WorldWideScience

Sample records for chemical dynamics studies

  1. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  2. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  3. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  4. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  5. On the study of nonlinear dynamics of complex chemical reaction systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With ever-increasing attentions being paid to complex systems such as the life system, soft matter, and nano-systems, theoretical studies of non-equilibrium nonlinear problems involved in chemical dynamics are now of general interest. In this mini-review, we mainly give a brief introduction to some frontier topics in this field, namely, nonlinear state-state dynamics, nonlinear chemical dynamics on complex networks, and nonlinear dynamics in mesoscopic chemical reaction systems. Deep study of these topics will make great contribution to discovering new laws of chemical dynamics, to exploring new control methods of complex chemical processes, to figuring out the very roles of chemical processes in the life system, and to crosslinking the scientific study of chemistry, physics and biology.

  6. Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study

    Indian Academy of Sciences (India)

    Shubin Liu

    2005-09-01

    Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH$^{+}_{5}$ , Cl- (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.

  7. Theoretical studies of the dynamics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.F. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  8. Probing Chemical Dynamics at Surfaces

    Institute of Scientific and Technical Information of China (English)

    KLEYN, A.W.; KLEYN, A.W

    2001-01-01

    An account is given of recent progress concerning chemical reaction dynamics at surfaces. The goal is to elucidate the reaction dynamics at the molecular level, both as time and distance is concerned. The methods of study include molecular beam scattering, scanning tunnelling microscopy, and (femtosecond) laser spectroscopy. Systems studied include elementary interactions of NO, CO, and O2 at single crystal metal surfaces.

  9. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  10. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces. PMID:26381847

  11. Chemical structure and dynamics: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  12. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH−(H2O)n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH−(H2O)n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  13. Chemical Reaction Dynamics in Nanoscle Environments

    Energy Technology Data Exchange (ETDEWEB)

    Evelyn M. Goldfield

    2006-09-26

    The major focus of the research in this program is the study of the behavior of molecular systems confined in nanoscale environments. The goal is to develop a theoretical framework for predicting how chemical reactions occur in nanoscale environments. To achieve this goal we have employed ab initio quantum chemistry, classical dynamics and quantum dynamics methods. Much of the research has focused on the behavior of molecules confined within single-walled carbon nanotubes (SWCNTs). We have also studied interactions of small molecules with the exterior surface of SWCNTs. Nonequilibrium molecular dynamics of interfaces of sliding surface interfaces have also been performed.

  14. Chemical structure and dynamics: Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  15. Chemical structure and dynamics: Annual report 1996

    International Nuclear Information System (INIS)

    The Chemical Structure and Dynamics (CS ampersand D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species

  16. Chemical structure and dynamics. Annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  17. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  18. Quantum Chemical and Molecular Dynamics Study of the Coordination of Th(IV) in Aqueous Solvent

    International Nuclear Information System (INIS)

    In this work, we investigate the solvation of tetravalent thorium Th(IV) in aqueous solution using classical molecular dynamics simulations at the 10 ns scale and based on polarizable force-field approaches, which treat explicitly the covalent character of the metal-water interaction (and its inherent cooperative character). We have carried out a thorough analysis of the accuracy of the ab initio data that we used to adjust the force-field parameters. In particular, we show that large atomic basis sets combined with wave function based methods (such as the MP2 level) have to be preferred to density functional theory when investigating Th(IV)/water aggregates in gas phase. The information extracted from trajectories in solution shows a well structured Th(IV) first hydration shell formed of 8.25 ± 0.2 water molecules and located at about 2.45 ± 0.02 Angstroms and a second shell of 17.5±0.5 water molecules at about 4.75 Angstroms. Concerning the first hydration sphere, our results correspond to the lower bounds of experimental estimates (which range from 8 to 12.7); however, they are in very good agreement with the average of existing experimental data, 2.45 ± 0.02 Angstroms. All our results demonstrate the predictable character of the proposed approach, as well as the need of accounting explicitly for the cooperative character of charge-transfer phenomena affecting the Th(IV)/water interaction to build up reliable and accurate force-field approaches devoted to such studies. (authors)

  19. Quantum chemical and molecular dynamics study of the coordination of Th(IV) in aqueous solvent.

    Science.gov (United States)

    Réal, Florent; Trumm, Michael; Vallet, Valérie; Schimmelpfennig, Bernd; Masella, Michel; Flament, Jean-Pierre

    2010-12-01

    In this work, we investigate the solvation of tetravalent thorium Th(IV) in aqueous solution using classical molecular dynamics simulations at the 10 ns scale and based on polarizable force-field approaches, which treat explicitly the covalent character of the metal-water interaction (and its inherent cooperative character). We have carried out a thorough analysis of the accuracy of the ab initio data that we used to adjust the force-field parameters. In particular, we show that large atomic basis sets combined with wave function-based methods (such as the MP2 level) have to be preferred to density functional theory when investigating Th(IV)/water aggregates in gas phase. The information extracted from trajectories in solution shows a well-structured Th(IV) first hydration shell formed of 8.25 ± 0.2 water molecules and located at about 2.45 ± 0.02 Å and a second shell of 17.5 ± 0.5 water molecules at about 4.75 Å. Concerning the first hydration sphere, our results correspond to the lower bounds of experimental estimates (which range from 8 to 12.7); however, they are in very good agreement with the average of existing experimental data, 2.45 ± 0.02 Å. All our results demonstrate the predictable character of the proposed approach, as well as the need of accounting explicitly for the cooperative character of charge-transfer phenomena affecting the Th(IV)/water interaction to build up reliable and accurate force-field approaches devoted to such studies. PMID:21070066

  20. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals

    OpenAIRE

    Hudson, Eric R.; Ticknor, Christopher; Sawyer, Brian C.; Taatjes, Craig A.; Lewandowski, H. J.; Bochinski, J. R.; Bohn, John L.; Ye, Jun

    2005-01-01

    We propose a method for controlling a class of low temperature chemical reactions. Specifically, we show the hydrogen abstraction channel in the reaction of formaldehyde (H$_{2}$CO) and the hydroxyl radical (OH) can be controlled through either the molecular state or an external electric field. We also outline experiments for investigating and demonstrating control over this important reaction. To this end, we report the first Stark deceleration of the H$_{2}$CO molecule. We have decelerated ...

  1. Quantum Chemical and Molecular Dynamics Study of the Coordination of Th(IV) in Aqueous Solvent

    OpenAIRE

    Réal, Florent; Trumm, Michael; Vallet, Valérie; Schimmelpfennig, Bernd; Masella, Michel; Flament, Jean-Pierre

    2010-01-01

    In this work, we investigate the solvation of tetravalent thorium Th(IV) in aqueous solution using classical molecular dynamics simulations at the 10 ns scale and based on polarizable force-field approaches, which treat explicitly the covalent character of the metal−water interaction (and its inherent cooperative character). We have carried out a thorough analysis of the accuracy of the ab initio data that we used to adjust the force-field parameters. In particular, we show that large atomic ...

  2. Selective Tuning of a Particular Chemical Reaction on Surfaces through Electrical Resonance: An ab Initio Molecular Dynamics Study.

    Science.gov (United States)

    Yousaf, Masood; Shin, Dongbin; Ruoff, Rodney; Park, Noejung

    2015-12-17

    We used ab initio molecular dynamics (AIMD) to investigate the effect of a monochromatic oscillating electric field in resonance with a particular molecular vibration on surfaces. As a case study, AIMD simulations were carried out for hydroxyl functional groups on graphene. When the frequency of the applied field matches with the C-OH vibration frequency, the amplitude is monotonically amplified, leading to a complete desorption from the surface, overcoming the substantial barrier. This suggests the possibility of activating a particular bond without damaging the remaining surface. We extended this work to the case of the amination of sp(2)-bonded carbon surfaces and discussed the general perspective that, in general, an unfavorable chemical process can be activated by applying an external electric field with an appropriate resonance frequency.

  3. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals

    CERN Document Server

    Hudson, E R; Sawyer, B C; Taatjes, C A; Lewandowski, H J; Bochinski, J R; Bohn, J L; Ye, J; Hudson, Eric R.; Ticknor, Christopher; Sawyer, Brian C.; Taatjes, Craig A.; Bohn, John L.; Ye, Jun

    2005-01-01

    We propose a method for controlling a class of low temperature chemical reactions. Specifically, we show the hydrogen abstraction channel in the reaction of formaldehyde (H$_{2}$CO) and the hydroxyl radical (OH) can be controlled through either the molecular state or an external electric field. We also outline experiments for investigating and demonstrating control over this important reaction. To this end, we report the first Stark deceleration of the H$_{2}$CO molecule. We have decelerated a molecular beam of H$_{2}$CO essentially to rest, producing cold molecule packets at a temperature of 100 mK with a few million molecules in the packet at a density of $\\sim10^{6}$ cm$^{-3}$.

  4. Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics study

    Science.gov (United States)

    Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2008-06-01

    Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7±0.9ps , and bond-overlap population analysis has been used to calculate reaction rates.

  5. Nonlinear Chemical Dynamics and Synchronization

    Science.gov (United States)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  6. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  7. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    Science.gov (United States)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  8. Chemical Structure and Dynamics annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  9. Chemical Structure and Dynamics annual report 1997

    International Nuclear Information System (INIS)

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE's environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous

  10. Chemical structure and dynamics. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  11. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.

    2011-09-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  12. A combined quantum chemical/molecular dynamics study of X-ray photoelectron spectra of polyvinyl alcohol using oligomer models

    Energy Technology Data Exchange (ETDEWEB)

    Ehlert, Christopher [Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12203 Berlin (Germany); Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam (Germany); Kröner, Dominik [Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam (Germany); Saalfrank, Peter, E-mail: Peter.Saalfrank@uni-potsdam.de [Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam (Germany)

    2015-02-15

    X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car–Parrinello method. Snapshots along the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Δ-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene. We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV.

  13. Synchronization Dynamics of Coupled Chemical Oscillators

    Science.gov (United States)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization

  14. Annual Report 1998: Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  15. Dynamical and chemical evolution of NGC1569

    CERN Document Server

    Recchi, S; Angeretti, L; Matteucci, F

    2005-01-01

    Blue Compact Dwarf and Dwarf Irregular galaxies are generally believed to be unevolved objects, due to their blue colors, compact appearance and large gas fractions. Many of these objects show an ongoing intense burst of star formation or have experienced it in the recent past. By means of 2-D hydrodynamical simulations, coupled with detailed chemical yields originating from SNeII, SNeIa, and intermediate-mass stars, we study the dynamical and chemical evolution of model galaxies with structural parameters similar to NGC1569, a prototypical starburst galaxy. A burst of star formation with short duration is not able to account for the chemical and morphological properties of this galaxy. The best way to reproduce the chemical composition of this object is by assuming long-lasting episodes of star formation and a more recent burst, separated from the previous episodes by a short quiescent period. The last burst of star formation, in most of the explored cases, does not affect the chemical composition of the gal...

  16. Gas-phase chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  17. Chemical kinetics and reaction dynamics

    CERN Document Server

    Houston, Paul L

    2006-01-01

    This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the underlying qu

  18. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, Steven J. [University of Chicago, IL (United States)

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  19. Annual Report 2000. Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  20. Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghatee, Mohammad Hadi, E-mail: ghatee@susc.ac.ir; Sedghamiz, Tahereh

    2014-12-05

    Highlights: • Enantiomeric recognition of Propranolol studied by β-Cyclodextrin complexations. • Complexes characterized by PM3 and molecular dynamics (MD) simulation methods. • Results support more stability of R-enantiomer complex in gas and in aqueous solution phases. • Gas phase complexes are unlikely free-energy-wise, though solution phase’s are more likely. • Higher molecular diffusion in aqueous solution phase is inherent to S-enantiomer. - Abstract: Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree–Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.

  1. Effect of sucrose on chemically and thermally induced unfolding of domain-I of human serum albumin: Solvation dynamics and fluorescence anisotropy study.

    Science.gov (United States)

    Yadav, Rajeev; Sengupta, Bhaswati; Sen, Pratik

    2016-04-01

    The present study is devoted to understand the effect of sucrose on the hydration dynamics and rotational relaxation dynamics within the domain-I of HSA during chemically as well as thermally induced unfolding. It has been observed that the average solvation time become slower in the presence of sucrose for the lower concentrations of GnHCl, however at higher concentrations of GnHCl the effect of sucrose is almost negligible. From the time resolved fluorescence anisotropy it has been observed that in the lower concentration region of GnHCl the sucrose induced stabilization is small as compared to the higher concentrations of GnHCl. We have concluded that the hydration dynamics plays an important role in the sucrose induced stabilization process at the low concentration region; whereas environmental restriction is responsible at the higher concentration of GnHCl. However, we have observed a negligible stabilizing effect of sucrose towards the temperature induced unfolding.

  2. Resonance Raman spectroscopy and ultrafast chemical dynamics

    OpenAIRE

    Biswas, Nandita; Umapathy, Siva

    1998-01-01

    Resonance Raman (RR) spectroscopy is normally used to study the excited state structure and dynamics of various photochemical and photophysical processes. In this article. we briefly discuss the various applications of RR spectroscopy and show how experimental RR intensities along with time-dependent wavepacket dynamical calculations can be used to study the excited state structure and ultrafast dynamics (\\sim 10(- 15) secs).

  3. Nanomotor dynamics in a chemically oscillating medium

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Bryan, E-mail: bryan.robertson@mail.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2015-04-21

    Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give rise to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.

  4. Nanomotor dynamics in a chemically oscillating medium

    Science.gov (United States)

    Robertson, Bryan; Kapral, Raymond

    2015-04-01

    Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give rise to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.

  5. Nanomotor dynamics in a chemically oscillating medium

    International Nuclear Information System (INIS)

    Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give rise to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media

  6. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20.

    Science.gov (United States)

    Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy

    2008-09-01

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data. PMID:18686996

  7. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  8. Reactive chemical dynamics through conical intersections

    Indian Academy of Sciences (India)

    S Ghosal; B Jayachander Rao; S Mahapatra

    2007-09-01

    Reaction dynamics of prototypical, D + H2 and Cl (2P) + H2, chemical reactions occurring through the conical intersections of the respective coupled multi-sheeted potential energy surfaces is examined here. In addition to the electronic coupling, nonadiabatic effects due to relativistic spin-orbit coupling are also considered for the latter reaction. A time-dependent wave packet propagation approach is undertaken and the quantum dynamical observables viz., energy resolved reaction probabilities, integral reaction cross-sections and thermal rate constants are reported.

  9. Neural Networks in Chemical Reaction Dynamics

    CERN Document Server

    Raff, Lionel; Hagan, Martin

    2011-01-01

    This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic

  10. Adsorption and dissociation of molecular hydrogen on Pt/CeO2 catalyst in the hydrogen spillover process: A quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Ultra accelerated quantum chemical molecular dynamics method (UA-QCMD) was used to study the dynamics of the hydrogen spillover process on Pt/CeO2 catalyst surface for the first time. The direct observation of dissociative adsorption of hydrogen on Pt/CeO2 catalyst surface as well as the diffusion of dissociative hydrogen from the Pt/CeO2 catalyst surface was simulated. The diffusion of the hydrogen atom in the gas phase explains the high reactivity observed in the hydrogen spillover process. Chemical changes, change of adsorption states and structural changes were investigated. It was observed that parallel adsorption of hydrogen facilitates the dissociative adsorption leading to hydrogen desorption. Impact with perpendicular adsorption of hydrogen causes the molecular adsorption on the surface, which decelerates the hydrogen spillover. The present study also indicates that the CeO2 support has strong interaction with Pt catalyst, which may cause an increase in Pt activity as well as enhancement of the metal catalyst dispersions and hence increasing the rate of hydrogen spillover reaction.

  11. Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Mohd Hassan Baig

    Full Text Available Bacterial resistance is a serious threat to human health. The production of β-lactamase, which inactivates β-lactams is most common cause of resistance to the β-lactam antibiotics. The Class A enzymes are most frequently encountered among the four β-lactamases in the clinic isolates. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. SHV and TEM type are known to be most common class A β-lactamases. In the present study, we have analyzed the effect of inhibitor resistant S130G point mutation of SHV type Class-A β-lactamase using molecular dynamics and other in silico approaches. Our study involved the use of different in silico methods to investigate the affect of S130G point mutation on the major physico-chemical properties of SHV type class A β-lactamase. We have used molecular dynamics approach to compare the dynamic behaviour of native and S130G mutant form of SHV β-lactamase by analyzing different properties like root mean square deviation (RMSD, H-bond, Radius of gyration (Rg and RMS fluctuation of mutation. The results clearly suggest notable loss in the stability of S130G mutant that may further lead to decrease in substrate specificity of SHV. Molecular docking further indicates that S130G mutation decreases the binding affinity of all the three inhibitors in clinical practice.

  12. The Chemical Evolution of Dynamically Hot Galaxies

    Directory of Open Access Journals (Sweden)

    Michael G. Richer

    2001-01-01

    Full Text Available We investigate the chemical properties of M32, the bulges of M31 and the Milky Way, and the dwarf spheroidal galaxies NGC 205, NGC 185, Sagittarius, and Fornax using oxygen abundances for their planetary nebulae. Our principal result is that the mean stellar oxygen abundances correlate very well with thei r mean velocity dispersions, implying that the balance between energy input from type II supernovae and the gravitational potential controls chemical evolution in bulges, ellipticals, and dwarf spheroidals. It appears that chemical evolution ceases once supernovae have injected sufficient energy that a galacti c wind develops. All of the galaxies follow a single relation between oxygen abundance and luminosity, but the dwarf spheroidals have systematically higher [O/Fe] ratios than the other galaxies. Consequently, dynamically hot galaxies do not share a common star formation history nor need to a common chemical evolution, despite attaining similar mean stellar oxygen abundances when formin g similar masses. The oxygen abundances support previous indications that stars in higher luminosity ellipticals and bulges were formed on a shorter time scale than their counterparts in less luminous systems.

  13. Application of synchrotron radiation in chemical dynamics

    International Nuclear Information System (INIS)

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL's Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs

  14. Application of synchrotron radiation in chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, P.; Koike, M.; Kung, A.H.; Ng, C.Y.; White, M.G.; Wodtke, A.

    1993-05-01

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL's Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs.

  15. Application of synchrotron radiation in chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, P.; Koike, M.; Kung, A.H.; Ng, C.Y.; White, M.G.; Wodtke, A.

    1993-05-01

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL`s Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs.

  16. The chemical bond structure and dynamics

    CERN Document Server

    Zewail, Ahmed

    1992-01-01

    This inspired book by some of the most influential scientists of our time--including six Nobel laureates--chronicles our emerging understanding of the chemical bond through the last nine decades and into the future. From Pauling's early structural work using x-ray and electron diffraction to Zewail's femtosecond lasers that probe molecular dynamics in real time; from Crick's molecular biology to Rich's molecular recognition, this book explores a rich tradition of scientific heritage and accomplishment. The perspectives given by Pauling, Perutz, Rich, Crick, Porter, Polanyi, Herschbach, Zewail,

  17. Molecular dynamics study of the elastic response of crystalline, amorphous and chemically disordered NiZr2

    International Nuclear Information System (INIS)

    In this paper the authors calculate the shear elastic constants of the alloy NiZr2 by molecular dynamics simulations in the crystalline and amorphous phases as well as upon introduction of antisite defects in the crystal at T = 300K. For s (long range order parameter) equal to 0.5, the system is amorphous and C' is larger than the same quantity relative to the crystal whereas C44 and C66 are smaller

  18. Experimental studies on the dynamics of radionuclide transport in soils and plants: an investigation of the effects of soil type and chemical form

    International Nuclear Information System (INIS)

    The dynamics and distribution of radioisotopes of Ce, Ru, I, Sr and Cs have been studied in soils and grass in greenhouse conditions. Two soil types, representative of localities close to existing nuclear installations, have been investigated in combination with two chemical forms of Ce, Ru, Sr and Cs. The effect of administration of iodine at two different periods of growth has been investigated using I-125 and I-131. The time-dependent behaviour of the radionuclides has also been investigated by means of four harvests at various times after administration of the radionuclides. Parameter values for sorption of radionuclides to soil inorganic and organic fractions were determined by means of serial chemical extraction of soils at each harvest, and for transport from soil to root and from root to shoot by means of assay of derived plant material. In addition, the vertical distribution of radionuclides in the soil profile was determined by means of external scanning of undisturbed pots. The data from these scans have been used to calculate transfer coefficients for loss of radionuclides from surface soil for comparison with soil solution and mass transport parameters used in the model. The results are discussed. (author)

  19. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2015-01-01

    Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, that range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, that influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the C$\\mu$MD method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$\\mu$MD method to the paradigmatic case of urea crystall...

  20. Laboratory chemical dynamics and outer planets

    Science.gov (United States)

    Kaiser, Ralf I.

    Reactions of CN (2Σ+) and C2H (2Σ+) radicals with unsaturated hydrocarbons are of fundamental relevance to form complex nitriles and polyynes in hydrocarbon rich atmospheres, planets, and moons. Here we present results on crossed molecular beams experiments combined with electronic structure calculations on the reactions of C2H and CN radicals with acetylene, methylacetylene, allene, and benzene. Our investigation show that both radicals attack the unsaturated bond without entrance barrier in exothermic reactions. The collision complex decomposes to form the hydrocarbon and a H atom or shows a H atom migration prior to hydrogen atom loss. The identification of this C2H /CN - H exchange opens a versatile route to form unsaturated nitriles and polyynes and predicts their formation in hydrocarbon rich planetary atmospheres. Further, our studies provide a solid database on reaction products and shall guide chemical investigation of the NASA-ESA Cassini-Huygens mission to identify unsaturated hydrocarbons in Titan. Most important, these experiments verify unambiguously that the knowledge of reaction rate constants only is insufficient for detailed chemical models of planetary atmospheres. Reaction products and most important reactive intermediates MUST be included to get a plausible chemical model of planetary atmospheres.

  1. Coriolis coupling and nonadiabaticity in chemical reaction dynamics.

    Science.gov (United States)

    Wu, Emilia L

    2010-12-01

    The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context.

  2. Quantum dynamics of fast chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, J.C. [Univ. of Chicago, IL (United States)

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  3. Semiclassical methods in chemical reaction dynamics

    International Nuclear Information System (INIS)

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems

  4. Semiclassical methods in chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  5. The study and applications of photochemical-dynamical gravity wave model Ⅱ-- The effects of stable gravity wave on chemical species distribution in mesosphere

    Institute of Scientific and Technical Information of China (English)

    XU; Jiyao(徐寄遥); MA; Ruiping(马瑞平); A.K.Smith

    2002-01-01

    A nonlinear, compressible, non-isothermal gravity wave model that involves photochemistry is used to study the effects of gravity wave on atmospheric chemical species distributions in this paper. The changes in the distributions of oxygen compound and hydrogen compound density induced by gravity wave propagation are simulated. The results indicate that when a gravity wave propagates through a mesopause region, even if it does not break, it can influence the background distributions of chemical species. The effect of gravity wave on chemical species at night is larger than in daytime.

  6. A network dynamics approach to chemical reaction networks

    NARCIS (Netherlands)

    van der Schaft, Abraham; Rao, S.; Jayawardhana, B.

    2016-01-01

    A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a ve

  7. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.

    Science.gov (United States)

    Truflandier, Lionel A; Autschbach, Jochen

    2010-03-17

    Ab initio molecular dynamics (aiMD) simulations based on density functional theory (DFT) were performed on a set of five anionic platinum complexes in aqueous solution. (195)Pt nuclear magnetic shielding constants were computed with DFT as averages over the aiMD trajectories, using the two-component relativistic zeroth-order regular approximation (ZORA) in order to treat relativistic effects on the Pt shielding tensors. The chemical shifts obtained from the aiMD averages are in good agreement with experimental data. For Pt(II) and Pt(IV) halide complexes we found an intermediate solvent shell interacting with the complexes that causes pronounced solvent effects on the Pt chemical shifts. For these complexes, the magnitude of solvent effects on the Pt shielding constant can be correlated with the surface charge density. For square-planar Pt complexes the aiMD simulations also clearly demonstrate the influence of closely coordinated non-equatorial water molecules on the Pt chemical shift, relating the structure of the solution around the complex to the solvent effects on the metal NMR chemical shift. For the complex [Pt(CN)(4)](2-), the solvent effects on the Pt shielding constant are surprisingly small. PMID:20166712

  8. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  9. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  10. All-atom Molecular Dynamic Simulations Combined with the Chemical Shifts Study on the Weak Interactions of Ethanol-water System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong; LUO San-Lai; WU Wen-Juan

    2008-01-01

    All-atom molecular dynamics(MD)simulation combined with chemical shifts was performed to investigate the interactions over the entire concentration range of the ethanol(EtOH)-water system.The results of the simulation were adopted to explain the NMR experiments by hydrogen bonding analysis.The strong hydrogen bonds and weak C-H…O contacts coexist in the mixtures through the analysis of the radial distribution functions.And the liquid structures in the whole concentration of EtOH-water mixtures can be classified into three regions by the statistic analysis of the hydrogen-bonding network in the MD simulations.Moreover,the chemical shifts of the hydrogen atom are in agreement witb the statistical results of the average number hydrogen bonds in the MD simulations.Interestingly,the excess relative extent Eηrel calculated by the MD simulations and chemical shifts in the EtOH aqueous solutions shows the largest deviation at XEtOH≈0.18.The excess properties present good agreement with the excess enthalpy in the concentration dependence.

  11. Cluster dynamics transcending chemical dynamics toward nuclear fusion

    OpenAIRE

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-01-01

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. Th...

  12. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    Science.gov (United States)

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  13. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    OpenAIRE

    Leone, Stephen R.

    2010-01-01

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction me...

  14. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan;

    2012-01-01

    : basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators...... provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research....

  15. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal

    International Nuclear Information System (INIS)

    Highlights: • Integrated, moving bed chemical looping reactor with iron-oxide based oxygen carrier. • Coal carbon conversion from 84.8% to 99.9%, thermal capacity 7.4 to 27.7 kWth, O2 demand less than 1.3%. • Dynamic temperature of moving bed reducer is established and tracked during coal injection. • CH4 and CO present at initial coal injection, eliminated after oxygen carrier activated. • Lower coal injection had higher volatiles residence time and conversion. - Abstract: The iron-based Coal-Direct Chemical Looping (CDCL) combustion process is an alternative to conventional oxy-combustion technologies, where the oxygen used for fuel conversion in the CDCL process is provided by an iron-oxide based oxygen carrier instead of an air separation unit. The iron oxide is reduced using coal in the reducer reactor, producing highly-pure CO2 in the flue gas, and the reduced iron oxide is regenerated in a separate combustor reactor using air. The CDCL process at Ohio State has been developed and demonstrated in a 25 kWth sub-pilot unit, and it is the first chemical looping demonstration unit with a circulating moving bed reactor for solid fuel conversion. To date, the CDCL sub-pilot unit at OSU has been operated for more than 680 h, with a 200-h continuous operation, providing important data on long term operability as well as parametric optimization. This paper discusses recent parametric operational experience with sub-bituminous coal as the fuel, where dynamic changes in variables were performed to observe the effects on the unit itself. Measurements included temperature, pressure, and gas concentrations from the reducer and combustor. Furthermore, effects of different variables, such as flue gas recycle ratios (enhancer gas flow rates), feed port injection, and temperature, were observed. Tests confirmed high coal conversions with high purity of CO2 achieved in the flue gas. Overall, the moving bed design of the reducer results in nearly full coal conversion

  16. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  17. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored. PMID:16740666

  18. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  19. Nonequilibrium dynamics in chemical systems A brief account

    Science.gov (United States)

    Nicolis, G.; Baras, F.

    1985-12-01

    During the period of September 3 to 7, 1984 a symposium on “Nonequilibrium Dynamics in Chemical Systems” was organized by the Centre de Recherche Paul Pascal in Bordeaux, France. It was supported, primarily, by the French Centre National de la Recherche Scientifique and attended by about 90 participants from Australia, Belgium, Canada, Denmark, France, Germany, Hungary, Israël, Italy, Japan, The Netherlands, Poland, Tchekoslovakia, Spain, United Kingdom, United States and Zimbabwe. A list of topics and speakers is found in the table below. Two highly successful conferences centered on nonlinear phenomena in chemical systems far from equilibrium had already been organized by the Bordeaux group in the past. The first of them [1], held in September 1978, was dominated by the theme that nonequilibrium can act as a source of order. Sustained oscillations and bistability were the two principal phenomena studied from this point of view. Thanks to the systematic utilization of the continuous stirred tank reactor (CSTR) the study of open systems could finally be realized. Reliable state diagrams were thus produced, notably by the Bordeaux group, in which one could identify the transition points to new states. The Belousov-Zhabotinskii (BZ) reaction and its variants were the main vehicle on which these new ideas could be illustrated. The second Bordeaux conference [2], held in September 1981, was largely dominated by the major progress that had just marked two vital areas of this field: the discovery of new classes of chemical oscillators; and the invasion of chaotic dynamics in chemistry. These themes also dominated the first Gordon Conference on Chemical Oscillations held in New Hampshire in July 1982. In contrast to its two predecessors, the third Bordeaux conference held in September 1984 was not dominated by a single central theme. New questions were raised in situations in which until very recently things were considered to be perfectly clear. Simple,

  20. A cell dynamical system model of chemical turbulence

    Science.gov (United States)

    Oono, Y.; Yeung, C.

    1987-08-01

    A cellular-automaton-like caricature of chemical turbulence on an infinite one-dimensional lattice is studied. The model exhibits apparently "turbulent" space-time patterns. To make this statement precise, the following problems or points are discussed: (1) The infinite-system-size limit of such cell-dynamical systems and its observability is defined. (2) It is proved that the invariant state in the large-system-size limit of the "turbulent" phase exhibits spatial patterns governed by a Gibbs random field. (3) Potential characteristics of "turbulent" space-time patterns are critically surveyed and a working definition of (weak) turbulence is proposed. (4) It is proved that the invariant state of the `turbulent" phase is actually (weak) turbulent. Furthermore, we conjecture that the turbulent phase of our model is an example of a K system that is not Bernoulli.

  1. A network dynamics approach to chemical reaction networks

    Science.gov (United States)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  2. Glucans monomer-exchange dynamics as an open chemical network

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Riccardo, E-mail: riccardo.rao@uni.lu; Esposito, Massimiliano, E-mail: massimiliano.esposito@uni.lu [Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg); Lacoste, David [Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI - 10 rue Vauquelin, F-75231 Paris (France)

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  3. Glucans monomer-exchange dynamics as an open chemical network

    CERN Document Server

    Rao, Riccardo; Esposito, Massimiliano

    2015-01-01

    We describe the oligosaccharides-exchange dynamics performed by so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  4. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  5. In situ photoemission spectroscopy for chemical reaction dynamics study of Si (001) oxidation by using high-energy-resolution synchrotron radiation

    CERN Document Server

    Teraoka, Y

    2002-01-01

    The translation kinetic energy of incident molecules is an important parameter for the study of surface chemical reaction mechanisms. New adsorption reactions, which have been induced by the O sub 2 translational kinetic energy up to 3 eV, have been found in the O sub 2 Si(001) system by applying surface-sensitive photoemission spectroscopy with supersonic molecular beam techniques and high-energy-resolution synchrotron radiation. The termination of dangling bonds of the topmost Si-dimers strongly affected the oxidation of their backbonds. By controlling the translational kinetic energy of incident O sub 2 molecules, the formation of oxide layers at a sub-nanometer scale is possible at room temperature. (author)

  6. Chemical dynamics in time and energy space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, J.D.

    1993-04-01

    The development of a versatile picosecond ultraviolet/vacuum ultraviolet temporal spectrometer and its potential use for measuring internal energy redistribution in isolated molecules are described in detail. A detailed description of the double-pass Nd:YAG amplifier and the dye amplifiers is given with the pulse energies achieved in the visible, ultraviolet, and vacuum ultraviolet. The amplified visible pulses are shown to be of sub-picosecond duration and near transform limited. The instrument`s temporal response ({le}10 ps) is derived from an instrument limited measurement of the dissociation lifetime of methyl iodide at 266 nm. The methyl iodide experiment is used to discuss the various sources of noise and background signals that are intrinsic to this type of experiment. Non-time-resolved experiments measuring the branching ratio and kinetic energy distributions of products from the 193 nm photodissociation of cyclopentadiene and thiophene are presented. These studies were done using the molecular beam Photofragment Translational Spectroscopy (PTS) technique. The results from the cyclopentadiene experiment confirm that H atom elimination to yield the cyclopentadienyl radical is the dominant dissociation channel. A barrier of {ge}5 kcal/mol can be understood in terms of the delocalization of the radical electron of the cyclopentadienyl fragment. A concerted elimination yielding cyclopropene and acetylene was also observed and is proposed to occur via a bicyclo-[2.1.0]pent-2-ene intermediate. Two other channels, yielding acetylene plus the CH{sub 2}CHCH triplet carbene, and CH{sub 2} plus 1-buten-3-yne, are postulated to occur via ring opening. The implications of the experimental results for bulk thermal oxidation and pyrolysis models are discussed. The thiophene experiment shows six competing dissociation channels. The postulated intermediates for the various thiophene dissociation channels include bicyclo, ring opened, and possibly ring contracted forms.

  7. Classical and semiclassical aspects of chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H/sub 2/C/sub 2/ ..-->.. HC/sub 2/H, HNC ..-->.. HCN, and H/sub 2/CO ..-->.. H/sub 2/ + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I ..-->.. Na /sup +/ + I/sup -/ is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features. (WHM)

  8. Dynamic function studies

    International Nuclear Information System (INIS)

    Dynamic function studies can be defined as a measure of the variation of a quantity of a substance in an organ with time. Such studies are clinically useful only when the underlying physiological model is realistic. Usually the measurements are of three kinds: the uptake function, the transit function and the removal function. Sensitivity of these measurements can be enhanced in several clinical situations by intervention, such as exercise or drugs. It is possible to display a nuclear image in a variety of ways through computer manipulations which are justified only if based on a valid physiological model. The newer radiopharmaceuticals have also increased the range of functions that can be studied, especially in the case of the heart and the brain. Positron emission tomography (PET) images are fascinating but they are prohibitively expensive and routine clinical nuclear medicine will have to rely on information obtained with single photon emission computer tomography (SPECT). In the diagnosis of cancer, the instrument alone would not improve the diagnosis. It is necessary to have radiopharmaceuticals with a high degree of specificity of uptake. This can possibly be achieved with immunoscintigraphy. There also, the kinetics of uptake of the labelled antibody enable one to differentiate specific from non-specific uptake. The need for good reliable dynamic function studies is as great in the developing as in the developed countries, but a nuclear medicine specialist in a developing country would need more skills and experience because of the heavy odds against which one would be working. (author). 43 refs, 2 figs

  9. Dynamical resonance in F+H2 chemical reaction and rotational excitation effect

    Institute of Scientific and Technical Information of China (English)

    YANG XueMing; XIE DaiQian; ZHANG DongHui

    2007-01-01

    Reaction resonance is a frontier topic in chemical dynamics research, and it is also essential to the understanding of mechanisms of elementary chemical reactions. This short article describes an important development in the frontier of research. Experimental evidence of reaction resonance has been detected in a full quantum state resolved reactive scattering study of the F+H2 reaction. Highly accurate full quantum scattering theoretical modeling shows that the reaction resonance is caused by two Feshbach resonance states. Further studies show that quantum interference is present between the two resonance states for the forward scattering product. This study is a significant step forward in our understanding of chemical reaction resonance in the benchmark F+H2 system. Further experimental studies on the effect of H2 rotational excitation on dynamical resonance have been carried out. Dynamical resonance in the F+H2 (j = 1) reaction has also been observed.

  10. 2-D Chemical-Dynamical Modeling of Venus's Sulfur Variability

    Science.gov (United States)

    Bierson, Carver J.; Zhang, Xi

    2016-10-01

    Over the last decade a combination of ground based and Venus Express observations have been made of the concentration of sulfur species in Venus's atmosphere, both above [1, 2] and below the clouds [3, 4]. These observations put constraints on both the vertical and meridional variations of the major sulfur species in Venus's atmosphere.. It has also been observed that SO2 concentrations varies on both timescales of hours and years [1,4]. The spatial and temporal distribution of tracer species is owing to two possibilities: mutual chemical interaction and dynamical tracer transport.Previous Chemical modeling of Venus's middle atmosphere has only been explored in 1-D. We will present the first 2-D (altitude and latitude) chemical-dynamical model for Venus's middle atmosphere. The sulfur chemistry is based on of the 1D model of Zhang et al. 2012 [5]. We do model runs over multiple Venus decades testing two scenarios: first one with varying sulfur fluxes from below, and second with secular dynamical perturbations in the atmosphere [6]. By comparing to Venus Express and ground based observations, we put constraints on the dynamics of Venus's middle atmosphere.References: [1] Belyaev et al. Icarus 2012 [2] Marcq et al. Nature geoscience, 2013 [3] Marcq et al. JGR:Planets, 2008 [4] Arney et al. JGR:Planets, 2014 [5] Zhang et al. Icarus 2012 [6] Parish et al. Icarus 2012

  11. Dynamic Adsorptive Removal of Toxic Chemicals for Purification of Water

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2005-04-01

    Full Text Available To determine the efficiency of carbon column for the removal of toxic chemicals from water, the adsorption of phenol in concentration range from 0.600 glt to 1.475 gll was studied on activecarbon of 80 CTC grade, 12 X 30 BSS particle size, 1280 m2/g surface area, and of coconut shell origin, under dynamic conditions at space velocity from 0.318 min-' to 4.24 min-' at 25 'C. The carbon column of 100 cm length and 2 cm diameter was found to be removing phenol from the aqueous solution of concentration 1.475 gll up to 84 min at 0.678 min-' space velocity at 5.0 ppm phenol breakthrough concentration. However, no phenol was observed in carbon-treated water after 80 min. The service life of carbon column (100 cm lengthX25 cm diameter was assessed through the water purification system developed at the Defence Laboratory, Jodhpur and was determined to be 4.095 days with twoas factor of safety for 10 ppm initial concentration of phenol at 0.678 min-' space velocity (corresponding to water flow rate. Effects of carbon bed length, water flow rate, and the phenol concentration were also studied.

  12. The hunt for the dynamical resonances in chemical reaction dynamics: a perspective on historical advances

    Directory of Open Access Journals (Sweden)

    Yu Angyang

    2015-06-01

    Full Text Available The theoretical background and basic definition of the resonances in chemical reaction dynamics have been introduced in this article. The historical breakthrough in the experimental search for the reaction resonances has been reviewed in this report, with an emphasis on the crossed molecular beam apparatus. The research of the chemical reaction resonances has attracted many scientists’ attention from 80s of last century. The chemical reaction resonances in the F+H2 reaction were firstly observed by the researchers of the Chinese Academy of Sciences in 2006. Besides, the partial wave resonances in the chemical reactions have been observed for the first time in 2010.

  13. Chemical organization theory: towards a theory of constructive dynamical systems

    OpenAIRE

    Dittrich, Peter; di Fenizio, Pietro Speroni

    2005-01-01

    Complex dynamical networks consisting of many components that interact and produce each other are difficult to understand, especially, when new components may appear. In this paper we outline a theory to deal with such systems. The theory consists of two parts. The first part introduces the concept of a chemical organization as a closed and mass-maintaining set of components. This concept allows to map a complex (reaction) network to the set of organizations, providing a new view on the syste...

  14. Probing cellular dynamics with a chemical signal generator.

    Directory of Open Access Journals (Sweden)

    Brandon Kuczenski

    Full Text Available Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic "chemical signal generator," a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior.

  15. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  16. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory.

    Science.gov (United States)

    Yeates, Jessica A M; Hilbe, Christian; Zwick, Martin; Nowak, Martin A; Lehman, Niles

    2016-05-01

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world.

  17. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory.

    Science.gov (United States)

    Yeates, Jessica A M; Hilbe, Christian; Zwick, Martin; Nowak, Martin A; Lehman, Niles

    2016-05-01

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world. PMID:27091972

  18. A comparative study of the chemical and integrated treatments impact against the defoliating insects on the structure and dynamics of the edaphic mesofauna in two oak forests from North-Eastern Romania

    Directory of Open Access Journals (Sweden)

    Adina Cãlugãr

    2009-11-01

    Full Text Available The author presents in this paper some aspects about the edaphicmicroarthropods from the organic horizon of two forest soils belonging to the Ciurea Forest District, Iasi County: ªanta (mixed stands mainly with oak, chemically treated against defoliating insects and Poieni - Tomesti (Quercus robur and Quercuspetraea stands with integrated treatments. The study of edaphic microarthropods was performed both from qualitative and quantitative point of view. It considered the average of the total density of the microarthropod populations and by each taxonomic group, according to stations and subhorizons, as well as the ratio between thetaxonomical and trophic groups. The investigations concerning edaphic mesofauna consist in inventory and analysis of the mites belonging to Oribatida, Gamasida, Actinedida and Acaridida orders, of the Collembola, as well as other insects; other groups of microarthropods were taken into consideration too (pseudoscorpiones,myriapods etc. The consequences of the treatments against the defoliators on theedaphic mesofauna were performed at four different moments. Generally, lower densities were observed in the case of the chemically treated stands. The communities of the edaphic mesofauna from the integrated management treated stands are more stableduring the time. In the chemically treated stands, the densities of the microartropods vary between large limits; this instability could be assigned to this kind of treatment. The vertical distribution of the mesofauna depends on the textural characteristics of the soil, being at the same time a dynamic parameter that is modifyed according to the variation of the climatic factors.

  19. Accelerating chemical reactions: Exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics

    Science.gov (United States)

    Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.

    2011-01-01

    A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673

  20. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  1. Phase synchronization of bursting neural networks with electrical and delayed dynamic chemical couplings

    Science.gov (United States)

    Megam Ngouonkadi, Elie B.; Nono, Martial Kabong; Tamba, Victor Kamdoum; Fotsin, Hilaire B.

    2015-11-01

    Diffusive electrical connections in neuronal networks are instantaneous, while excitatory or inhibitory couplings through chemical synapses contain a transmission time-delay. Moreover, chemical synapses are nonlinear dynamical systems whose behavior can be described by nonlinear differential equations. In this work, neuronal networks with diffusive electrical couplings and time-delayed dynamic chemical couplings are considered. We investigate the effects of distributed time delays on phase synchronization of bursting neurons. We observe that in both excitatory and Inhibitory chemical connections, the phase synchronization might be enhanced when time-delay is taken into account. This distributed time delay can induce a variety of phase-coherent dynamical behaviors. We also study the collective dynamics of network of bursting neurons. The network model presents the so-called Small-World property, encompassing neurons whose dynamics have two time scales (fast and slow time scales). The neuron parameters in such Small-World network, are supposed to be slightly different such that, there may be synchronization of the bursting (slow) activity if the coupling strengths are large enough. Bounds for the critical coupling strengths to obtain burst synchronization in terms of the network structure are given. Our studies show that the network synchronizability is improved, as its heterogeneity is reduced. The roles of synaptic parameters, more precisely those of the coupling strengths and the network size are also investigated.

  2. Solution of Chemical Dynamic Optimization Using the Simultaneous Strategies

    Institute of Scientific and Technical Information of China (English)

    LIU Xinggao; CHEN Long; HU Yunqing

    2013-01-01

    An approach of simultaneous strategies with two novel techniques is proposed to improve the solution accuracy of chemical dynamic optimization problems.The first technique is to handle constraints on control variables based on the finite-element collocation so as to control the approximation error for discrete optimal problems,where a set of control constraints at element knots are integrated with the procedure for optimization leading to a significant gain in the accuracy of the simultaneous strategies.The second technique is to make the mesh refinement more feasible and reliable by introducing length constraints and guideline in designing appropriate element length boundaries,so that the proposed approach becomes more efficient in adjusting elements to track optimal control profile breakpoints and ensure accurate state and control profiles.Four classic benchmarks of dynamic optimization problems are used as illustrations,and the proposed approach is compared with literature reports.The research results reveal that the proposed approach is preferable in improving the solution accuracy of chemical dynamic optimization problem.

  3. Electron transfer modifies chemical properties of C70 fullerene surface: an ab initio molecular dynamics study of C70O3 molozonides doped with light atoms

    OpenAIRE

    Morrison, Carole; Bil, Andrzej; Hutter, Jurg

    2014-01-01

    Light metal atoms such as Li, K (electronic state 2S 1/2) or Ca (1S0) encapsulated in a C 70 cage considerably modifies the chemical properties of the fullerene surface due to metal-to-cage electron transfer. H-doped and anion ozonide systems were also considered to validate the electron transfer hypothesis. The relative stabilities of the eight isomers of the C 70O3 molozonide series at room temperature depend on the identity of the endohedral guest, as was the preferred channel for thermal ...

  4. The RAVE-on catalog of stellar atmospheric parameters and chemical abundances for chemo-dynamic studies in the Gaia era

    CERN Document Server

    Casey, Andrew R; Hogg, David W; Ness, Melissa; Walter-Rix, Hans; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K; Grebel, Eva K; Helmi, Amina; Munari, Ulisse; Navarro, Julio F; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary

    2016-01-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS ($\\gtrsim$200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main-sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature $T_{\\rm eff}$, surface gravity $\\log{g}$, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, Ni). We report a total of 1...

  5. DYNSYL: a general-purpose dynamic simulator for chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, G.K.; Rozsa, R.B.

    1978-09-05

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simple material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.

  6. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  7. Electron transfer modifies chemical properties of C70 fullerene surface: An ab initio molecular dynamics study of C70O3 molozonides doped with light atoms

    Science.gov (United States)

    Bil, Andrzej; Hutter, Jürg; Morrison, Carole A.

    2014-06-01

    Light metal atoms such as Li, K (electronic state 2S1/2) or Ca (1S0) encapsulated in a C70 cage considerably modifies the chemical properties of the fullerene surface due to metal-to-cage electron transfer. H-doped and anion ozonide systems were also considered to validate the electron transfer hypothesis. The relative stabilities of the eight isomers of the C70O3 molozonide series at room temperature depend on the identity of the endohedral guest, as was the preferred channel for thermal decomposition. No electron transfer was observed for the complex N@C70 where the fullerene acts as an inert container for the 4S3/2 radical.

  8. A Grid-Based Cyber Infrastructure for High Performance Chemical Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Khadka Prashant

    2008-10-01

    Full Text Available Chemical dynamics simulation is an effective means to study atomic level motions of molecules, collections of molecules, liquids, surfaces, interfaces of materials, and chemical reactions. To make chemical dynamics simulations globally accessible to a broad range of users, recently a cyber infrastructure was developed that provides an online portal to VENUS, a popular chemical dynamics simulation program package, to allow people to submit simulation jobs that will be executed on the web server machine. In this paper, we report new developments of the cyber infrastructure for the improvement of its quality of service by dispatching the submitted simulations jobs from the web server machine onto a cluster of workstations for execution, and by adding an animation tool, which is optimized for animating the simulation results. The separation of the server machine from the simulation-running machine improves the service quality by increasing the capacity to serve more requests simultaneously with even reduced web response time, and allows the execution of large scale, time-consuming simulation jobs on the powerful workstation cluster. With the addition of an animation tool, the cyber infrastructure automatically converts, upon the selection of the user, some simulation results into an animation file that can be viewed on usual web browsers without requiring installation of any special software on the user computer. Since animation is essential for understanding the results of chemical dynamics simulations, this animation capacity provides a better way for understanding simulation details of the chemical dynamics. By combining computing resources at locations under different administrative controls, this cyber infrastructure constitutes a grid environment providing physically and administratively distributed functionalities through a single easy-to-use online portal

  9. Studying Dynamics in Business Networks

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Anderson, Helen; Havila, Virpi;

    1998-01-01

    This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...

  10. Interdependence of conformational and chemical reaction dynamics during ion assembly in polar solvents.

    Science.gov (United States)

    Ji, Minbiao; Hartsock, Robert W; Sun, Zheng; Gaffney, Kelly J

    2011-10-01

    We have utilized time-resolved vibrational spectroscopy to study the interdependence of the conformational and chemical reaction dynamics of ion assembly in solution. We investigated the chemical interconversion dynamics of the LiNCS ion pair and the (LiNCS)(2) ion-pair dimer, as well as the spectral diffusion dynamics of these ionic assemblies. For the strongly coordinating Lewis base solvents benzonitrile, dimethyl carbonate, and ethyl acetate, we observe Li(+) coordination by both solvent molecules and NCS(-) anions, while the weak Lewis base solvent nitromethane shows no evidence for solvent coordination of Li(+) ions. The strong interaction between the ion-pair dimer structure and the Lewis base solvents leads to ion-pair dimer solvation dynamics that proceed more slowly than the ion-pair dimer dissociation. We have attributed the slow spectral diffusion dynamics to electrostatic reorganization of the solvent molecules coordinated to the Li(+) cations present in the ion-pair dimer structure and concluded that the dissociation of ion-pair dimers depends more critically on longer length scale electrostatic reorganization. This unusual inversion of the conformational and chemical reaction rates does not occur for ion-pair dimer dissociation in nitromethane or for ion pair association in any of the solvents.

  11. Determination of Reference Chemical Potential Using Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Krishnadeo Jatkar

    2010-01-01

    Full Text Available A new method implementing molecular dynamics (MD simulations for calculating the reference properties of simple gas hydrates has been proposed. The guest molecules affect interaction between adjacent water molecules distorting the hydrate lattice, which requires diverse values of reference properties for different gas hydrates. We performed simulations to validate the experimental data for determining Δ0, the chemical potential difference between water and theoretical empty cavity at the reference state, for structure II type gas hydrates. Simulations have also been used to observe the variation of the hydrate unit cell volume with temperature. All simulations were performed using TIP4P water molecules at the reference temperature and pressure conditions. The values were close to the experimental values obtained by the Lee-Holder model, considering lattice distortion.

  12. Studying chemical reactions in biological systems with MBN Explorer

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.;

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies....... for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems....

  13. T-dependence of the vibrational dynamics of IBP/diME-β-CD in solid state: A FT-IR spectral and quantum chemical study

    Science.gov (United States)

    Crupi, V.; Guella, G.; Majolino, D.; Mancini, I.; Rossi, B.; Stancanelli, R.; Venuti, V.; Verrocchio, P.; Viliani, G.

    2010-05-01

    Solid inclusion complex of the non-steroidal anti-inflammatory drug Ibuprofen (IBP, (2-[4-(2-methylpropyl)phenyl]-propanoic acid) with (2,6-dimethyl)-β-cyclodextrin (diME-β-CD) has been investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR spectroscopy) and numerical simulation. The complexation-induced changes in the FTIR-ATR spectrum of IBP have been interpreted by comparison with the theoretical vibrational wavenumbers and IR intensities of dimeric structures of IBP, derived from symmetric hydrogen bonding of the two carboxylic groups, computed by using Density Functional Theory (DFT) calculations. From temperature-dependent studies, the enthalpy change ΔH associated with the binding of IBP with diME-β-CD for 1:1 stoichiometry, in solid phase, has been estimated.

  14. Experimental studies on the dynamics of radionuclide transport in soils and plants: an investigation of the effects of soil type and chemical form. Appendix A, B, and C

    International Nuclear Information System (INIS)

    The main report (ANS 364) describes a greenhouse study on the distribution of added radioisotopes within pots containing soils and plants. The soils were sampled from two UK nuclear energy sites: (a) close to the CEGB installation at Sizewell, Suffolk; and (b) inside the perimeter of the BNFL establishment at Sellafield, Cumbria. Information on these soils is given in Appendices A and B. The time dependent behaviour of the radioisotopes has been investigated using I-125 and I-131 and by means of four harvests after administration of the radioisotopes. Relevant data are contained in Appendix C. Data for the watering of the pots, and temperature and humidity of the greenhouses, are given in Appendix D. (U.K.)

  15. Quantum chemical and direct dynamic study on homogeneous gas-phase formation of PBDD/Fs from 2,4,5-tribromophenol and 3,4-dibromophenol.

    Science.gov (United States)

    Yu, Wanni; Li, Pengfei; Xu, Fei; Hu, Jingtian; Zhang, Qingzhu; Wang, Wenxing

    2013-09-01

    2,4,5-Tribromophenol (2,4,5-TBP) and 3,4-dibromophenol (3,4-DBP) have the minimum number of Br atoms needed to form 2,3,7,8-PBDD/Fs, which are the most toxic among all 210 PBDD/F isomers. A mechanistic understanding of the formation of PBDD/Fs is a prerequisite for minimizing their emissions. In this paper, the homogeneous gas-phase formation of PBDD/Fs from 2,4,5-TBP and 3,4-DBP as precursors was investigated theoretically by using the density functional theory (DFT) method. The mathematical model to predict the formation of PBDD/Fs places a high demand on accurate kinetic parameters. So, the rate constants of key elementary steps involved in the formation of PBDD/Fs were calculated by using canonical variational transition-state (CVT) theory with small curvature tunneling (SCT) contribution over a wide temperature range of 600-1200K. The pre-exponential factors and the activation energies are also reported. This might be the first to investigate the formation of 2,3,7,8-PBDD/Fs. The present study shows that the formation of PBDDs dominates over the formation of PBDFs. The meta bromine facilitates the dimerization of bromophenoxy radicals (BPRs), whereas the para and ortho bromines suppress the dimerization of BPRs.

  16. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  17. Dynamic lung transmission studies

    International Nuclear Information System (INIS)

    The aim of this study was to develop a non-invasive method for determining regional lungvolumes, which could replace bronchospirometry in routine clinical use. Transmission through the thorax of sup(99m)Tc-gammarays is measured by means of a gamma camera on line with a computer. The technique of measurement and data analysis is described and tested in several series of phantom studies. The results proved to be good: the mean difference with the real volumes was -4%. The error varied between -10% and +1. Transmission studies and bronchospirometry are compared in a group of 11 patients and there proved to be a good correspondence between the results of these methods. It is concluded that transmission experiments can determine the vital capacity of both lungs as a whole as accurately as spirometry and allows the measurement of vital capacity for each lung separately with the same accuracy as bronchospirometry. (Auth.)

  18. Study of estuarine dynamics

    International Nuclear Information System (INIS)

    A case study of a shallow, well mixed fjord illustrates the use of radioactive and an activable tracer. An instantaneous injection of the rare earth lanthanum was used as an activable tracer to determine residence-time and internal recirculation in the fjord system. An instantaneous injection of bromine-82 was used to investigate tae bypass of water from a harbour area through a power plant cooling water system to a partly enclosed basin of the fjord. Instantaneous releases of bromine-82 were further used for short time studies of the primary spread and transport of river water discharged to the inner section of the fjord system. (Author)

  19. Small Open Chemical Systems Theory: Its Implications to Darwinian Evolution Dynamics, Complex Self-Organization and Beyond

    International Nuclear Information System (INIS)

    The study of biological cells in terms of mesoscopic, nonequilibrium, nonlinear, stochastic dynamics of open chemical systems provides a paradigm for other complex, self-organizing systems with ultra-fast stochastic fluctuations, short-time deterministic nonlinear dynamics, and long-time evolutionary behavior with exponentially distributed rare events, discrete jumps among punctuated equilibria, and catastrophe. (general)

  20. Herbert P. Broida Prize Lecture: Probing chemical dynamics with negative ion photodetachment

    Science.gov (United States)

    Neumark, Daniel

    2013-03-01

    Photoelectron spectroscopy and its variants have been used in our laboratory to study diverse phenomena in chemical dynamics, including transition state spectroscopy, the electronic and vibrational spectroscopy of clusters, the photodissociation of reactive free radicals, hydrated electron dynamics in clusters and liquid jets, and the ultrafast dynamics of helium nanodroplets. This talk will focus on two examples of this type of work: slow electron velocity map imaging (SEVI) of trapped and cooled negative ions, and time-resolved photoelectron spectroscopy (TRPES) of negative ions. SEVI of cold ions represents a powerful means of performing high resolution photoelectron spectroscopy on complex species. Time-resolved radiation chemistry in nucleobases will be carried out with TRPES. In this work, starting with iodide-nucleobase complexes, we inject electrons into low-lying unoccupied orbitals of the nucleobase and follow the ensuing dynamics.

  1. Chemical spots and their dynamical evolution on HgMn stars

    CERN Document Server

    Korhonen, Heidi; Briquet, Maryline; Gonzalez, Federico; Savanov, Igor

    2010-01-01

    Our recent studies of late B-type stars with HgMn peculiarity revealed for the first time the presence of fast dynamical evolution of chemical spots on their surfaces. These observations suggest a hitherto unknown physical process operating in the stars with radiative outer envelopes. Furthermore, we have also discovered existence of magnetic fields on these stars that have up to now been thought to be non-magnetic. Here we will discuss the dynamical spot evolution on HD 11753 and our new results on magnetic fields on AR Aur.

  2. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  3. Dynamical studies of nuclear multifragmentation

    International Nuclear Information System (INIS)

    We review some dynamical approaches developed by our group to study multifragmentation of nuclei. We first investigate the problem of disassembly of hot and compressed nuclei. We show that multifragmentation occurs at low density as a consequence of the fluctuations of the mean field. The magnitude of the fluctuations is evaluated using percolation methods (lattice percolation or restructured aggregation). The dynamical expansion of the nucleus is studied either using a self consistent Thomas Fermi approach or a simple extended liquid drop. Finally, introducing a preequilibrium model to describe the first phase of the collision between two heavy ions, we use the preceeding investigations to calculate multifragmentation excitation functions. (orig.)

  4. Dynamical studies of nuclear multifragmentation

    International Nuclear Information System (INIS)

    We review some dynamical approaches developed by our group to study multifragmentation of nuclei. We first investigate the problem of disassembly of hot and compressed nuclei. We show that multifragmentation occurs at low density as a consequence of the fluctuations of the mean field. The magnitude of the fluctuations is evaluated using percolation methods (lattice percolation or restructured aggregation). The dynamical expansion of the nucleus is studied either using a self consistent Thomas Fermi approach or a simple extended liquid drop. Finally, introducing a preequilibrium model to describe the first phase of the collision between two heavy ions, we use the preceding investigations to calculate multifragmentation excitation functions

  5. Dynamical studies of nuclear multifragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, C.; Boisgard, R.; Cerruti, C.; Leray, S.; Spina, M.E.; Desbois, J.; Ngo, H.; Nemeth, J.; Barranco, M.

    1989-05-01

    We review some dynamical approaches developed by our group to study multifragmentation of nuclei. We first investigate the problem of disassembly of hot and compressed nuclei. We show that multifragmentation occurs at low density as a consequence of the fluctuations of the mean field. The magnitude of the fluctuations is evaluated using percolation methods (lattice percolation or restructured aggregation). The dynamical expansion of the nucleus is studied either using a self consistent Thomas Fermi approach or a simple extended liquid drop. Finally, introducing a preequilibrium model to describe the first phase of the collision between two heavy ions, we use the preceeding investigations to calculate multifragmentation excitation functions.

  6. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  7. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-04-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  8. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  9. Nanoscale Study of Polymer Dynamics.

    Science.gov (United States)

    Keshavarz, Masoumeh; Engelkamp, Hans; Xu, Jialiang; Braeken, Els; Otten, Matthijs B J; Uji-I, Hiroshi; Schwartz, Erik; Koepf, Matthieu; Vananroye, Anja; Vermant, Jan; Nolte, Roeland J M; De Schryver, Frans; Maan, Jan C; Hofkens, Johan; Christianen, Peter C M; Rowan, Alan E

    2016-01-26

    The thermal motion of polymer chains in a crowded environment is anisotropic and highly confined. Whereas theoretical and experimental progress has been made, typically only indirect evidence of polymer dynamics is obtained either from scattering or mechanical response. Toward a complete understanding of the complicated polymer dynamics in crowded media such as biological cells, it is of great importance to unravel the role of heterogeneity and molecular individualism. In the present work, we investigate the dynamics of synthetic polymers and the tube-like motion of individual chains using time-resolved fluorescence microscopy. A single fluorescently labeled polymer molecule is observed in a sea of unlabeled polymers, giving access to not only the dynamics of the probe chain itself but also to that of the surrounding network. We demonstrate that it is possible to extract the characteristic time constants and length scales in one experiment, providing a detailed understanding of polymer dynamics at the single chain level. The quantitative agreement with bulk rheology measurements is promising for using local probes to study heterogeneity in complex, crowded systems. PMID:26688072

  10. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    Science.gov (United States)

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…

  11. Studying chemical reactivity in a virtual environment.

    Science.gov (United States)

    Haag, Moritz P; Reiher, Markus

    2014-01-01

    Chemical reactivity of a set of reactants is determined by its potential (electronic) energy (hyper)surface. The high dimensionality of this surface renders it difficult to efficiently explore reactivity in a large reactive system. Exhaustive sampling techniques and search algorithms are not straightforward to employ as it is not clear which explored path will eventually produce the minimum energy path of a reaction passing through a transition structure. Here, the chemist's intuition would be of invaluable help, but it cannot be easily exploited because (1) no intuitive and direct tool for the scientist to manipulate molecular structures is currently available and because (2) quantum chemical calculations are inherently expensive in terms of computational effort. In this work, we elaborate on how the chemist can be reintroduced into the exploratory process within a virtual environment that provides immediate feedback and intuitive tools to manipulate a reactive system. We work out in detail how this immersion should take place. We provide an analysis of modern semi-empirical methods which already today are candidates for the interactive study of chemical reactivity. Implications of manual structure manipulations for their physical meaning and chemical relevance are carefully analysed in order to provide sound theoretical foundations for the interpretation of the interactive reactivity exploration. PMID:25340884

  12. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  13. Quasi-chemical study of Be$^{2+}$(aq) speciation

    CERN Document Server

    Asthagiri, D; Pratt, Lawrence R.

    2003-01-01

    Be$^{2+}$(aq) hydrolysis can to lead to the formation of multi-beryllium clusters, but the thermodynamics of this process has not been resolved theoretically. We study the hydration state of an isolated Be$^{2+}$ ion using both the quasi-chemical theory of solutions and ab initio molecular dynamics. These studies confirm that Be$^{2+}$(aq) is tetra-hydrated. The quasi-chemical approach is then applied to then the deprotonation of $Be(H_2O)_4^{2+}}$ to give $BeOH(H_2O)_3{}^{+}}$. The calculated pK$_a$ of 3.8 is in good agreement with the experimentally suggested value around 3.5. The calculated energetics for the formation of BeOHBe$^{3+}$ are then obtained in fair agreement with experiments.

  14. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  15. TRENDS OF CURRENT DYNAMICS OF CHEMICAL PROCESSES IN THE SOILS OF ODESSA REGION

    Directory of Open Access Journals (Sweden)

    Bilanchyn Yaroslav

    2012-06-01

    Full Text Available Results of chemical processes’ dynamic studies of many years (1971-2011 in the soils of Odessa Region have been described. The most significant in the last 15-20 years have been changes of humus content and ecological & agrochemical status of black soils. In spite of some increase in the norm of fertilizers input for the last 5 years the negative balance of plant nutrition elements in soils is preserved. Ways of optimization of humus and ecological & agrochemical status of soils in the region and increase of their fertility have been proposed.

  16. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.;

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  17. Dynamical and chemical properties of the "starless" core L1014

    CERN Document Server

    Crapsi, A; De Vries, C H; Huard, T L; Jørgensen, J K; Kauffmann, J; Lee, C W; Lee, J E; Myers, P C; Ridge, N A; Shirley, Y L; Young, C H

    2005-01-01

    Spitzer Space Telescope observations of a point-like source, L1014-IRS, close to the dust peak of the low-mass dense core L1014 have questioned its starless nature. The presence of an object with colors expected for an embedded protostar makes L1014-IRS the lowest luminosity isolated protostar known, and an ideal target with which to test star formation theories at the low mass end. In order to study its molecular content and to search for the presence of a molecular outflow, we mapped L1014 in at least one transition of 12CO, N2H+, HCO+, CS and of their isotopologues 13CO, C18O, C17O, N2D+ and H13CO+, using the FCRAO, the IRAM 30 meter and the CSO. The data show physical and chemical properties in L1014 typical of the less evolved starless cores: i.e. H2 central density of a few 10^5 molecules cm^-3, estimated mass of ~2M_sun, CO integrated depletion factor less than 10, N(N2H+)~6*10^12 cm^-2, N(N2D+)/N(N2H+) equal to 10% and relatively broad N2H+(1--0) lines (0.35 km/s). Infall signatures and significant ve...

  18. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids.

    Science.gov (United States)

    Dumazer, G; Antoine, C; Lemarchand, A; Nowakowski, B

    2009-12-01

    We study the steady dynamics of an exothermic Fisher-Kolmogorov-Petrovsky-Piskunov chemical wave front traveling in a one-dimensional van der Waals fluid. The propagating wave is initiated by a nonuniformity in reactant concentration contrary to usual combustion ignition processes. The heat release and activation energy of the reaction play the role of control parameters. We recently proved that the propagation of an exothermic chemical wave front in a perfect gas displays a forbidden interval of stationary wave front speeds [G. Dumazer, M. Leda, B. Nowakowski, and A. Lemarchand, Phys. Rev. E 78, 016309 (2008)]. We examine how this result is modified for nonideal fluids and determine the effect of the van der Waals parameters and fluid density on the bifurcation between diffusion flames and Chapman-Jouguet detonation waves as heat release increases. Analytical predictions are confirmed by the numerical solution of the hydrodynamic equations including reaction kinetics. PMID:20365269

  19. I. Cognitive and instructional factors relating to students' development of personal models of chemical systems in the general chemistry laboratory II. Solvation in supercritical carbon dioxide/ethanol mixtures studied by molecular dynamics simulation

    Science.gov (United States)

    Anthony, Seth

    Part I. Students' participation in inquiry-based chemistry laboratory curricula, and, in particular, engagement with key thinking processes in conjunction with these experiences, is linked with success at the difficult task of "transfer"---applying their knowledge in new contexts to solve unfamiliar types of problems. We investigate factors related to classroom experiences, student metacognition, and instructor feedback that may affect students' engagement in key aspects of the Model-Observe-Reflect-Explain (MORE) laboratory curriculum - production of written molecular-level models of chemical systems, describing changes to those models, and supporting those changes with reference to experimental evidence---and related behaviors. Participation in introductory activities that emphasize reviewing and critiquing of sample models and peers' models are associated with improvement in several of these key aspects. When students' self-assessments of the quality of aspects of their models are solicited, students are generally overconfident in the quality of their models, but these self-ratings are also sensitive to the strictness of grades assigned by their instructor. Furthermore, students who produce higher-quality models are also more accurate in their self-assessments, suggesting the importance of self-evaluation as part of the model-writing process. While the written feedback delivered by instructors did not have significant impacts on student model quality or self-assessments, students' resubmissions of models were significantly improved when students received "reflective" feedback prompting them to self-evaluate the quality of their models. Analysis of several case studies indicates that the content and extent of molecular-level ideas expressed in students' models are linked with the depth of discussion and content of discussion that occurred during the laboratory period, with ideas developed or personally committed to by students during the laboratory period being

  20. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    Science.gov (United States)

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  1. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten;

    2013-01-01

    Although chemically synthesized gold nanoparticles (AuNPs) from gold salt (HAuCl4) are among the most studied nanomaterials, understanding the formation mechanisms is a challenge mainly due to limited dynamics information. A range of in situ methods with down to millisecond (ms) time resolution h...

  2. A comparative study of the chemical and integrated treatments impact against the defoliating insects on the structure and dynamics of the edaphic mesofauna in two oak forests from North-Eastern Romania

    OpenAIRE

    Adina Cãlugãr

    2009-01-01

    The author presents in this paper some aspects about the edaphic microarthropods from the organic horizon of two forest soils belonging to the Ciurea Forest District, Iasi County: Santa (mixed stands mainly with oak, chemically treated against defoliating insects) and Poieni - Tomesti (Quercus robur and Quercus petraea stands with integrated treatments). The study of edaphic microarthropods was performed both from qualitative and quantitative point of view. It considered the average of the to...

  3. A comparative study of the chemical and integrated treatments impact against the defoliating insects on the structure and dynamics of the edaphic mesofauna in two oak forests from North-Eastern Romania

    OpenAIRE

    Adina Cãlugãr

    2009-01-01

    The author presents in this paper some aspects about the edaphicmicroarthropods from the organic horizon of two forest soils belonging to the Ciurea Forest District, Iasi County: ªanta (mixed stands mainly with oak, chemically treated against defoliating insects) and Poieni - Tomesti (Quercus robur and Quercuspetraea stands with integrated treatments). The study of edaphic microarthropods was performed both from qualitative and quantitative point of view. It considered the average of the tota...

  4. Advances in chemical physics dynamical processes in condensed matter

    CERN Document Server

    Evans, Myron W

    2009-01-01

    Transport Properties and Soliton Models for Polyacetylene (M. Andretta, et al.). Development and Application of the Theory of Brownian Motion (W. Coffey). The Fading of Memory During the Regression of Structural Fluctuations (L. Dissado, et al.). Cooperative Molecular Behavior and Field Effects on Liquids: Experimental Considerations (G. Evans). A Review and Computer Simulation of the Molecular Dynamics of a Series of Specific Molecular Liquids (M. Evans and G. Evans). Recent Advances in Molecular-Dynamics Computer Simulation (D. Fincham and D. Heyes). Nonadiabatic Scattering Probl

  5. Surface chemical studies of chemical vapour deposited diamond thin films

    International Nuclear Information System (INIS)

    Polycrystalime diamond grown by low pressure chemical vapour deposition (CVD) techniques has emerged in recent years as a new material with applications in such areas as optics, electronics, radiation detectors, chemical sensors and electrochemistry. A main aim of this thesis has been to advance current knowledge of the surface chemical properties of CVD diamond to underpin the development of our understanding of the properties and potential applications of this material. Cl2 is found to adsorb dissociatively on the clean, hydrogen-free diamond surface up to sub-monolayer coverage with a sticking probability of ∼1.2x10-3. Adsorption is a non-activated process, and the sticking probability and extent of coverage decreased with increasing temperature. This was shown to contrast with the behaviour found for the interaction of chlorine with the hydrogenated diamond surface where increased sticking probabilities and saturation surface coverages were observed, and where the reactivity also increased with temperature. Thermal desorption of atomic Cl occurred over a broad temperature range m both chemisorption systems, indicating the presence of more than one binding state. Atomic hydrogen was successful in efficiently etching the bound Cl from the surface. XeF2 was found to adsorb dissociatively onto the clean diamond surface to give up to monolayer coverages of F, which formed two distinct binding states. The first state, populated at low coverage, was predominantly covalent in character, while the second state, occurring at high surface coverages, had more ionic bonding character. Pre-hydrogenation of the diamond surface increased the reactive sticking probability observed, but decreased the extent of coverage by blocking reactive sites. The semi-ionic F was readily etched by atomic hydrogen, and underwent thermal desorption at temperatures as low as 300 deg C. The covalent form was more stable, being seemingly resistant to etching and persistent to high temperatures

  6. The Chemical and Dynamical Evolution of Isolated Dwarf Galaxies

    OpenAIRE

    Pilkington, K.; Gibson, B. K.; Calura, F; Stinson, G.S.; Brook, C. B.; Brooks, A.

    2011-01-01

    Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral h...

  7. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  8. Effect of Coriolis coupling in chemical reaction dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Han, Ke-Li

    2008-05-14

    It is essential to evaluate the role of Coriolis coupling effect in molecular reaction dynamics. Here we consider Coriolis coupling effect in quantum reactive scattering calculations in the context of both adiabaticity and nonadiabaticity, with particular emphasis on examining the role of Coriolis coupling effect in reaction dynamics of triatomic molecular systems. We present the results of our own calculations by the time-dependent quantum wave packet approach for H + D2 and F(2P3/2,2P1/2) + H2 as well as for the ion-molecule collisions of He + H2 +, D(-) + H2, H(-) + D2, and D+ + H2, after reviewing in detail other related research efforts on this issue.

  9. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.

    2013-03-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  10. Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Wei-Song Wang

    2010-03-01

    Full Text Available Presented is a single-ended potentiostat topology with a new interface connection between sensor electrodes and potentiostat circuit to avoid deviation of cell voltage and linearly convert the cell current into voltage signal. Additionally, due to the increased harmonic distortion quantity when detecting low-level sensor current, the performance of potentiostat linearity which causes the detectable current and dynamic range to be limited is relatively decreased. Thus, to alleviate these irregularities, a fully-differential potentiostat is designed with a wide output voltage swing compared to single-ended potentiostat. Two proposed potentiostats were implemented using TSMC 0.18-μm CMOS process for biomedical application. Measurement results show that the fully differential potentiostat performs relatively better in terms of linearity when measuring current from 500 ºpA to 10 uA. Besides, the dynamic range value can reach a value of 86 dB.

  11. Chemical warfare, past and future. Study project

    Energy Technology Data Exchange (ETDEWEB)

    Tzihor, A.

    1992-05-15

    World War I was arena for the first use of chemical warfare. The enormous tactical success brought about by this first time use of chemical weapons caused the continued development of more sophisticated tactics and weapons in this category of unconventional warfare. This phenomenon has carried through to today. However, at present, because of technological developments, the global economic situation, and political factors, coupled with the inability of the western world to control the proliferation of chemical weapons, a situation weapon of mass destruction. Recent use by Iraq against Kurdish civilian indicates that chemical warfare is no longer limited to the battlefield. The western nations have a need to understand the risk. This paper conducts an analysis of past lessons and the factors which will affect the use of chemical warfare in the future. From this analysis, the paper reaches conclusions concerning the significant threat chemical weapons pose for the entire world in the not too distant future.

  12. Dynamic capillary wetting studied with dissipative particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cupelli, Claudio; Glatzel, Thomas; Zengerle, Roland; Santer, Mark [Laboratory for MEMS applications, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Henrich, Bjoern; Moseler, Michael [Freiburg Materials Research Center (FMF), Stefan-Meier-Strasse 21, 79104 Freiburg (Germany)], E-mail: cupelli@imtek.de

    2008-04-15

    We present a study on dynamic capillary wetting in the framework of dissipative particle dynamics (DPD) based on a novel wall model for wetting on solid boundaries. We consider capillary impregnation of a slit pore in two situations: (i) forced (piston-driven) steady state flow and (ii) capillarity driven imbibition out of a finite reservoir. The dynamic contact angle behavior under condition (i) is consistent with the hydrodynamic theories of Cox under partial wetting conditions and Eggers for complete wetting. The flow field near the contact line shows a region of apparent slip flow which provides a natural way of avoiding a stress singularity at the triple line. The dynamics of the capillary imbibition, i.e. condition (ii), is consistently described by the Lucas-Washburn equation augmented by expressions that account for inertia and the influence of the dynamic contact angle.

  13. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  14. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    Science.gov (United States)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  15. An infrared free-electron laser for the Chemical Dynamics Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (comp.)

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  16. An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. [comp.

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  17. Amoeba-Inspired Heuristic Search Dynamics for Exploring Chemical Reaction Paths.

    Science.gov (United States)

    Aono, Masashi; Wakabayashi, Masamitsu

    2015-09-01

    We propose a nature-inspired model for simulating chemical reactions in a computationally resource-saving manner. The model was developed by extending our previously proposed heuristic search algorithm, called "AmoebaSAT [Aono et al. 2013]," which was inspired by the spatiotemporal dynamics of a single-celled amoeboid organism that exhibits sophisticated computing capabilities in adapting to its environment efficiently [Zhu et al. 2013]. AmoebaSAT is used for solving an NP-complete combinatorial optimization problem [Garey and Johnson 1979], "the satisfiability problem," and finds a constraint-satisfying solution at a speed that is dramatically faster than one of the conventionally known fastest stochastic local search methods [Iwama and Tamaki 2004] for a class of randomly generated problem instances [ http://www.cs.ubc.ca/~hoos/5/benchm.html ]. In cases where the problem has more than one solution, AmoebaSAT exhibits dynamic transition behavior among a variety of the solutions. Inheriting these features of AmoebaSAT, we formulate "AmoebaChem," which explores a variety of metastable molecules in which several constraints determined by input atoms are satisfied and generates dynamic transition processes among the metastable molecules. AmoebaChem and its developed forms will be applied to the study of the origins of life, to discover reaction paths for which expected or unexpected organic compounds may be formed via unknown unstable intermediates and to estimate the likelihood of each of the discovered paths.

  18. Amoeba-Inspired Heuristic Search Dynamics for Exploring Chemical Reaction Paths.

    Science.gov (United States)

    Aono, Masashi; Wakabayashi, Masamitsu

    2015-09-01

    We propose a nature-inspired model for simulating chemical reactions in a computationally resource-saving manner. The model was developed by extending our previously proposed heuristic search algorithm, called "AmoebaSAT [Aono et al. 2013]," which was inspired by the spatiotemporal dynamics of a single-celled amoeboid organism that exhibits sophisticated computing capabilities in adapting to its environment efficiently [Zhu et al. 2013]. AmoebaSAT is used for solving an NP-complete combinatorial optimization problem [Garey and Johnson 1979], "the satisfiability problem," and finds a constraint-satisfying solution at a speed that is dramatically faster than one of the conventionally known fastest stochastic local search methods [Iwama and Tamaki 2004] for a class of randomly generated problem instances [ http://www.cs.ubc.ca/~hoos/5/benchm.html ]. In cases where the problem has more than one solution, AmoebaSAT exhibits dynamic transition behavior among a variety of the solutions. Inheriting these features of AmoebaSAT, we formulate "AmoebaChem," which explores a variety of metastable molecules in which several constraints determined by input atoms are satisfied and generates dynamic transition processes among the metastable molecules. AmoebaChem and its developed forms will be applied to the study of the origins of life, to discover reaction paths for which expected or unexpected organic compounds may be formed via unknown unstable intermediates and to estimate the likelihood of each of the discovered paths. PMID:26129639

  19. Quantum chemical studies of estrogenic compounds

    Science.gov (United States)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  20. Synchronization dynamics of chemically coupled cells with activator–inhibitor pathways

    Energy Technology Data Exchange (ETDEWEB)

    Guemkam Ghomsi, P. [Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea (Cameroon); Laboratoire de Mécanique, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon); Moukam Kakmeni, F.M., E-mail: moukam.kakmeni@ubuea.cm [Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea (Cameroon); Kofane, T.C.; Tchawoua, C. [Laboratoire de Mécanique, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)

    2014-08-01

    Systems of interacting cells containing an activator–inhibitor pathway, regulating naturally in their inner parts their end-product concentrations through a sequence of biochemical reactions with feedback-loops: an end-product inhibition of the first substrate, and an autocatalytic activation of the end-product through an allosteric enzyme-mediated reaction are investigated. The individual cells are considered to be identical and are described by nonlinear differential equations recently proposed following the concerted transition model. The chemical and electrical coupling types, realized by exchange of metabolites across concentration of the cells are used in order to analyze the onset of phase and complete synchronization in the biochemical system. It is found that depending on the coupling nature and the range of coupling strength, cells enter into different synchronization regimes going from low-quality to high-quality synchronization. The synchronization manifold's stability is analyzed. The results are supported by numerical simulations using indicators such as the conditional Lyapunov exponents and the rate of change of the Lyapunov function. The results indicate that the system cannot completely synchronize under the single action of the chemical coupling. The combined effect of both chemical and electrical couplings is found to be of capital importance in the onset of complete synchronization and high quality synchronization. - Highlights: • We investigate the dynamics and synchronization of cells with activator–inhibitor pathways. • A complete study of fixed points' stability and bifurcations of the system is done. • It is found that chemically coupled cells only display phase synchronization. • Electrical coupling is important for complete synchronization in the coupled cells. • High quality synchronization is observed in the coupled cells.

  1. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  2. Dynamical and chemical evolution of the thin disc

    CERN Document Server

    Just, Andreas

    2015-01-01

    Our detailed analytic local disc model (JJ-model) quantifies the interrelation between kinematic properties (e.g. velocity dispersions and asymmetric drift), spatial parameters (scale-lengths and vertical density profiles), and properties of stellar sub-populations (age and abundance distributions). Any consistent radial extension of the disc evolution model should predict specific features in the different distribution functions and in their correlations. Large spectroscopic surveys (SEGUE, RAVE, APOGEE, Gaia-ESO) allow significant constraints on the long-term evolution of the thin disc. We discuss the qualitative difference of correlations (like the alpha-enhancement as function of metallicity) and distribution functions (e.g. in [Mg/H] or [Fe/H]) for the construction of a disc model. In the framework of the JJ-model we build a local chemical enrichment model and show that significant vertical gradients for main sequence and red clump stars are expected in the thin disc. A Jeans analysis of the asymmetric d...

  3. Dynamical and chemical evolution of the thin disc

    Science.gov (United States)

    Just, A.; Rybizki, J.

    2016-09-01

    Our detailed analytic local disc model (JJ-model) quantifies the interrelation between kinematic properties (e.g. velocity dispersions and asymmetric drift), spatial parameters (scale-lengths and vertical density profiles), and properties of stellar sub-populations (age and abundance distributions). Any consistent radial extension of the disc evolution model should predict specific features in the different distribution functions and in their correlations. Large spectroscopic surveys (SEGUE, RAVE, APOGEE, Gaia-ESO) allow significant constraints on the long-term evolution of the thin disc. We discuss the qualitative difference of correlations (like the α-enhancement as function of metallicity) and distribution functions (e.g. in [Mg/H] or [Fe/H]) for the construction of a disc model. In the framework of the JJ-model we build a local chemical enrichment model and show that significant vertical gradients for main sequence and red clump stars are expected in the thin disc. A Jeans analysis of the asymmetric drift provides a link to the radial structure of the disc. The derived metallicity-dependent radial scale-lengths can be combined in the future with the abundance distributions at different Galactocentric distances to construct full disc models. We expect to be able to constrain possible scenarios of inside-out growth of the thin disc and to characterise those populations, which require significant radial migration.

  4. Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations

    International Nuclear Information System (INIS)

    Pressure effects on the lattice dynamics and the chemical bonding of the three-dimensional topological insulator, Sb2Te3, have been studied from a first-principles perspective in its rhombohedral phase. Where it is possible to compare, theory agrees with most of the measured phonon dispersions. We find that the inclusion of relativistic effects, in terms of the spin-orbit interaction, affects the vibrational features to some extend and creates large fluctuations on phonon density of state in high frequency zone. By investigations of structure and electronic structure, we analyze in detail the semiconductor to metal transition at ∼2 GPa followed by an electronic topological transition at a pressure of ∼4.25 GPa

  5. In-Situ Chemical Dynamics and Phase Mapping Under Steep Thermal Gradients Using Time-Resolved and Spatially Resolved X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.; Larson, E.M.; Holt, J.B.; Ressler, T.; Elmer, J.W.

    1999-09-17

    Time-resolved and spatially-resolved diffraction techniques have been developed recently to perform materials dynamics study in-situ extending into the time and spatial domain in high temperature processes. The applications of these methods to investigate the chemical dynamics of solid combustion reactions and to map phases and their transformation in fusion welds are exemplified in this paper.

  6. Chemical feedbacks in climate sensitivity studies

    Science.gov (United States)

    Dietmüller, Simone; Ponater, Michael; Sausen, Robert

    2013-04-01

    Interactively coupled climate chemistry models extend the number of feedback mechanisms in climate change simulations by allowing a variation of several radiatively actice chemical tracers that are prescribed in conventional climate models. Different perturbation experiments including chemical feedbacks were performed using the chemistry-climate model system EMAC coupled to the mixed layer ocean model MLO. The influence of the chemical feedbacks O3, CH4 and N2O on climate response and climate sensitivity is quantified for a series of CO2-perturbation simulations: Equilibrium climate sensitivity is dampened, if chemical feedbacks are included. In case of a CO2 doubling simulation chemical feedbacks decrease climate sensitivity by -3.6% and in case of a 4*CO2 simulation by -8.1%. Analysis of the chemical feedbacks reveals, that the negative feedback of ozone, mainly the feedback of stratospheric ozone, is responsible for this dampening. The radiative feedbacks of CH4 and N2O are negligible, mainly because the model system does not allow interactive emission feedbacks at the Earth's surface for these gases. The feedback of physical parameters is significantly modified by the presence of chemical feedbacks. In case of the CO2-perturbation experiments the negative stratospheric ozone feedback is accompanied by a negative stratospheric H2O feedback change of the same order of magnitude. So the dampening effect of the direct O3 radiative feedback is enhanced. A non-linearity in the damping is found with increasing CO2 concentrations. Reasons are the nonlinear feedbacks of ozone, temperature, and stratospheric water vapor. Additional 6*CO2 simulations with and without chemical feedbacks included show, that the presence of chemic feedbacks helps to prevent a runaway greenhouse effect, as the O3 distribution can react to the upward shift of the tropopause. Also experiments driven by anthropogenic NOx- and CO-emissions were performed, where chemically active trace gases act

  7. Dissipative particle dynamics simulation of wettability alternation phenomena in the chemical flooding process

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Li; Yuewu Liu; Jianfei Tang; Shujiao Li

    2009-01-01

    Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to waterwet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the waterwetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.

  8. Transport model of chemical secretion process for tracking exocytotic event dynamics using electroanalysis.

    Science.gov (United States)

    Fan, Tai-Hsi; Fedorov, Andrei G

    2004-08-01

    A unified model is developed to analyze the key features of the chemical secretion process observed in experimental studies of various vesicles with application to electroanalytical measurements of vesicular exocytosis. The intimately coupled dynamics and kinetics are simultaneously resolved based on continuum fluid flow, mass transport, and linear elasticity theories combined with biomembrane mechanics. We report three case studies of exocytosis, including a large electroporated granule of the mast cell, a small and clear synaptic vesicle, and a medium size vesicle in the chromaffin cell. The simulation results for each case are compared with electroanalytical measurements from the literature. The results provide a theoretical ground for defining the rate-controlling step(s) of an exocytotic sequence, allowing interpretation of electroanalysis data. Thus, it provides a tool for theoretical verification of competing hypotheses of what controls/limits messenger release during exocytosis. Simulations show that the pore size, the pore opening velocity, and the swelling dynamics of the granule matrix play the key roles in controlling the messenger release kinetics.

  9. A Chemical Genetic Approach To The Study Of Cellular Transport

    NARCIS (Netherlands)

    Nieland, T.J.F.

    2005-01-01

    The focus of this thesis is the use of chemical genetics to study two different aspects of membrane biology, (a) the mechanisms underlying cellular lipid transport and (b) the intersection between endocytic and exocytic traffic. The broad goals of chemical genetics are to find novel chemical tool

  10. Chemical Control for Host-Parasitoid Model within the Parasitism Season and Its Complex Dynamics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control, which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated. Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine the key parameters in designing the pest control strategy. The present research can help us to further understand the importance of timings of pesticide application in the pest control and to improve the classical chemical control and to make management decisions.

  11. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    Science.gov (United States)

    Swasey, Steven M.; Gwinn, Elisabeth G.

    2016-04-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson–Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag+, as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag+–DNA nanostructures. Our studies of Ag+-induced assembly of non-complementary DNA oligomers employ strands of 2–24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag+ can be achieved by optimizing solution conditions. These Ag+-mediated duplexes are stable to at least 60 mM Mg2+, higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag+-mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag+-mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’.

  12. Computational modelling of the complex dynamics of chemically blown polyurethane foam

    Science.gov (United States)

    Ireka, I. E.; Niedziela, D.; Schäfer, K.; Tröltzsch, J.; Steiner, K.; Helbig, F.; Chinyoka, T.; Kroll, L.

    2015-11-01

    This study presents computational analysis of the complex dynamics observed in chemically blown polyurethane foams during reaction injection molding process. The mathematical formulation introduces an experimentally motivated non-divergence free setup for the continuity equations which reflects the self expanding behaviour observed in the physical system. The foam growth phenomena which is normally initiated by adequate pre-mixing of necessary reactant polymers, leading to an exothermic polymerization reaction, bubble nucleation, and gas formation, is captured numerically. We assume the dependence of material viscosity on the degree of cure/polymerization, gas volume fraction, and temperature as well as non-dependence of mixture density on pressure. The set of unsteady nonlinear coupled partial differential equations describing the dynamics of the system are solved numerically for state variables using finite volume techniques such that the front of the flow is tracked with high resolution interface capturing schemes. Graphical representation of the foam volume fraction, evolution of foam heights, and temperature distributions is presented. Results from our simulations are validated with experimental data. These results show good quantitative agreement with observations from experiments.

  13. Experimental study of chemical concentration variation of ASP flooding

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A physical modeling system of long slim tube was established. Several pressure measuring and sampling points were laid out at different positions along the tube. Through real-time measurements of pressures and chemical concentrations at different points, the mass transfer and chemical concentration of ASP flooding in porous media are studied. The concentration of chemicals declines gradually during the fluid flow from the inlet to the outlet of the model. The concentration increases in the front edge of the slug faster than the concentration decreases in the rear edge of the slug. The concentration variation of the chemicals is an asymmetrical and offset process. The order of motion velocities of the chemicals from fast to slow is polymer, alkali and surfactant. The motion lag and comprehensive diffusion are strong in the vicinity of the inlet, the motion velocities of the chemicals are high, the difference of flow velocities among the three chemicals is significant and the chromatographic separation of the chemicals is obvious. In the area near the outlet, the comprehensive diffusion and motion lag become weak, the concentrations of the chemicals decrease, the motion velocities of the chemicals are slow, the difference among the motion velocities of the chemicals becomes small, the chromatographic separation is not obvious, the adsorption and retention of chemicals gradually increase as the chemical slug moves further along the tube, the adsorption and retention of polymer is the most serious.

  14. Experimental study of chemical concentration variation of ASP flooding

    Institute of Scientific and Technical Information of China (English)

    WANG JiaLu; YUAN ShiYi; SHI FaShun; JIA Xu

    2009-01-01

    A physical modeling system of long slim tube was established. Several pressure measuring and sampling points were laid out at different positions along the tube. Through real-time measurements of pressures and chemical concentrations at different points, the mass transfer and chemical concentration of ASP flooding in porous media are studied. The concentration of chemicals declines gradually during the fluid flow from the inlet to the outlet of the model. The concentration increases in the front edge of the slug faster than the concentration decreases in the rear edge of the slug. The concentration variation of the chemicals is an asymmetrical and offset process. The order of motion velocities of the chemicals from fast to slow is polymer, alkali and surfactant. The motion lag and comprehensive diffusion are strong in the vicinity of the inlet, the motion velocities of the chemicals are high, the difference of flow velocities among the three chemicals is significant and the chromatographic separation of the chemicals is obvious. In the area near the outlet, the comprehensive diffusion and motion lag become weak, the concentrations of the chemicals decrease, the motion velocities of the chemicals are slow,the difference among the motion velocities of the chemicals becomes small, the chromatographic separation is not obvious, the adsorption and retention of chemicals gradually increase as the chemical slug moves further along the tube, the adsorption and retention of polymer is the most serious.

  15. Theoretical studies of combustion dynamics

    International Nuclear Information System (INIS)

    The reactions of O(3P)+H2, D2, and HD are the focus of this research. Their approximate three-dimensional quantum calculations of the rate constant for both the ground and first excited vibrational states of the above reactions were completed last year. Comparisons of the calculated rate constants, isotope effects and branching ratios have been made with available experimental work and also with the variational transition state theory calculations. The main conclusion of that paper is that tunneling plays a major role in the reaction dynamics at room temperature and below

  16. Orbital-specific mapping of chemical dynamics with ultrafast x-rays

    Science.gov (United States)

    Wernet, Philippe

    Charge and spin density changes at the metal sites of transition-metal complexes and in metalloproteins determine reactivity and selectivity. To understand their function and to optimize complexes for photocatalytic applications the changes of charge and spin densities need to be mapped and ultimately controlled. I will discuss how time-resolved soft x-ray spectroscopy enables a fundamental understanding of local atomic and intermolecular interactions and their dynamics on atomic length and time scales of Ångströms and femtoseconds. The approach consists in using time-resolved, atom- and orbital-specific x-ray spectroscopy and quantum chemical theory to map the frontier-orbital interactions and their evolution in real time of ultrafast chemical transformations. We recently used femtosecond resonant inelastic x-ray scattering (RIXS, the x-ray analog of resonant Raman scattering) at the x-ray free-electron laser LINAC Coherent Light Source (LCLS, Stanford, USA) to probe the reaction dynamics of a transition-metal complex in solution on the femtosecond time scale. Spin crossover and ligation are found to define the excited-state dynamics. It is demonstrated how correlating orbital symmetry and orbital interactions with spin multiplicity allows for determining the reactivity of short-lived reaction intermediates. I will discuss how this complements approaches that probe structural dynamics and how it can be extended to map the local chemical interactions and their dynamical evolution in metalloproteins.

  17. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  18. Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Jiang, Nan; Chiang, Naihao; Madison, Lindsey R; Pozzi, Eric A; Wasielewski, Michael R; Seideman, Tamar; Ratner, Mark A; Hersam, Mark C; Schatz, George C; Van Duyne, Richard P

    2016-06-01

    Nanoscale chemical imaging of a dynamic molecular phase boundary has broad implications for a range of problems in catalysis, surface science, and molecular electronics. While scanning probe microscopy (SPM) is commonly used to study molecular phase boundaries, its information content can be severely compromised by surface diffusion, irregular packing, or three-dimensional adsorbate geometry. Here, we demonstrate the simultaneous chemical and structural analysis of N-N'-bis(2,6-diisopropylphenyl)-1,7-(4'-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) molecules by UHV tip-enhanced Raman spectroscopy. Both condensed and diffusing domains of PPDI coexist on Ag(100) at room temperature. Through comparison with time-dependent density functional theory simulations, we unravel the orientation of PPDI molecules at the dynamic molecular domain boundary with unprecedented ∼4 nm spatial resolution. PMID:27183322

  19. Molecular dynamics studies of entangled polymer chains

    NARCIS (Netherlands)

    Bulacu, Monica Iulia

    2008-01-01

    The thesis presents three molecular dynamics studies of polymeric ensembles in which the chain entanglement plays the major role in the internal dynamics of the system. A coarse-grained model is used for representing the polymer chains as strings of beads connected by finite-extensible springs. In a

  20. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  1. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24170301

  2. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Physical-chemical studies of transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.

    1991-01-01

    Major advances in our continuing program to determine, interpret, and correlate the basic chemical and physical properties of the transuranium elements are summarized. Research topics include: Molar enthalpies of formation of BaCmO{sub 3} and BaCfO{sub 3}; luminescence of europium oxychloride at various pressures; and anti-stokes luminescence of selected actinide (III) compounds. 42 refs., 4 figs., 2 tabs.

  4. Physico-chemical study on guar gum

    International Nuclear Information System (INIS)

    Guar plant is an annual summer plant and it can resist diseases, pests and drought. Guar gum is used in a lot of industries. The present study deals with some physical properties of two commercial grade samples of guar gum cyamopsis tetragonoloba which where produced in 1996 and 1997 seasons (S1 and S2 respectively). Our analytical data are compared with those of previous workers in this area and international quality. Guar gum (S2) is separated into water-insoluble components. Three fractions were obtained from the water-soluble components by fractional participation using acetone. Guar gum powder is yellowish white; the water-insoluble component is brownish white. Comparison study between gum samples (S1 and S2) and water-insoluble fraction (1) and water-soluble fractions are close to each other in their physico-properties. chemical All samples and fractions contain galactomannan polysaccharide as explained by infra-red spectra.Moisture contents for the gum samples were 5.2% and 7.8% and that for the water-insoluble fraction 4.7% while that for fraction samples were 5.2%-7.5% ash contents for the gum samples was 0.81% and 1.14% and for the water-insoluble component 0.88% while the contents in the fractions between 0.5%-0.66%. Nitrogen content determination showed that the gum samples had value of 0.678% and 0.732% and water -insoluble fraction had a value of 0.118%. The values decreased in the water-soluble fractions giving 0.049%, 0.053 and 0.056%. Water-soluble component and its fractions record the following results: pH measurements showed that the water-soluble component had pH 6.70 and 6.84 while its fractions had pH 5.90 and 7.00. Viscosity measurements showed that water-soluble fractions had intrinsic viscosity of 6.4 and 6.8 dL. g-1. The fractions derived from water-soluble fraction had intrinsic viscosity of 6.6, 7 and 7.5 dl. g-1. Using Mark-Howink equation, calculated average molecular weights for the water-soluble components were 7.01x105, and 7.62x

  5. Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins.

    Science.gov (United States)

    Das, A K; Meuwly, M

    2016-01-01

    Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed. PMID:27498633

  6. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Theory and Practical Applications

    CERN Document Server

    Suleimanov, Yury V; Guo, Hua

    2016-01-01

    This Feature Article presents an overview of the current status of Ring Polymer Molecular Dynamics (RPMD) rate theory. We first analyze theory and its connection to quantum transition state theory. We then focus on its practical application to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rates in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rates. We also hope it will motivate further applications of RPMD to various chemical reactions.

  7. Studies on Chemical Constituents From Artabotrys Hainanensis

    Institute of Scientific and Technical Information of China (English)

    CHEN Guangying; SONG Xiao-Ping; HAN Chang-ri

    2004-01-01

    Artabotrys Hainanensis R.E. Fries are plants of the Annonaccac family artabotrys genus,which includes an estimated 100 types of plants distributed mainly in the tropical zone and the subtropics areas. Four types of the plants are discovered in our country, two of which, A.Hongkongensis Hance and A. hexapetalus (Linn. F.) Bhandari, in Guangdong Province, and the other two, A. Pilosus and A. Hainanensis R.E. Fries, in Hainan Province. The latter are widely distributed in Hainan Island with very rich reserves. They have long been used among the ordinary people as medicinal plants with antipyretic, antidotal, antiphlogistic and analgesic effects and are often used for malaria. Scholars from home and abroad have paid much attention to the plants of the Annonaccac family for their containing anti-tumor activities, and after early or late research of the chemical constituents of the root, stem (derm), leaf and fruit of many types of plants of Artabotrys genus, more than 40 compounds including alkaloid, flavone and terpenoid have been isolated and obtained. Artabotrys Hainanensis R.E. Fries are Hainan endemic plants and there has been no report on the research of their chemical constituents and biological activities so far. In order to find new constituents of pharmacologic activity, we have researched the chemical constituents of the leaf and stem.The crude drugs were collected from Hainan Jianfeng Mountain and were identified as Artabotrys Hainanensis R.E. Fries of the Annonaccac family artabotrys genus. Its sample specimen is now kept in Chemistry Department of Hainan Normal University.After isolation and identification of constituent, six compounds were isolated from the leaf of Artabotrys Hainanensis R.E. Fries and elucidated as β -sitosterol (Ⅰ), catechin (Ⅱ), mangiferin (Ⅲ),(Ⅳ), (Ⅴ), (Ⅵ). All the compounds were obtained from this plant for the first time. Compounds Ⅱ, Ⅲ,Ⅳ, Ⅴ and Ⅵ were obtained from the genus of Artabotrys for the first time.

  8. The Influence of Seasonal Changes and Headwaters on Physico-chemical Dynamics of Temengor Reservoir, Malaysia%The Influence of Seasonal Changes and Headwaters on Physico-chemical Dynamics of Temengor Reservoir,Malaysia

    Institute of Scientific and Technical Information of China (English)

    Zarul Hazrin Hashim; Asmah Patiroi; Mashhor Mansor; Shahml Anuar Md. Sah; Donald C. Jackson

    2011-01-01

    A study on physico-chemical dynamics of Temengor Reservoir was conducted to determine whether headwaters and seasonal changes play a major role in regulating physico-chemical dynamics of Temengor Reservoir.Temengor Reservoir receives water from its surrounding water catchments and headwaters.Then,the water flows into a series of hydroelectric dams,namely the Bersia,Kenering and Chenderoh dams.Generally,water quality in Temengot Reservoir can be classified as Class I.Physico-chemical trends showed that water quality in euphoric zone of Temengor Reservoir is stable and consistent.Two-way ANOVA analyses showed that seasonal variations only affected water temperature,Secchi disc's depth and nitrate-nitrogen.Based on Tukey' s post-hoc test,all three headwaters in this study exert no influence to the reservoir's water quality.These insignificant differences were probably due to water temperature and the size of the headwaters and the reservoir itself.In situ parameters profiling showed that the epilirrmion zone in Temengor Reservoir is from the surface to 6 m depth,the metalirrmion zone is from 6 m to 12 m depth and the hypolimnion zone is from 12 m depth onwards to the bottom of the reservoir.Thus,continuous water profiling monitoring that covers high and low water levels need to be conducted to determine characteristics of the physico-chemical dynamics in the water column and also to analyse changes in reservoir layers.Through these studies,discontinuity trends in the Perak River could be determined and suggestions to the respective agencies could be made to conserve and to sustain downstream biodiversity.

  9. [Studies on chemical constituents of Tinospora hainanesis].

    Science.gov (United States)

    Guo, Y; Lin, L; Shen, J

    1998-05-01

    Tinospora hainanesis is a new species of Menispermaceae plant. It is used as folk remedy for joint pain and physical injury. Five compounds were isolated from the vine stalk of Tinospora hainanesis. By spectral analysis and chemical methods, the structures of the compounds were identified as makisterone A (I), 2,3-dimethoxy-9,10-dihydroxy-N-methyltetrahydroproto-berberine quaternary salt (II), palmatine (III), beta-amyrin (IV) and docosyl ferulate (V). II is a new quaternary alkaloid named as haitinosporine. I, IV and V were isolated for the first time from the plants of Tinospora genus. PMID:12017002

  10. The Panel Study of Income Dynamics (PSID)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Panel Study of Income Dynamics (PSID) began in 1968 with a nationally representative sample of over 18,000 individuals living in 5,000 families in the United...

  11. Computer Simulations of Mechano-Chemical Networks Choreographing Actin Dynamics in Cell Motility

    Science.gov (United States)

    Zhuravlev, Pavel I.; Hu, Longhua; Papoian, Garegin A.

    In eukaryotic cells, cell motility is largely driven by self-assembly and growth of filamentous networks comprised of actin. Numerous proteins regulate actin network dynamics either biochemically, or through mechanical interactions. This regulation is rather complex, intricately coordinated both spatially and temporally. Although experiments in vivo and in vitro have provided a trove of structural and biochemical information about actin-based cell motility processes, experimental data is not always easy to interpret unambiguously, sometimes various interpretations being in contradiction with each other. Hence, mathematical modeling approaches are necessary for providing a physical foundation for interpreting and guiding experiments. In particular, computer simulations based on physicochemical interactions provide a systems-level description of protrusion dynamics. In this contribution, we review recent progress in modeling actin-based cell motility using detailed computer simulations. We elaborate on the way actin network dynamics is determined by the interplay between chemical reactions, mechanical feedbacks, and transport bottlenecks. We also discuss the role of inherent randomness of elementary chemical reactions in determining the dynamical behavior of the mechano-chemical network controlling actin polymerization and growth.

  12. The multiscale simulation of metal organic chemical vapor deposition growth dynamics of GaInP thin film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.

  13. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    Science.gov (United States)

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  14. [Studies on chemical compounds of Chlorella sorokiniana].

    Science.gov (United States)

    Zhang, Ling; Liu, Ping-huai; Wu, Jiao-na; Yang, Guo-fu; Suo, Yang-yang; Luo, Ning; Chen, Chen

    2015-04-01

    Chemical constituents of Chlorella sorokiniana were isolated and purified by repeated column chromatographies, over silicagel and Sephadex LH-20. Their structures were identified on the basis of physicochemical properties and spectroscopic data analysis. Five compounds were obtained from the petroleum ether extract of Chlorella sorokiniana, and their structures were identified as (22E, 24R)-5alpha, 3beta-epidioxiergosta-6, 22-dien-3beta-ol(1),(24S)-ergosta-7-en-3beta-ol(2), loliolide(3), stigmasta-7,22-dien-3beta,5alpha,6alpha-triol(4), and 3beta-hydroxy-5alpha,6alpha-epoxy-7-megastigmen-9-one(5). The main liposoluble fractions from Chlorella sorokiniana maiuly contain fatty acids, alkyl acids and olefine acids. Components 1-5 were isolated from the genus Chlorella for the first time.

  15. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT

    Science.gov (United States)

    Kirmizialtin, Serdal; Hennelly, Scott P.; Schug, Alexander; Onuchic, Jose N.; Sanbonmatsu, Karissa Y.

    2016-01-01

    Integration and calibration of molecular dynamics simulations with experimental data remains a challenging endeavor. We have developed a novel method to integrate chemical probing experiments with molecular simulations of RNA molecules by using a native structure-based model. Selective 2’-hydroxyl acylation by primer extension (SHAPE) characterizes the mobility of each residue in the RNA. Our method, SHAPE-FIT, automatically optimizes the potential parameters of the forcefield according to measured reactivities from SHAPE. The optimized parameter set allows simulations of dynamics highly consistent with SHAPE probing experiments. Such atomistic simulations, thoroughly grounded in experiment, can open a new window on RNA structure-function relations. PMID:25726467

  16. The imprint of satellite accretion on the chemical and dynamical properties of disc galaxies

    CERN Document Server

    Ruiz-Lara, T; Gibson, B K; Pérez, I; Florido, E; Minchev, I; Sánchez-Blázquez, P

    2015-01-01

    Aims: We study the effects of the cosmological assembly history on the chemical and dynamical properties of the discs of spiral galaxies as a function of radius. Methods: We make use of the simulated Milky-Way mass, fully-cosmological discs, from {\\tt RaDES} (Ramses Disc Environment Study). We analyse their assembly history by examining the proximity of satellites to the galactic disc, instead of their merger trees, to better gauge which satellites impact the disc. We present stellar age and metallicity profiles, Age-Metallicity Relation (AMR), Age-Velocity dispersion Relation (AVR), and Stellar Age Distribution (SAD) in several radial bins for the simulated galaxies. Results: Assembly histories can be divided into three different stages: i) a merger dominated phase, when a large number of mergers with mass ratios of $\\sim$1:1 take place (lasting $\\sim$3.2$\\pm$0.4 Gyr on average); ii) a quieter phase, when $\\sim$1:10 mergers take place (lasting $\\sim$4.4$\\pm$2.0 Gyr) - these two phases are able to kinematical...

  17. Universal imaging: Dissociative ionization of polyatomic molecules, chemical dynamics beamline 9.0.2

    International Nuclear Information System (INIS)

    A third endstation was recently added to the Chemical Dynamics beamline, designed to exploit the high flux broadband undulator light for a range of studies of reactive scattering, photochemistry and photoionization processes using time-of-flight mass spectroscopy coupled with position-sensitive detection. Two molecular beam sources are fixed at right angles, with the undulator light, or laser beams, intersecting the molecular beams at 45 degrees. To date, beamline experiments have included a study of dissociative photoionization of a variety of molecules including N2O and SF6. In this mode, a single molecular beam source is used, with the tunable undulator light inducing, in SF6 for example, the process SF6 → SF6+ + e- → SF5+ + F + e-. The SF5+ ions are accelerated up the flight tube, mass selected and detected as a function of position on a phosphor screen viewed by a CCD camera. The position directly reveals the recoil speed (or translational energy release) and angular distribution for the dissociative ionization process. Furthermore, this measurement is obtained for all recoil speeds and angles simultaneously. Such detailed angular information has not previously been obtained for dissociative ionization processes; typically ion time-of-flight profiles are deconvoluted to yield rough insight into the angular distributions. The recorded image is actually a 2-dimensional projection of the nascent 3-dimensional velocity distribution, but established tomographic techniques enable the authors to reconstruct the 3-D distribution

  18. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan-De [College of Chemistry, Sichuan University, Chengdu (China); Wang, Jing-Bo; Li, Juan-Qin; Tan, Ning-Xin; Li, Xiang-Yuan [College of Chemical Engineering, Sichuan University, Chengdu (China)

    2011-02-15

    The initiation mechanisms and kinetics of pyrolysis and combustion of n-dodecane are investigated by using the reactive molecular dynamics (ReaxFF MD) simulation and chemical kinetic modeling. From ReaxFF MD simulations, we find the initiation mechanisms of pyrolysis of n-dodecane are mainly through two pathways, (1) the cleavage of C-C bond to form smaller hydrocarbon radicals, and (2) the dehydrogenation reaction to form an H radical and the corresponding n-C{sub 12}H{sub 25} radical. Another pathway is the H-abstraction reactions by small radicals including H, CH{sub 3}, and C{sub 2}H{sub 5}, which are the products after the initiation reaction of n-dodecane pyrolysis. ReaxFF MD simulations lead to reasonable Arrhenius parameters compared with experimental results based on first-order kinetic analysis of n-dodecane pyrolysis. The density/pressure effects on the pyrolysis of n-dodecane are also analyzed. By appropriate mapping of the length and time from macroscopic kinetic modeling to ReaxFF MD, a simple comparison of the conversion of n-dodecane from ReaxFF MD simulations and that from kinetic modeling is performed. In addition, the oxidation of n-dodecane is studied by ReaxFF MD simulations. We find that formaldehyde molecule is an important intermediate in the oxidation of n-dodecane, which has been confirmed by kinetic modeling, and ReaxFF leads to reasonable reaction pathways for the oxidation of n-dodecane. These results indicate that ReaxFF MD simulations can give an atomistic description of the initiation mechanism and product distributions of pyrolysis and combustion for hydrocarbon fuels, and can be further used to provide molecular based robust kinetic reaction mechanism for chemical kinetic modeling of hydrocarbon fuels. (author)

  19. Dynamics, chemical properties and bioavailability of DOC in an early successional catchment

    Directory of Open Access Journals (Sweden)

    U. Risse-Buhl

    2013-01-01

    Full Text Available The dynamics of dissolved organic carbon (DOC have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany. Soil solution, upwelling ground water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages of 6.0–11.6 mg DOC L−1, despite small carbon stocks in either vegetation or soil of the early-successional catchment. The mean 14C age of DOC in upwelling ground water was 2600 to 2800 yr. Solid-state CPMAS 13C NMR revealed a higher proportion of aromatic compounds (32% and a lower proportion of carbohydrates (33% in upwelling ground water than in pond water (18% and 45%, respectively. The 14C age and 13C NMR spectra suggest that DOC was partly mobilized from charred organic matter of the Quaternary substrate. In an experimental 70-days incubation experiment, 20% of the total DOC was found to be bioavailable, irrespective of the water type. Origin of microbial communities (enriched from soil, stream sediment or pond water had only marginal effects on overall DOC utilization. Overall, these data suggest that the old DOC can support microbial activity during early ecosystem succession to some extent, although the largest fraction is recalcitrant DOC that is exported from the catchment once it has been mobilized.

  20. Dynamics, chemical properties and bioavailability of DOC in an early successional catchment

    Directory of Open Access Journals (Sweden)

    U. Risse-Buhl

    2013-07-01

    Full Text Available The dynamics of dissolved organic carbon (DOC have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany. Soil solution, upwelling ground water, stream water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages: 6.0–11.6 mg DOC L–1, despite small carbon stocks in both vegetation and soil of the catchment. Solid-state CPMAS 13C NMR of DOC in upwelling ground water revealed a higher proportion of aromatic compounds (32% and a lower proportion of carbohydrates (33% than in pond water (18% and 45%, respectively. The average 14C age of DOC in upwelling ground water was 2600 to 2900 yr, while organic matter of the Quaternary substrate of the catchment had a 14C age of 3000 to 16 000 yr. Both the 14C age data and 13C NMR spectra suggest that DOC partly derived from organic matter of the Quaternary substrate (about 40 to 90% of the C in the DOC, indicating that both recent and old C of the DOC can support microbial activity during early ecosystem succession. However, in a 70 day incubation experiment, only about 11% of the total DOC was found to be bioavailable. This proportion was irrespective of the water type. Origin of the microbial communities within the catchment (enriched from soil, stream sediment or pond water also had only a marginal effect on overall DOC utilization.

  1. Recent achievements in chemical studies of heaviest elements

    Science.gov (United States)

    Gäggeler, H. W.

    2011-09-01

    Discovery of heavy elements up to atomic number 118 at FLNR in Dubna has paved the way to also extend chemical knowledge to heavier members of the periodic table. Recent studies on the chemical properties of Cn and element 114 are summarized that have been performed at FLNR in Dubna using the fusion reactions 48Ca + 242/244Pu.

  2. Recent achievements in chemical studies of heaviest elements

    International Nuclear Information System (INIS)

    Discovery of heavy elements up to atomic number 118 at FLNR in Dubna has paved the way to also extend chemical knowledge to heavier members of the periodic table. Recent studies on the chemical properties of Cn and element 114 are summarized that have been performed at FLNR in Dubna using the fusion reactions 48Ca + 242/244Pu.

  3. Dynamics of chemical vapor sensing with MoS2 using 1T/2H phase contacts/channel

    Science.gov (United States)

    Friedman, Adam L.; Perkins, F. Keith; Hanbicki, Aubrey T.; Culbertson, James C.; Campbell, Paul M.

    2016-06-01

    Ultra-thin transition metal dichalcogenides (TMDs) films show remarkable potential for use in chemical vapor sensing devices. Electronic devices fabricated from TMD films are inexpensive, inherently flexible, low-power, amenable to industrial-scale processing because of emergent growth techniques, and have shown high sensitivity and selectivity to electron donor analyte molecules important for explosives and nerve gas detection. However, for devices reported to date, the conductance response to chemical vapors is dominated by Schottky contacts, to the detriment of the sensitivity, selectivity, recovery, and obscuring their intrinsic behavior. Here, we use contact engineering to transition the contacts in a MoS2 FET-based chemical vapor sensor to the 1T conducting phase, while leaving the channel in the 2H semiconducting state, and thus providing Ohmic contacts to the film. We demonstrate that the resultant sensors have much improved electrical characteristics, are more selective, and recover fully after chemical vapor exposure--all major enhancements to previously MoS2 sensor devices. We identify labile nitrogen-containing electron donors as the primary species that generate a response in MoS2, and we study the dynamics of the sensing reactions, identifying two possible qualitative models for the chemical sensing reaction.

  4. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh

    2015-10-22

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  5. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath.

    Science.gov (United States)

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  6. Dynamics of chemical elements in the fermentation process of ethanol production

    International Nuclear Information System (INIS)

    Brazil has become the largest producer of biomass ethanol derived from sugar cane. The industrial production is based on the fermentation of sugar cane juice by yeast, inside of large volume vats, in a fed-batch process that recycles yeast cells. To study the dynamics of chemical elements in each operating cycle, five stages of the fermentation process were considered: must, yeast suspension, wine, non-yeast wine and yeast cream. For this, a mass balance of the terrigenous elements, Ce, Co, Cs, Eu, Fe, Hf, La, Na, Sc, Sm, and Th, and the sugar cane plant elements, Br, K, Rb, and Zn, were established in fermentation vats of an industrial scale unit, with sampling undertaken during different climatic conditions (dry and rainy periods). A similar distribution of the sugar cane characteristics elements was found for the stages analysed, while for the terrigenous elements a trend of accumulation in the yeast cream was observed. Preferential absorption of Br, K, Rb, and Zn by yeast cells was indicated by the smaller concentrations observed in yeast suspension than in yeast cream. (author)

  7. Personal Chemical Exposure informatics

    Science.gov (United States)

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  8. Chemical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem...

  9. VUV studies of molecular photofragmentation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    White, M.G. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  10. In vivo Dynamic Studies of Brain Metabolism

    Institute of Scientific and Technical Information of China (English)

    LUO Xuechun; JIANG Yufeng; ZHANG Riqing

    2005-01-01

    Nuclear magnetic resonance (NMR) can noninvasively monitor intracellular concentrations and kinetic properties of numerous inorganic and organic compounds. A 31P NMR surface coil was used in vivo to dynamically measure phosphocreatine (PCr), adenosine triphosphate (ATP), and intracellular inorganic phosphate (Pi) levels in mouse brain during ischemia-reperfusion to study the damage of cerebral tissues caused by ischemia and effects of herbs on cerebral energy metabolism during ischemia-reperfusion. The study provides dynamic brain energy metabolism data during different periods. The data show that some herbs more rapidly increase the PCr level during the recovery phase than in the control group.

  11. Feasibility and effectiveness of chemical bile duct embolization for chemical hepatectomy:a preliminary study

    Institute of Scientific and Technical Information of China (English)

    Fu-Yu Li; Ning Li; Li-Sheng Jiang; Jing-Qiu Cheng; Nan-Sheng Cheng; Xing-Wu Wu; Sheng He

    2006-01-01

    BACKGROUND: The high operative risk of hepatectomy for specially located intrahepatic stones is still a problem to be solved. This study was undertaken to investigate the feasibility and effectiveness of chemical bile duct embolization for chemical hepatectomy. METHODS: Oxybenzene or absolute ethanol plus N-butyl-cyanoacrylate was employed for embolization. The feasibility, effectiveness and mechanism of chemical hepatectomy were preliminarily analyzed histologically or by Fas, TIMP-1, TGF-β1, and collagenⅠ. RESULTS:Oxybenzene plus cyanonacrylate can preferably destroy and embolize the intrahepatic biliary duct, leading to the disappearance of hepatocytes in the periphery of embolized lobe and the achievement of effective chemical hepatectomy. The expressions of Fas, TIMP-1 and TGF-β1 in oxybenzene embolism group (88.90±38.10, 619.43± 183.42, 185.22±70.39) and ethanol embolism group (72.39± 29.51, 407.55±134.74, 163.56±51.75) were higher than those of biliary duct-ligated group (26.31±12.07, 195.31±107.67, 74.84±40.73) (P CONCLUSION: The effect of chemical hepatectomy may be achieved by chemical bile duct embolization.

  12. Structural dynamics in complex liquids studied with multidimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-31

    The development of new sustainable energy sources is linked to our understanding of the molecular properties of water and aqueous solutions. Energy conversion, storage, and transduction processes, particularly those that occur in biology, fuel cells, and batteries, make use of water for the purpose of moving energy in the form of charges and mediating the redox chemistry that allows this energy to be stored as and released from chemical bonds. To build our fundamental knowledge in this area, this project supports work in the Tokmakoff group to investigate the molecular dynamics of water’s hydrogen bond network, and how these dynamics influence its solutes and the mechanism of proton transport in water. To reach the goals of this grant, we developed experiments to observe molecular dynamics in water as directly as possible, using ultrafast multidimensional vibrational spectroscopy. We excite and probe broad vibrational resonances of water, molecular solutes, and protons in water. By correlating how molecules evolve from an initial excitation frequency to a final frequency, we can describe the underlying molecular dynamics. Theoretical modeling of the data with the help of computational spectroscopy coupled with molecular dynamics simulations provided the atomistic insight in these studies.

  13. Geochemical and fluid dynamic investigations into the nature of chemical heterogeneity in the earth's mantle. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Hauri, E.H.

    1992-09-01

    Variations in the abundances of elements and radiogenic isotopes in mantle derived periodotites and volcanic rocks are chemical integrals over time, space, and process, which ultimately contain information about the role of convection in the earth's mantle in creating, maintaining, and destroying geochemical heterogeneities. Successful inversion of these integrals extensive of these integrals requires extensive knowledge of the geochemical behavior of elements, the length scales of chemical variability, the evolution with time of geologic systems, the physical properties of mantle rocks, and the driving forces of phenomena which govern heat and mass transport in a dynamic earth. This dissertation attempts to add to this knowledge by examining the trace element and isotope geochemistry of mantle periodotites and oceanic island basalts, and by studying aspects of the flow of viscous fluids driven by thermal buoyancy.

  14. Chemical kinetics with electrical and gas dynamics modelization for NOx removal in an air corona discharge

    International Nuclear Information System (INIS)

    A non-stationary reactive gas dynamics model in a mono-dimensional geometry, including radial mass diffusion, gas temperature variation and chemical kinetics, is developed in this paper. The aim is to analyse the spatio-temporal evolution of the main neutral species involved in a corona discharge used for NO pollution control in polluted air at atmospheric pressure and ambient temperature. The present reactive gas dynamics model takes into account 16 neutral chemical species (including certain metastable species) reacting following 110 selected chemical reactions. The initial concentration of each neutral species is obtained from a 1.5D electrical discharge model. The gas temperature variations are due to direct Joule heating during the discharge phase, and also result from the delayed heating due to the relaxation of the vibrational energy into a random thermal energy during the post-discharge phase. The simulation conditions are those of an existing experimental setup (anode voltage of 10 kV in the case of a point to plane geometry with an interelectrode distance of 10 mm). The obtained results show that the diffusion phenomena and the gas temperature rise affect quite well the gas reactivity and the neutral species evolution. This allows us to better understand the different reaction processes and transport phenomena affecting the NO concentration magnitude inside the discharge channel. (author)

  15. Chemical Arsenal for the Study of O-GlcNAc

    Directory of Open Access Journals (Sweden)

    Eun J. Kim

    2011-02-01

    Full Text Available The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc modification (O-GlcNAcylation on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT and β-D-N-acetylglucosaminidase (OGA. Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.

  16. Universal imaging: Dissociative ionization of polyatomic molecules, chemical dynamics beamline 9.0.2

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.; Chen, D.; Suits, A.G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A third endstation was recently added to the Chemical Dynamics beamline, designed to exploit the high flux broadband undulator light for a range of studies of reactive scattering, photochemistry and photoionization processes using time-of-flight mass spectroscopy coupled with position-sensitive detection. Two molecular beam sources are fixed at right angles, with the undulator light, or laser beams, intersecting the molecular beams at 45{degrees}. To date, beamline experiments have included a study of dissociative photoionization of a variety of molecules including N{sub 2}O and SF{sub 6}. In this mode, a single molecular beam source is used, with the tunable undulator light inducing, in SF{sub 6} for example, the process SF{sub 6} {r_arrow} SF{sub 6}{sup +} + e{sup {minus}} {r_arrow} SF{sub 5}{sup +} + F + e{sup {minus}}. The SF{sub 5}{sup +} ions are accelerated up the flight tube, mass selected and detected as a function of position on a phosphor screen viewed by a CCD camera. The position directly reveals the recoil speed (or translational energy release) and angular distribution for the dissociative ionization process. Furthermore, this measurement is obtained for all recoil speeds and angles simultaneously. Such detailed angular information has not previously been obtained for dissociative ionization processes; typically ion time-of-flight profiles are deconvoluted to yield rough insight into the angular distributions. The recorded image is actually a 2-dimensional projection of the nascent 3-dimensional velocity distribution, but established tomographic techniques enable the authors to reconstruct the 3-D distribution.

  17. Automatic differentiation tools in the dynamic simulation of chemical engineering processes

    Directory of Open Access Journals (Sweden)

    Castro M.C.

    2000-01-01

    Full Text Available Automatic Differentiation is a relatively recent technique developed for the differentiation of functions applicable directly to the source code to compute the function written in standard programming languages. That technique permits the automatization of the differentiation step, crucial for dynamic simulation and optimization of processes. The values for the derivatives obtained with AD are exact (to roundoff. The theoretical exactness of the AD comes from the fact that it uses the same rules of differentiation as in differential calculus, but these rules are applied to an algorithmic specification of the function rather than to a formula. The main purpose of this contribution is to discuss the impact of Automatic Differentiation in the field of dynamic simulation of chemical engineering processes. The influence of the differentiation technique on the behavior of the integration code, the performance of the generated code and the incorporation of AD tools in consistent initialization tools are discussed from the viewpoint of dynamic simulation of typical models in chemical engineering.

  18. Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description

    Science.gov (United States)

    Ceraolo, M.; Miulli, C.; Pozio, A.

    A simplified dynamical model of a fuel cell of the proton exchange membrane (PEM) type, based on physical-chemical knowledge of the phenomena occurring inside the cell has been developed by the authors. The model has been implemented in the MATLAB/SIMULINK environment. Lab tests have been carried out at ENEA's laboratories; and a good agreement has been found between tests and simulations, both in static and dynamic conditions. In a previous study [M. Ceraolo, R. Giglioli, C. Miulli, A. Pozio, in: Proceedings of the 18th International Electric Fuel Cell and Hybrid Vehicle Symposium (EVS18), Berlin, 20-24 October 2001, p. 306] the basic ideas of the model, as well as its experimental validation have been published. In the present paper, the full implementation of the model is reported in detail. Moreover, a procedure for evaluating all the needed numerical parameters is presented.

  19. Numerical studies on dynamic behaviour of pipelines

    International Nuclear Information System (INIS)

    Dynamic excitation due to a pipe break can cause pipe to abruptly displace and hit the components, instrumentation and equipment nearby. In order to minimize the extensive damage caused by such pipe whips in a nuclear power plant, different types of restraints and supports are designed for the pipelines. Here, structural dynamic behaviour of pipelines is studied with finite element method. A relatively short pipe line section with one bend and one restraint and rigidly fixed from its other end is chosen as a test case. The usability of different types of elements provided by Abaqus finite element code in modelling the pipe, restraint and adjacent civil structure is tested

  20. Study on scattering properties of tissues with hyperosmotic chemical agents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Optical properties of biological tissue are variable due to the changes of micro-structures and scattering constituents after hyperosmotic chemical agents permeates into tissue. The changes of optical properties of biological tissue are due to the refractive indices matching between the scatterers with high refractive index and the ground substances, which reduce scattering of tissue. The main reasons are that permeated semipermeable chemical agents with higher refractive index than the ground substances of tissuemakes the refractive index of ground substances of tissue higher by the enhancement of the permeated concentration. We studied on the collimated transmittance changes of light penetrating biological tissue after the hyperosmotic chemical agents administrates with different concentration.

  1. Nonlinear Stochastic Dynamics of Complex Systems, I: A Chemical Reaction Kinetic Perspective with Mesoscopic Nonequilibrium Thermodynamics

    CERN Document Server

    Qian, Hong

    2016-01-01

    We distinguish a mechanical representation of the world in terms of point masses with positions and momenta and the chemical representation of the world in terms of populations of different individuals, each with intrinsic stochasticity, but population wise with statistical rate laws in their syntheses, degradations, spatial diffusion, individual state transitions, and interactions. Such a formal kinetic system in a small volume $V$, like a single cell, can be rigorously treated in terms of a Markov process describing its nonlinear kinetics as well as nonequilibrium thermodynamics at a mesoscopic scale. We introduce notions such as open, driven chemical systems, entropy production, free energy dissipation, etc. Then in the macroscopic limit, we illustrate how two new "laws", in terms of a generalized free energy of the mesoscopic stochastic dynamics, emerge. Detailed balance and complex balance are two special classes of "simple" nonlinear kinetics. Phase transition is intrinsically related to multi-stability...

  2. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure

    Science.gov (United States)

    Mathews, David H.; Disney, Matthew D.; Childs, Jessica L.; Schroeder, Susan J.; Zuker, Michael; Turner, Douglas H.

    2004-01-01

    A dynamic programming algorithm for prediction of RNA secondary structure has been revised to accommodate folding constraints determined by chemical modification and to include free energy increments for coaxial stacking of helices when they are either adjacent or separated by a single mismatch. Furthermore, free energy parameters are revised to account for recent experimental results for terminal mismatches and hairpin, bulge, internal, and multibranch loops. To demonstrate the applicability of this method, in vivo modification was performed on 5S rRNA in both Escherichia coli and Candida albicans with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, dimethyl sulfate, and kethoxal. The percentage of known base pairs in the predicted structure increased from 26.3% to 86.8% for the E. coli sequence by using modification constraints. For C. albicans, the accuracy remained 87.5% both with and without modification data. On average, for these sequences and a set of 14 sequences with known secondary structure and chemical modification data taken from the literature, accuracy improves from 67% to 76%. This enhancement primarily reflects improvement for three sequences that are predicted with <40% accuracy on the basis of energetics alone. For these sequences, inclusion of chemical modification constraints improves the average accuracy from 28% to 78%. For the 11 sequences with <6% pseudoknotted base pairs, structures predicted with constraints from chemical modification contain on average 84% of known canonical base pairs. PMID:15123812

  3. Weak Dynamic Non-Emptiability and Persistence of Chemical Kinetics Systems

    CERN Document Server

    Johnston, Matthew D

    2010-01-01

    A frequently desirable characteristic of chemical kinetics systems is that of persistence, the property that no initially present species may tend toward extinction. It is known that solutions of deterministically modelled mass-action systems may only approach portions of the boundary of the positive orthant which correspond to semi-locking sets (alternatively called siphons). Consequently, most recent work on persistence of these systems has been focused on these sets. In this paper, we focus on a result which states that, for a conservative mass-action system, persistence holds if every critical semi-locking set is dynamically non-emptiable and the system contains no nested locking sets. We will generalize this result by introducing the notion of a weakly dynamically non-emptiable semi-locking set and making novel use of the well-known Farkas' Lemma. We will also connect this result to known results regarding complex balanced systems and systems with facets.

  4. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H2 R reactions where RH is CH4, C2H6, or C3H8, (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  5. Cutaneous chemical burns in children - a comparative study.

    Science.gov (United States)

    Hardwicke, Joseph; Bechar, Janak; Bella, Husam; Moiemen, Naiem

    2013-12-01

    Exposure to chemicals is an unusual causation of cutaneous burns in children. The aim of this study is to look at childhood chemical burns and compare this to adult chemical burns from the same population. A total of 2054 patients were referred to the pediatric burns unit during the study period. This included 24 cutaneous chemical burns, equating to an incidence of 1.1%. Over half of the injuries occurred in the domestic setting. The mean total body surface area (TBSA) affected was 1.9%. When compared to a cohort of adult patients from the same population with cutaneous chemical burns, the TBSA affected was identical (1.9%) but distribution favored the buttock and perineum in children, rather than the distal lower limb in adults. Children presented earlier, had lower rates of surgical intervention and had a shorter length of stay in hospital (p Chemical burns in children are rare, but are becoming more common in our region. It is important to be aware of the characteristic distribution, etiology and need to identify children at risk of child protection issues.

  6. Population dynamics of earthworms in relation to soil physico-chemical parameters in agroforestry systems of Mizoram, India.

    Science.gov (United States)

    Lalthanzara, H; Ramanujam, S N; Jha, L K

    2011-09-01

    Earthworm population dynamics was studied in two agroforestry systems in the tropical hilly terrain of Mizoram, north-east India, over a period of 24 months, from July 2002 to June 2004. Two sites of agroforestry situated at Sakawrtuichhun (SKT) and Pachhunga University College (PUC) campus, Aizawl, having pineapple as the main crop, were selected for detail studies on population dynamics. Five of the total twelve species of earthworm reported from the state were recorded in the study sites. The density of earthworm ranged from 6 to 243 ind.m(-2) and biomass from 3.2 - 677.64 g.m(-2) in SKT. Comparatively the density and biomass in PUC, which is at relatively higher altitude were lowerwith a range of 0 to 176 ind.m(-2) and biomass from 0 - 391.36 g.m(-2) respectively. Population dynamics of earthworm was significantly correlated with rainfall and physical characters of the soil. Earthworm biomass was significantly affected by rainfall and moisture content of the soil. The influence of chemical factors was relatively less.

  7. A chemical EOR benchmark study of different reservoir simulators

    Science.gov (United States)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strengths and limitations of each simulator for a given chemical EOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms; it only focuses on the process modeling comparison.

  8. Continuous game dynamics: an experimental study.

    Energy Technology Data Exchange (ETDEWEB)

    Patelli, P. (Palolo); Sato, Yuzuru

    2004-01-01

    In this paper we study an experiment with human agents strategically interacting in a game characterized by continuous time and continuous strategy space. The research is focused in studying the agents interaction dynamic under different experimental settings. The agents play a two person game that is an extension of the classic Cournot duopoly. Having agents making decision continuously allows us to track the temporal structure of strategy evolution very precisely. We can follow the agents continuous behavior evolution avoiding the data under-sampling. To our knowledge this is the first attempt to approach experimentally the continuous time decision making. We also emphasize that the focus of our work is not the Cournot model but rather the more general problem of studying the agents strategic interaction dynamic in continuous space time. Flaming the problem as the well studied Cournot Duopoly would be a good starting point. In economics dynamics studies the oligopoly model literature in both discrete and continuous time is one of the richest. There is also a vast literature in experimental economics about repeated games in general and more specifically in duopoly/oligopoly models. Cox and Walker studied whether subjects can learn to play the Cournot Duopoly strategies comparing the experimental results with the theoretical prediction of learning models. The Cox Walker experiment differs from our settings because it is in discrete time and is an evolutionary dynamics framework through a random matching mechanism of the experimental subjects. From the theoretical perspective many works have been focused in studying the Cournot model in a dynamical settings. Okuguchi and Szidarovsky formulated a continuous time version of the Cournot Oligopoly with multiproduct firms. They analyzed the stability of the equilibrium and proved that it is stable, under certain conditions, independently from the value of the adjustments. Chiarella and Khomin extended this analysis to

  9. Dynamic optimization case studies in DYNOPT tool

    Science.gov (United States)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.

  10. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  11. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  12. The Dynamic Mechanism Analysis of Chemical Fiber Industry's Industrial Cluster in Zhejiang Province---A Case Study of Xiaoshan District%浙江省化纤产业集群动力机制分析--以萧山区为例

    Institute of Scientific and Technical Information of China (English)

    金平斌; 项凯旋

    2016-01-01

    Being an economic phenomenon, industrial cluster should be studied not only in the way of theoretical study, but also based on the microscopic actual fact to explore practical the-ory and local development distinctiveness. This article focuses on the dynamical study of industrial cluster. On the basis of teasing out former theoretical research, this work based on the typical cluster, the Xiaoshan chemical fiber industry cluster, to discuss the main dynamical factor through the way of entrepreneur inter-view, questionnaire designing and grading. The study reviews that, the government factor, entrepreneur spirit, marketing environment and enterprise's competition and cooperation mechanism are the major motive power. Entrepreneur spirit is the unique and core advantage of Xiaoshan's chemical fiber industry cluster, and is al-so the internal motivation of honest market atmosphere and smooth cooperation between enterprises. The government has made great contribution in this area by providing the hardware and software support and guiding the wave.%产业集群作为一种经济现象,在理论研究之外,亦要立足微观实际,探索理论实用性及地方发展特异性。本文聚焦于产业集群的动力研究,在梳理国内外理论研究的基础上,本文立足典型集群—萧山化纤产业集群,从微观企业主体的角度,通过企业家访谈和设计问卷、评分的方式,对萧山化纤集群能够形成的主要动力因素进行了探讨。研究揭示,政府因素、企业家精神、市场环境和企业竞合机制是主要的集群动力。企业家精神是萧山化纤产业集群形成的独有、核心优势,良好诚信的市场氛围和通畅的企业间竞合是集群的内在动力,政府在其中提供软硬件支持、以市场化手段引导,平抑波动,也起到了至关重要的作用。

  13. The modelling of dynamic chemical state of paper machine unit operations; Dynaamisen kemiallisen tilan mallintaminen paperikoneen yksikkoeoperaatioissa - MPKT 04

    Energy Technology Data Exchange (ETDEWEB)

    Ylen, J.P.; Jutila, P. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1998-12-31

    The chemical state of paper mass is considered to be a key factor to the smooth operation of the paper machine. There are simulators that have been developed either for dynamic energy and mass balances or for static chemical phenomena, but the combination of these is not a straight forward task. Control Engineering Laboratory of Helsinki University of Technology has studied the paper machine wet end phenomena with the emphasis on pH-modelling. VTT (Technical Research Centre of Finland) Process Physics has used thermodynamical modelling successfully in e.g. Bleaching processes. In this research the different approaches are combined in order to get reliable dynamical models and modelling procedures for various unit operations. A flexible pilot process will be constructed and different materials will be processed starting from simple inorganic substances (e.g. Calcium carbonate and distilled water) working towards more complex masses (thick pulp with process waters and various reagents). The pilot process is well instrumented with ion selective electrodes, total calcium analysator and all basic measurements. (orig.)

  14. Motif analysis for small-number effects in chemical reaction dynamics

    Science.gov (United States)

    Saito, Nen; Sughiyama, Yuki; Kaneko, Kunihiko

    2016-09-01

    The number of molecules involved in a cell or subcellular structure is sometimes rather small. In this situation, ordinary macroscopic-level fluctuations can be overwhelmed by non-negligible large fluctuations, which results in drastic changes in chemical-reaction dynamics and statistics compared to those observed under a macroscopic system (i.e., with a large number of molecules). In order to understand how salient changes emerge from fluctuations in molecular number, we here quantitatively define small-number effect by focusing on a "mesoscopic" level, in which the concentration distribution is distinguishable both from micro- and macroscopic ones and propose a criterion for determining whether or not such an effect can emerge in a given chemical reaction network. Using the proposed criterion, we systematically derive a list of motifs of chemical reaction networks that can show small-number effects, which includes motifs showing emergence of the power law and the bimodal distribution observable in a mesoscopic regime with respect to molecule number. The list of motifs provided herein is helpful in the search for candidates of biochemical reactions with a small-number effect for possible biological functions, as well as for designing a reaction system whose behavior can change drastically depending on molecule number, rather than concentration.

  15. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    , mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... in chemical and biochemical reactors but that the user must be well aware of the shortcomings with the applied models....... the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures...

  16. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  17. Study of dynamic economic system with aftereffects

    Institute of Scientific and Technical Information of China (English)

    艾文国; 葛晓婷; 高艳茹

    2004-01-01

    Economic system has phase characteristics during its developments, and certain decisions must be made during each stage, thus forming a multi-stage dynamic decision making economic system. As to this system, previous decisions have some aftereffects on its future developments, which has fundamentally contradicts the presupposition of programming methodology in Operation Research. In order to solve the problems arising from optimized theory research about the economic system, this paper defines the concept of dynamic system with aftereffects, points out the difference between its aftereffects and those of traditional stochastic processes,studies how the past decision effects on the value of optimal utility function, and gives an example on this base to illustrate its application in exploitation of oilfield.

  18. Do High School Chemistry Examinations Inhibit Deeper Level Understanding of Dynamic Reversible Chemical Reactions?

    Science.gov (United States)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-01-01

    Background and purpose: Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers…

  19. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made. PMID:1659857

  20. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  1. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential.

    Science.gov (United States)

    Niu, Yu; Meng, Qiu-Xia

    2013-01-01

    This paper presents the chemical and preclinical anticancer research on Hedyotis diffusa Willd. in detail, one of the most renowned herbs often prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicine. Anthraquinones, flavonoids, and terpenoids constitute the majority of the 69 compounds that have been isolated and identified from H. diffusa. The anticancer effects of the methanolic, ethanolic, and aqueous extracts in various preclinical cancer models have been described. This review also summarized the anticancer activity of constituents of the herb and the mechanisms of action. All the studies suggest that H. diffusa has enormous potential in the therapy of cancer and warrants further chemical and pharmacological investigation. PMID:23600735

  2. Identity method-a new tool for studying chemical fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Mackowiak, M., E-mail: majam@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics (Poland)

    2012-06-15

    Event-by-event fluctuations of the chemical composition of the hadronic system produced in nuclear collisions are believed to be sensitive to properties of the transition between confined and deconfined strongly interacting matter. In this paper a new technique for the study of chemical fluctuation, the identity method, is introduced and its features are discussed. The method is tested using data on central PbPb collisions at 40 A GeV registered by the NA49 experiment at the CERN SPS.

  3. A "partitioned leaping" approach for multiscale modeling of chemical reaction dynamics

    CERN Document Server

    Harris, L A; Clancy, Paulette; Harris, Leonard A.

    2006-01-01

    We present a novel multiscale simulation approach for modeling stochasticity in chemical reaction networks. The approach seamlessly integrates exact-stochastic and "leaping" methodologies into a single *partitioned leaping* algorithmic framework. Distinguishing characteristics of the method include automatic, dynamic and theoretically justifiable time step determination and timescale separation procedures that utilize concepts underlying the tau-leap approach [D.T. Gillespie, J. Chem. Phys. 115, 1716 (2001); D.T. Gillespie and L.R. Petzold, J. Chem. Phys. 119, 8229 (2003)] and require the definition of only three model-independent parameters. Both procedures are based on an individual (but not independent) consideration of reactions, a subtle yet significant ideological concept used in the development of previous exact-stochastic simulation methods [D.T. Gillespie, J. Comput. Phys. 22, 403 (1976); M.A. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876 (2000)]. The result is a method that correctly accounts for ...

  4. Study of the chemical sputtering in Tore-Supra

    International Nuclear Information System (INIS)

    The work presented in this thesis focuses on the interactions between energetic particles coming from thermonuclear plasma and the inner components of a fusion machine. This interaction induces two major problems: erosion of the wall, and tritium retention. This report treats the erosion of carbon based materials. The first part is devoted to chemical sputtering, that appears to be the principal erosion mechanism, compared to physical sputtering and radiation enhanced sublimation that both can be limited. Chemical sputtering has been studied in situ in the tokamak Tore-Supra for ohmic and lower hybrid (LH) heated discharges, by means of mass spectrometry and optical spectroscopy. We have shown that it is necessary to take into account both methane and heavier hydrocarbons (C2Dx and C3Dy) in the determination of the chemical sputtering yield. It is found that for the ohmic discharges, the sputtering yield of CD4 (YCD4) is highly flux (φ) dependent, showing a variation of the form: YCD4 ∝ φ-0.23. The experimental study also reveals that an increase of the surface temperature induces an augmentation of YCD4. The interpretation and the modelling of the experimental results have been performed with a Monte Carlo code (BBQ. In the second part of this work, we have developed and installed an infrared spectroscopy diagnostic in the 0.8-1.6, μm wavelength range dedicated to the measurement of surface temperature, and the identification of atomic and molecular lines emitted during plasma/wall interactions. In the third part, we present the feasibility study of an in situ tungsten deposition process at low temperature(<80 deg C) in order to suppress the chemical sputtering. This study shows that, with this method call Plasma Assisted Chemical Vapor Deposition (PACVD), we are able to coat the whole inner vessel of a tokamak with 1 μm of tungsten. (author)

  5. Experimental Study of Chemical Flooding Using New Chemical Component to Enhance Oil Recovery

    Directory of Open Access Journals (Sweden)

    O. Arjmand

    2012-08-01

    Full Text Available The objective of this research study is to introduce of new chemical component to Enhanced Oil Recovery (EOR. Crude Terephthalic Acid (CTA as a macromolecule and one of the isomers of the three phthalic acids is an intermediate product of petrochemical industries which can be used as an alternative to the traditional Hydrolyzed Poly Acryl Amide (HPAM. Crude Oil samples from an Iranian oil field were selected to be used during the flooding tests. Comparison between water flooding and CTA flooding as a secondary oil recovery process revealed that the recovery was improved by 10% when CTA was used. The effect of various injection rates and different concentration of chemical solutions on the recovery factor have been checked and the results showed that high CTA concentrations and low injection rates are the optimum criteria for higher oil recovery efficiency and this chemical as a viscous surfactant and IFT reducer, would be stable in extreme conditions of high salinity and high temperature and therefore, it can be used for reservoirs with high salinity and temperature, too.

  6. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    Directory of Open Access Journals (Sweden)

    Kelly Ortega Cisneros

    Full Text Available Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean

  7. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons

    Indian Academy of Sciences (India)

    P K Chattaraj; B Maiti; U Sarkar

    2003-06-01

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study the dynamics of reactivity parameters during a collision between protons and He atoms in different electronic states for various projectile velocities and impact parameters. Dynamical variants of the principles of maximum hardness, minimum polarizability and maximum entropy are found to be operative.

  8. Experimental study on dynamic gas adsorption

    Institute of Scientific and Technical Information of China (English)

    Qin Yueping; Wang Yaru; Yang Xiaobin; Liu Wei; Luo Wei

    2012-01-01

    In order to predict the actual adsorption amount as gas adsorption reaches the equilibrium,this research designed a dynamic gas adsorption experiment under constant temperature and pressure,and also studied the isopiestic adsorption characteristics of coal samples with same quality but different sizes.Through the experiment,the study found the adsorption-time changing relationships under different pressures of four different size samples.After regression analysis,we obtained the functional relationship between adsorption and time.According to this,the research resulted in the actual adsorption amount when gas adsorption reaches the equilibrium.In addition,the current study obtained the relationship between adsorption and pressure as well as the effect of the coal size to the adsorption rate.These results have great theoretical and practical significance for the prediction of gas amount in coal seam and gas adsorption process.

  9. NMR Dynamic Studies in Living Systems

    Institute of Scientific and Technical Information of China (English)

    闫永彬; 范明杰; 罗雪春; 张日清

    2002-01-01

    Nuclear magnetic resonance (NMR) can noninvasively monitor the intracellular concentrations and kinetic properties of numerous inorganic and organic compounds. These characteristics have made NMR a useful tool for dynamic studies of living systems. Applications of NMR to living systems have successfully extended to many areas, including studies of metabolic regulation, ion transport, and intracellular reaction rates in vivo. The major purpose of this review is to summarize the results that can be obtained by modern NMR techniques in living systems. With the advances of new techniques, NMR measurements of various nuclides have been performed for specific physiological purposes. Although some technical problems still remain and there are still discrepancies between NMR and traditional biochemical results, the abundant and unique information obtained from NMR spectra suggests that NMR will be more extensively applied in future studies of living systems. The fast development of these new techniques is providing many new NMR applications in living systems, as well as in structural biology.

  10. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A. [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Mendive-Tapia, David [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France)

    2015-03-07

    Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.

  11. A study of suitability of some conventional chemical preservatives and natural antimicrobial compounds in allelopathic research

    Directory of Open Access Journals (Sweden)

    Plamen Marinov-Serafimov

    2015-12-01

    Full Text Available The impact of three conventional chemical preservatives (sodium benzoate, potassium sorbate and salicylic acid and a natural antimicrobial compound (thymol on germination, dynamics of growth and accumulation of fresh biomass (g per seedling of Lactuca sativa L., cultivar Great Lakes, was studied under laboratory conditions. The tested conventional chemical preservatives demonstrated strong inhibitory effects (GI 27.1-0.0% on germination and initial development of L. sativa, and they cannot be used in allelopathic studies in the laboratory. An addition of thymol at 0.5-1.0 ‰ concentration showed no inhibitory effect (GI varied 81.7-84.6% on germination and initial development of L. sativa. Thymol can therefore be used as a natural antimicrobial compound in allelopathic studies in the laboratory.

  12. Studies on modelling of bubble driven flows in chemical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grevskott, Sverre

    1997-12-31

    Multiphase reactors are widely used in the process industry, especially in the petrochemical industry. They very often are characterized by very good thermal control and high heat transfer coefficients against heating and cooling surfaces. This thesis first reviews recent advances in bubble column modelling, focusing on the fundamental flow equations, drag forces, transversal forces and added mass forces. The mathematical equations for the bubble column reactor are developed, using an Eulerian description for the continuous and dispersed phase in tensor notation. Conservation equations for mass, momentum, energy and chemical species are given, and the k-{epsilon} and Rice-Geary models for turbulence are described. The different algebraic solvers used in the model are described, as are relaxation procedures. Simulation results are presented and compared with experimental values. Attention is focused on the modelling of void fractions and gas velocities in the column. The energy conservation equation has been included in the bubble column model in order to model temperature distributions in a heated reactor. The conservation equation of chemical species has been included to simulate absorption of CO{sub 2}. Simulated axial and radial mass fraction profiles for CO{sub 2} in the gas phase are compared with measured values. Simulations of the dynamic behaviour of the column are also presented. 189 refs., 124 figs., 1 tab.

  13. The dynamical and chemical evolution of dwarf spheroidal galaxies with GEAR

    Science.gov (United States)

    Revaz, Y.; Jablonka, P.

    2012-02-01

    We present the fully parallel chemo-dynamical Tree/SPH code GEAR, which allows us to perform high resolution simulations with detailed chemical diagnostics. Starting from the public version of Gadget-2, we included the complex treatment of the baryon physics: gas cooling, star formation law, chemical evolution, and supernova feedback. We qualified the performances of GEAR in the case of dwarf spheroidal galaxies (dSphs) galaxies. Our code GEAR conserves the total energy budget of the systems to better than 5% over 14 Gyr and provides an excellent convergence of the results with numerical resolution. We showed that models of dSphs in a static Euclidean space, where the expansion of the universe is neglected are valid. In addition, we tackled some existing open questions in the field, such as the stellar mass fraction of dSphs and its link to the predicted dark matter halo mass function, the effect of supernova feedback, the spatial distribution of the stellar populations, and the origin of the diversity in star formation histories and chemical abundance patterns. Strong supernova-driven winds seem incompatible with the observed metallicities and luminosities. Despite newly formed stars being preferentially found in the galaxy central parts, turbulent motions in the gas can quickly erase any metallicity gradient. The diversity in properties of dSph are related to a range of total masses, as well as a range of dispersion in the central densities, which is also seen in the halos emerging from a ΛCDM cosmogony. Appendices A and B are available in electronic form at http://www.aanda.org

  14. Magnetoencephalography in the study of brain dynamics.

    Science.gov (United States)

    Pizzella, Vittorio; Marzetti, Laura; Della Penna, Stefania; de Pasquale, Francesco; Zappasodi, Filippo; Romani, Gian Luca

    2014-01-01

    To progress toward understanding of the mechanisms underlying the functional organization of the human brain, either a bottom-up or a top-down approach may be adopted. The former starts from the study of the detailed functioning of a small number of neuronal assemblies, while the latter tries to decode brain functioning by considering the brain as a whole. This review discusses the top-down approach and the use of magnetoencephalography (MEG) to describe global brain properties. The main idea behind this approach is that the concurrence of several areas is required for the brain to instantiate a specific behavior/functioning. A central issue is therefore the study of brain functional connectivity and the concept of brain networks as ensembles of distant brain areas that preferentially exchange information. Importantly, the human brain is a dynamic device, and MEG is ideally suited to investigate phenomena on behaviorally relevant timescales, also offering the possibility of capturing behaviorally-related brain connectivity dynamics.

  15. Experimental studies of thermal and chemical interactions between molten aluminum and water

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, A.A.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The possibility of rapid physical and chemical aluminum/water interactions during a core melt accident in a noncommercial reactor (e.g., HFIR, ATR) has resulted in extensive research to determine the mechanism by which these interactions occur and propagate on an explosive time scale. These events have been reported in nuclear testing facilities, i.e., during SPERT 1D experiment, and also in aluminum casting industries. Although rapid chemical reactions between molten aluminum and water have been subject of many studies, very few reliable measurements of the extent of the chemical reactions have thus far been made. We have modified an existing 1-D shock tube facility to perform experiments in order to determine the extent of the explosive thermal/chemical interactions between molton aluminum and water by measuring important physical quantities such as the maximum dynamic pressure and the amount of the generated hydrogen. Experimental results show that transient pressures greater than 69 MPa with a rise time of less than 125 {mu}sec can occur as the result of the chemical reaction of 4.2 grams of molton aluminum (approximately 15% of the total mass of the fuel of 28 grams) at 980 C with room temperature water.

  16. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  17. Ultrafast Molecular Dynamics Studied with Vacuum Ultraviolet Pulses

    Science.gov (United States)

    Wright, Travis William

    Studying the ultrafast dynamics of small molecules can serve as the first step in understanding the dynamics in larger chemically and biologically relevant molecules. To make direct comparisons with existing computational techniques, the photons used in pump-probe spectroscopy must make perturbative transitions between the electronic states of isolated small molecules. In this dissertation experimental investigations of ultrafast dynamics in electronic excitations of neutral ethylene and carbon dioxide are discussed. These experiments are performed using VUV/XUV femtosecond pulses as pump and probe. To make photons with sufficient energy for single photon transitions, VUV and XUV light is generated by high harmonic generation (HHG) using a high pulse energy (≈30--40 mJ) Ti:sapphire femtosecond laser. Sufficient flux must be generated to enable splitting of the HHG light into pump and probe arms. The system produces >1010 photons per shot, corresponding to nearly 10 MW of peak power in the XUV. Using a high flux of high energy photons creates a unique set of challenges when designing a detector capable of performing pump-probe experiments. A velocity map imaging (VMI) detector has been designed to address these challenges, and has become a successful tool facilitating studies into molecular dynamics that were not possible before its implementation. The emphasis on using high energy, single photon transitions allowed theoretical calculations to be directly compared to experimental yields for the first time. This comparison resolved a long standing issue in the excited state lifetime of ethylene, and provided a confirmation of the branching ratio between the two nonadiabatic relaxation pathways that return ethylene back to its ground state from the pi*. The participation of the 3s Rydberg state has also been measured by collecting the time resolved photoelectron spectrum during the dynamics on ethylene's pi* excited state, confirming calculations predicting the

  18. Feasibility study of chemical stabilization of dredged marine sediment

    OpenAIRE

    FURLAN, Ana Paola; RAZAKAMANANTSOA, Andry; Liang, Yingjie; Deneele, Dimitri

    2015-01-01

    Chemical stabilization is one of techniques which can improve mechanical and hydraulic properties of dredged sediments. This paper presents an experimental study focused on different techniques of stabilization of dredged sediment from La Baule-Le Pouliguen (France). Dredged sediments are stabilized with lime, Portland cement and fly ash. Three mixes were produced and submitted to uniaxial compression strength (UCS), indirect tensile strength (ITS) and shear tests at different curing ages. In...

  19. Study of interfacial phenomena for bio/chemical sensing applications

    Science.gov (United States)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  20. Chemical elements in invertebrate orders for environmental quality studies

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcelo R.L.; Franca, Elvis J.; Paiva, Jose D.S.; Hazin, Clovis A., E-mail: marcelo_rlm@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: dan-paiva@hotmail.com, E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fonseca, Felipe Y.; Fernandes, Elisabete A. de Nadai; Bacchi, Marcio A., E-mail: felipe-yamada@hotmail.com, E-mail: lis@cena.usp.br, E-mail: mabacchi@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Among the biomonitors of environmental quality, there is a lack of studies on using invertebrates to evaluate quantitatively chemical elements in ecosystems. This group of animals is quite numerous, widely distributed and adaptable to the most diverse environmental conditions. These features are very useful for the environmental quality assessment, as well as the several occurring insect-plant interactions performing essential functions in ecosystems. The objective of this work is to study the variability of chemical composition of invertebrate orders for using in environmental quality monitoring studies. Instrumental neutron activation analysis - INAA was applied to determine some nutrients and trace elements in invertebrate samples. Sampling by pitfall traps was carried out in riverine ecosystems from the urban area from the Piracicaba Municipality, State of Sao Paulo, Brazil. Invertebrate and reference material samples were irradiated in the nuclear research reactor IEA-R1, Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN. Fragments of a Ni-Cr alloy were irradiated for monitoring the thermal neutron flux. Hymenoptera order was considered the most representative according to the total number of sampled species (about 60%). Significant amounts of Ba, Br, Fe and Sc were found in invertebrates of the order Opiliones. Potassium, rubidium and zinc were highly accumulated in species from Blattodea order, indicating a consistent pattern of accumulation for this invertebrate order. Taking into account the abundance of Hymenoptera order, the chemical composition of its species was significant different at the 95% confidence level for Br and Na in the sampled locals. (author)

  1. Chemical elements in invertebrate orders for environmental quality studies

    International Nuclear Information System (INIS)

    Among the biomonitors of environmental quality, there is a lack of studies on using invertebrates to evaluate quantitatively chemical elements in ecosystems. This group of animals is quite numerous, widely distributed and adaptable to the most diverse environmental conditions. These features are very useful for the environmental quality assessment, as well as the several occurring insect-plant interactions performing essential functions in ecosystems. The objective of this work is to study the variability of chemical composition of invertebrate orders for using in environmental quality monitoring studies. Instrumental neutron activation analysis - INAA was applied to determine some nutrients and trace elements in invertebrate samples. Sampling by pitfall traps was carried out in riverine ecosystems from the urban area from the Piracicaba Municipality, State of Sao Paulo, Brazil. Invertebrate and reference material samples were irradiated in the nuclear research reactor IEA-R1, Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN. Fragments of a Ni-Cr alloy were irradiated for monitoring the thermal neutron flux. Hymenoptera order was considered the most representative according to the total number of sampled species (about 60%). Significant amounts of Ba, Br, Fe and Sc were found in invertebrates of the order Opiliones. Potassium, rubidium and zinc were highly accumulated in species from Blattodea order, indicating a consistent pattern of accumulation for this invertebrate order. Taking into account the abundance of Hymenoptera order, the chemical composition of its species was significant different at the 95% confidence level for Br and Na in the sampled locals. (author)

  2. Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics Lecture: Broadband Rotational Spectroscopy for Chemical Kinetics, Molecular Structure, and Analytical Chemistry

    Science.gov (United States)

    Pate, Brooks

    2013-03-01

    Advances in high-speed digital electronics have enabled a new generation of molecular rotational spectroscopy techniques that provide instantaneous broadband spectral coverage. These techniques use a chirped excitation pulse to coherently excite the molecular sample over a spectral bandwidth of 10 GHz or larger through rapid passage. The subsequent time-domain emission is recorded using high-speed digitizers (up to 100 Gigasample/s) and the frequency domain spectrum is produced by fast Fourier transformation. The chirped-pulse Fourier transform (CP-FT) method has been implemented in the microwave frequency range (2-40 GHz) for studies of cold samples in pulsed jet sources and in the mm-wave/terahertz (THz) frequency range for studies of samples at room-temperature. The method has opened new applications for molecular rotational spectroscopy in the area of chemical kinetics where dynamic rotational spectroscopy is used to measure the rates of unimolecular isomerization reactions in highly excited molecules prepared by pulsed infrared laser excitation. In these applications, the isomerization rate is obtained from an analysis of the overall line shapes which are modified by chemical exchange leading to coalescence behavior similar to the effect in NMR spectroscopy. The sensitivity of the method and the ability to extend it to low frequency (2-8 GHz) have significantly increased the size range of molecules and molecular clusters for structure determination using isotopic substitution to build up the 3D molecular structures atom-by-atom. Application to the structure of water clusters with up to 15 water molecules will be presented. When coupled with advances in solid-state mm-wave/THz devices, this method provides a direct digital technique for analytical chemistry of room-temperature gases based on molecular rotational spectroscopy. These high-throughput methods can analyze complex sample mixtures with unmatched chemical selectivity and short analysis times. Work

  3. Beam dynamics studies for photocathode RF gun

    International Nuclear Information System (INIS)

    Photocathode RF guns are very popular choice as injector for low emittance beams especially to light sources world wide. In demand for these gun is increasing steadily and efforts are on to make 2.6 cell RF Gun as SAMEER as proto type for future use at various laboratories. The base design of this 2.6 cell RF Gun is ready and fabrication is planned in near future. In this paper, we present beam dynamic study results of the gun and methodology to arrive at the operating point. Simulation results for Gaussian with nano-second pulse length will be discussed in detail and proposal for generation of few MeV beam will be presented. (author)

  4. Non Linear Beam Dynamics Studies at SPEAR

    International Nuclear Information System (INIS)

    The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.

  5. Dynamic speckle study of microbial growth

    Science.gov (United States)

    Vincitorio, F. M.; Mulone, C.; Marcuzzi, P. A.; Budini, N.; Freyre, C.; Lopez, A. J.; Ramil, A.

    2015-08-01

    In this work we present a characterization of yeast dynamic speckle activity during growth in an isolated agar culture medium. We found that it is possible to detect the growth of the microorganisms even before they turn out to be visible. By observing the time evolution of the speckle activity at different regions of the culture medium we could extract a map of the growth process, which served to analyze how the yeast develops and spreads over the agar's medium. An interesting point of this study concerns with the influence of the laser light on the yeast growth rate. We have found that yeast finds hard to develop at regions with higher laser light illumination, although we used a synchronous system to capture the speckle pattern. The results obtained in this work would serve us as a starting point to fabricate a detector of growing microorganism colonies, with obvious interesting applications in diverse areas.

  6. Monte Carlo study of real time dynamics

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C

    2016-01-01

    Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from highly oscillatory phase of the path integral. In this letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and in principle applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.

  7. Some General Laws of Chemical Elements Composition Dynamics in the Hydrosphere

    Science.gov (United States)

    Korzh, V.

    2012-12-01

    The biophysical oceanic composition is a result of substance migration and transformation on river-sea and ocean- atmosphere boundaries. Chemical composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments (Fig. 1). The correlation between the chemical compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In Fig.1 we show intensities of global migration and average concentrations in the ocean in the coordinates lgC - lg τ, where C is an average element concentration and τ is its residual time in the ocean. Fig. 1 shows a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed to estimate natural (unaffected by anthropogenic influence) mean concentrations of elements

  8. Solid nanoarchitecture--Cu(II) solution: dynamics of the chemical communication.

    Science.gov (United States)

    Millesi, Salvatrice; Maccarrone, Giuseppe; Gulino, Antonino

    2015-03-01

    Molecular monolayers and similar nanoarchitectures represent a promising future of the nanotechnology. Many of these systems behave as stimuli responsive materials since they undergo readable changes upon external stimuli. Therefore, chemical communication between these systems and the surrounding environment is a field extremely important. In the present study we explored by optical read-out the chemical communication between a porphyrin monolayer covalently bound to a quartz substrate (hardware) and copper(II) ions (stimulus). Different physical states can be safely distinguished since the intensity of the Soret band (output) associated with a calculated distribution diagram provided the degree of porphyrin complexation and, therefore, of the state of the optically active system as a result of a solution mediated interfacial communication. PMID:25660270

  9. Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur District, Karnataka State.

    Science.gov (United States)

    Hulyal, S B; Kaliwal, B B

    2009-06-01

    The present investigation deals with limnobiotic status of the Almatti reservoir from February, 2003 to January, 2005. The study revealed that there exists a fluctuations of the physical factors viz., rainfall, humidity, air and water temperature, pH and electrical conductivity (EC), and chemical factors viz., dissolved oxygen (DO), free carbon dioxide, total alkalinity, total hardness, calcium, magnesium, chloride, nitrate, phosphate, sulphate, bicarbonate and total dissolved solids (TDS). From the data it was also apparent that correlations between the physico-chemical factors and dynamics of phytoplankton could be seen. The simple correlation coefficient test revealed that the cyanophytes number was positively correlated with DO, nitrate, phosphate and negatively significant with total hardness, total alkalinity, EC, calcium, magnesium, sulphate, bicarbonate and TDS. They are inversely correlated with pH, chloride, rainfall and humidity. Bacillariphyceae are correlated with total alkalinity, bicarbonates, magnesium and TDS, whereas inverse correlation was found with rainfall, humidity, pH and phosphate. Desmids showed positive correlation with nitrates, while it was inversely correlated with chloride, rainfall and humidity. Dinophytes density was positively correlated with total alkalinity, EC, total hardness, calcium, bicarbonate, while it showed inverse correlation with rainfall, humidity and phosphate. However, it is obvious that the absence of significant difference between sampling stations for all these parameters in the Almatti reservoir indicated fairly homogeneous conditions and the water quality is also found to be homogeneous.

  10. Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties.

    Science.gov (United States)

    Suter, James L; Groen, Derek; Coveney, Peter V

    2015-02-01

    A quantitative description is presented of the dynamical process of polymer intercalation into clay tactoids and the ensuing aggregation of polymer-entangled tactoids into larger structures, obtaining various characteristics of these nanocomposites, including clay-layer spacings, out-of-plane clay-sheet bending energies, X-ray diffractograms, and materials properties. This model of clay-polymer interactions is based on a three-level approach, which uses quantum mechanical and atomistic descriptions to derive a coarse-grained yet chemically specific representation that can resolve processes on hitherto inaccessible length and time scales. The approach is applied to study collections of clay mineral tactoids interacting with two synthetic polymers, poly(ethylene glycol) and poly(vinyl alcohol). The controlled behavior of layered materials in a polymer matrix is centrally important for many engineering and manufacturing applications. This approach opens up a route to computing the properties of complex soft materials based on knowledge of their chemical composition, molecular structure, and processing conditions. PMID:25488829

  11. Models of disk chemical evolution focusing the pure dynamical radial mixing

    Directory of Open Access Journals (Sweden)

    Re Fiorentin P.

    2012-02-01

    Full Text Available We performed N-body simulations to study the dynamical evolution of a stellar disk inside a Dark Matter (DM halo. Our results evidence how a standard -radially decreasing- metallicity gradient produces a negative vϕ vs. [Fe/H] correlation, similar to that shown by the thin disk stars, while an inverse radial gradient generates a positive rotation-metallicity correlation, as that observed in the old thick population.

  12. Stereophotogrammetry in studies of riparian vegetation dynamics

    Science.gov (United States)

    Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes

    2014-05-01

    Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody vegetation growth rates. Thus

  13. Quantum Chemical Study on Reaction of Acetaldehyde with Hydroxyl Radical

    Institute of Scientific and Technical Information of China (English)

    LI,Ming(李明); ZHANG,Jin-Sheng(张金生); SHEN,Wei(申伟); MENG,Qing-Xi(孟庆喜)

    2004-01-01

    The reaction of acetaldehyde with hydroxyl radical was studied by means of quantum chemical methods. The geometries for all the stationary points on the potential energy surfaces were optimized fully, respectively, at the G3MP2, G3, and MP2/6-311++G(d,p) levels. Single-point energies of all the species were calculated at the QCISD/6-311 + +G(d,p) level. The mechanism of the reaction studied was confirmed. The predicted product is acetyl radical that is in agreement with the experiment.

  14. Isotopic and impurity element probes of mesoscale chemical dynamics at mineral fluid interfaces

    Science.gov (United States)

    DePaolo, D. J.

    2012-12-01

    Mesoscale interactions control important Earth processes including the growth of minerals from aqueous solutions and silicate liquids, the diffusion of ions in solids and silicate liquids, and the solid-state deformation and recrystallization that constitutes metamorphism. Most of these processes are typically understood from the classical side in terms of macroscopic physical and thermodynamic properties and classical kinetics, and from the molecular side in terms of single molecule or nearest-neighbor interactions. However, in many cases the controlling processes occur at intermediate scales of both length and time, and involve complex interactions among multiple chemical species. A major limitation has been in characterizing and modeling the dynamic processes that lead to the macroscopic properties and behavior. Advanced microscopy techniques allow phase changes, for example, to be monitored at high resolution, and this capability continues to improve. However, other important information about the phase changes, such as the molecular exchange fluxes between phases and the detailed mechanisms of reaction, are not revealed by microscopy. High-resolution isotopic characterization now allows the molecular exchange fluxes to be quantified, and models suggest that the incorporation of impurity elements is directly tied to these fluxes. One of the main advances is that precise isotopic measurements have recently been extended to include major stoichiometric cations such as Ca, Mg, Fe, and K, as well as key impurity elements such as U, Cd, Mo, and Sr. Isotopic analysis at the nano- to microscale would further clarify the detailed dynamics of mineral chemistry controls but are not yet possible except in a few instances. Impurity element concentrations are more easily measured at these small scales, and they are a key bridge between isotopic measurements and microscopy.Other limitations to advancing our knowledge of the chemical and isotopic effects associated with

  15. Contents of chemical elements in stomach during prenatal development: different age-dependent dynamical changes and their significance

    Institute of Scientific and Technical Information of China (English)

    Shao-Fan Hou; Hai-Rong Li; Li-Zhen Wang; De-Zhu Li; Lin-Sheng Yang; Chong-Zheng Li

    2003-01-01

    AIM: To observe dynamic of different chemical elements in stomach tissue during fetal development.METHODS: To determine contents of the 21 chemical elements in each stomach samples from fetus aging four to ten months. The content values were compared to those from adult tissue samples, and the values for each month group were also analyzed for dynamic changes.RESULTS: Three representations were found regarding the relationship between contents of the elements and ages of the fetus, including the positive correlative (K), reversely correlative (Na, Ca, P, Al, Cu, Zn, Fe, Mn, Cr, Sr, Li, Cd, Ba,Se ) and irrelevant groups (Mg, Co, Ni, V, Pb, Ti).CONCLUSION: The chemical elements' contents in stomach tissues were found to change dynamically with the stomach weights. The age-dependent representations for different chemical elements during the prenatal development may be of some significance for assessing development of fetal stomach and some chemical elements. The data may be helpful for the nutritional balance of fetus and mothers during prenatal development and even the perinatal stages.

  16. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    Energy Technology Data Exchange (ETDEWEB)

    Kickermann, Andreas

    2013-07-15

    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  17. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    International Nuclear Information System (INIS)

    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  18. Single-collision studies of energy transfer and chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  19. Chemical functionalization of graphene via aryne cycloaddition: a theoretical study.

    Science.gov (United States)

    Zhao, Jing-xiang; Wang, Hong-xia; Gao, Bo; Wang, Xiao-guang; Cai, Qing-hai; Wang, Xuan-zhang

    2012-06-01

    Chemical functionalization of graphene provides a promising route to improve its solubility in water and organic solvents as well as modify its electronic properties, thus significantly expanding its potential applications. In this article, by using density functional theory (DFT) methods, we have studied the effects of the chemical functionalization of graphenes via aryne cycloaddition on its properties. We found that the adsorption of an isolated aryne group on the graphene sheet is very weak with the adsorption energy of -0.204 eV, even though two new single C-C interactions are formed between the aryne group and the graphene. However, the interaction of graphene with the aryne group can be greatly strengthened by (i) substituting the H-atoms in aryne group with F-, Cl-, -NO(2) (electron-withdrawing capability), or CH(3)-group (electron-donating capability), and (ii) increasing the coverage of the adsorbed aryne groups on the graphene sheet. As expected, the strongest bonding is found on the graphene edges, in which the adsorbed aryne groups prefer to be far away from each other. Interestingly, chemical functionalization with aryne groups leads to an opening of the band gap of graphene, which is dependent on the coverage of the adsorbed aryne groups. The present work provides an insight into the modifications of graphene with aryne groups in experiment.

  20. Experimental Studies of Dynamics at Solid Surfaces

    Science.gov (United States)

    Germer, Thomas Avery

    1992-01-01

    Measurements of thermal and photoinduced processes on metal surfaces point to the importance of transient intermediate species in the understanding of dynamics. Experiments were performed using photoinduced desorption (PID), thermal desorption spectroscopy (TDS), high-resolution and time -resolved electron-energy-loss spectroscopy (HREELS and TREELS), and femtosecond multiphoton photoemission spectroscopy. The thermal and photoinduced reactions of Mo(CO)_6 adsorbed on Rh(100) were studied to better understand energy transfer between a photoexcited molecule and a metal surface. The Mo(CO)_6 partially dissociated upon adsorption, allowing a comparison to be made between Mo(CO)_6 adsorbed on the fragment-covered surface and a more ordered CO-covered surface. The energy transfer rate was found to be larger on the fragment-covered surface. The thermal reaction of hydrogen gas with oxygen adsorbed on Pt(111) was studied with TREELS between 130 and 160 K, observing the modes associated with hydroxyl adsorbed on the surface as a function of time while the sample, preadsorbed with atomic oxygen, was exposed to hydrogen gas. In coordination between Monte Carlo calculations and kinetic simulations, a model was developed whereby the reaction to form hydroxyl occurred between a molecular hydrogen precursor and oxygen at island boundaries. The photoinduced reaction of adsorbed atomic hydrogen and molecular oxygen to form hydroxyl and water on Pt(111) was studied in order to understand the reactivity of the hot oxygen atoms produced by photodissociation of molecular oxygen. The final products of the two oxygen -hydrogen reactions were the same. A measurement was made of the cross section for NO photodesorption from Pt(111) at 90 K. All of these experiments pointed to a need to make transient measurements on the ultrashort time scale in order to develop a more microscopic understanding of the dynamical processes that are occurring. As a result, a novel time-of-flight analyzer was

  1. Systems-Dynamic Analysis for Neighborhood Study

    Science.gov (United States)

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  2. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.

    Science.gov (United States)

    Kim, Hyunsik; Paul, Amit K; Pratihar, Subha; Hase, William L

    2016-07-14

    Chemical dynamics simulations were performed to investigate collisional energy transfer from highly vibrationally excited azulene (Az*) in a N2 bath. The intermolecular potential between Az and N2, used for the simulations, was determined from MP2/6-31+G* ab initio calculations. Az* is prepared with an 87.5 kcal/mol excitation energy by using quantum microcanonical sampling, including its 95.7 kcal/mol zero-point energy. The average energy of Az* versus time, obtained from the simulations, shows different rates of Az* deactivation depending on the N2 bath density. Using the N2 bath density and Lennard-Jones collision number, the average energy transfer per collision ⟨ΔEc⟩ was obtained for Az* as it is collisionally relaxed. By comparing ⟨ΔEc⟩ versus the bath density, the single collision limiting density was found for energy transfer. The resulting ⟨ΔEc⟩, for an 87.5 kcal/mol excitation energy, is 0.30 ± 0.01 and 0.32 ± 0.01 kcal/mol for harmonic and anharmonic Az potentials, respectively. For comparison, the experimental value is 0.57 ± 0.11 kcal/mol. During Az* relaxation there is no appreciable energy transfer to Az translation and rotation, and the energy transfer is to the N2 bath. PMID:27182630

  3. Ultrafast Nanocrystals Decorated Micromotors for On-Site Dynamic Chemical Processes.

    Science.gov (United States)

    Jurado-Sánchez, B; Wang, J; Escarpa, A

    2016-08-01

    CdS-polyaniline-Pt and ZnS-polyaniline-Pt micromotors have been synthesized and characterized. The nanocrystals are generated "in situ" during the template electrosynthesis of the micromotors while being simultaneously trapped in the polymeric network, generating a hybrid structure. The presence of nanocrystal "edges" in the inner polyaniline layer result in a rough Pt catalytic surface and enhanced electron transfer for highly efficient bubble propulsion at remarkable speeds of over 2500 μm/s. The incorporation of CdS and ZnS nanocrystals impart several attractive functions, including cation-exchange based chemical transformation capabilities and enhanced photocatalytic performance. The remarkable ion-exchange properties of ZnS-polyaniline (PANI)-Pt micromotors are illustrated for the cation exchange of heavy metals cations. The superior photocatalytic performance of CdS-PANI-Pt micromotors is used for the enhanced photocatalytic oxidation of bisphenol A. Such self-propelled micromotors act as highly efficient dynamic platforms that offer significantly shorter and more efficient processes as compared with common static operations. The attractive properties of these micromotors will pave the way for diverse sensing, decontamination, energy generation, or electronic applications. PMID:27387459

  4. Relative influence of chemical and non-chemical stressors on invertebrate communities: a case study in the Danube River.

    Science.gov (United States)

    Rico, Andreu; Van den Brink, Paul J; Leitner, Patrick; Graf, Wolfram; Focks, Andreas

    2016-11-15

    A key challenge for the ecological risk assessment of chemicals has been to evaluate the relative contribution of chemical pollution to the variability observed in biological communities, as well as to identify multiple stressor groups. In this study we evaluated the toxic pressure exerted by >200 contaminants to benthic macroinvertebrates in the Danube River using the Toxic Unit approach. Furthermore, we evaluated correlations between several stressors (chemical and non-chemical) and biological indices commonly used for the ecological status assessment of aquatic ecosystems. We also performed several variation partitioning analyses to evaluate the relative contribution of contaminants and other abiotic parameters (i.e. habitat characteristics, hydromorphological alterations, water quality parameters) to the structural and biological trait variation of the invertebrate community. The results of this study show that most biological indices significantly correlate to parameters related to habitat and physico-chemical conditions, but showed limited correlation with the calculated toxic pressure. The calculated toxic pressure, however, showed little variation between sampling sites, which complicates the identification of pollution-induced effects. The results of this study show that the variation in the structure and trait composition of the invertebrate community are mainly explained by habitat and water quality parameters, whereas hydromorphological alterations play a less important role. Among the water quality parameters, physico-chemical parameters such as suspended solids, nutrients or dissolved oxygen explained a larger part of the variation in the invertebrate community as compared to metals or organic contaminants. Significant correlations exist between some physico-chemical measurements (e.g. nutrients) and some chemical classes (i.e. pharmaceuticals, chemicals related to human presence) which constitute important multiple stressor groups. This study

  5. Studies on the Chemical Constituents and Bioactivities of Tripterygium Wilfordii

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Tripterygium wilfordii Hook (TW) is a medicinal plant distributed widely in southern china. This plant was recently found to possess anti-inflammatory, antitumor and immunosuppressive activities. Some preparation of the plant root has been used for the treatment of rheumatoid arthritis, systemic acne rosacea, nephritis and some skin diseases. Chemical studies on this plant and its preparation have shown they contain a large number of sesquiterpenoid, diterpenoids, triterpenoids and alkaloids in which some diterpene triepoxy lactones such as triptolide and triptonide etc are considered as mainly active compounds.

  6. Studies on the Chemical Constituents and Bioactivities of Tripterygium Wilfordii

    Institute of Scientific and Technical Information of China (English)

    LI; YuanChao

    2001-01-01

    Tripterygium wilfordii Hook (TW) is a medicinal plant distributed widely in southern china. This plant was recently found to possess anti-inflammatory, antitumor and immunosuppressive activities. Some preparation of the plant root has been used for the treatment of rheumatoid arthritis, systemic acne rosacea, nephritis and some skin diseases. Chemical studies on this plant and its preparation have shown they contain a large number of sesquiterpenoid, diterpenoids, triterpenoids and alkaloids in which some diterpene triepoxy lactones such as triptolide and triptonide etc are considered as mainly active compounds.  ……

  7. Thermogravimetric study of chemical compatibility of graphite with metal oxides

    International Nuclear Information System (INIS)

    Graphite and graphite mixtures with metal oxides are studied in conditions of nonisothermal heating to 1000 deg C using the methods of thermodynamic and gravimetric analyses. Chemical compatibility of graphite with Al2O3, CaO, SiO2, MgO, Fe2O3, TiO2, Na2O, K2O in the compositions considered is established. A decrease in the sample mass observed on the gravimetric curves in the presence of admixtures does not exceed the same value in pure graphite samples in specified conditions

  8. A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Problems of Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    SUN Fan; DU Wenli; QI Rongbin; QIAN Feng; ZHONG Weimin

    2013-01-01

    The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature.Genetic algorithm(GA)has been proved to be a feasible method when the gradient is difficult to calculate.Its advantage is that the control profiles at all time stages are optimized simultaneously,but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum.In this study,a hybrid improved genetic algorithm(HIGA)for solving dynamic optimization problems is proposed to overcome these defects.Simplex method(SM)is used to perform the local search in the neighborhood of the optimal solution.By using SM,the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved.The hybrid algorithm presents some improvements,such as protecting the best individual,accepting immigrations,as well as employing adaptive crossover and Gaussian mutation operators.The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems.At last,HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.

  9. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  10. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    Science.gov (United States)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  11. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis.

    Directory of Open Access Journals (Sweden)

    Elliott J Stollar

    Full Text Available There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.

  12. Studying chemical vapor deposition processes with theoretical chemistry

    OpenAIRE

    Pedersen, Henrik; Elliott, Simon D.

    2014-01-01

    In a chemical vapor deposition (CVD) process, a thin film of some material is deposited onto a surface via the chemical reactions of gaseous molecules that contain the atoms needed for the film material. These chemical reactions take place on the surface and in many cases also in the gas phase. To fully understand the chemistry in the process and thereby also have the best starting point for optimizing the process, theoretical chemical modeling is an invaluable tool for providing atomic-scale...

  13. Chemical dispersibility study of heavy bunker fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, R. J. [R. J. Fiocco Associates, Summit, NJ (United States); Daling, P. S. [SINTEF, Trondheim, (Norway); DeMarco, G.; Lessard, R. R. [Exxon Research and Engineering Company, Florham Park, NJ (United States); Canevari, G. P. [G. P. Canevari and Associates, Cranford, NJ (United States)

    1999-08-01

    Chemical dispersibility of heavy bunker fuel oil, which historically has been characterized as not dispersible, was studied, using the well-known SINTEF methodology for evaluating the dispersibility of fresh and weathered oils. Several heavy fuel oils, specifically IFO-380 fuel oils, were involved in the study. Corexit 9500, which has been shown to be effective for viscous and weathered oils, was used as the dispersant. Results indicated that in many cases heavy fuel oils are dispersible, and that viscosity and dispersant dosage are particularly important factors. As a general rule, more viscous and weathered oils were found to require longer time for the dispersion process to occur. The standard SINTEF laboratory effectiveness test, particularly the 60-minute extended -time MNS tests, have been found to be very useful in characterizing heavy fuel oil dispersibility. 17 refs., 5 tabs., 1 fig.

  14. Chemical dispersibility study of heavy bunker fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, R. J. [R. J. Fiocco Associates, Summit, NJ (United States); Daling, P. S. [SINTEF, Trondheim, (Norway); DeMarco, G.; Lessard, R. R. [Exxon Research and Engineering Company, Florham Park, NJ (United States); Canevari, G. P. [G. P. Canevari and Associates, Cranford, NJ (United States)

    1999-07-01

    Chemical dispersibility of heavy bunker fuel oil, which historically has been characterized as not dispersible, was studied, using the well-known SINTEF methodology for evaluating the dispersibility of fresh and weathered oils. Several heavy fuel oils, specifically IFO-380 fuel oils, were involved in the study. Corexit 9500, which has been shown to be effective for viscous and weathered oils, was used as the dispersant. Results indicated that in many cases heavy fuel oils are dispersible, and that viscosity and dispersant dosage are particularly important factors. As a general rule, more viscous and weathered oils were found to require longer time for the dispersion process to occur. The standard SINTEF laboratory effectiveness test, particularly the 60-minute extended -time MNS tests, have been found to be very useful in characterizing heavy fuel oil dispersibility. 17 refs., 5 tabs., 1 fig.

  15. Chemical dispersibility study of heavy bunker fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, R. J. (R. J. Fiocco Associates, Summit, NJ (United States)); Daling, P. S. (SINTEF, Trondheim, (Norway)); DeMarco, G.; Lessard, R. R. (Exxon Research and Engineering Company, Florham Park, NJ (United States)); Canevari, G. P. (G. P. Canevari and Associates, Cranford, NJ (United States))

    1999-01-01

    Chemical dispersibility of heavy bunker fuel oil, which historically has been characterized as not dispersible, was studied, using the well-known SINTEF methodology for evaluating the dispersibility of fresh and weathered oils. Several heavy fuel oils, specifically IFO-380 fuel oils, were involved in the study. Corexit 9500, which has been shown to be effective for viscous and weathered oils, was used as the dispersant. Results indicated that in many cases heavy fuel oils are dispersible, and that viscosity and dispersant dosage are particularly important factors. As a general rule, more viscous and weathered oils were found to require longer time for the dispersion process to occur. The standard SINTEF laboratory effectiveness test, particularly the 60-minute extended -time MNS tests, have been found to be very useful in characterizing heavy fuel oil dispersibility. 17 refs., 5 tabs., 1 fig.

  16. Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Directory of Open Access Journals (Sweden)

    H. Garny

    2011-01-01

    Full Text Available Chemistry-climate models (CCMs are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs. In this method, ozone tendencies (i.e. the time rate of change of ozone are partitioned into a contribution from ozone production and destruction (chemistry and a contribution from transport of ozone (dynamics. The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method.

  17. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  18. Studies on high chemical reactivity of nano-NaH

    Institute of Scientific and Technical Information of China (English)

    FAN Yinheng; ZOU Yunling; JIN Dan; WU Qiang; LIU Tong; XU Jie

    2007-01-01

    A comparison between the initial reaction rates of nanometric and commercial Nail has been studied in four test reactions: 1) hydrogenolysis of chlorobenzene; 2) selec-tive reduction of cinnamaldehyde to cinnamyl alcohol; 3)metallation of dimethyl sulfoxide; and 4) catalytic hydroge-nation ofolefins. The experimental results indicate that when Nail is used as a chemical reagent in the first three reactions,the initial reaction rates of nano-NaH is 230, 120 and 110 times higher than those of the commercial ones respectively,and it is in agreement with the difference in specific surface areas between these two forms of Nail. When Nail is used as a catalyst component together with Cp2TiCl2 in the fourth reaction, catalyst with nano-NaH gives extremely high activity in the hydrogenation of olefins, while the one with commercial Nail gives no activity at all even ifa large amount of the commercial Nail is used to make the total surface area equivalent to that of nano-NaH. Thus, it is evident that although large specific surface area is important for nano-Nail to be used as a catalyst component, high surface energy with surface defects seems to be more important. The largespecific surface and the activated surface of nano-NaH withhigh surface energy should be the main factors for thei rextremely high chemical reactivity, while whether the former or the latter one plays a leading role depends on the type of reactions involved.

  19. Flow study in channel with the use computational fluid dynamics (CFD)

    Science.gov (United States)

    Oliveira, W. D.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.

    2016-08-01

    The Computational Fluid Dynamics (CFD) is a tool used to numerically simulate fluid flow behavior, and all the laws that govern the study of fluids is the mass transfer and energy, chemical reactions, hydraulic behaviors, among others applications. This tool mathematical equation solves the problem in a specific manner over a region of interest, with predetermined boundary conditions on this region. This work is to study the flow channel through the CFD technique.

  20. Dynamic Particle Growth Testing - Phase I Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.Z-C.

    2001-05-17

    , particle growth in the bulk would still affect scale formation by consuming a portion of the scale-forming precursor materials. In either case, solid-particle-formation data must be obtained to understand the problem. Previous and ongoing testing based on the measurement of [Al] and [Si] consumption kinetics have indicated that the format of aluminosilicate may be rapid under evaporator conditions. However, the kinetics of particle formation (both in bulk solution and on surfaces) has not been studied. Conditions that cause extremely rapid particle formation are of particular interest, because in that case the solids-formation reactions in the evaporator would be sensitively dependent on process conditions such as chemical composition, temperature, fluid flow, and heat transfer.

  1. Isotopic and chemical studies of early crustal metasedimentary rocks

    Science.gov (United States)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  2. Quantum chemical study on asymmetric catalysis reduction of imine

    Institute of Scientific and Technical Information of China (English)

    李明; 田安民

    2003-01-01

    The quantum chemical method is employed to study the enantioselective reduction of imine with borane catalyzed by chiral oxazaborolidine. All the structures are optimized completely at the B3LYP/6-31G(d) level. The catalysis property of oxazaborolidine is notable. The reduction goes mainly through the formations of the catalyst-borane adduct, the catalyst-borane-imine adduct, and the catalyst-amidoborane adduct and the dissociation of the catalyst-amidoborane adduct with the regeneration of the catalyst. The controlling step for the reduction is the dissociation of the catalyst-amidoborane adduct. The main reduced product predicted theoretically is (R )-sec- ondary amine, which is in agreement with the experiment.

  3. Quantum Chemical Study on the Corrosion Inhibition of Some Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2015-01-01

    Full Text Available Quantum chemical calculations based on DFT method were performed on three nitrogen-bearing heterocyclic compounds used as corrosion inhibitors for the mild steel in acid media to determine the relationship between the molecular structure of inhibitors and inhibition efficiency. The structural parameters, such as energy and distribution of highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, the charge distribution of the studied inhibitors, the absolute electronegativity (χ values, and the fraction of electrons (ΔN transfer from inhibitors to mild steel were also calculated and correlated with inhibition efficiencies. The results showed that the inhibition efficiency of inhibitors increased with the increase in energy of HOMO and decrease in energy gap of frontier molecular orbital, and the areas containing N and O atoms are most possible sites for bonding the steel surface by donating electrons to the mild steel.

  4. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  5. Study of physical chemical characteristics of a shungite

    OpenAIRE

    Maira Kazankapova; A. Bekzhanova; Sergey Efremov; Mikhail Nauryzbayev

    2012-01-01

    The physico-chemical characteristics of shungite from the field of Kazakhstan ("Bakyrchik") and Russia ("Zazhegino") was studied by elemental analysis, IR- spectroscopy and electron microscopy. The content of carbon in the schungite field "Zazhegino" is 28,0-31,0 %,  in the field "Bakyrchik" - 15,0-19,0 %, in schungite concentrate  "Bakyrchik" is 40,0 ± 2,0 %.  IR-spectroscopic analysis have been shown that carboxyl groups appear in addition to the concentrate of polycyclic hydrocarbons conta...

  6. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  7. Prediction of the Chapman–Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics

    OpenAIRE

    Guo, Dezhou; Zybin, Sergey V.; An, Qi; Goddard, William A.; Huang, Fenglei

    2016-01-01

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman–Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ s...

  8. A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit

    OpenAIRE

    Li, Minghua; Hikihara, Takashi

    2008-01-01

    The redox (Reduction-Oxidation) flow battery is one of the most promising rechargeable batteries due to its ability to average loads and output of power sources. The transient characteristics are well known as the remarkable feature of the battery. Then it can also compensate for a sudden voltage drop. The dynamics are governed by the chemical reactions, fluid flow, and electrical circuit of its structure. This causes the difficulty of the analysis at transient state. This paper discusses the...

  9. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  10. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: CORROSION STUDIES RESULTS: FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-09-29

    Due to the need to close High Level Waste storage tanks, chemical cleaning methods are needed for the removal of sludge heel materials remaining at the completion of mechanical tank cleaning efforts. Oxalic acid is considered the preferred cleaning reagent for heel dissolution of iron-based sludge. However, the large quantity of chemical reagents added to the tank farm from oxalic acid based cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acidic systems may be required for specific waste components that have low solubility in oxalic acid, and as a means to reduce oxalic acid usage in general. Electrochemical corrosion studies were conducted with 1 wt. % oxalic acid at mineral acid concentrations above and below the optimal conditions for this oxalic acid concentration. Testing environments included pure reagents, pure iron and aluminum phases, and sludge simulants. Mineral acid concentrations greater than 0.2 M and temperatures greater than 50 C result in unacceptably high corrosion rates. Results showed that manageable corrosion rates of carbon steel can be achieved at dilute mineral acid concentrations (i.e. less than 0.2 M) and low temperatures based on the contact times involved. Therefore, it is recommended that future dissolution and corrosion testing be performed with a dilute mineral acid and a less concentrated oxalic acid (e.g., 0.5 wt.%) that still promotes optimal dissolution. This recommendation requires the processing of greater water volumes than those for the baseline process during heel dissolution, but allows for minimization of oxalic acid additions. The following conclusions can be drawn from the test results: (1) In both nitric and sulfuric acid based reagents, the low temperature and

  11. Study of the influence on radiation, chemical and thermic treatment in Cesium and Cobalt absorption in natural zeolites

    International Nuclear Information System (INIS)

    The influence of radiation and thermic treatment of zeolites from El Piojillo (Villa Clara), Orozco (Pinar del Rio) and Palmarito (Santiago de Cuba) deposits in the absorption of cesium-137 is studied. It was verified that as it generally occurs in zeolites, the thermic treatment influences negatively the absorption and the radiation treatment with dose up to 105 Gy does not affect it. Alternatives to chemical and chemical-thermic treatment for zeolite from El Piojillo are also applied. It was noted that previous treatment with NH4OH at 2000C in the vacuum stove and its contact in dynamic regime with NaNO3 improves its capacity of cobalt absorption

  12. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    Science.gov (United States)

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  13. A Molecular Dynamics Investigation of the Physical-Chemical Properties of Calicivirus Capsid Protein Adsorption to Fomites

    Science.gov (United States)

    Peeler, David; Matysiak, Silvina

    2013-03-01

    Any inanimate object with an exposed surface bears the possibility of hosting a virus and may therefore be labeled a fomite. This research hopes to distinguish which chemical-physical differences in fomite surface and virus capsid protein characteristics cause variations in virus adsorption through an alignment of in silico molecular dynamics simulations with in vitro measurements. The impact of surface chemistry on the adsorption of the human norovirus (HNV)-surrogate calicivirus capsid protein 2MS2 has been simulated for monomer and trimer structures and is reported in terms of protein-self assembled monolayer (SAM) binding free energy. The coarse-grained MARTINI forcefield was used to maximize spatial and temporal resolution while minimizing computational load. Future work will investigate the FCVF5 and SMSVS4 calicivirus trimers and will extend beyond hydrophobic and hydrophilic SAM surface chemistry to charged SAM surfaces in varying ionic concentrations. These results will be confirmed by quartz crystal microbalance experiments conducted by Dr. Wigginton at the University of Michigan. This should provide a novel method for predicting the transferability of viruses that cannot be studied in vitro such as dangerous foodborne and nosocomially-acquired viruses like HNV.

  14. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    Science.gov (United States)

    Wang, F.; Laws, K. J.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Quadir, M. Z.; Ferry, M.; Escobedo, J. P.

    2015-06-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic glasses (BMG) with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400 ~ 600m/s range and tested at room temperature and 250 °C. The specimens impacted a steel extrusion die which subjected them to high strains at high strain-rates. The extruded samples were subsequently soft recovered by using low density foams. The deformed specimens were examined by optical and electron microscopy, x-ray diffraction and hardness measurements. The characterization results aided to assess the effect of chemical composition on the microstructural evolution, i.e. phase changes or crystallization, which might influence the ductility on the nominally brittle amorphous BMGs. The most significant results from this study will be presented. School of Engineering and Information Technology, UNSW Canberra.

  15. Towards the use of dynamic growing seasons in a chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Sakalli

    2012-09-01

    Full Text Available Chemical transport models (CTMs, used for the prediction of, for example, nitrogen deposition or air quality changes, require estimates of the growing season of plants for a number of reasons. Typically, the growing seasons are defined in a very simplified way in CTMs, using e.g. fixed dates or simple functions. In order to explore the importance of more realistic growing season estimates, we have developed a new and simple method (the “T5” method for calculating the start of the growing season (SGS of birch (which we use as a surrogate for deciduous trees, suitable for use in CTMs and other modelling systems. We developed the “T5” method from observations, and here we compare with these and other methodologies, and show that with just two parameters “T5” captures well the spatial variation in SGS across Europe.

    We use the EMEP MSC-W chemical transport model to illustrate the importance of improved SGS estimates for ozone and two metrics associated with ozone-damage to vegetation. This study shows that although inclusion of more realistic growing seasons has only small effects on annual average concentrations of pollutants such as ozone, the metrics associated with vegetation-risk from ozone are significantly affected.

    This work demonstrates a strong need to include more realistic treatments of growing seasons in CTMs. The method used here could also be suitable for other types of models which require information on vegetation cover, such as meteorological and regional climate models. In future work, the “T5” and other methods will also be further evaluated for use with agricultural and grassland land-covers, which are important for emissions and deposition of reactive nitrogen compounds.

  16. Towards the use of dynamic growing seasons in a chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Sakalli

    2012-12-01

    Full Text Available Chemical transport models (CTMs, used for the prediction of, for example, nitrogen deposition or air quality changes, require estimates of the growing season of plants for a number of reasons. Typically, the growing seasons are defined in a very simplified way in CTMs, using fixed dates or simple functions. In order to explore the importance of more realistic growing season estimates, we have developed a new and simple method (the T5 method for calculating the start of the growing season (SGS of birch (which we use as a surrogate for deciduous trees, suitable for use in CTMs and other modelling systems. We developed the T5 method from observations, and here we compare with these and other methodologies, and show that with just two parameters T5 captures well the spatial variation in SGS across Europe.

    We use the EMEP MSC-W chemical transport model to illustrate the importance of improved SGS estimates for ozone and two metrics associated with ozone damage to vegetation. This study shows that although inclusion of more realistic growing seasons has only small effects on annual average concentrations of pollutants such as ozone, the metrics associated with vegetation risk from ozone are significantly affected.

    This work demonstrates a strong need to include more realistic treatments of growing seasons in CTMs. The method used here could also be suitable for other types of models that require information on vegetation cover, such as meteorological and regional climate models. In future work, the T5 and other methods will be further evaluated for other forest species, as well as for agricultural and grassland land covers, which are important for emissions and deposition of reactive nitrogen compounds.

  17. STUDYING THE CHEMICAL COMPOSITION OF ALCOHOLIC EXTRACT SCHROTH RAPE

    Directory of Open Access Journals (Sweden)

    Елена Эдуардовна Чигиринец

    2014-09-01

    Full Text Available As the authors found that a promising material for a volatile atmospheric corrosion inhibitor is the use of waste generated in obtaining oil from rapeseed (family Brassicaceae, namely rapeseed meal, appropriate research was qualitative and quantitative determination of its basic compounds. Also found that the inhibition efficiency is extreme character with a maximum protective capacity for 2 hours. Why was it necessary to study changes in the composition of the extract in the evaporation process, and identification of compounds that do not take part in the formation of the film, that is remaining in the non-volatile sludge. The subject of this study is to extract 2-proрanol rapeseed cake extract . The purpose of work - a study of its component composition, namely, volatile and non-volatile compounds. The volatile chemical composition of the rapeseed cake extract involves glycosides, nucleosides, ketone, aldehyde, fatty acids, sterol and alkaloids. The most important compounds in rapeseed cake are: Guanosine , Sucrose , Xanthosine, 3',5'-Dimethoxyacetophenone Benzaldehyde, 4-hydroxy-3,5-dimethoxy, Acetic, Oleic, Linoleic and Palmitic acid and Sterols.

  18. Molecular dynamics study of cyclohexane interconversion

    Science.gov (United States)

    Wilson, Michael A.; Chandler, David

    1990-12-01

    Classical molecular dynamics calculations are reported for one C 6H 12 molecule in a bath of 250 CS 2 molecules at roomtemperature and liquid densities of 1.0, 1.3, 1.4 and 1.5 g/cm 3. The solvent contribution to the free energy of activation for the chair-boat isomerization has been determined to high accuracy. The transmission coefficient and reactive flux correlation functions have also been computed. The results obtained agree with earlier conclusions drawn from RISM integral equation calculations and stochastic molecular dynamics calculations. Namely, the solvent effect on the rate manifests a qualitative breakdown of transition state theory and the RRKM picture of unimolecular kinetics. Analysis of the activated trajectories indicate a significant degree of quasiperiodicity.

  19. Excess water dynamics in hydrotalcite: QENS study

    Indian Academy of Sciences (India)

    S Mitra; A Pramanik; D Chakrabarty; R Mukhopadhyay

    2004-08-01

    Results of the quasi-elastic neutron scattering (QENS) measurements on the dynamics of excess water in hydrotalcite sample with varied content of excess water are reported. Translational motion of excess water can be best described by random translational jump diffusion model. The observed increase in translational diffusivity with increase in the amount of excess water is attributed to the change in binding of the water molecules to the host layer.

  20. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents

    NARCIS (Netherlands)

    Sutton, N.B.; Atashgahi, S.; Wal, van der J.; Wijn, G.; Grotenhuis, J.T.C.; Smidt, H.; Rijnaarts, H.

    2015-01-01

    In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR)

  1. The Iron Blast Furnace: A Study in Chemical Thermodynamics.

    Science.gov (United States)

    Treptow, Richard S.; Jean, Luckner

    1998-01-01

    Discusses the furnace from a chemical thermodynamics perspective. Examines the enthalpy, entropy, and free energy change for each reaction of importance. These properties are interpreted on the molecular level then used to deduce the conditions necessary for each reaction to occur in its intended direction. Chemical kinetics is also discussed.…

  2. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study

    Science.gov (United States)

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  3. Aggregation of model asphaltenes: a molecular dynamics study

    Science.gov (United States)

    Costa, J. L. L. F. S.; Simionesie, D.; Zhang, Z. J.; Mulheran, P. A.

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes.

  4. Molecular Dynamics study on the Micellization of Rhamnolipids.

    Science.gov (United States)

    Munusamy, Elango; Schwartz, Steven D.

    2015-03-01

    Oil spills have become one of the most serious environmental and ecological problems owing to the growth of oil exploration, production and transportation. Millions of gallons of crude oil and refined products are spilled into marine waters worldwide each year. Large volumes of surfactants are applied to the ocean as a remediation strategy. Environmental and toxicity issues arise when such a voluminous amounts of chemical surfactants are applied. One prospective solution to this problem is to use greener surfactants that possess excellent biodegradation and toxicity characteristics relative to existing classes of commonly used surfactants. In this context, we are interested in designing and developing greener surfactants that are patterned after naturally occurring glycolipids. In the present work, we concentrate on one of the more commonly studied glycolipid, rhamnolipid (Rha1C10C10) . Despite the available experimental data, the molecular structure, shape and geometry of micelles formed by rhamnolipid is unknown. Molecular Dynamics (MD) simulations were performed to understand the aggregation behavior of rhamnolipids in aqueous solution and at air-water interface. All calculations were performed in NPT ensembles at 300 K using NAMD 2.8, a parallel code designed for high-performance simulation of large biological macromolecule using the CHARMM force field. The results obtained from MD simulations on the aggregation of rhamnolipids in water and at air-water interface will be presented.

  5. Aggregation of model asphaltenes: a molecular dynamics study.

    Science.gov (United States)

    Costa, J L L F S; Simionesie, D; Zhang, Z J; Mulheran, P A

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes. PMID:27465036

  6. The Dynamic Free Rider Problem: A Laboratory Study

    OpenAIRE

    Battaglini, Marco; Nunnari, Salvatore; Palfrey, Thomas R.

    2013-01-01

    Most public goods are durable and have a significant dynamic component. In this paper, we report the results from a laboratory experiment designed explicitly to study the dynamics of free riding behavior in the accumulation of a durable public good that provides a stream of discounted benefits over a potentially infinite horizon. This dynamic free-rider problem differs from static ones in fundamental ways and implies several economically important predictions that are absent in static framewo...

  7. Chemical studies of single-walled carbon nanotubes

    CERN Document Server

    Xu, C

    2001-01-01

    WCl sub 6 has also been introduced into arc-vapourised SWNTs. Chapter 6 gives the details for all the experimental work of the thesis. of H sub 2 have also been studied. Chapter four describes the various processes used to purify arc-vapourised SWNTs on a laboratory scale. Two potentially scalable processes have also been studied. Both acid and gas oxidants have been used to purify SWNTs grown in the CVD method. The chemical resistance of CVD SWNTs (48 h of conc. HNO sub 3 treatment) has been shown for the first time. Various assembly behaviours of purified SWNTs, including loop and spiral structures, straight long bundles or somewhat aligned structures, are also described. Chapter five presents the filling of arc-vapourised SWNTs with LnX sub n (X = Cl, Br and I, n = 2 or 3) using the capallarity method at high temperature (570-910 deg C). The first example of a polycrystalline structure within SWNTs filled with a single material (SmCl sub 3) has been provided. Fullerenes within SWNTs in the SWNT samples ext...

  8. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  9. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  10. Chemical and biological warfare: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning federally sponsored and conducted studies into chemical and biological warfare operations and planning. These studies cover areas not addressed in other parts of this series. The topics include production and storage of agents, delivery techniques, training, military and civil defense, general planning studies, psychological reactions to chemical warfare, evaluations of materials exposed to chemical agents, and studies on banning or limiting chemical warfare. Other published searches in this series on chemical warfare cover detection and warning, defoliants, protection, and biological studies, including chemistry and toxicology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Chemical and biological warfare: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning federally sponsored and conducted studies into chemical and biological warfare operations and planning. These studies cover areas not addressed in other parts of this series. The topics include production and storage of agents, delivery techniques, training, military and civil defense, general planning studies, psychological reactions to chemical warfare, evaluations of materials exposed to chemical agents, and studies on banning or limiting chemical warfare. Other published searches in this series on chemical warfare cover detection and warning, defoliants, protection, and biological studies, including chemistry and toxicology.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Dynamic study of thin cylindrical vessels

    International Nuclear Information System (INIS)

    Fluids essential for the safety of a nuclear reactor (water, boron...) are contained in thin cylindrical vessels. An experimental investigation of the dynamic buckling of a thin cylindrical vessel filled with a fluid has been carried out on a shaking table. An investigation of the frequencies and mode shape of the vessel had also been done prior to the test. Calculations performed in order to predict these frequencies and modes have shown the importance of taking into account the stiffening effect of the fluid static pressure

  13. [Method for study of phase transitions in evaporating drop and its application for evaluation of physical-chemical properties of water and water solutions].

    Science.gov (United States)

    Iakhno, T A; Sanin, A G; Sanina, O A; Iakhno, V G

    2012-01-01

    Spatial-temporal crystallization features of inorganic chlorides in evaporating drops of water solutions, considering solid surface wettability, were studied using a microscopic technique and the acoustical impedansometry. Physical-chemical mechanisms responsible for the difference in "dynamical portraits" of distilled water and salt solutions, as well as relaxation effects in water were discussed. The study demonstrated the potential use of a drying drop method in registration of changes in water properties under the action of physical and chemical factors.

  14. Molecular-dynamic study of liquid ethylenediamine

    Science.gov (United States)

    Balabaev, N. K.; Kraevskii, S. V.; Rodnikova, M. N.; Solonina, I. A.

    2016-10-01

    Models of liquid ethylenediamine (ED) are built using the molecular dynamics approach at temperatures of 293-363 K and a size of 1000 molecules in a basic cell as a cuboid. The structural and dynamic characteristics of liquid ED versus temperature are derived. The gauche conformation of the ED molecule that is characteristic of the gas phase is shown to transition easily into the trans conformation of the molecules in the liquid. NH···N hydrogen bonds are analyzed in liquid ED. The number of H-bonds per ED molecule is found to vary from 5.02 at 293 K to 3.86 at 363 K. The lifetimes in the range of the temperatures and dissociation activation energy for several H-bonds in liquid ED are found to range from 0.574 to 4.524 ps at 293 K; the activation energies are 8.8 kJ/mol for 50% of the H-bonds and 16.3 kJ/mol for 6.25% of them. A weaker and more mobile spatial grid of H-bonds in liquid ED is observed, compared to data calculated earlier for monoethanolamine.

  15. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    Science.gov (United States)

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  16. Chemical evolution in hierarchical scenarios

    Directory of Open Access Journals (Sweden)

    Tissera P.B.

    2012-02-01

    Full Text Available We studied the chemical properties of Milky-Way mass galaxies. We found common global chemical patterns with particularities which reflect their different assembly histories in a hierarchical scenario. We carried out a comprehensively analysis of the dynamical components (central spheroid, disc, inner and outer haloes and their chemical properties.

  17. Comparisons of classical and Wigner sampling of transition state energy levels for quasiclassical trajectory chemical dynamics simulations

    International Nuclear Information System (INIS)

    Quasiclassical trajectory calculations are compared, with classical and Wigner sampling of transition state (TS) energy levels, for C2H5F≠→HF+C2H4 product energy partitioning and [Cl···CH3···Cl]- central barrier dynamics. The calculations with Wigner sampling are reported here for comparison with the previously reported calculations with classical sampling [Y. J. Cho et al., J. Chem. Phys. 96, 8275 (1992); L. Sun and W. L. Hase, J. Chem. Phys. 121, 8831 (2004)]. The C2H5F≠ calculations were performed with direct dynamics at the MP2/6-31G* level of theory. Classical and Wigner sampling give post-transition state dynamics, for these two chemical systems, which are the same within statistical uncertainties. This is a result of important equivalences in these two sampling methods for selecting initial conditions at a TS. In contrast, classical and Wigner sampling often give different photodissociation dynamics [R. Schinke, J. Phys. Chem. 92, 3195 (1988)]. Here the sampling is performed for a vibrational state of the ground electronic state potential energy surface (PES), which is then projected onto the excited electronic state's PES. Differences between the ground and the excited PESs may give rise to substantially different excitations of the vibrational and dissociative coordinates on the excited state PES by classical and Wigner sampling, resulting in different photodissociation dynamics.

  18. First-principles studies of atomic dynamics in tetrahedrite thermoelectrics

    Science.gov (United States)

    Li, Junchao; Zhu, Mengze; Abernathy, Douglas L.; Ke, Xianglin; Morelli, Donald T.; Lai, Wei

    2016-10-01

    Cu12Sb4S13-based tetrahedrites are high-performance thermoelectrics that contain earth-abundant and environmentally friendly elements. At present, the mechanistic understanding of their low lattice thermal conductivity (applies first-principles molecular dynamics simulations, along with inelastic neutron scattering (INS) experiments, to study the incoherent and coherent atomic dynamics in Cu10.5NiZn0.5Sb4S13, in order to deepen our insight into mechanisms of anomalous dynamic behavior and low lattice thermal conductivity in tetrahedrites. Our study of incoherent dynamics reveals the anomalous "phonon softening upon cooling" behavior commonly observed in inelastic neutron scattering data. By examining the dynamic Cu-Sb distances inside the Sb[CuS3]Sb cage, we ascribe softening to the decreased anharmonic "rattling" of Cu in the cage. On the other hand, our study of coherent dynamics reveals that acoustic modes are confined in a small region of dynamic scattering space, which we hypothesize leads to a minimum phonon mean free path. By assuming a Debye model, we obtain a lattice minimum thermal conductivity value consistent with experiments. We believe this study furthers our understanding of the atomic dynamics of tetrahedrite thermoelectrics and will more generally help shed light on the origin of intrinsically low lattice thermal conductivity in these and other structurally similar materials.

  19. Rodent-repellent studies. III. Advanced studies in the evaluation of chemical repellents

    Science.gov (United States)

    Bellack, E.; DeWitt, J.B.

    1949-01-01

    In order to bridge the gap between preliminary screening of chemicals for potential rodent repellency and the application ofthese compounds to paper cartons, more advanced studies in the evaluation ofpromising materials have been carried out. These studies have resulted in: (1) a modification of the food acceptance technique which eliminates doubtful compounds and also provides a closer analogy to the ultimate goal, and (2) a method for rapidly testing chemicals incorporated in paper. When the results of these latter tests are expressed as a function of time, it can be shown that a distinct correlation exists between the deterrency exhibited by treated paper and the repellency of treated food.

  20. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination. PMID:25710477

  1. Forcing an entire bifurcation diagram: Case studies in chemical oscillators

    Science.gov (United States)

    Kevrekidis, I. G.; Aris, R.; Schmidt, L. D.

    1986-12-01

    We study the finite amplitude periodic forcing of chemical oscillators. In particular, we examine systems that, when autonomous, (i.e. for zero forcing amplitude) exhibit a single stable oscillation. Using one of the system parameters as a forcing variable by varying it periodically, we show through extensive numerical work how the bifurcation diagram of the autonomous system with respect to this parameter affects the qualitative response of the full forced system. As the forcing variable oscillates around its midpoint, its instantaneous values may cross points (such as Hopf bifurcation poiints) of the autonomous bifurcation diagram so that the characterization of the system as a simple forced oscillator is no longer valid. Such a neighboring Hopf bifurcation of the unforced system is found to set the scene for the interaction of resonance horns and the loss of tori in the full forced system as the amplitude of the forcing grows. Our test case presented here is the Continuous Stirred Tank Reactor (CSTR) with periodically forced coolant temperature.

  2. Study of physical chemical characteristics of a shungite

    Directory of Open Access Journals (Sweden)

    Maira Kazankapova

    2012-05-01

    Full Text Available The physico-chemical characteristics of shungite from the field of Kazakhstan ("Bakyrchik" and Russia ("Zazhegino" was studied by elemental analysis, IR- spectroscopy and electron microscopy. The content of carbon in the schungite field "Zazhegino" is 28,0-31,0 %,  in the field "Bakyrchik" - 15,0-19,0 %, in schungite concentrate  "Bakyrchik" is 40,0 ± 2,0 %.  IR-spectroscopic analysis have been shown that carboxyl groups appear in addition to the concentrate of polycyclic hydrocarbons containing methylene groups. Analysis of electron microscopy have been shown that as a result of enrichment by carbon, shungite can get a more developed surface structure and porosity.

  3. Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

    CERN Document Server

    Mitschang, A W; Zucker, D B; Anguiano, B; Bensby, T; Feltzing, S

    2013-01-01

    The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as GALAH and the Gaia-ESO survey, will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work we perform the first ever blind chemical tagging experiment, i.e., tagging stars with no known or otherwise discernable associations, on a sample of 714 disc field stars with a number of high quality high resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thou...

  4. Effects of chemical reactions on the performance of gas dynamic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rom, J.; Stricker, J.

    1974-01-01

    It is shown that chemical reactions in the stagnation region of a gasdynamic laser in the shock tube may not be completed during the available test time. Therefore, analysis of data obtained in the shock tube must account for the instantaneous composition which may be effected by chemical reactions. A CO/sub 2/--N/sub 2/ gasdynamic laser experimental program in the shock tube including addition of H/sub 2/ into the system is described. This experiment involves reasonably complicated chemical reactions. These chemical reactions result in H/sub 2/O production under certain conditions. The comparison of the experimental results with the calculated results shows that such measurements can also be used to evaluate the energy transfer rates. The small-signal gain measurements indicate that the hydrogen is much more effective in depopulating the ..nu.. sub 3 level to ..nu.. sub 2 than previously assumed.

  5. Study of critical dynamics in fluids via molecular dynamics in canonical ensemble.

    Science.gov (United States)

    Roy, Sutapa; Das, Subir K

    2015-12-01

    With the objective of understanding the usefulness of thermostats in the study of dynamic critical phenomena in fluids, we present results for transport properties in a binary Lennard-Jones fluid that exhibits liquid-liquid phase transition. Various collective transport properties, calculated from the molecular dynamics (MD) simulations in canonical ensemble, with different thermostats, are compared with those obtained from MD simulations in microcanonical ensemble. It is observed that the Nosé-Hoover and dissipative particle dynamics thermostats are useful for the calculations of mutual diffusivity and shear viscosity. The Nosé-Hoover thermostat, however, as opposed to the latter, appears inadequate for the study of bulk viscosity. PMID:26687057

  6. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  7. Chemical mixing study for the Hanford TWRS Supporting facilities (U)

    Energy Technology Data Exchange (ETDEWEB)

    Heal, D.W.; Brantley, W.M.

    1996-09-03

    This Engineering Calculation addresses consequences of mixing any two hazardous chemicals contained in the same section of TWRS supporting facilities, as screened in accordance with `Westinghouse Savannah River Company Engineering and Construction Services Division Guidelines and Methods.`

  8. Study and interpretation of the chemical characteristics of natural water

    Science.gov (United States)

    Hem, John David

    1985-01-01

    The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater.

  9. USI/Chemplex/Quantum Chemical Co. Outfall Study, 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples collected in 1987 from the Quantum Chemical Corporation outfall on the Upper Mississippi River detected 14 polycyclic aromatic hydrocarbons...

  10. The Lewis Chemical Equilibrium Program with parametric study capability

    Science.gov (United States)

    Sevigny, R.

    1981-01-01

    The program was developed to determine chemical equilibrium in complex systems. Using a free energy minimization technique, the program permits calculations such as: chemical equilibrium for assigned thermodynamic states; theoretical rocket performance for both equilibrium and frozen compositions during expansion; incident and reflected shock properties; and Chapman-Jouget detonation properties. It is shown that the same program can handle solid coal in an entrained flow coal gasification problem.

  11. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  12. NMR studies of nucleic acid dynamics

    Science.gov (United States)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  13. Dynamics of pruning waste and spent horse litter co-composting as determined by chemical parameters.

    Science.gov (United States)

    Benito, Marta; Masaguer, Alberto; Moliner, Ana; Hontoria, Chiquinquirá; Almorox, Javier

    2009-01-01

    Co-composting of pruning waste and horse manure was monitored by different parameters. A windrow composting pile, having the dimensions 2.5m (height) x 30m (length) was established. The maturation of pruning waste and horse manure compost was accompanied by a decline in NH(4)(+)-N concentration, water soluble C and an increase in NO(3)(-)-N content. Organic matter (OM) content during composting followed a first-order kinetic equation. This result was in agreement with the microbiological activity measured by the CO(2) respiration during the process. The correlation at a high level of probability found between the OM loss and CO(2) evolution showed that both parameters could be used to indicate the degree of OM degradation that is the maturity and stability phases of the compost studied. Humification parameters data from the organic matter fractionation did not show a clear tendency during the composting time, suggesting that these parameters are not suitable for evaluating the dynamics of the process.

  14. A Study on Physical Dispersion and Chemical Modification of Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Eun-Chae; Kim, Seong-Jun [Chonnam National University, Gwangju (Korea, Republic of)

    2015-12-15

    Graphene has a wide spectrum on its application field due to various and excellent physical properties. However, it is very difficult to apply that graphene exists as lump or fold condition in general organic solvents. Besides, graphene was difficult to maintain as uniform condition due to chemical inert and distributions with various size and shapes. Therefore, this study was focused to study dispersion and modifying methods of aggregated graphene. The dispersion methods contain as follow: i) physical milling using glass bead, ii) co-treatment of glass bead and ultrasonic waves, iii) dispersion in organic solvents, iv) modifying with dry-ice. Milling using glass bead with size 2.5 mm was effective to be size decrease of 36.4% in comparison with control group. Mixed treatment of glass bead (size 2.5 mm) and ultrasonic waves (225W, 10 min) showed relative size decrease of 76%, suggesting that the size decrease depends on the size of glass bead, intensity of ultrasonic waves and treatment time. Solvents of Ethyl acetate (EA) and Isoprophyl alcohol (IPA) were used in order to improve dispersion by modifying surface of graphene. IPA of them showed a favorable dispersion with more -CO functional groups in the FT-IR analysis. On the other hand, the oxygen content of graphene surface modified by dry-ice was highly increased from 0.8 to 4.9%. From the results, it was decided that the favorable dispersion state for a long time was obtained under the condition of -CO functional group increase in IPA solvent.

  15. Analysis of the chemical evolution of the Galactic disk via dynamical simulations of the open cluster system

    OpenAIRE

    Tecce, T. E.; Pellizza, L. J.; Piatti, A. E.

    2006-01-01

    For several decades now, open clusters have been used to study the structure and chemical evolution of the disk of our Galaxy. Due to the fact that their ages and metallicities can be determined with relatively good precision, and since they can be observed even at great distances, they are excellent tracers of the variations in the abundance of heavy chemical elements with age and position in the Galactic disk. In the present work we analyze the star formation history and the chemical evolut...

  16. Study of chemical and physical properties of irradiated Guar Gum

    International Nuclear Information System (INIS)

    This study was carried out to evaluate the effect of different gamma radiation doses to decontamination of micro-organisms present in Guar Gum powder. As well as to study the effect of radiation on the chemical and physical properties of the carbohydrate components of the Gum's material. Two types of samples were used in this study (powder and liquid). All samples were collected from commercially available Guar Gum (G G), which were obtained from the company (Sudanese Guar Gum ltd). Samples putted in polyethylene tightly closed container, then irradiated by applying different doses (2.5, 5, 7.5, 10, 20,30,40,and 50 kGy) from Co-60 source at room temperature in air. And take zero kGy as control. Irradiated powder samples of (2.5, 5, 7.5, 10 kGy) were investigated for contamination by using growth media agar and the result showed that 2.5 kGy is appropriate dose to remove the contamination of the samples. And then analyzed using fourier transform infrared (FTTR) x-ray fluorescence (X RF) and spectroscopy. The FTIR spectroscopy results suggested that there were no major chemical functional group transformation during irradiation. No change occurs by using low dose as 2.5 kGy. Also evaluation impact of radiation on liquid Samples (Aqueous solutions prepared in tow concentration of 1% and 5% wv that is by exposing the samples to the same dose of gamma rays) the effect of irradiation on it were investigated by using ultra violet spectroscopy ( UV.Vis), results showed that low dose has steeply effect in solutions specially in low concentration, it was more pronoun than that in high concentration, high dose has made change similar to that it made in powder. Also for both concentrations of liquid samples and for solutions made of irradiated powder pH measured and viscosity which used in investigations of molecular weight of liquid and powder, comparing the results of impact in the form of powder with the results of effects in the solutions found that the effects of

  17. Oral Dosing of Chemical Indicators for In Vivo Monitoring of Ca2+ Dynamics in Insect Muscle

    OpenAIRE

    Ferdinandus,; Satoshi Arai; Shin'ichi Ishiwata; Madoka Suzuki; Hirotaka Sato

    2015-01-01

    This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg I...

  18. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    Science.gov (United States)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  19. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-01-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud-Ocean Study (ASCOS in August 2008, particulate and dissolved organic matter (POM, DOM samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  20. Results of Chemical Analyses in Support of Yucca Mountain Studies

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Jeanette

    2007-12-11

    Ground water monitoring for the Nye County Early Warning Drilling Program (NCEWDP) was established to monitor underground water sources of the area and to protect communities surrounding the Nevada Test Site (NTS) from potential radionuclide contamination of these water sources. It provides hydrological information pertaining to groundwater flow patterns and recharge issues in the vicinity of Yucca Mountain. The Harry Reid Center for Environmental Studies (HRC) obtained groundwater samples from select NCEWDP wells shown in Figure 1. These samples were analyzed for major cations, major anions, trace elements, rare earth elements, alkalinity, pH and conductivity. These geochemical results can be used to evaluate the degree of interaction between the aquifers sampled, leading to a thorough mapping of the aquifer system. With increased analysis down gradient of the Yucca Mountain area, evaluations can identify viable groundwater flow paths and establish mixing of the groundwater systems. Tracer tests provide insight into groundwater flow characteristics and transport processes of potential contaminants. These tests are important for contaminant migration issues including safe disposal of hazardous and radioactive materials and remediation of potentially released contaminants. At a minimum, two conservative (non-sorbing) tracers with different diffusion coefficients are used for each tracer test. The tracer test performed under this cooperative agreement utilized fluorinated benzoic acids and halides as conservative tracers. The tracers are of differing size and have differing rates of diffusion into the rock. Larger molecules can not enter the pore spaces that are penetrated by the smaller molecules, therefore larger tracers will travel faster through thegroundwater system. Identical responses of the two tracers indicate no appreciable diffusion into pores of the aquifer system tuff. For the Nye County Tracer Tests, the HRC provided chemical analysis for the tracer

  1. NATO Advanced Research Workshop on The Theory of Chemical Reaction Dynamics

    CERN Document Server

    1986-01-01

    The calculation of cross sections and rate constants for chemical reactions in the gas phase has long been a major problem in theoretical chemistry. The need for reliable and applicable theories in this field is evident when one considers the significant recent advances that have been made in developing experimental techniques, such as lasers and molecular beams, to probe the microscopic details of chemical reactions. For example, it is now becoming possible to measure cross sections for chemical reactions state selected in the vibrational­ rotational states of both reactants and products. Furthermore, in areas such as atmospheric, combustion and interstellar chemistry, there is an urgent need for reliable reaction rate constant data over a range of temperatures, and this information is often difficult to obtain in experiments. The classical trajectory method can be applied routinely to simple reactions, but this approach neglects important quantum mechanical effects such as tunnelling and resonances. For al...

  2. Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems.

    Science.gov (United States)

    Nfon, Erick; Armitage, James M; Cousins, Ian T

    2011-11-15

    A dynamic combined fate and food web model was developed to estimate the food web transfer of chemicals in small aquatic ecosystems (i.e. ponds). A novel feature of the modeling approach is that aquatic macrophytes (submerged aquatic vegetation) were included in the fate model and were also a food item in the food web model. The paper aims to investigate whether macrophytes are effective at mitigating chemical exposure and to compare the modeling approach developed here with previous modeling approaches recommended in the European Union (EU) guideline for risk assessment of pesticides. The model was used to estimate bioaccumulation of three hypothetical chemicals of varying hydrophobicity in a pond food web comprising 11 species. Three different macrophyte biomass densities were simulated in the model experiments to determine the influence of macrophytes on fate and bioaccumulation. Macrophytes were shown to have a significant effect on the fate and food web transfer of highly hydrophobic compounds with log KOW>=5. Modeled peak concentrations in biota were highest for the scenarios with the lowest macrophyte biomass density. The distribution and food web transfer of the hypothetical compound with the lowest hydrophobicity (log KOW=3) was not affected by the inclusion of aquatic macrophytes in the pond environment. For the three different hypothetical chemicals and at all macrophyte biomass densities, the maximum predicted concentrations in the top predator in the food web model were at least one order of magnitude lower than the values estimated using methods suggested in EU guidelines. The EU guideline thus provides a highly conservative estimate of risk. In our opinion, and subject to further model evaluation, a realistic assessment of dynamic food web transfer and risk can be obtained using the model presented here. PMID:21962596

  3. Dynamics of the chemical master equation, a strip of chains of equations in d-dimensional space.

    Science.gov (United States)

    Galstyan, Vahe; Saakian, David B

    2012-07-01

    We investigate the multichain version of the chemical master equation, when there are transitions between different states inside the long chains, as well as transitions between (a few) different chains. In the discrete version, such a model can describe the connected diffusion processes with jumps between different types. We apply the Hamilton-Jacobi equation to solve some aspects of the model. We derive exact (in the limit of infinite number of particles) results for the dynamic of the maximum of the distribution and the variance of distribution. PMID:23005386

  4. Chemically induced dynamic electron polarization investigation of the triplet-radical system in the solution of the triplet quencher

    Institute of Scientific and Technical Information of China (English)

    LU, Tong-Xing; CUI, Zhi-Feng; XU, Xin-Sheng; ZHANG, Xian-Yi

    2000-01-01

    The chemically induced dynamic electron polariztiion (CIDEP) of the triplet molecule/triplet quencher/2,2,6,6-te tranethyl-1-piperidinyioxyl (TEMPO) systems were measured using the high time-resolved FESR spectrometer. The competi tion between the radical-triplet pair mechanism (RTPM) and triplet mechanism (TM) or radical pair mechanism (RPM) polarization in the solution of the triplet quencher was investi gated, and the relationship between reaction rate of the radi cal-triplet pair and quenching rate of triplet was deduced.

  5. High-power supersonic chemical lasers: gas-dynamic problems of operation of mobile systems with PRS

    Science.gov (United States)

    Boreysho, A. S.; Malkov, V. M.; Savin, A. V.

    2008-10-01

    Supersonic chemical lasers, such as HF /DF and COIL, have always been in the focus of special interest as the most powerful sources of continuous wave generation. Presently, autonomous mobile laser complexes (both air- and landbased) are being developed on the basis of SCL [1-3]. It is commonly accepted that SCL appeared, conditionally speaking, at the crossroads of a number of sciences: of physics - quantum electronics and physical kinetics; chemistry - combustion theory and chemical kinetics; classic optics - theory of resonators, aero-optics, and gas dynamics (there is a supersonic flow in the SCL channel). Due to this fact, all tasks and problems which could be resolved in the course of SCL development have complex character and could be considered as the next stage of complexity in comparison with the well known similar tasks which had been considered earlier. This is why they should be resolved anew with consideration of the specific aspects of the SCL processes. This is true for the gas-dynamic problems: new parameter areas, non-traditional channel geometry, consideration of new phenomena, etc.Supersonic chemical lasers, such as HF /DF and COIL, have always been in the focus of special interest as the most powerful sources of continuous wave generation. Presently, autonomous mobile laser complexes (both air- and landbased) are being developed on the basis of SCL [1-3]. It is commonly accepted that SCL appeared, conditionally speaking, at the crossroads of a number of sciences: of physics - quantum electronics and physical kinetics; chemistry - combustion theory and chemical kinetics; classic optics - theory of resonators, aero-optics, and gas dynamics (there is a supersonic flow in the SCL channel). Due to this fact, all tasks and problems which could be resolved in the course of SCL development have complex character and could be considered as the next stage of complexity in comparison with the well known similar tasks which had been considered earlier

  6. Chemical Modification: an Effective Way of Avoiding the Collapse of SWNTs on Al Surface Revealed by Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Xie, J.; Xue, Q. Z.; Yan, K. Y.;

    2009-01-01

    The rapid collapse of intrinsic single-walled carbon nanotube (SWNT) on the aluminum surface is observed using molecular dynamics simulation. The collapsing threshold is similar to 10 angstrom, and the length has no influence on its collapse. Furthermore, we report that the structural stability...... basically maintain the cylindrical structure in our described systems. The results also show that, to avoid SWNTs collapse by chemical modification, the longer and larger SWNTs are, the more modification coverage SWNTs require. and vice versa. Our method allows potentially used modified SWNTs...

  7. A Case Study of Search Engine on World Wide Web for Chemical Fiber Engineering

    Institute of Scientific and Technical Information of China (English)

    张利; 邵世煌; 曾献辉; 尹美华

    2001-01-01

    Search engine is an effective approach to promote the service quality of the World Wide Web. On terms of the analysis of search engines at home and abroad, the developing principle of search engines is given according to the requirement of Web information for chemical fiber engineering. The implementation method for the communication and dynamic refreshment of information on home page of the search engines are elaborated by using programming technology of Active Server Page 3.0 (ASP3.0). The query of chemical fiber information and automatic linking of chemical fiber Web sites can be easily realized by the developed search engine under Internet environment according to users' requirement.

  8. Predicting Fecundity of Fathead Minnows (Pimephales promelas) Exposed to Endocrine-Disrupting Chemicals Using a MATLAB®-Based Model of Oocyte Growth Dynamics.

    Science.gov (United States)

    Watanabe, Karen H; Mayo, Michael; Jensen, Kathleen M; Villeneuve, Daniel L; Ankley, Gerald T; Perkins, Edward J

    2016-01-01

    Fish spawning is often used as an integrated measure of reproductive toxicity, and an indicator of aquatic ecosystem health in the context of forecasting potential population-level effects considered important for ecological risk assessment. Consequently, there is a need for flexible, widely-applicable, biologically-based models that can predict changes in fecundity in response to chemical exposures, based on readily measured biochemical endpoints, such as plasma vitellogenin (VTG) concentrations, as input parameters. Herein we describe a MATLAB® version of an oocyte growth dynamics model for fathead minnows (Pimephales promelas) with a graphical user interface based upon a previously published model developed with MCSim software and evaluated with data from fathead minnows exposed to an androgenic chemical, 17β-trenbolone. We extended the evaluation of our new model to include six chemicals that inhibit enzymes involved in steroid biosynthesis: fadrozole, ketoconazole, propiconazole, prochloraz, fenarimol, and trilostane. In addition, for unexposed fathead minnows from group spawning design studies, and those exposed to the six chemicals, we evaluated whether the model is capable of predicting the average number of eggs per spawn and the average number of spawns per female, which was not evaluated previously. The new model is significantly improved in terms of ease of use, platform independence, and utility for providing output in a format that can be used as input into a population dynamics model. Model-predicted minimum and maximum cumulative fecundity over time encompassed the observed data for fadrozole and most propiconazole, prochloraz, fenarimol and trilostane treatments, but did not consistently replicate results from ketoconazole treatments. For average fecundity (eggs•female(-1)•day(-1)), eggs per spawn, and the number of spawns per female, the range of model-predicted values generally encompassed the experimentally observed values. Overall, we

  9. Adhesive capsulitis and dynamic splinting: a controlled, cohort study

    OpenAIRE

    Willis F Buck; Gaspar Paul D

    2009-01-01

    Abstract Background Adhesive Capsulitis (AC) affects patient of all ages, and stretching protocols are commonly prescribed for this condition. Dynamic splinting has been shown effective in contracture reduction from pathologies including Trismus to plantar fasciitis. The purpose of this study was to examine the efficacy of dynamic splinting on patients with AC. Methods This controlled, cohort study, was conducted at four physical therapy, sports medicine clinics in Texas and California. Sixty...

  10. Laser studies of chemical reaction and collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G. [Columbia Univ., New York, NY (United States)

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  11. EXPERIMENTAL STUDY OF CHEMICAL CHOLECYSTECTOMY: OBSERVATION OF PATHOLOGICAL CHANGES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: TO verify through animal experiment the validity of chemical cholecystectomy . Methods: The experimental objects seven healthy juvenile pigs,hardener was infused into the gallbladder,after infusion the samples were collected by pathoiogical examination , according to the different duration under anesthestize. Reslts:The mucous destructive and digestive process remained with one week, the inflammatory reacton in two weeks,the chronic inflatoy reaction compained a a great deal of granu lation tissue and scar formation occurred in 4th-8th week,10 weeks latter,the inflmmatory reaction reduced ,and scar tissue formed. Conclusion: Chemical cholecystectomy is safe and reliable in clinical.

  12. EXPERIMENTAL STUDY OF CHEMICAL CHOLECYSTECTOMY OF PATHOLOGIC OBSERVATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective:To verify through animal experiment the validity of chemical cholecystectomy.Mothods:The expermental objects seven healthy juvenile pigs,hardener was infused into the gallbladder,after infusion the sapmles were collected by pathological examination,according to the different duration under anesthestize.Results:The mucous destructive and digestive process remained with one week,the inflammatory reaction in two weeks,the chronic inflammatory reaction compained a great deal of granulation tissue and scar formation occurred in 4th-8th week,10 weeks latter,the inflammatory reaction reduced,and scar tissue formed.Conlusion:Chemical cholecystecomy is safe and reliable in clinic.

  13. Concentration dynamics in lakes and reservoirs. Studies using radioactive tracers

    International Nuclear Information System (INIS)

    The use of radioactive tracers for the investigation of concentration dynamics of inert soluble matter in lakes and reservoirs is reviewed. Shallow and deep stratified lakes are considered. The mechanism of mixing in lakes, flow pattern and input - output response are discussed. The methodology of the use of radioactive tracers for concentration dynamic studies is described. Examples of various investigations are reviewed. The dynamics of shallow lakes can be found and expressed in terms of transfer functions, axial dispersion models, residence time distributions and sometimes only semiquantitative information about the flow pattern. The dynamics of deep, stratified lakes is more complex and difficult to investigate with tracers. Flow pattern, horizontal and vertical eddy diffusivities, mass transfer between the hypolimnion and epilimnion are tools used for describing this dynamics. (author)

  14. Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera

    Science.gov (United States)

    Zhang, Jian J.; Xuan, Jason R.; Yu, Honggang; Devincentis, Dennis

    2016-02-01

    Although laser lithotripsy is now the preferred treatment option for urolithiasis, the mechanism of laser pulse induced calculus damage is still not fully understood. This is because the process of laser pulse induced calculus damage involves quite a few physical and chemical processes and their time-scales are very short (down to sub micro second level). For laser lithotripsy, the laser pulse induced impact by energy flow can be summarized as: Photon energy in the laser pulse --> photon absorption generated heat in the water liquid and vapor (super heat water or plasma effect) --> shock wave (Bow shock, acoustic wave) --> cavitation bubble dynamics (oscillation, and center of bubble movement , super heat water at collapse, sonoluminscence) --> calculus damage and motion (calculus heat up, spallation/melt of stone, breaking of mechanical/chemical bond, debris ejection, and retropulsion of remaining calculus body). Cavitation bubble dynamics is the center piece of the physical processes that links the whole energy flow chain from laser pulse to calculus damage. In this study, cavitation bubble dynamics was investigated by a high-speed camera and a needle hydrophone. A commercialized, pulsed Ho:YAG laser at 2.1 mu;m, StoneLightTM 30, with pulse energy from 0.5J up to 3.0 J, and pulse width from 150 mu;s up to 800 μs, was used as laser pulse source. The fiber used in the investigation is SureFlexTM fiber, Model S-LLF365, a 365 um core diameter fiber. A high-speed camera with frame rate up to 1 million fps was used in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by laser pulse at different energy level and pulse width. More detailed investigation on bubble dynamics by different type of laser, the relationship between cavitation bubble dynamics and calculus damage (fragmentation/dusting) will be conducted as a future study.

  15. The VENUS/NWChem Software Package. Tight Coupling Between Chemical Dynamics Simulations and Electronic Structure Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lourderaj, Upakarasamy; Sun, Rui; De Jong, Wibe A.; Windus, Theresa L.; Hase, William L.

    2014-03-01

    The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling. The two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface which accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized.

  16. Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide

    Science.gov (United States)

    Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao

    2016-06-01

    Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu-C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

  17. Economic background of chemical integration - a case study

    NARCIS (Netherlands)

    Westerterp, K.R.

    1978-01-01

    In this second paper on chemical integration the author refines the usual relation of total costs equals fixed plus variable costs further by splitting the fixed costs into core, true fixed and capacity related fixed costs. A set of equations for a simplified definition of the returns on investment

  18. Structural studies of chemical constituents of Thithonia Tagetiflora Desv (Asteraceae)

    DEFF Research Database (Denmark)

    Ngoc Huynh, Vinh; Nguyen Thi Hoai, Thu; Phi Phung Nguyen, Kim;

    2013-01-01

    Tithonia tagetiflora Desv. (Asteraceae) is a widespread plant in Vietnam, and the species of Tithonia are known as plants containing many biologically active compounds. However, T. tagetiflora's chemical composition remains mostly unknown. Therefore, we now report the structural elucidation of two...

  19. Theoretical study of charge exchange dynamics in He$^+$ + NO collisions

    CERN Document Server

    Bene, E

    2014-01-01

    We investigate the charge transfer mechanism in the collisions of helium ions on nitric oxide using a molecular description framework with consideration of the orientation of the projectile toward the target. The anisotropy of the collision process has been analysed in detail in connection with the non-adiabatic interactions around avoided crossings. Potential energy curves, radial and rotational coupling matrix elements have been determined by means of ab initio quantum chemical methods. The collision dynamics is performed in the [1.-25.] keV collision energy range using a semiclassical approach, and the total electron transfer cross sections are analysed with regard to available experimental data.

  20. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2016-10-01

    Full Text Available Glucose oxidase (GOx is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2. GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI. The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD study of the PEI ligand (C14N8_07_B22 and the GOx enzyme (3QVR was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1 of −5.8 kcal/mol and (LIG2 of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1 and on its surface (LIG2 were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  1. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  2. D44 - Multiple beam SANS for dynamic studies on small sample volumes

    International Nuclear Information System (INIS)

    Tracking of kinetics and dynamical processes on extremely low sample volumes is one of the most promising fields for new applications of neutron scattering complementing synchrotron X-ray research. The proposed SANS instrument using multiple beams focussed on the sample is designed for investigations of nano-scaled fluctuations and sub-millisecond dynamics in new materials obtained only in small quantities from complex and expensive syntheses, such as biological or isotope enriched materials. It allows kinetics of chemical processes to be studied in a large dynamic range in one shot when fast changes of external parameters (B, H, T, p, pH, etc) has to be applied on small sample volumes

  3. Microbial population dynamics in an anaerobic CSTR treating a chemical synthesis-based pharmaceutical wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Ince, Orhan; Ince, Bahar Kasapgil; Akarsubasi, Alper Tunga; Eyice, Ozge

    2003-01-01

    Effects of a chemical synthesis based pharmaceutical wastewater on performance of an anaerobic completely stirred tank reactor (CSTR), activity of acetoclastic methanogens and microbial composition were evaluated under various influent compositions. Initially, the CSTR was fed with glucose up to an organic loading rate (OLR) of 6 kg COD/m3 x d corresponding to an F/M ratio of 0.43 with a hydraulic retention time (HRT) of 2.5 days. A COD removal efficiency of 92% and a methane yield of 0.32 m3 CH4/kg COD(removed) were achieved whilst specific methanogenic activity (SMA) was found to be 336mL CH4/gTVS x d. After the CSTR was fed with pre-aerated wastewater diluted by glucose in different dilution ratios of 10% (w/v), 30% (w/v), 70% (w/v), and 100% (w/v) pre-aerated wastewater, gradual decreases in COD removal efficiency to 71%, methane yield to 0.28 m3CH4/kg COD(removed) and SMA to 166 mL CH4/gTVS d occurred whilst volatile fatty acid concentration reached to 1474 mg/L. After the raw wastewater diluted with the pre-aerated wastewater was fed into the CSTR in increasing ratios of 10% (w/v), 30% (w/v), and 60% (w/v), there was a proportional deterioration in performance in terms of COD removal efficiency, methane yield and acetoclastic methanogenic activity. Epifluorescence microscopy of the seed sludge revealed that Methanococcus-like species, short, and medium rods were found to be equally dominant. The short and medium rod species remained equally dominant groups in the CSTR throughout the feeding regime whilst Methanococcus-like species and long rods were found to be in insignificant numbers at the end of the study. Changes in archael diversity were determined using molecular analyses such as polymerase chain reaction (PCR), and denaturent gradient gel electrophoresis (DGGE). Results showed that overall archeal diversity did not change much whereas changes in composition of eubacterial population occurred.

  4. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-07-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud Ocean Study (ASCOS in August 2008, particulate organic matter (POM, with size range > 0.22 μm and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM (> 5 kDa and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the

  5. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  6. Theoretical Studies of Chemical Reactions following Electronic Excitation

    Science.gov (United States)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  7. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains

    Directory of Open Access Journals (Sweden)

    Meire Cristina Nogueira de Andrade

    2013-12-01

    Full Text Available Two compost formulations based on oat straw (Avena sativa and brachiaria (Brachiaria sp. were tested for the cultivation of three Agaricus bisporus strains (ABI-07/06, ABI-05/03, and PB-1. The experimental design was a 2 x 3 factorial scheme (composts x strains with 6 treatments and 8 repetitions (boxes containing 12 kg of compost. The chemical characterization of the compost (humidity, organic matter, carbon, nitrogen, pH, raw protein, ethereal extract, fibers, ash, cellulose, hemicellulose, and lignin before and after the cultivation of A. bisporus and the production (basidiomata mass, productivity, and biological efficiency were evaluated. Data were submitted to variance analysis, and averages were compared by means of the Tukey's test. According to the results obtained, the chemical and production characteristics showed that the best performances for the cultivation of A. bisporus were presented by the compost based on oat and the strain ABI-07/06.

  8. Modelling chemical composition in electric systems ? implications to the dynamics of dye-sensitised solar cells

    OpenAIRE

    Kovanen, T.; Tarhasaari, T.; Kettunen, L.; Korppi-Tommola, J.

    2010-01-01

    Abstract Classical electromagnetism provides limited means to model electric generators. To extend the classical theory in this respect, additional information on microscopic processes is required. In semiconductor devices and electrochemical generators such information may be obtained by modelling chemical composition. Here we use this approach for the modelling of dye-sensitised solar cells. We simulate the steady-state current-voltage characteristics of such a cell, as well as i...

  9. Dynamics of transient metastable states in mixtures under coupled phase ordering and chemical demixing

    OpenAIRE

    Soulé, Ezequiel R.; Rey, Alejandro D.

    2013-01-01

    We present theory and simulation of simultaneous chemical demixing and phase ordering in a polymer-liquid crystal mixture in conditions where isotropic-isotropic phase separation is metastable with respect to isotropic-nematic phase transition. In the case the mechanism is nucleation and growth, it is found that mesophase growth proceeds by a transient metastable phase that surround the ordered phase, and whose lifetime is a function of the ratio of diffusional to orientational mobilities. In...

  10. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains

    OpenAIRE

    Meire Cristina Nogueira de Andrade; João Paulo Furlan de Jesus; Fabrício Rocha Vieira; Sthefany Rodrigues Fernandes Viana; Marta Helena Fillet Spoto; Marli Teixeira de Almeida Minhoni

    2014-01-01

    Two compost formulations based on oat straw (Avena sativa) and brachiaria (Brachiaria sp.) were tested for the cultivation of three Agaricus bisporus strains (ABI-07/06, ABI-05/03, and PB-1). The experimental design was a 2 x 3 factorial scheme (composts x strains) with 6 treatments and 8 repetitions (boxes containing 12 kg of compost). The chemical characterization of the compost (humidity, organic matter, carbon, nitrogen, pH, raw protein, ethereal extract, fibers, ash, cellulose, hemicellu...

  11. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies

    CERN Document Server

    Mühlbach, Adrian H; Reiher, Markus

    2015-01-01

    The inherently high computational cost of iterative self-consistent-field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to thirty percent as a consequence of a reduced number of SCF iterations.

  12. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    Science.gov (United States)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  13. Green strength sustainability: a case study of chemical engineering students

    OpenAIRE

    Avsec, Stanislav; Kaučič, Branko

    2015-01-01

    Green chemistry is a relatively new area of science and technology aimed at improving chemical processes and thereby avoiding negative impacts on human health, safety, and the environment (EHS). It is based on careful selection of raw materials for the production of various products, excluding the use of hazardous substances. The field of green chemistry has received much attention from the scientific and industrial communities in almost every highly industrialized nation. It i...

  14. Chemical and pharmacological studies of the plants from genus Celastrus.

    Science.gov (United States)

    Su, Xiao-Hui; Zhang, Man-Li; Zhan, Wen-Hong; Huo, Chang-Hong; Shi, Qing-Wen; Gu, Yu-Cheng; Kiyota, Hiromasa

    2009-02-01

    The plants of genus Celastrus, distributed in Asia, have been used as natural insecticides and folk medicines to treat fever, chill, joint pain, edema, rheumatoid arthritis, and bacterial infection in China for a long time. This contribution reviews the chemical constituents, isolated from the plants in genus Celastrus in the past few decades, and their biological activities. The compounds listed are sesquiterpenes (beta-agarofurans), diterpenes, triterpenes, alkaloids, and flavonoids.

  15. Chemical and pharmacological studies of the plants from genus Celastrus.

    Science.gov (United States)

    Su, Xiao-Hui; Zhang, Man-Li; Zhan, Wen-Hong; Huo, Chang-Hong; Shi, Qing-Wen; Gu, Yu-Cheng; Kiyota, Hiromasa

    2009-02-01

    The plants of genus Celastrus, distributed in Asia, have been used as natural insecticides and folk medicines to treat fever, chill, joint pain, edema, rheumatoid arthritis, and bacterial infection in China for a long time. This contribution reviews the chemical constituents, isolated from the plants in genus Celastrus in the past few decades, and their biological activities. The compounds listed are sesquiterpenes (beta-agarofurans), diterpenes, triterpenes, alkaloids, and flavonoids. PMID:19235157

  16. Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous H2O2: Tight-Binding Quantum Chemical Molecular Dynamics Simulations.

    Science.gov (United States)

    Kawaguchi, Kentaro; Ito, Hiroshi; Kuwahara, Takuya; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji

    2016-05-11

    We applied our original chemical mechanical polishing (CMP) simulator based on the tight-binding quantum chemical molecular dynamics (TB-QCMD) method to clarify the atomistic mechanism of CMP processes on a Cu(111) surface polished with a SiO2 abrasive grain in aqueous H2O2. We reveal that the oxidation of the Cu(111) surface mechanically induced at the friction interface is a key process in CMP. In aqueous H2O2, in the first step, OH groups and O atoms adsorbed on a nascent Cu surface are generated by the chemical reactions of H2O2 molecules. In the second step, at the friction interface between the Cu surface and the abrasive grain, the surface-adsorbed O atom intrudes into the Cu bulk and dissociates the Cu-Cu bonds. The dissociation of the Cu-Cu back-bonds raises a Cu atom from the surface that is mechanically sheared by the abrasive grain. In the third step, the raised Cu atom bound to the surface-adsorbed OH groups is removed from the surface by the generation and desorption of a Cu(OH)2 molecule. In contrast, in pure water, there are no geometrical changes in the Cu surface because the H2O molecules do not react with the Cu surface, and the abrasive grain slides smoothly on the planar Cu surface. The comparison between the CMP simulations in aqueous H2O2 and pure water indicates that the intrusion of a surface-adsorbed O atom into the Cu bulk is the most important process for the efficient polishing of the Cu surface because it induces the dissociation of the Cu-Cu bonds and generates raised Cu atoms that are sheared off by the abrasive grain. Furthermore, density functional theory calculations show that the intrusion of the surface-adsorbed O atoms into the Cu bulk has a high activation energy of 28.2 kcal/mol, which is difficult to overcome at 300 K. Thus, we suggest that the intrusion of surface-adsorbed O atoms into the Cu bulk induced by abrasive grains at the friction interface is a rate-determining step in the Cu CMP process. PMID:27092706

  17. Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs.

    Science.gov (United States)

    Li, Li; Wania, Frank

    2016-09-01

    Dynamically tracking flows and stocks of problematic chemicals in products (CiPs) in the global anthroposphere is essential to understanding their environmental fates and risks. The complex behavior of CiPs during production, use and waste disposal makes this a challenging task. Here we introduce and describe a dynamic substance flow model, named Chemicals in Products - Comprehensive Anthropospheric Fate Estimation (CiP-CAFE), which facilitates the quantification of time-variant flows and stocks of CiPs within and between seven interconnected world regions and the generation of global scale emission estimates. We applied CiP-CAFE to polychlorinated biphenyls (PCBs), first to evaluate its ability to reproduce previously reported global-scale atmospheric emission inventories and second to illustrate its potential applications and merits. CiP-CAFE quantifies the pathways of PCBs during production, use and waste disposal stages, thereby deducing the temporal evolution of in-use and waste stocks and identifying their long-term final sinks. Time-variant estimates of PCB emissions into air, water and soil can be attributed to different processes and be fed directly into a global fate and transport model. By capturing the international movement of PCBs as technical chemicals, and in products and waste, CiP-CAFE reveals that the extent of global dispersal caused by humans is larger than that occurring in the natural environment. Sensitivity analysis indicates that the model output is most sensitive to the PCB production volume and the lifetime of PCB-containing products, suggesting that a shortening of that lifetime is key to reducing future PCB emissions. PMID:27431909

  18. Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs.

    Science.gov (United States)

    Li, Li; Wania, Frank

    2016-09-01

    Dynamically tracking flows and stocks of problematic chemicals in products (CiPs) in the global anthroposphere is essential to understanding their environmental fates and risks. The complex behavior of CiPs during production, use and waste disposal makes this a challenging task. Here we introduce and describe a dynamic substance flow model, named Chemicals in Products - Comprehensive Anthropospheric Fate Estimation (CiP-CAFE), which facilitates the quantification of time-variant flows and stocks of CiPs within and between seven interconnected world regions and the generation of global scale emission estimates. We applied CiP-CAFE to polychlorinated biphenyls (PCBs), first to evaluate its ability to reproduce previously reported global-scale atmospheric emission inventories and second to illustrate its potential applications and merits. CiP-CAFE quantifies the pathways of PCBs during production, use and waste disposal stages, thereby deducing the temporal evolution of in-use and waste stocks and identifying their long-term final sinks. Time-variant estimates of PCB emissions into air, water and soil can be attributed to different processes and be fed directly into a global fate and transport model. By capturing the international movement of PCBs as technical chemicals, and in products and waste, CiP-CAFE reveals that the extent of global dispersal caused by humans is larger than that occurring in the natural environment. Sensitivity analysis indicates that the model output is most sensitive to the PCB production volume and the lifetime of PCB-containing products, suggesting that a shortening of that lifetime is key to reducing future PCB emissions.

  19. Free energy of liquid water on the basis of quasi-chemical theory and ab initio molecular dynamics

    CERN Document Server

    Asthagiri, D; Kress, J D; Pratt, Lawrence R.

    2003-01-01

    We use ab initio molecular dynamics as a basis for quasi-chemical theory evaluation of the free energy of water near conventional liquid thermodynamic states. The PW91, PBE, and revised PBE (rPBE) functionals are employed. The oxygen radial density distribution, gOO(r), using the rPBE functional is in reasonable agreement with current experiments, whereas the PW91 and PBE functionals predict a more structured gOO(r). The diffusion coefficient with the rPBE functional is in reasonable accord with experiments. Using a maximum entropy procedure, we obtain x_0 from the coordination number distribution x_n for oxygen atoms having n neighbors. Likewise, we obtain p_0 from p_n, the probability of observing cavities of specified radius containing n water molecules. The probability x_0 is a measure of the local chemical interactions and is central to the quasi-chemical theory of solutions. The probability p_0, central to the theory of liquids, is a measure of the free energy required to open cavities of defined sizes ...

  20. Shear viscosity, bulk viscosity, and relaxation times of causal dissipative relativistic fluid-dynamics at finite temperature and chemical potential

    Science.gov (United States)

    Huang, Xu-Guang; Koide, Tomoi

    2012-09-01

    The microscopic formulas for the shear viscosity η, the bulk viscosity ζ, and the corresponding relaxation times τπ and τΠ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure. We show that, when the operator definition for the bulk viscous pressure Π is appropriately chosen, the leading-order result of the ratio, ζ over τΠ, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al. (2008) [8] by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.

  1. Molecular Dynamics Studies of Nanofluidic Devices

    DEFF Research Database (Denmark)

    Zambrano Rodriguez, Harvey Alexander

    Nanotechnology and fluid mechanics are two scientific areas where recent progress has disclosed a variety of new posibilities. The advances in both fields stablished the grounds for interdisciplinary approaches and recent findings promise novel applications that are leading to a technological rev...... conduct simulations to analyze the earlier stage of the capillary filling process of silica nanochannels, we focus this study on the roll of air in this system. We find that air at high pressures can affect the capillarity in silica channels below 10 nm height....

  2. Dynamics of Peer Grading: An Empirical Study

    OpenAIRE

    Alfaro, L; Shavlovsky, M

    2016-01-01

    Peer grading is widely used in MOOCs and in standard university settings. The quality of grades obtained via peer grading is essential for the educational process. In this work, we study the factors that influence errors in peer grading. We analyze 288 assignments with 25,633 submissions and 113,169 reviews conducted with CrowdGrader, a web based peer grading tool. First, we found that large grading errors are generally more closely correlated with hard-to-grade submission, rather than ...

  3. Factors associated with chemical burns in Zhejiang province, China: An epidemiological study

    Directory of Open Access Journals (Sweden)

    Jiang Rui M

    2011-09-01

    Full Text Available Abstract Background Work-related burns are common among occupational injuries. Zhejiang Province is an industrial area with a high incidence of chemical burns. We aimed to survey epidemiological features of chemical burns in Zhejiang province to determine associated factors and acquire data for developing a strategy to prevent and treat chemical burns. Methods Questionnaires were developed, reviewed and validated by experts, and sent to 25 hospitals in Zhejiang province to prospectively collect data of 492 chemical burn patients admitted during one year from Sept. 1, 2008 to Aug. 31, 2009. Questions included victims' characteristics and general condition, injury location, causes of accident, causative chemicals, total body surface area burn, concomitant injuries, employee safety training, and awareness level of protective measures. Surveys were completed for each of burn patients by burn department personnel who interviewed the hospitalized patients. Results In this study, 417 victims (87.61% got chemical burn at work, of which 355 victims (74.58% worked in private or individual enterprises. Most frequent chemicals involved were hydrofluoric acid and sulfuric acid. Main causes of chemical injury accidents were inappropriate operation of equipment or handling of chemicals and absence of or failure to use effective individual protection. Conclusions Most chemical burns are preventable occupational injuries that can be attributed to inappropriate operation of equipment or handling of chemicals, lack of employee awareness about appropriate action and lack of effective protective equipment and training. Emphasis on safety education and protection for workers may help protect workers and prevent chemical burns.

  4. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Nivedita Rai

    2015-01-01

    Full Text Available DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280 and left ( at 320 K with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

  5. Investigation of Dynamic Multivariate Chemical Process Monitoring%动态多变量过程监控研究

    Institute of Scientific and Technical Information of China (English)

    谢磊; 张建明; 王树青

    2006-01-01

    Chemical process variables are always driven by random noise and disturbances. The closed-loop control yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross correlations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.

  6. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  7. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  8. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  9. Experimental Study of Gas Hydrate Dynamics

    Science.gov (United States)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  10. Studying Human Dynamics Through Web Analytics

    Science.gov (United States)

    Ramasco, Jose; Goncalves, Bruno

    2008-03-01

    When Tim Berners Lee, a physicist at the European Center for Nuclear Research (CERN) first conceived the World Wide Web (WWW) in 1990 as a way to facilitate the sharing of scientific information and results among the centers different researchers and groups, even the most ingenious of science fiction writers could not have imagined the role it would come to play in the following decades. The increasing ubiquitousness of Internet access and the frequency with which people interact with it raise the possibility of using it to better observe, understand, and even monitor several aspects of human social behavior. Websites with large numbers of frequently returning users, such as search engines, company or university websites, are ideal for this task. The properly anonymized logs detailing the access history to Emory University's website is studied. We find that a small number of users is responsible for a finite fraction of the total activity. A saturation phenomenon is observed where, certain connections age, becoming less attractive to new activity over time. Finally, by measuring the average activity as a function of the day of the week, we find that productivity seems to be higher on Tuesdays and Wednesdays, with Sundays being the least active day.

  11. A ``partitioned leaping'' approach for multiscale modeling of chemical reaction dynamics

    Science.gov (United States)

    Harris, Leonard A.; Clancy, Paulette

    2006-10-01

    We present a novel multiscale simulation approach for modeling stochasticity in chemical reaction networks. The approach seamlessly integrates exact-stochastic and "leaping" methodologies into a single partitioned leaping algorithmic framework. The technique correctly accounts for stochastic noise at significantly reduced computational cost, requires the definition of only three model-independent parameters, and is particularly well suited for simulating systems containing widely disparate species populations. We present the theoretical foundations of partitioned leaping, discuss various options for its practical implementation, and demonstrate the utility of the method via illustrative examples.

  12. An Exploratory Study of The Malaysian Chemical Industry

    OpenAIRE

    Lee, Chun Hooi

    2008-01-01

    With the force of globalization and huge product commoditization pressure in the Business-To-Business (B2B) markets, the B2B marketers have turn their attention to branding in order to tap the brand potential from their product and corporate name. The main objective of this dissertation is to explore the industrial brand value and B2B brand equity in the context of the Malaysian chemical industry. The industrial brand value is explored by using the pinwheel model proposed by Mudambi et al (19...

  13. Fundamental studies of chemical vapor deposition diamond growth processes

    International Nuclear Information System (INIS)

    We are developing laser spectroscopic techniques to foster a fundamental understanding of diamond film growth by hot filament chemical vapor deposition (CVD). Several spectroscopic techniques are under investigation to identify intermediate species present in the bulk reactor volume, the thin active volume immediately above the growing film, and the actual growing surface. Such a comprehensive examination of the overall deposition process is necessary because a combination of gas phase and surface chemistry is probably operating. Resonantly enhanced multiphoton ionization (REMPI) techniques have been emphasized. A growth rector that permits through-the-substrate gas sampling for REMPI/time-of-flight mass spectroscopy has been developed. 7 refs., 2 figs

  14. [Study on chemical constituents of Drosera peltata var. multisepala].

    Science.gov (United States)

    Li, Lin; Huang, Jin; Xu, Xianghua; Zhang, Yao; Cheng, Kejun; Yu, Peizhong

    2012-01-01

    Chemical investigatation of Drosera peltata var. multisepala led to the isolation of eleven compounds using various chromatographic techniques. The structures of these compounds were elucidated as isoshinanolone-4-O-beta-D-glucoside (1), isoshinanolone (2), epi-isoshinanolone (3), plumbagin (4), droserone (5), droserone-5-O-glucoside (6), quercetin (7), kaempferol (8) , gossypetin-8-O-glucoside (9), 3,3'-dimethoxy ellagic acid (10), and ellagic acid (11) by their physicochemical properties and spectral data analysis. Compound 1 was a new compound. Compounds 3, 8, 10, and 11 were isolated from this plant for the first time. PMID:22737855

  15. An Experimental Study on Electro Chemical Machining of Microelectrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liao-yuan; LIU Yao

    2006-01-01

    Puts forward a new method in machining microelectrode by electro chemical machining (ECM) and plastic deformed theory. Theprocedure of this method is to machine the microelectrode according to the basic rule of ECM theory at first. Then, with the change of ECM machining parameters, one of the microelectrode ends is exerted by a load. As a result, the elastic and plastic deformation is produced at the machining section and the microelectrode diameter is reduced.It has been proved that the proposed method can determine the optimum machining parameters to machine the microelectrode of Cu.

  16. Collagen-curcumin interaction - A physico-chemical study

    Indian Academy of Sciences (India)

    N Nishad Fathima; R Saranya Devi; K B Rekha; Aruna Dhathathreyan

    2009-07-01

    Curcumin is a widely used therapeutic agent with a wide spectrum of biological and physiological applications like wound healing and interacts with the skin protein, collagen. This work reports the effect of curcumin on various physico-chemical properties of collagen. The results suggest that significant changes in viscosity and surface tension occur on collagen interacting with curcumin. Secondary structure analysis using circular dichroism shows that curcumin does not alter the triple helical structure of collagen. Increasing concentration of curcumin resulted in aggregation of the protein. Further, curcumin imparts high level of thermal stability to collagen with shrinkage temperature of collagen increasing from 60 to 90°C.

  17. Physico-chemical studies on samarium soaps in solid state

    International Nuclear Information System (INIS)

    The physico-chemical characteristics of samarium soaps (caproate and caprate) in solid state were investigated by IR, X-ray diffraction and TGA measurements. The IR results revealed that the fatty acids exist in dimeric state through hydrogen bonding and samarium soaps possess partial ionic character. The X-ray diffraction measurements were used to calculate the long spacings and the results confirmed the double layer structure of samarium soaps. The decomposition reaction was found kinetically of zero order and the values of energy of activation for the decomposition process for caproate and caprate were found to be 8,0 and 7,8 kcal mol-1, respectively. (Authors)

  18. [Studies on the chemical constitutens of Vicia amoena Fisch].

    Science.gov (United States)

    Wei, F; Yan, W M

    1997-10-01

    One new flavonoide was isolated from Vicia amoena Fisch. On the basis of spectral (UV, MS, NMR) and chemical reactions, it was elucidated to be kaempferol-3-O-beta-D-mannoside, named amoenin(A3). Moreover, five known compounds have been isolated and identified as quercetin, kaempferol, quercetin-3-O-alpha-L-rhamoside, quercetin-3-O-beta-D-glucoside, kaempferol-3, 7-O-alpha-L-dirhamoside. The total flavonoides showed significant effects on inducing hyperlipidemia and increasing micro-blood vessel elasticity. PMID:11596220

  19. A Rapid Compression Expansion Machine (RCEM) for studying chemical kinetics: Experimental principle and first applications

    CERN Document Server

    Werler, Marc; Maas, Ulrich

    2016-01-01

    A novel extension of a rapid compression machine (RCM), namely a Rapid Compression Expansion Machine (RCEM), is described and its use for studying chemical kinetics is demonstrated. Like conventional RCMs, the RCEM quickly compresses a fuel/air mixture by pushing a piston into a cylinder; the resulting high temperatures and pressures initiate chemical reactions. In addition, the machine can rapidly expand the compressed gas in a controlled way by pulling the piston outwards again. This freezes chemical activity after a pre-defined reaction duration, and therefore allows a convenient probe sampling and ex-situ gas analysis of stable species. The RCEM therefore is a promising instrument for studying chemical kinetics, including also partially reacted fuel/air mixtures. The setup of the RCEM, its experimental characteristics and its use for studying chemical reactions are outlined in detail. To allow comparisons of RCEM results with predictions of chemical reaction mechanisms, a simple numerical model of the RCE...

  20. Study Abroad: The Reality of Building Dynamic Group Learning.

    Science.gov (United States)

    Ransbury, Molly K.; Harris, Sandra A.

    1994-01-01

    The collaborative effort of a professor of human development with expertise in group process and a general education professor with expertise in Greek mythology and culture uses a case study format to apply theoretical models of group dynamics to the travel and learning experience of study abroad. Implications for course design and group process…

  1. Flow around fishlike shapes studied using multiparticle collision dynamics

    NARCIS (Netherlands)

    Reid, Daniel A.P.; Hildenbrandt, H.; Padding, J.T.; Hemelrijk, C.K.

    2009-01-01

    Empirical measurements of hydrodynamics of swimming fish are very difficult. Therefore, modeling studies may be of great benefit. Here, we investigate the suitability for such a study of a recently developed mesoscale method, namely, multiparticle collision dynamics. As a first step, we confine ours

  2. Interactive computer system for analysis of dynamic renal studies

    International Nuclear Information System (INIS)

    An interactive computer system is described for a small minicomputer to be used in the evaluation of radionuclide scintiscanning studies of renal transplants and other dynamic kidney function studies. The package consists of programs for data acquisition, analysis, and report generation. As an added feature, the program dissociates the kidney view into total kidney, cortical, and medullar components

  3. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  4. A microwave and quantum chemical study of allyltrifluorosilane

    Science.gov (United States)

    Møllendal, H.; Guirgis, G. A.

    2003-04-01

    The structural and conformational properties of allytrifluorsilane, H 2CCH-CH 2-SiF 3, have been explored by microwave (MW) spectroscopy and high-level ab initio and density functional theory quantum chemical calculations. The microwave spectrum was investigated in the 18-62 GHz spectral regions. The a-type R-branch transitions of one conformer were assigned for the ground as well as for 10 vibrationally excited states. The CC-C-Si chain of atoms in this rotamer takes an anti-clinal ('skew') conformation, with a dihedral angle calculated to be 111.6° from the syn-periplanar (0°) conformation. The question whether a CC-C-Si syn-periplanar conformer exists as a high-energy form in the gas phase remains open. In most of the quantum chemical calculations this conformation is predicted to be a transition state. However, in the most advanced calculations (B3LYP/aug-cc-pVTZ level of theory) the syn-periplanar conformer is predicted to be a stable rotamer that is calculated to be 6.5 kJ/mol higher in energy than the anti-clinal form. Since there is no indication in the MW spectrum for the presence of high-energy form(s), it is concluded that the anti-clinal conformer is at least 4 kJ/mol more stable than any other hypothetical rotamer.

  5. Incorporating transgenerational testing and epigenetic mechanisms into chemical testing and risk assessment: A survey of transgenerational responses in environmental chemical studies

    Science.gov (United States)

    A number of environmental chemicals have been shown to alter markers of epigenetic change. Some published multi-generation rodent studies have identified effects on F2 and greater generations after chemical exposures solely to F0 dams, but were not focused on chemical safety. We ...

  6. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    Science.gov (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  7. Synthesis of Formamide and Related Organic Species in the Interstellar Medium via Chemical Dynamics Simulations

    Science.gov (United States)

    Spezia, Riccardo; Jeanvoine, Yannick; Hase, William L.; Song, Kihyung; Largo, Antonio

    2016-08-01

    We show, by means of direct dynamics simulations, how it is possible to define possible reactants and mechanisms leading to the formation of formamide in the interstellar medium. In particular, different ion-molecule reactions in the gas phase were considered: NH3OH+, NH2OH{}2+, H2COH+, and NH4 + for the ions and NH2OH, H2CO, and NH3 for the partner neutrals. These calculations were combined with high level ab initio calculations to investigate possible further evolution of the products observed. In particular, for formamide, we propose that the NH2OH{}2+ + H2CO reaction can produce an isomer, NH2OCH{}2+, that, after dissociative recombination, can produce neutral formamide, which was observed in space. The direct dynamics do not pre-impose any reaction pathways and in other reactions, we did not observe the formation of formamide or any possible precursor. On the other hand, we obtained other interesting reactions, like the formation of NH2CH{}2+. Finally, some radiative association processes are proposed. All of the results obtained are discussed in light of the species observed in radioastronomy.

  8. The chemical dynamics of nanosensors capable of single-molecule detection.

    Science.gov (United States)

    Boghossian, Ardemis A; Zhang, Jingqing; Le Floch-Yin, François T; Ulissi, Zachary W; Bojo, Peter; Han, Jae-Hee; Kim, Jong-Ho; Arkalgud, Jyoti R; Reuel, Nigel F; Braatz, Richard D; Strano, Michael S

    2011-08-28

    Recent advances in nanotechnology have produced the first sensor transducers capable of resolving the adsorption and desorption of single molecules. Examples include near infrared fluorescent single-walled carbon nanotubes that report single-molecule binding via stochastic quenching. A central question for the theory of such sensors is how to analyze stochastic adsorption events and extract the local concentration or flux of the analyte near the sensor. In this work, we compare algorithms of varying complexity for accomplishing this by first constructing a kinetic Monte Carlo model of molecular binding and unbinding to the sensor substrate and simulating the dynamics over wide ranges of forward and reverse rate constants. Methods involving single-site probability calculations, first and second moment analysis, and birth-and-death population modeling are compared for their accuracy in reconstructing model parameters in the presence and absence of noise over a large dynamic range. Overall, birth-and-death population modeling was the most robust in recovering the forward rate constants, with the first and second order moment analysis very efficient when the forward rate is large (>10(-3) s(-1)). The precision decreases with increasing noise, which we show masks the existence of underlying states. Precision is also diminished with very large forward rate constants, since the sensor surface quickly and persistently saturates. PMID:21895176

  9. CORRELATION STUDIES BETWEEN PHYSICO-CHEMICAL, CHEMICAL AND NUTRIENT UPTAKES OF PADDY IN PHOSPHORUS RICH VERTISOLS

    OpenAIRE

    V Siva Jyothi; T Giridhara Krishna; P.KAVITHA; Srinivasa Reddy, M.

    2014-01-01

    A field experiment was conducted in paddy having high soil available P vertisols under K.C. Canal ayacut at Regional Agricultural Research Station, Nandyal, Andhra Pradesh. The correlation studies revealed that there exist a positive strong correlation between agronomic characters at different stages with the yield. pH and EC was positively correlate with yield except pH at panicle initiation stage is non significantly correlate with yield. The available nitrogen at tillering (r= 0.446), pani...

  10. Dynamics of IGBT based PWM Converter A Case Study

    Directory of Open Access Journals (Sweden)

    Vijay Shukla

    2012-04-01

    Full Text Available Optimizing the efficiency and dynamics of power converters is a critical tradeoff in power electronics. The increase of switching frequency can improve the dynamics of power converters, but theefficiency may be degraded as well as the switching losses. As power semiconductor devices like diodes, MOSFETS, IGBTs, Thyristors, BJTs have their own characterstics and dynamic responses. It is desired toanalyze and observe the dynamics of different semiconductor devices before they actually employed in the model. Inclusion of different PWM techniques help in the removal of power line interferences like harmonic losses, unwanted ripples, chopped frequencies, spikes. In this paper, we have studied and analyzed the dynamics of IGBT based PWM converter with subjected to different conditions like transient state, steady state feeding the RLC load. Snubber circuits are used to reduce the switching losses. The IGBT based PWM converter reflects the better dynamics with improved efficiency and reduced harmonics as compared to some other power semiconductor devices when FFT is performed and subjected to standard parameterized RLC load understeady state and transient analysis.

  11. Study of dynamics of level of physical preparedness of students.

    Directory of Open Access Journals (Sweden)

    Коvalenko Y.A.

    2010-12-01

    Full Text Available The dynamics of level of physical preparedness of students is studied in the article. A tendency is marked to the decline of level of physical preparedness of students of 1-3 courses. Methodical recommendations are presented on the improvement of the system of organization of physical education of students of the Zaporizhzhya national university. The dynamics of indexes of physical preparedness of students 1, 2, 3 courses of different years of teaching is studied. Principal reasons of decline of level of physical preparedness of students are certain. There are recommendations the department of physical education in relation to physical preparedness of students.

  12. Photo-induced isomerization and chemical reaction dynamics in superfluid helium droplets

    Science.gov (United States)

    Merritt, Jeremy; Douberly, Gary; Miller, Roger

    2008-03-01

    Near threshold photo-induced isomerization and photo-induced chemical reactions have long been sough after as sensitive probes of the underlying potential energy surface. One of the most important questions asked is how the initially bright quantum state couples to the reaction coordinate, and thus relates to energy transfer in general. Helium droplets have now allowed us to stabilize entrance channel clusters behind very small reaction barriers such that vibrational excitation may result in reaction. Through two examples, namely the isomerization of the 2 binary complexes of HF-HCN Douberly et al. PCCP 2005, 7,463, and the induced reaction of the gallium-HCN complex Merritt et al. JPCA 2007, DOI:10.1021/jp074981e we will show how the branching ratios for reaction and predissociation can determined and the influence of the superfluid He solvent.

  13. Relativistic second-order dissipative fluid dynamics at finite chemical potential

    Science.gov (United States)

    Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof

    2016-07-01

    We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.

  14. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

    Science.gov (United States)

    Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.

    2016-06-01

    Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic `hot' carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.

  15. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  16. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  17. Chemical characterization and dynamics of particulate combined amino acids in Pacific surface waters

    Science.gov (United States)

    Tsukasaki, Ayumi; Tanoue, Eiichiro

    2010-01-01

    Particulate organic matter (POM) in surface water plays an essential role in maintaining marine ecosystem and is a complex mixture of living POM (organisms) and non-living POM (detritus). Transformation of organic constituents of organisms to detritus may be the most active part in the decomposition processes of organic matter in marine biogeochemistry. Distribution and chemical fractionation of particulate combined amino acids (PCAAs) in surface waters from Southern Ocean to tropical waters along a transect of 170°W were examined to clarify the transfer processes of organic constituents of organisms to detritus. The observational facts may be summarized as follows. 1) Degradation Index (DI) based on principal component analysis of amino acid composition of bulk PCAAs agreed with the traditional degradation indicators of bulk POM, i.e., PCAAs-carbon (C)/particulate organic carbon (POC), PCAAs-nitrogen (N)/particulate nitrogen (PN) and C/N. 2) PCAAs were distinguished into 3 fractions, i.e., Urea-soluble, Sodium Dodecyl Sulfate (SDS)-soluble and SDS/Urea-insoluble fractions, by means of solubility against reagents frequently used for protein extraction from biological samples. Proportions of PCAAs of the 3 fractions to bulk PCAAs were almost constant, although concentrations of the PCAAs of 3 fractions as well as bulk in seawater varied two orders of magnitude over the transect. 3) There was no significant difference among DI values of the 3 fractions, although molecular mass distributions of the Urea-soluble and SDS-soluble fractions determined by SDS-polyacrylamide gel electrophoresis were different. The results indicated that no one fraction was particularly susceptible to degradation and that there is a common mechanism for transferring and maintaining the similar chemical quality of bulk POM over the transect.

  18. Structure-function studies of DNA damage using AB INITIO quantum mechanics and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.; Miaskiewicz, K. [Pacific Northwest Lab., Richland, WA (United States); Osman, R. [Mount Sinai School of Medicine, New York, NY (United States). Dept. of Physiology and Biophysics

    1993-12-01

    Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.

  19. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  20. Inelastic neutron scattering and lattice dynamics studies in complex solids

    Indian Academy of Sciences (India)

    Mala N Rao; R Mittal; Narayani Choudhury; S L Chaplot

    2004-07-01

    At Trombay, lattice dynamics studies employing coherent inelastic neutron scattering (INS) experiments have been carried out at the two research reactors, CIRUS and Dhruva. While the early work at CIRUS involved many elemental solids and ionic molecular solids, recent experiments at Dhruva have focussed on certain superconductors (cuprates and intermetallics), geophysically important minerals (Al2SiO5, ZrSiO4, MnCO3) and layered halides (BaFCl, ZnCl2). In most of the studies, theoretical modelling of lattice dynamics has played a significant role in the interpretation and analysis of the results from experiments. This talk summarises the developments and current activities in the field of inelastic neutron scattering and lattice dynamics at Trombay.

  1. Risk management and governance of chemicals in articles. Case study textiles

    OpenAIRE

    Assmuth, Timo; HÀkkinen, Piia; Heiskanen, Jaana; Kautto, Petrus; Lindh, PÀivi; Mattila, Tuomas; Mehtonen, Jukka; Saarinen, Kristiina

    2011-01-01

    Chemicals and textiles both arouse great interest and emotions. The risks from chemicals in textiles however have been paid little attention, both from the perspective of human health and even more with regard to the environment. The present case study analyzes risks as well as benefits and other impacts from chemicals associated with consumer textiles, as well as management and governance approaches to deal with the multi-faceted problems involved, in the broader context of product and chemi...

  2. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Szymanski, Craig J.; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James E.; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-15

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics at the molecular level.

  3. COOEE bitumen: chemical aging

    CERN Document Server

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2013-01-01

    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  4. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    International Nuclear Information System (INIS)

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B6O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm-3, the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density

  5. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

    Directory of Open Access Journals (Sweden)

    Narang Prineha

    2016-06-01

    Full Text Available Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.

  6. Evolution and chemical and dynamical effects of high-mass stars

    CERN Document Server

    Meynet, Georges; Georgy, Cyril; Pignatari, Marco; Hirschi, Raphael; Ekstrom, Sylvia; Maeder, Andre

    2008-01-01

    We review general characteristics of massive stars, present the main observable constraints that stellar models should reproduce. We discuss the impact of massive star nucleosynthesis on the early phases of the chemical evolution of the Milky Way (MW). We show that rotating models can account for the important primary nitrogen production needed at low metallicity. Interestingly such rotating models can also better account for other features as the variation with the metallicity of the C/O ratio. Damped Lyman Alpha (DLA) systems present similar characteristics as the halo of the MW for what concern the N/O and C/O ratios. Although in DLAs, the star formation history might be quite different from that of the halo, in these systems also, rotating stars (both massive and intermediate) probably play an important role for explaining these features. The production of primary nitrogen is accompanied by an overproduction of other elements as $^{13}$C, $^{22}$Ne and s-process elements. We show also how the observed var...

  7. Identifying Enclosed Chemical Reaction and Dynamics at the Molecular Level Using Shell-Isolated Miniaturized Plasmonic Liquid Marble.

    Science.gov (United States)

    Han, Xuemei; Lee, Hiang Kwee; Lee, Yih Hong; Hao, Wei; Liu, Yejing; Phang, In Yee; Li, Shuzhou; Ling, Xing Yi

    2016-04-21

    Current microscale tracking of chemical kinetics is limited to destructive ex situ methods. Here we utilize Ag nanocube-based plasmonic liquid marble (PLM) microreactor for in situ molecular-level identification of reaction dynamics. We exploit the ultrasensitive surface-enhanced Raman scattering (SERS) capability imparted by the plasmonic shell to unravel the mechanism and kinetics of aryl-diazonium surface grafting reaction in situ, using just a 2-μL reaction droplet. This reaction is a robust approach to generate covalently functionalized metallic surfaces, yet its kinetics remain unknown to date. Experiments and simulations jointly uncover a two-step sequential grafting process. An initial Langmuir chemisorption of sulfonicbenzene diazonium (dSB) salt onto Ag surfaces forms an intermediate sulfonicbenzene monolayer (Ag-SB), followed by subsequent autocatalytic multilayer growth of Ag-SB3. Kinetic rate constants reveal 19-fold faster chemisorption than multilayer growth. Our ability to precisely decipher molecular-level reaction dynamics creates opportunities to develop more efficient processes in synthetic chemistry and nanotechnology. PMID:27050645

  8. Dynamically- and chemically-induced grain boundary migration in quartz: microstructures, crystallographic fabrics, and trace element contents

    Science.gov (United States)

    Nachlas, Will; Thomas, Jay

    2016-04-01

    Grain boundary migration (GBM) is a common mechanism by which quartz recrystallizes in the Earth. In the most basic sense, GBM occurs as atoms exchange structural positions across a planar defect. Reconstitution of grains via GBM imparts a new crystallographic orientation, but its effect on the geochemistry of recrystallized grains remains uncertain and depends on the kinetic and thermodynamic properties of the moving grain boundary. Two of the dominant driving forces for GBM are lattice strain energy, controlled by the applied stress field, and chemical potential energy, controlled by differences in mineral stability. We present observations from static and dynamic recrystallization experiments showing evidence for GBM in response to both of these driving forces. In static recrystallization experiments, quartz recrystallized in response to local variations in trace-level Ti concentrations, whereas in dynamic recrystallization experiments, quartz recrystallized during dislocation creep in response to the imposed differential stress. Each case produced recrystallized quartz exhibiting diagnostic microstructures, crystallographic fabrics, and trace element contents that can be used to infer the mechanisms of quartz recrystallization and the pressure-temperature conditions at which recrystallization occurred.

  9. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    Science.gov (United States)

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation. PMID:26688211

  10. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    Science.gov (United States)

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  11. Study of Chemical Decontamination Process for CRUD Removal

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seongsik; Kim, Won-Seok; Kim, Jungjin; Um, Wooyong [POSTECH, Pohang (Korea, Republic of)

    2015-05-15

    Chalk River Unidentified Deposit (CRUD) is a technical term in nuclear engineering which is an accumulated material on external fuel rod cladding surfaces in nuclear power plants. It is a corrosion product which is composed of either dissolved ions or solid particles such as Ni, Fe and Co. It consists mainly of NiO and NiFe{sub 2}O{sub 4}. It can affect to reduce fuel lifetime, degrade heat transfer to the coolant, and threaten human health and environment. Therefore, decontamination process is essential for reducing occupational exposures, limiting potential releases and uptakes of radioactive materials, allowing the reuse of components, and facilitating waste management process. In this paper, we have conducted the synthesis of Cobalt ferrite as power foam to use for decontamination process. In dissolution test of Co ferrite and Ni ferrite, oxalic acid shows the most effective chemical decontamination reagent to remove the contaminants. Generally, the dissolved amount of cobalt and nickel increases at low pH condition and as the temperature goes higher, dissolved amount of cobalt and iron are much higher.

  12. C60 molecular dynamics studied by muon spin relaxation

    International Nuclear Information System (INIS)

    In muonium-substituted organic radicals, the muon spin can serve as a probe of molecular dynamics. The motional perturbation induces transitions between the coupled spin states of muon and unpaired electron. Studies of the resultant muon spin relaxation in C60Mu, the species formed by muon implantation in solid C60, yield the correlation time characteristic of the reorientational motion

  13. Exploring Dynamism in Willingness to Communicate: A Longitudinal Case Study

    Science.gov (United States)

    Cao, Yiqian Katherine

    2013-01-01

    This paper examines dynamism in students' situational willingness to communicate (WTC) within a second language classroom. This longitudinal study involved twelve English as a Second Language (ESL) participants who enrolled in an English for Academic Purposes (EAP) programme in New Zealand for five months. Based on data from classroom…

  14. COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS

    Science.gov (United States)

    Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...

  15. Application of interferometry to studies of glacier dynamics

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    Multi baseline repeat track interferometry (RTI) can potentially be used to measure both velocities and the micro topography of glaciers. The Danish Center for Remote Sensing (DCRS) in corporation with the Danish Polar Center (DPC) has established a test cite for studies of glacier dynamics...

  16. Quasi-elastic neutron scattering studies of protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rorschach, H.E.

    1991-03-20

    The techniques of X-ray and neutron scattering that have been so successfully applied to the study of the structure of biological macromolecules have in recent years been also used for the study of the thermal motion of these molecules. The diffraction of X-rays has been widely used to investigate the high-frequency motion of the heavy-atom residues of proteins. In these studies, the mean-square thermal amplitudes can be determined from the intensities of the sharp structural lines obtained from single crystals of the hydrated proteins. Similar information can be obtained on lighter atoms from the study of the neutron scattering from single crystals. The results of these measurements are coupled closely to the rapidly developing field of theoretical molecular dynamics which is now being applied to study the dynamics of large biological molecules. This report discusses research in this area.

  17. Lipid Dynamics Studied by Calculation of 31P Solid-State NMR Spectra Using Ensembles from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh; Vestergaard, Mikkel; Thøgersen, Lea;

    2014-01-01

    We present a method to calculate 31P solid-state NMR spectra based on the dynamic input from extended molecular dynamics (MD) simulations. The dynamic information confered by MD simulations is much more comprehensive than the information provided by traditional NMR dynamics models based on......, for example, order parameters. Therefore, valuable insight into the dynamics of biomolecules may be achieved by the present method. We have applied this method to study the dynamics of lipid bilayers containing the antimicrobial peptide alamethicin, and we show that the calculated 31P spectra obtained...

  18. Ultrafast X-ray Studies of Structural Dynamics at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, K.J.; Lindenberg, A.M.; /SLAC, SSRL; Larsson, J.; /Lund Inst. Tech.; Sokolowski-Tinten, K.; /Jena U. /Duisburg U.; Blome, C.; /DESY; Synnergren, O.; /Lund Inst.; Sheppard, J.; /Oxford U.; Reis, D.A.; /Michigan U.; Hastings, J.B.; /SLAC, SSRL

    2005-09-30

    The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements demonstrate that the initial stage of crystal disordering results from inertial motion on a laser softened potential energy surface. These inertial dynamics dominate for the first half picosecond following laser excitation, indicating that interatomic forces minimally influence atomic excursions from the equilibrium lattice positions, even for motions in excess of an {angstrom}. This also indicates that the atoms disorder initially without losing memory of their lattice reference.

  19. Ab initio molecular dynamics study of liquid methanol

    CERN Document Server

    Handgraaf, J W; Meijer, E J; Handgraaf, Jan-Willem; Erp, Titus S. van; Meijer, Evert Jan

    2003-01-01

    We present a density-functional theory based molecular-dynamics study of the structural, dynamical, and electronic properties of liquid methanol under ambient conditions. The calculated radial distribution functions involving the oxygen and hydroxyl hydrogen show a pronounced hydrogen bonding and compare well with recent neutron diffraction data, except for an underestimate of the oxygen-oxygen correlation. We observe that, in line with infrared spectroscopic data, the hydroxyl stretching mode is significantly red-shifted in the liquid. A substantial enhancement of the dipole moment is accompanied by significant fluctuations due to thermal motion. Our results provide valuable data for improvement of empirical potentials.

  20. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    Science.gov (United States)

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  1. The structure, dynamics, and chemical composition of noneruptive plumes from Mount St. Helens, 1980-1988

    Science.gov (United States)

    McGee, K.A.

    1992-01-01

    From May 1980 to September 1988, more than 1000 fixed-wing aircraft flights were made with a correlation spectrometer to measure the sulfur dioxide flux from Mount St. Helens volcano. These flights also provided valuable data on the structure and dynamics of noneruptive plumes emanating from Mount St. Helens. During 1980 and part of 1981, an infrared spectrometer was also used to measure carbon dioxide emission rates. At distances up to 25 km from Mount St. Helens, plume widths can range up to 20 km or more, with width/thickness ratios from 3 to about 30. Maximum sulfur dioxide concentrations in these plumes depend on wind speed and are typically under 5 ppm and usually 1 ppm or less. Close examination of the plume data reveals that the characteristics of quiescent plumes from Mount St. Helens are strongly affected by certain meteorological conditions such as thermal and wind stratification in the troposphere, as well as by the topography of the volcano. ?? 1992.

  2. STUDY ON THE PHYSICAL CHEMICAL PROPERTIES OF FFA—1 ION EXCHANGE FIBER

    Institute of Scientific and Technical Information of China (English)

    YuanSiguo; LuYun; 等

    1998-01-01

    The physical and chemical properties of FFA-1 ion exchange fiber have been characterized with IR spectrum,thermal analysis and SEM means.The pH titration curve,swelling rate,mechanical properties,resistance drop of filter layer as well as the dynamic adsorption for SO2 was determined.These experiments provided the essential parameters for the practical application of FFA-1 material in adsorption of toxic gases.

  3. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    simulators Aspen Plus and Aspen Dynamics. This dissertation first presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. Limitations in the software dealing with solids make this a necessary task. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudo fuel. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macro-scale thermal, flow, composition and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers, but merely presents an idea of how to dynamically simulate coal gasification in an approximate way. This dissertation also presents models of the downstream units of a typical IGCC. Dynamic simulations of the H2S absorption/stripping unit, Water-gas Shift (WGS) reactors, and CO2 absorption/stripping unit are essential for the development of stable and agile plantwide control structures of this hybrid power/chemical plant. Due to the high pressure of the system, hydrogen sulfide is removed by means of physical absorption. SELEXOLRTM (a mixture of the dimethyl ethers of polyethylene glycol) is used to achieve a gas purity of less than 5 ppm H2S. This desulfurized synthesis gas is sent to two water gas shift reactors that convert a total of 99% of carbon monoxide to hydrogen. Physical absorption of carbon dioxide with Selexol produces a hydrogen rich stream (90 mol% H2) to be fed into combustion turbines or to a methanol plant. Steady-state economic designs and plantwide control structures are developed in this dissertation. A steady-state economic design, control structure, and successful turndown of the methanol plant are shown in this dissertation. The Plantwide

  4. Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide

    Science.gov (United States)

    Spencer, Ben F.; Cliffe, Matthew J.; Graham, Darren M.; Hardman, Samantha J. O.; Seddon, Elaine A.; Syres, Karen L.; Thomas, Andrew G.; Sirotti, Fausto; Silly, Mathieu G.; Akhtar, Javeed; O'Brien, Paul; Fairclough, Simon M.; Smith, Jason M.; Chattopadhyay, Swapan; Flavell, Wendy R.

    2015-11-01

    We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsically slow electron dynamics, and to complement faster measurements that use a fs laser as the pump. We demonstrate its use in a time-resolved study of the surface photovoltage of the m-plane ZnO (10 1 bar 0) surface which shows persistent photoconductivity, requiring monitoring periods on ms timescales and longer. We make measurements from this surface in the presence and absence of chemically-linked quantum dots (QDs), using type I PbS and type II CdSe/ZnSe (core/shell) QDs as examples. We monitor signals from both the ZnO substrate and the bound QDs during photoexcitation, yielding evidence for charge injection from the QDs into the ZnO. The chemical specificity of the technique allows us to observe differences in the extent to which the QD systems are influenced by the field of the surface depletion layer at the ZnO surface, which we attribute to differences in the band structure at the interface.

  5. Immunotoxic effects of chemicals: A matrix for occupational and environmental epidemiological studies.

    NARCIS (Netherlands)

    Veraldi, Angela; Costantini, Adele Seniori; Bolejack, Vanessa; Miligi, Lucia; Vineis, Paolo; Loveren, Henk van

    2006-01-01

    BACKGROUND: Many biological and chemical agents have the capacity to alter the way the immune system functions in human and animals. This study evaluates the immunotoxicity of 20 substances used widely in work environments. METHODS: A systematic literature search on the immunotoxicity of 20 chemical

  6. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  7. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S. [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1989-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  8. Reactibodies generated by kinetic selection couple chemical reactivity with favorable protein dynamics.

    Science.gov (United States)

    Smirnov, Ivan; Carletti, Eugénie; Kurkova, Inna; Nachon, Florian; Nicolet, Yvain; Mitkevich, Vladimir A; Débat, Hélène; Avalle, Bérangère; Belogurov, Alexey A; Kuznetsov, Nikita; Reshetnyak, Andrey; Masson, Patrick; Tonevitsky, Alexander G; Ponomarenko, Natalia; Makarov, Alexander A; Friboulet, Alain; Tramontano, Alfonso; Gabibov, Alexander

    2011-09-20

    Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (V(L)) and variable heavy (V(H)) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes. PMID:21896761

  9. Electrical and magnetoresistivity studies in chemical solution deposited La

    Energy Technology Data Exchange (ETDEWEB)

    Angappane, S.; Murugaraj, P.; Sethupathi, K.; Rangarajan, G.; Sastry, V. S.; Chakkaravarthi, A. Arul; Ramasamy, P.

    2001-06-01

    High quality magnetoresistive La{sub (1{minus}x)}Ca{sub x}MnO{sub 3} thin films have been prepared by the chemical solution deposition technique. A solution of propionate precursors of lanthanum, calcium, and manganese in propionic acid was used for this purpose. Films of varying compositions (x varying from 0.1 to 0.4) were spin coated on to LaAlO{sub 3}(100) and SrTiO{sub 3}(100) substrates at room temperature and pyrolyzed in the temperature range 600{endash}850{degree}C. For fixed compositions, annealing at higher temperatures shifts the insulator{endash}metal transition temperature (T{sub I{endash}M}) to higher values accompanied by a reduction in the resistivity values. The T{sub I{endash}M} variation for different x values was found to be less pronounced in the compositions x=0.2, 0.3, and 0.4. Typical T{sub I{endash}M} values of 283 K and 290 K were obtained for La{sub 0.7}Ca{sub 0.3}MnO{sub 3} coated on LaAlO{sub 3} and SrTiO{sub 3} substrates, respectively, when annealed at 850{degree}C. The substrate effect was found to be more pronounced for the x value 0.1 which showed two peaks (one at 271 K and another at 122 K) in the {rho}-T curve. The roles of substrate mismatch, composition variation, and annealing temperatures are discussed. {copyright} 2001 American Institute of Physics.

  10. Experimental Study of Silicon Isotope Dynamic Fractionation and Its Application in Geology

    Institute of Scientific and Technical Information of China (English)

    李延河; 丁悌平; 等

    1995-01-01

    Silicon shows no vatiation in its chemical valence in nature and exists mainly in the form of silicon-oxygen tetrahedra,so very small silicon isotope thermodynamic frac-tionation occurs and the resultant silicon isotope variation is limited.Dynamic fraction-ation of Si isotopes during precipitation of SiO2 from a solution is a main factor leading to substantial variations in silicon isotopes in nature. In this experimental study,we determined the dynamic fractionation factor αfor silicon isotopes during precipitation of SiO2 from the solution.And in combination of α, a theoretical explanation is pre-sented of the considerably low &30Si values of black smokers on modern seafloor ,Archean banded magnetite-quartzite and clay minerals of weathering origin ,and of clearly high &30Si values of siliceous rocks in shallow -sea carbonate platforms.

  11. Mixed quantum/semiclassical studies of condensed-phase dynamics and spectroscopy

    Science.gov (United States)

    Cina, Jeffrey A.; Kovac, Philip A.

    We report on theoretical and computational studies of molecular-level chemical dynamics and their time-resolved spectroscopic signatures for small molecules embedded in low-temperature crystalline-host environments. Our calculations are based on a mixed quantum mechanical/semiclassical theory, referred to as the variational fixed vibrational basis/Gaussian bath theory (v-FVB/GB), in which certain optically addressed coordinates driven to large-amplitude motion by laser pulses are treated fully quantum mechanically and a larger number of others executing small-amplitude motion are treated semiclassically. Model systems under investigation incorporate a dihalogen molecule isolated in a symmetrical cluster of rare-gas atoms, with the outer layer of host atoms bound together in a harmonic net that preserves the initial equilibrium structure, but emulates an extended medium by preventing dynamical reconstruction and host-atom evaporation. Supported by the US NSF.

  12. Understanding the structure and dynamic of odorants in the gas phase using a combination of microwave spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Mouhib, Halima

    2014-07-01

    This tutorial is an introduction for PhD students and researchers who intend to start their future work in the field of microwave spectroscopy to investigate structural and dynamical aspects of isolated molecular systems in the gas phase. Although the presented case studies are related to odorants, i.e., volatile molecules that possess a noticeable scent, the background and applications of the method can be transferred to any other resembling molecular system. In the early days, microwave spectroscopy was mainly related to the structure determination of very small systems such as OCS or ammonia, where the bond lengths could be determined with high accuracy by measuring the different isotopic species of the molecules. Nowadays, the method is far more advanced and is also used to tackle various fundamental molecular problems in different fields such as physical chemistry and molecular physics. Interesting questions that can be investigated concern, e.g., the molecular structure, i.e., the different conformations, not only of the isolated molecule but also of van der Waals complexes with water, noble gases or other molecules. The dynamical and intra- or intermolecular effects can be straightforwardly observed without the influence of the environment as in the condensed phase. This evolution was only achieved by using quantum chemical methods as a complementary tool to elude the necessity of isotopologues for structure determination, which cannot be realized for large systems (>5 atoms). The combination of microwave spectroscopy and quantum chemical calculations is the method of choice when it comes to sampling the conformational space of molecules. This is particularly the case when small energy differences make it difficult to determine the conformers of the lowest energy using computational methods alone. Although quantum chemical calculations are important for the validation of microwave spectra, the focus of the tutorial is set on the experimental part of the

  13. 40 CFR 160.135 - Physical and chemical characterization studies.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.135 Physical... partition coefficient, volatility, and persistence (such as biodegradation, photodegradation, and...

  14. NASA selects scientific investigations for Earth dynamics studies

    Science.gov (United States)

    1981-01-01

    Forty two domestic investigators affiliated with U.S. universities, governmental agencies, or private concerns and 14 investigators from France, West Germany, the Netherlands, Switzerland, Spain, Sweden, Australia, New Zealand, Venezuela, and Canada were selected to use precise geodetic data obtained by laser ranging and very long base interferometry in a study of the Earth's tectonic plate movement, crustal deformation, and rotational dynamics. The studies to be made and the principal investigators for each are listed.

  15. Molecular dynamics simulation study of polyelectrolyte adsorption on cellulose surfaces

    OpenAIRE

    Biermann, Oliver

    2002-01-01

    The adsorption of two polyelectrolyte ((carboxy methyl) cellulose and poly(acrylate) in water on crystalline cellulose is studied in this work. The multi-component problem has been splitted up into simulations of solutions of the polyelectrolyte (polyanions including sodium counterions) in water, into simulations of the interface of crystalline cellulose towards water. Finally polyelectrolyte-cellulose systems were studied. Molecular dynamics simulations of diluted (_ 2:5 weight percent) aque...

  16. Chemically induced dynamic electron polarization: examples of S-T/sub +1/ polarization

    International Nuclear Information System (INIS)

    The observation of excess emission in the CIDEP-pulse radiolysis study of several radicals is ascribed to S-T/sub +-1/ polarization. Observations of this S-T/sub +-1/ polarization in H. radical reactions provide examples of hyperfine effect while the study of micellar systems and viscous solutions illustrates the effect of restricting radical diffusion

  17. Thulium oxide fuel characterization study: Part 2, Environmental behavior and mechanical, thermal and chemical stability enhancement

    International Nuclear Information System (INIS)

    A study was performed of the correlation between fuel form stability and exposure environment of (temperature and atmosphere). 100% Tm2O3, 80% Tm2O3/20% Yb2O3 and 100% Yb2O3 wafers were subjected to air, dynamic vacuum and static vacuum at temperatures to 20000C for times to 100 hours. Results showed the Tm2O3/Yb2O3 cubic structure to be unaffected by elemental levels of iron, aluminum, magnesium and silicon and unaffected by the environmental conditions imposed on the wafers. A second task emphasized the optimization of the thermal, mechanical and chemical stability of Tm2O3 fuel forms. Enhancement was sought through process variable optimization and the addition of metal oxides to Tm2O3. CaO, TiO2 and Al2O3 were added to form a grain boundary precipitate to control fines generation. The presence of 1% additive was inadequate to depress the melting point of Tm2O3 or to change the cubic crystalline structure of Tm2O3/Yb2O3. Tm2O3/Yb2O3 wafers containing CaO developed a grain boundary phase that improved the resistance to fines generation. The presence of Yb2O3 did not appear to measurably influence behavior

  18. Femtosecond Transient Absorption Studies in Cadmium Selenide Nanocrystal Thin Films Prepared by Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    M. C. Rath

    2007-01-01

    Full Text Available Dynamics of photo-excited carrier relaxation processes in cadmium selenide nanocrystal thin films prepared by chemical bath deposition method have been studied by nondegenerate femtosecond transient pump-probe spectroscopy. The carriers were generated by exciting at 400 nm laser light and monitored by several other wavelengths. The induced absorption followed by a fast bleach recovery observed near and above the bandgap indicates that the photo-excited carriers (electrons are first trapped by the available traps and then the trapped electrons absorb the probe light to show a delayed absorption process. The transient decay kinetics was found to be multiexponential in nature. The short time constant, <1 picosecond, was attributed to the trapping of electrons by the surface and/or deep traps and the long time constant, ≥20 picoseconds, was due to the recombination of the trapped carriers. A very little difference in the relaxation processes was observed in the samples prepared at bath temperatures from 25∘C to 60∘C.

  19. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  20. [Studying the influence of some reactive oxygen species on physical and chemical parameters of blood].

    Science.gov (United States)

    Martusevich, A K; Martusevich, A A; Solov'eva, A G; Peretyagin, S P

    2014-01-01

    The aim of this work was to estimate the dynamics of blood physical and chemical parameters when blood specimens were processed by singlet oxygen in vitro. Our experiments were executed with whole blood specimens of healthy people (n=10). Each specimen was divided into five separate portions of 5 ml. The first portion was a control (without any exposures). The second one was processed by an oxygen-ozone mixture (at ozone concentration of 500 mcg/l, the third portion--by oxygen, and the fourth and fifth ones were processed by a gas mixture with singlet oxygen (50 and 100% of generator power). In blood samples after processing we studied the activity of lactate dehydrogenase, aldehyde dehydrogenase and superoxide dismutase, erythrocyte and plasma levels of glucose and lactate, acid-base balance and the partial pressure of gases in blood. It was found out, that blood processing by singlet oxygen leads to optimization of energy, detoxication and antioxidant enzymes functioning with changes in plasma and erythrocyte level of glucose and lactate, normalization of blood gases level and acid-base balance. Our results show, that the effect of singlet oxygen on enzyme activity is more pronounced than exposure to an oxygen-ozone gas mixture. PMID:25702489

  1. Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study.

    Science.gov (United States)

    Croce, Gianluca; Carniato, Fabio; Milanesio, Marco; Boccaleri, Enrico; Paul, Geo; van Beek, Wouter; Marchese, Leonardo

    2009-11-21

    This work is focused on a multidisciplinary study of a completely condensed octaisobutyl-silsesquioxane (IBUPOSS) as a model of the alkyl POSS family. IBUPOSS is characterized by the presence of eight isobutyl groups bonded to the corners of the siliceous framework. Differential scanning calorimetric measurements and an innovative simultaneous in situ Raman/XRPD experiment suggested that IBUPOSS undergoes a solid phase transition around 330 K, and indicated that this transition is related to a change in the conformational freedom of the isobutyl chains. The X-ray powder diffraction (XRPD) pattern of the high temperature phase was indexed in the high symmetry [R3m] space group. The Raman data indicated a larger mobility of the aliphatic side chains at high temperature, thus inducing a disorder in the IBUPOSS moiety. Multidimensional heteronuclear solid-state NMR experiments were employed to probe the structural and motional features of the observed phase transition. The various conformations can be accounted for by a pseudo-D(3h) symmetry able to obey to the [R3m] space group. Simulations on molecular mechanics and dynamics, together with quantum-chemical calculations, confirmed this hypothesis and gave some hints on the conformational mobility and the energetic features of IBUPOSS, a base material with relevant applications in catalysis and polymer science. PMID:19865764

  2. A Molecular Dynamics Study on the Constraint Conditions of the Particle Growth Process in Laser Synthesis of Nanopowders

    OpenAIRE

    Shiwei Zhang; Jun Liu; Zhijun Zhang; Wenhui Zhang

    2012-01-01

    Laser-induced chemical vapor deposition (LICVD) is a nanopowder synthesis method in which the nanoparticles of a synthetic product undergo nucleation, growth, and agglomeration. The growth process is crucial because it directly determines the growth rate and final size of nanoparticles. In this paper, the nanoparticle growth process is analyzed through a molecular dynamics study, and the process is divided into five steps. In addition, this study explains the microscopic heat and mass transfe...

  3. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry.

    Science.gov (United States)

    Singh, Khareen; Oates, Christopher; Plant, Jane; Voulvoulis, Nikolaos

    2014-07-01

    Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of

  4. Sequential chemical extraction of heavy metals in a study of the chemical alteration of mine tailings at Ticapampa (Huaraz, Peru)

    International Nuclear Information System (INIS)

    The upper reaches of the Rio Santa (Huaraz, Peru) are highly affected by the mining activities of generally small and very small mining companies located in two specific areas, Cordillera Blanca, and Cordillera Negra, with the largest mining claims located in the districts of Recuay and Ticapampa. To assess the mobility and bioavailability of heavy metals in the abandoned tailings pond belonging to the Alianza mining company in the district of Ticapampa, and to identify the fractions to which they are associated we applied a sequential chemical extraction. The results were compared with studies into their mineralogical characterization, a quantitative chemical analysis and a determination of potential acidity and potential neutralization by the ABA (acid-base accounting) method applied to samples of tailings. The sequential extraction procedure confirmed the mode of general alteration observed in the area through mineralogical studies: a relatively easy mobility of Pb, and Cd, and considerable immobility with regard to Ag, Cr and Co, as well as an intermediate mobility of Cu, Zn, and As. Significant cadmium and lead contents found in the most mobile fractions of the tailings may represent an environmental threat, bearing in mind the toxic nature of these elements. Despite the low mobility of arsenic, the total quantities of this element are so high that the waters of the Rio Santa are being affected. (Author) 22 refs.

  5. Study of dynamic strain aging in dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, R.R.U. [Instituto Federal de Minas Gerais. Rua Pandia Calogeras, 898, Bauxita, Ouro Preto, MG (Brazil); Cunha, F.G.G. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG (Brazil); Gonzalez, B.M., E-mail: gonzalez@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG (Brazil)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer Characterization of the high temperature mechanical behavior of a dual phase steel. Black-Right-Pointing-Pointer Determination of the effect of dynamic strain aging on the strain hardening rate. Black-Right-Pointing-Pointer Identification of the mechanism associated with dynamic strain aging. Black-Right-Pointing-Pointer The value of the interaction energy carbon-dislocation in ferrite was confirmed. - Abstract: The susceptibility to dynamic strain aging of a dual phase steel was evaluated by the variation of mechanical properties in tension with the temperature and the strain rate. The tensile tests were performed at temperatures varying between 25 Degree-Sign C and 600 Degree-Sign C and at strain rates ranging from 10{sup -2} to 5 Multiplication-Sign 10{sup -4} s{sup -1}. The studied steel presented typical manifestations related to dynamic strain aging: serrated flow (the Portevin-Le Chatelier effect) for certain combinations of temperature and strain rates; the presence of a plateau in the variation of yield stress with temperature; a maximum in the curves of tensile strength, flow stress, and work hardening exponent as a function of temperature; and a minimum in the variation of total elongation with temperature. The determined apparent activation energy values, associated with the beginning of the Portevin-Le Chatelier effect and the maximum in the variation of flow stress with temperature, were 83 kJ/mol and 156 kJ/mol, respectively. These values suggest that the mechanism responsible for dynamic strain aging in the dual phase steel is the locking of dislocations by carbon atoms in ferrite and that the formation of clusters and/or transition carbides and carbide precipitation in martensite do not interfere with the dynamic strain aging process.

  6. Chemical Risk Evaluation: A Case Study in an Automotive Air Conditioner Production Facility

    Directory of Open Access Journals (Sweden)

    Tengku Hanidza T.I.

    2010-01-01

    Full Text Available There has been limited knowledge on worker’s exposure to chemicals used in the automotive industries. The purpose of this study is to assess chemical risk and to determine the adequacy of the existing control measures to reduce chemical exposure. A cross sectional survey was conducted in a factory involving installation and servicing of automotive air conditioner units. Qualitative exposure assessment was carried out following the Malaysian Chemical Health Risk Assessment Manual (CHRA. There were 180 employees, 156 workers worked in the production line, which constitutes six work units Tube fin pressed, Brazing, Welding, Final assembly, Piping and Kit II. From the chemical risk evaluation for each work unit, 26 chemical compounds were used. Most of the chemicals were irritants (eye and skin and some were asphyxiants and sensitizers. Based on the work assignment, 93 out of 180 (51.67% of the workers were exposed to chemicals. The highest numbers of workers exposed to chemicals were from the Brazing section (22.22% while the Final Assembly section was the lowest (1.67%. Health survey among the workers showed occurrence of eye irritation, skin irritation, and respiratory irritation, symptoms usually associated with chemical exposure. Using a risk rating matrix, several work process were identified as having ‘significant risk’. For these areas, the workers are at risk of adverse health effects since chemical exposure is not adequately controlled. This study recommends corrective actions be taken in order to control the level of exposure and to provide a safe work environment for workers.

  7. Synthesis and analysis in studies of chemical evolution

    Science.gov (United States)

    Ponnamperuma, C.; Hobish, M. K.; Kobayashi, K.; Hua, L. L.; Senaratne, N.

    1986-01-01

    Studies of the various processes that may have given rise to life on the Earth have demonstrated the appropriateness of an approach that makes use of analysis and synthesis. Analysis of extraterrestrial samples in the form of meteorites has demonstrated the presence of several precursors of biomolecules, most notably a full suite of nucleic acid bases and nucleotides of biological significance. These species were determined after exhaustive extraction of the sample and subsequent analysis using HPLC, GC, MS, and GC-MS. Procedural blanks indicate that these molecules are likely not the result of contamination during the extraction and analysis process. Similar species were found as products of spark discharge experiments in atmospheres thought to mimic primitive Earth conditions. These results indicate that the basic chemistry underlying these syntheses is common, and that life may not be unique to the Earth. Studies underway in the laboratory make use of proton nuclear magnetic resonance spectroscopy as a probe to assess associations between selected amino acids and any of several nucleotides comprising their genetic code and genetic anticode sequences. These studies demonstrate a clear selectivity by the anticode sequences, thus confirming the hydrophobicity studies performed by Lacey et al. These studies further support the contention that life is likely a natural result of the physics and chemistry of the universe.

  8. CHEMICAL, MICROBIOLOGICAL AND COMPARATIVE FERMENTATION STUDIES ON DASAMULARISHTA

    OpenAIRE

    Alam, Muzaffer; Dasan, K. K. S.; Rukmani, B.; Purushothaman, K. K.

    1984-01-01

    Dasamularista was prepared as per the national formulary to study the effect of container on the production of alcohol and the presence of microorganisms during the process of fermentation. Citraka (Plumbago rosea Linn.) which was one of the ingredient in the drug and subjected to “Sodhana” was also studied. The Citraka was impoverished by 50% with respect to plumbagin as a result of sodhana-purification. The drug prepared in glass vessel showed higher amount of alcohol than the earthen pot p...

  9. Model reduction for dynamic real-time optimization of chemical processes

    NARCIS (Netherlands)

    Van den Berg, J.

    2005-01-01

    The value of models in process industries becomes apparent in practice and literature where numerous successful applications are reported. Process models are being used for optimal plant design, simulation studies, for off-line and online process optimization. For online optimization applications th

  10. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  11. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases

    OpenAIRE

    Hondal, Robert J.

    2009-01-01

    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries.

  12. A Chemical and Crystallographic Study of Carbamyl-Chymotrypsin A

    NARCIS (Netherlands)

    Robillard, George T.; Powers, James C.; Wilcox, Philip E.

    1972-01-01

    The reaction of p-nitrophenyl cyanate with chymotrypsinogen A and chymotrypsin A has been studied to determine the potential of this reagent in the field of enzyme modifications. These experiments have shown that p-nitrophenyl [14C]cyanate can react at specific loci on the enzyme under mild conditio

  13. Study the Migration Process of Chemical Substances through the Packaging/Food Interface during Microwave Treatment

    Directory of Open Access Journals (Sweden)

    Fang Duan

    2013-01-01

    Full Text Available The diffusion of chemical substances from packaging into food endangers people’s health. The migration amount of the chemical substances increases with the time and temperature, but the diffusion process for different kinds of packaging materials differs much. Most recently, the research community showed a renewed interest on the diffusion process of chemical substances through packaging/food interface during microwave treatment. In this study, the diffusion coefficient model is suggested and then the migration process is studied based on Fick’s diffusion law. The results are finally compared with the experimental data, showing good agreement.

  14. Accumulation of errors in numerical simulations of chemically reacting gas dynamics

    Science.gov (United States)

    Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Stamov, L. I.; Altoukhov, D. I.

    2015-12-01

    The aim of the present study is to investigate problems of numerical simulations precision and stochastic errors accumulation in solving problems of detonation or deflagration combustion of gas mixtures in rocket engines. Computational models for parallel computing on supercomputers incorporating CPU and GPU units were tested and verified. Investigation of the influence of computational grid size on simulation precision and computational speed was performed. Investigation of accumulation of errors for simulations implying different strategies of computation were performed.

  15. Chemical gas-dynamics beyond Wang Chang-Uhlenbeck's kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnichenko, Evgeniy G. [Gas Kinetics Lab, Moscow State University, Institute for Mechanics, Moscow, 117192 (Russian Federation); Gorbachev, Yuriy E. [Research Department, Coddan Technologies LLC, St. Petersburg, 197342 (Russian Federation)

    2014-12-09

    Wang Chang-Uhlenbeck equation does not give possibility to take into account intermolecular processes such as redistribution of the energy among different degrees of freedom. The modification of the generalized Wang Chang-Uhlenbeck equation including such processes is proposed. It allows to study for instance the kinetics of non-radiative transitions. Limitations of this approach are connected with the requirements of absence of polarization of rotational momentum and phases of intermolecular vibrations.

  16. Pharmacophore modeling and molecular dynamics simulation to identify the critical chemical features against human sirtuin 2 inhibitors

    Science.gov (United States)

    Sakkiah, Sugunadevi; Baek, Ayoung; Lee, Keun Woo

    2012-03-01

    Sirtuin 2 (SIRT2) is one of the emerging targets in chemotherapy field and mainly associated with many diseases such as cancer and Parkinson's. Hence, quantitative hypothesis was developed using Discovery Studio v2.5. Top ten resultant hypotheses were generated, among them Hypo1 was selected as a best hypothesis based on the statistical parameters like high cost difference (52), lowest RMS (0.71), and good correlation coefficient (0.96). Hypo1 has been validated by using well known methodologies such as Fischer's randomization method (95% confidence level), test set which has shown the correlation coefficient of 0.93 as well as the goodness of hit (0.65), and enrichment factor (8.80). All the above statistical validations confirm that the chemical features in Hypo1 (1 hydrogen bond acceptor, 1 hydrophobic, and 2 ring aromatic features) was able to inhibit the function of SIRT2. Hence, Hypo1 was used as a query in virtual screening to find a novel scaffolds by screening the various chemical databases. The screened molecules from the databases were checked for the ADMET as well as the drug-like properties. Due to the lack of SIRT2-ligand complex structure in PDB, molecular docking and molecular dynamics (MD) simulation was carried out to find the suitable orientation of ligand in the active site. The representative structure from MD simulations was used as a receptor to dock the molecules which passed the drug-like properties from the virtual screening. Finally, 29 compounds were selected as a potent candidate leads based on the interactions with the active site residues of SIRT2. Thus, the resultant pharmacophore can be used to discover and design the SIRT2 inhibitors with desired biological activity.

  17. Marine Sponges and Symbionts: Chemical and Biological Studies

    OpenAIRE

    Schmidt, Eric W.

    1999-01-01

    This thesis concerns two quite different types of research that are separated into distinct sections of the thesis, but which seek to answer the same question using diametrically opposite approaches. The first part (Chapters 1-8) covers research leading to novel, bioactive compounds in marine sponges, while the second (Chapters 9-10) involves molecular biological studies of symbiosis between microbes and sponges. Although these topics seem at first glance completely separate, they are in real...

  18. Physico-Chemical Studies of the Pvc K+ - Selective Membrane

    Directory of Open Access Journals (Sweden)

    Ana COROIAN

    2002-12-01

    Full Text Available A plasticized ion-selective membrane based on PVC matrix which tricrezylphosphate (TCP and containing K+ - ionophores (dibenzo-18-crown-6 and decyl-18-crown-6 was used to obtain a potentiometric potassium sensor. The potassium selective membranes were characterized in terms of their electrochemical and physical properties, surface morphology and structural parameters. The a.c. impedance, UV/VIS analysis of the membranes was also studied.

  19. A new dynamical model for the study of galactic structure

    CERN Document Server

    Zotos, Euaggelos E

    2012-01-01

    In the present article, we present a new gravitational galactic model, describing motion in elliptical as well as in disk galaxies, by suitably choosing the dynamical parameters. Moreover, a new dynamical parameter, the S(g) spectrum, is introduced and used, in order to detect islandic motion of resonant orbits and the evolution of the sticky regions. We investigate the regular or chaotic character of motion, with emphasis in the different dynamical models and make an extensive study of the sticky regions of the system. We use the classical method of the Poincare (r-pr) phase plane and the new dynamical parameter of the S(g) spectrum. The LCE is used, in order to make an estimation of the degree of chaos in our galactic model. In both cases, the numerical calculations, suggest that our new model, displays a wide variety of families of regular orbits, compared to other galactic models. In addition to the regular motion, this new model displays also chaotic regions. Furthermore, the extent of the chaotic region...

  20. Study of the chemical freeze-out in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Heavy ion collisions at ultra-relativistic energies are studied in order to create and analyze the quark-gluon plasma, which subsequently hadronizes forming the hadrons. Hadron multiplicities and their correlations are observables which can provide information on the nature, composition and size of the medium from which they originate. The hadron yields measured in the energy range from SIS to RHIC are well described by the thermal model assuming chemical equilibrium among produced hadrons at freeze-out. To determine the parameters characterizing chemical freeze-out, we analyze particle yields in terms of temperature and baryon chemical potential. From the experimental data obtained with BRAHMS experiment, in Au-Au collisions, at 200 AGeV, we obtain the lowest value for the baryon chemical potential and a chemical freeze-out temperature of approximately 170 MeV. The net-baryon density of the central rapidity region has the lowest value, and could explain the baryon chemical potential behaviour. At the same energy, the baryon chemical potential increases from mid-rapidity to forward rapidities. This behaviour confirms that, the mid-rapidity region is almost a net-baryon free region, while in the forward rapidities region it still keeps a significant baryon content of the original colliding nuclei. The energy dependence of chemical parameters is also discussed. As the beam energy is increased, the value of chemical freeze-out temperature is higher while that of baryon chemical potential is lower. The trend of chemical potential shows less baryon stopping with increasing energy. (author)