued that sex-role reversed species might provide a potentially complementary system to further explore the effects of EDCs on reproduction. In the present study, two pipefish species with distinct degrees of sex-role reversal were selected to further elucidate the impact of chronic EE2 exposure on sexual behaviour and reproduction-related endpoints. The obtained results indicate that, independently of the degree of sex role reversal, courtship behaviour seems to resist oestrogenic chemical exposure. However, exposure to environmentally relevant EE2 levels did induce a complete absence of pregnancies at 18 ng/L. Even though pregnancies were observed at intermediate concentrations, the percentage of non-transferred or misplaced oocytes increased and a dose-dependent decrease of oocyte volume was observed. Imbalances in the oogenesis process, induction of vitellogenin in males and the absence of pregnancies highlight that environmental relevant concentrations of EE2 have the potential to negatively affect pipefish populations, most of them inhabiting coastal areas where oestrogenic contamination is more prevalent. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of ionizing radiation on plastic food packaging materials: a review. 1. Chemical and physical changes

    International Nuclear Information System (INIS)

    Buchalla, R.; Schuttler, C.; Bögl, K.W.

    1993-01-01

    Irradiation of prepackaged food causes chemical and physical changes in plastic packaging materials. The effects of ionizing radiation on these materials have been studied for almost 40 years; the respective literature is reviewed to provide the basis for a safety evaluation of plastics for use in food irradiation. Permeability of plastic films is generally not affected; deterioration of mechanical properties, that may occur with certain polymers, can usually be controlled with adequate stabilizers; and changes in infrared and UV/VIS spectra are slight at food irradiation doses. Gaseous radiolysis products include hydrogen, methane, CO 2 , CO, hydrocarbons, and for chlorine-containing polymers, hydrogen chloride. A range of volatile products, mainly hydrocarbons, alcohols, aldehydes, ketones, and carboxylic acids, has been characterized for low density polyethylene and polypropylene, other important materials, e.g., polystyrene and poly(vinyl chloride), are less well-investigated. Comparatively little is known on the effect of irradiation on multilayer structures. Radiation-induced changes are shown to depend on the chemical structure of the polymer, on the composition (additives) and processing history of the plastic, and on the irradiation conditions

  15. Chemical castration in cattle with intratesticular injection of sodium chloride: Effects on stress and inflammatory markers.

    Science.gov (United States)

    Oliveira, Fernando C; Ferreira, Carlos E R; Haas, Cristina S; Oliveira, Leonardo G; Mondadori, Rafael G; Schneider, Augusto; Rovani, Monique T; Gonçalves, Paulo B D; Vieira, Arnaldo D; Gasperin, Bernardo G; Lucia, Thomaz

    2017-03-01

    Intratesticular injection (ITI) of sodium chloride (NaCl) is efficient for chemical castration of young calves, but its effects on calves welfare are unknown. Two experiments were conducted to evaluate the effects of ITI of 20% NaCl on stress and inflammatory markers in calves less than 20 days old and to assess the efficiency of ITI of 30% NaCl in 5 months old calves. In Experiment 1, control calves were only restrained and compared to calves submitted to castration through surgery (SC) and ITI with 20% NaCl (n = 9/group). No differences were observed for the eye corner temperature measured by thermography from 60 s before to 60 s after the procedures (P > 0.05). In the SC group, acute serum cortisol levels increased at 30 and 60 min after the procedure, but increased levels in the ITI group occurred only at 30 min (P  0.05). Scrotal temperature was higher at D1 in the SC group than for the other groups, but lowest at D4 compared to the control (both P castration through ITI of 20% NaCl in young calves was followed by slight stress and inflammatory responses compared to surgical castration. However, ITI of 30% NaCl was ineffective for chemical castration of 5 months old calves. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions

    International Nuclear Information System (INIS)

    Ahmadpour, A.; Zabihi, M.; Tahmasbi, M.; Bastami, T. Rohani

    2010-01-01

    In the present investigation, three different solid wastes namely almond green hull, eggplant hull, and moss were initially treated and used as adsorbents for the adsorption of strontium ion from aqueous solutions. Adsorbent types and chemical treatments are proved to have effective roles on the adsorption of Sr(II) ion. Among the three adsorbents, almond green hull demonstrated strong affinity toward strontium ion in different solutions. The effectiveness of this new adsorbent was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbent, and initial metal-ion concentration. The optimum doses of adsorbent for the maximum Sr(II) adsorption were found to be 0.2 and 0.3 g for 45 and 102 mg L -1 solutions, respectively. High Sr(II) adsorption efficiencies were achieved only in the first 3 min of adsorbent's contact time. The kinetics of Sr(II) adsorption on almond green hull was also examined and it was observed that it follows the pseudo second-order behavior. Both Langmuir and Freundlich models well predicted the experimental adsorption isotherm data. The maximum adsorption capacity on almond green hull was found to be 116.3 mg g -1 . The present study also confirmed that these low cost agriculture byproducts could be used as efficient adsorbents for the removal of strontium from wastewater streams.

  17. Cooperative biological effects between ionizing radiation and other physical and chemical agents.

    Science.gov (United States)

    Manti, Lorenzo; D'Arco, Annalisa

    2010-01-01

    Exposure to ionizing radiation (IR), at environmentally and therapeutically relevant doses or as a result of diagnostics or accidents, causes cyto- and genotoxic damage. However, exposure to IR alone is a rare event as it occurs in spatial and temporal combination with several physico-chemical agents. Some of these are of known noxiousness, as is the case with chemical compounds at high dose, hence additive/synergistic effects can be expected or have been demonstrated. Conversely, the cellular toxicity of other agents, such as non-ionizing electromagnetic fields (EMFs), is only presumed and their short- and long-term cooperation on IR-induced damage remains undetermined. In this review, we shall examine evidence in support of the interplay between spatially and/or temporally related environmentally relevant stressors. In vitro or animal-based studies as well as epidemiological surveys have generally examined the combined action of no more than a couple of known or potentially DNA-damaging agents. Moreover, most existing research mainly focused on short-term effects of combined exposures. Hence, it is important that quantitative research addresses the issue of the possible cooperation between chronic exposure to environmental trace contaminants and exposure to EMFs, examining not only the modulation of damage acutely induced by IR but also long-term genome stability. 2010 Elsevier B.V. All rights reserved.

  18. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.

    Science.gov (United States)

    Guo, Da-liang; Yuan, Hong-you; Yin, Xiu-li; Wu, Chuang-zhi; Wu, Shu-bin; Zhou, Zhao-qiu

    2014-01-01

    The effects of Na as organic bound form or as inorganic salts form on the pyrolysis products characteristics of alkali lignin were investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR), tube furnace and thermo-gravimetric analyzer (TGA). Results of TG-FTIR and tube furnace indicated that the two chemical forms Na reduced the releasing peak temperature of CO and phenols leading to the peak temperature of the maximum mass loss rate shifted to low temperature zone. Furthermore, organic bound Na obviously improved the elimination of alkyl substituent leading to the yields of phenol and guaiacol increased, while inorganic Na increased the elimination of phenolic hydroxyl groups promoting the formation of ethers. It was also found the two chemical forms Na had different effects on the gasification reactivity of chars. For inorganic Na, the char conversion decreased with increasing the char forming temperature, while organic bound Na was opposite. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Effect of Chemical Reactions on the Hydrologic Properties of Fractured and Rubbelized Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Meyer, P D.; Parker, Kent E.; Lindberg, Michael J.

    2005-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular

  20. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs